1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Copyright (C) 2012,2013 - ARM Ltd
6 * Derived from arch/arm/include/asm/kvm_host.h:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/maple_tree.h>
20 #include <linux/percpu.h>
21 #include <linux/psci.h>
22 #include <asm/arch_gicv3.h>
23 #include <asm/barrier.h>
24 #include <asm/cpufeature.h>
25 #include <asm/cputype.h>
26 #include <asm/daifflags.h>
27 #include <asm/fpsimd.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/vncr_mapping.h>
32 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
34 #define KVM_HALT_POLL_NS_DEFAULT 500000
36 #include <kvm/arm_vgic.h>
37 #include <kvm/arm_arch_timer.h>
38 #include <kvm/arm_pmu.h>
40 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
42 #define KVM_VCPU_MAX_FEATURES 7
43 #define KVM_VCPU_VALID_FEATURES (BIT(KVM_VCPU_MAX_FEATURES) - 1)
45 #define KVM_REQ_SLEEP \
46 KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
47 #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1)
48 #define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2)
49 #define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3)
50 #define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4)
51 #define KVM_REQ_RELOAD_PMU KVM_ARCH_REQ(5)
52 #define KVM_REQ_SUSPEND KVM_ARCH_REQ(6)
53 #define KVM_REQ_RESYNC_PMU_EL0 KVM_ARCH_REQ(7)
54 #define KVM_REQ_NESTED_S2_UNMAP KVM_ARCH_REQ(8)
56 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
57 KVM_DIRTY_LOG_INITIALLY_SET)
59 #define KVM_HAVE_MMU_RWLOCK
62 * Mode of operation configurable with kvm-arm.mode early param.
63 * See Documentation/admin-guide/kernel-parameters.txt for more information.
72 enum kvm_mode kvm_get_mode(void);
74 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
77 extern unsigned int __ro_after_init kvm_sve_max_vl;
78 extern unsigned int __ro_after_init kvm_host_sve_max_vl;
79 int __init kvm_arm_init_sve(void);
81 u32 __attribute_const__ kvm_target_cpu(void);
82 void kvm_reset_vcpu(struct kvm_vcpu *vcpu);
83 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
85 struct kvm_hyp_memcache {
87 unsigned long nr_pages;
90 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
92 phys_addr_t (*to_pa)(void *virt))
99 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
100 void *(*to_va)(phys_addr_t phys))
102 phys_addr_t *p = to_va(mc->head);
113 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
114 unsigned long min_pages,
115 void *(*alloc_fn)(void *arg),
116 phys_addr_t (*to_pa)(void *virt),
119 while (mc->nr_pages < min_pages) {
120 phys_addr_t *p = alloc_fn(arg);
124 push_hyp_memcache(mc, p, to_pa);
130 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
131 void (*free_fn)(void *virt, void *arg),
132 void *(*to_va)(phys_addr_t phys),
136 free_fn(pop_hyp_memcache(mc, to_va), arg);
139 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
140 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
147 struct kvm_vmid vmid;
150 * stage2 entry level table
152 * Two kvm_s2_mmu structures in the same VM can point to the same
153 * pgd here. This happens when running a guest using a
154 * translation regime that isn't affected by its own stage-2
155 * translation, such as a non-VHE hypervisor running at vEL2, or
156 * for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the
157 * canonical stage-2 page tables.
159 phys_addr_t pgd_phys;
160 struct kvm_pgtable *pgt;
163 * VTCR value used on the host. For a non-NV guest (or a NV
164 * guest that runs in a context where its own S2 doesn't
165 * apply), its T0SZ value reflects that of the IPA size.
167 * For a shadow S2 MMU, T0SZ reflects the PARange exposed to
172 /* The last vcpu id that ran on each physical CPU */
173 int __percpu *last_vcpu_ran;
175 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
177 * Memory cache used to split
178 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
179 * is used to allocate stage2 page tables while splitting huge
180 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
181 * influences both the capacity of the split page cache, and
182 * how often KVM reschedules. Be wary of raising CHUNK_SIZE
185 * Protected by kvm->slots_lock.
187 struct kvm_mmu_memory_cache split_page_cache;
188 uint64_t split_page_chunk_size;
190 struct kvm_arch *arch;
193 * For a shadow stage-2 MMU, the virtual vttbr used by the
194 * host to parse the guest S2.
195 * This either contains:
196 * - the virtual VTTBR programmed by the guest hypervisor with
198 * - The value 1 (VMID=0, BADDR=0, CnP=1) if invalid
200 * We also cache the full VTCR which gets used for TLB invalidation,
201 * taking the ARM ARM's "Any of the bits in VTCR_EL2 are permitted
202 * to be cached in a TLB" to the letter.
208 * true when this represents a nested context where virtual
211 bool nested_stage2_enabled;
214 * true when this MMU needs to be unmapped before being used for a new
220 * 0: Nobody is currently using this, check vttbr for validity
221 * >0: Somebody is actively using this.
226 struct kvm_arch_memory_slot {
230 * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
232 * @std_bmap: Bitmap of standard secure service calls
233 * @std_hyp_bmap: Bitmap of standard hypervisor service calls
234 * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
236 struct kvm_smccc_features {
237 unsigned long std_bmap;
238 unsigned long std_hyp_bmap;
239 unsigned long vendor_hyp_bmap;
242 typedef unsigned int pkvm_handle_t;
244 struct kvm_protected_vm {
245 pkvm_handle_t handle;
246 struct kvm_hyp_memcache teardown_mc;
250 struct kvm_mpidr_data {
252 DECLARE_FLEX_ARRAY(u16, cmpidr_to_idx);
255 static inline u16 kvm_mpidr_index(struct kvm_mpidr_data *data, u64 mpidr)
257 unsigned long index = 0, mask = data->mpidr_mask;
258 unsigned long aff = mpidr & MPIDR_HWID_BITMASK;
260 bitmap_gather(&index, &aff, &mask, fls(mask));
265 struct kvm_sysreg_masks;
271 HDFGWTR_GROUP = HDFGRTR_GROUP,
280 struct kvm_s2_mmu mmu;
283 * Fine-Grained UNDEF, mimicking the FGT layout defined by the
284 * architecture. We track them globally, as we present the
285 * same feature-set to all vcpus.
287 * Index 0 is currently spare.
289 u64 fgu[__NR_FGT_GROUP_IDS__];
292 * Stage 2 paging state for VMs with nested S2 using a virtual
295 struct kvm_s2_mmu *nested_mmus;
296 size_t nested_mmus_size;
297 int nested_mmus_next;
299 /* Interrupt controller */
300 struct vgic_dist vgic;
303 struct arch_timer_vm_data timer_data;
305 /* Mandated version of PSCI */
308 /* Protects VM-scoped configuration data */
309 struct mutex config_lock;
312 * If we encounter a data abort without valid instruction syndrome
313 * information, report this to user space. User space can (and
314 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
317 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER 0
318 /* Memory Tagging Extension enabled for the guest */
319 #define KVM_ARCH_FLAG_MTE_ENABLED 1
320 /* At least one vCPU has ran in the VM */
321 #define KVM_ARCH_FLAG_HAS_RAN_ONCE 2
322 /* The vCPU feature set for the VM is configured */
323 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED 3
324 /* PSCI SYSTEM_SUSPEND enabled for the guest */
325 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED 4
326 /* VM counter offset */
327 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET 5
328 /* Timer PPIs made immutable */
329 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE 6
330 /* Initial ID reg values loaded */
331 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED 7
332 /* Fine-Grained UNDEF initialised */
333 #define KVM_ARCH_FLAG_FGU_INITIALIZED 8
336 /* VM-wide vCPU feature set */
337 DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
339 /* MPIDR to vcpu index mapping, optional */
340 struct kvm_mpidr_data *mpidr_data;
343 * VM-wide PMU filter, implemented as a bitmap and big enough for
344 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
346 unsigned long *pmu_filter;
347 struct arm_pmu *arm_pmu;
349 cpumask_var_t supported_cpus;
351 /* PMCR_EL0.N value for the guest */
354 /* Iterator for idreg debugfs */
355 u8 idreg_debugfs_iter;
357 /* Hypercall features firmware registers' descriptor */
358 struct kvm_smccc_features smccc_feat;
359 struct maple_tree smccc_filter;
362 * Emulated CPU ID registers per VM
363 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
364 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
366 * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
367 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
369 #define IDREG_IDX(id) (((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
370 #define KVM_ARM_ID_REG_NUM (IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
371 u64 id_regs[KVM_ARM_ID_REG_NUM];
375 /* Masks for VNCR-backed and general EL2 sysregs */
376 struct kvm_sysreg_masks *sysreg_masks;
379 * For an untrusted host VM, 'pkvm.handle' is used to lookup
380 * the associated pKVM instance in the hypervisor.
382 struct kvm_protected_vm pkvm;
385 struct kvm_vcpu_fault_info {
386 u64 esr_el2; /* Hyp Syndrom Register */
387 u64 far_el2; /* Hyp Fault Address Register */
388 u64 hpfar_el2; /* Hyp IPA Fault Address Register */
389 u64 disr_el1; /* Deferred [SError] Status Register */
393 * VNCR() just places the VNCR_capable registers in the enum after
394 * __VNCR_START__, and the value (after correction) to be an 8-byte offset
395 * from the VNCR base. As we don't require the enum to be otherwise ordered,
396 * we need the terrible hack below to ensure that we correctly size the
397 * sys_regs array, no matter what.
399 * The __MAX__ macro has been lifted from Sean Eron Anderson's wonderful
400 * treasure trove of bit hacks:
401 * https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
403 #define __MAX__(x,y) ((x) ^ (((x) ^ (y)) & -((x) < (y))))
406 r = __VNCR_START__ + ((VNCR_ ## r) / 8), \
407 __after_##r = __MAX__(__before_##r - 1, r)
410 m, __after_##m = m - 1
413 __INVALID_SYSREG__, /* 0 is reserved as an invalid value */
414 MPIDR_EL1, /* MultiProcessor Affinity Register */
415 CLIDR_EL1, /* Cache Level ID Register */
416 CSSELR_EL1, /* Cache Size Selection Register */
417 TPIDR_EL0, /* Thread ID, User R/W */
418 TPIDRRO_EL0, /* Thread ID, User R/O */
419 TPIDR_EL1, /* Thread ID, Privileged */
420 CNTKCTL_EL1, /* Timer Control Register (EL1) */
421 PAR_EL1, /* Physical Address Register */
422 MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */
423 OSLSR_EL1, /* OS Lock Status Register */
424 DISR_EL1, /* Deferred Interrupt Status Register */
426 /* Performance Monitors Registers */
427 PMCR_EL0, /* Control Register */
428 PMSELR_EL0, /* Event Counter Selection Register */
429 PMEVCNTR0_EL0, /* Event Counter Register (0-30) */
430 PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
431 PMCCNTR_EL0, /* Cycle Counter Register */
432 PMEVTYPER0_EL0, /* Event Type Register (0-30) */
433 PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
434 PMCCFILTR_EL0, /* Cycle Count Filter Register */
435 PMCNTENSET_EL0, /* Count Enable Set Register */
436 PMINTENSET_EL1, /* Interrupt Enable Set Register */
437 PMOVSSET_EL0, /* Overflow Flag Status Set Register */
438 PMUSERENR_EL0, /* User Enable Register */
440 /* Pointer Authentication Registers in a strict increasing order. */
452 /* Memory Tagging Extension registers */
453 RGSR_EL1, /* Random Allocation Tag Seed Register */
454 GCR_EL1, /* Tag Control Register */
455 TFSRE0_EL1, /* Tag Fault Status Register (EL0) */
457 POR_EL0, /* Permission Overlay Register 0 (EL0) */
463 /* 32bit specific registers. */
464 DACR32_EL2, /* Domain Access Control Register */
465 IFSR32_EL2, /* Instruction Fault Status Register */
466 FPEXC32_EL2, /* Floating-Point Exception Control Register */
467 DBGVCR32_EL2, /* Debug Vector Catch Register */
470 SCTLR_EL2, /* System Control Register (EL2) */
471 ACTLR_EL2, /* Auxiliary Control Register (EL2) */
472 CPTR_EL2, /* Architectural Feature Trap Register (EL2) */
473 HACR_EL2, /* Hypervisor Auxiliary Control Register */
474 ZCR_EL2, /* SVE Control Register (EL2) */
475 TTBR0_EL2, /* Translation Table Base Register 0 (EL2) */
476 TTBR1_EL2, /* Translation Table Base Register 1 (EL2) */
477 TCR_EL2, /* Translation Control Register (EL2) */
478 PIRE0_EL2, /* Permission Indirection Register 0 (EL2) */
479 PIR_EL2, /* Permission Indirection Register 1 (EL2) */
480 POR_EL2, /* Permission Overlay Register 2 (EL2) */
481 SPSR_EL2, /* EL2 saved program status register */
482 ELR_EL2, /* EL2 exception link register */
483 AFSR0_EL2, /* Auxiliary Fault Status Register 0 (EL2) */
484 AFSR1_EL2, /* Auxiliary Fault Status Register 1 (EL2) */
485 ESR_EL2, /* Exception Syndrome Register (EL2) */
486 FAR_EL2, /* Fault Address Register (EL2) */
487 HPFAR_EL2, /* Hypervisor IPA Fault Address Register */
488 MAIR_EL2, /* Memory Attribute Indirection Register (EL2) */
489 AMAIR_EL2, /* Auxiliary Memory Attribute Indirection Register (EL2) */
490 VBAR_EL2, /* Vector Base Address Register (EL2) */
491 RVBAR_EL2, /* Reset Vector Base Address Register */
492 CONTEXTIDR_EL2, /* Context ID Register (EL2) */
493 CNTHCTL_EL2, /* Counter-timer Hypervisor Control register */
494 SP_EL2, /* EL2 Stack Pointer */
500 /* Anything from this can be RES0/RES1 sanitised */
501 MARKER(__SANITISED_REG_START__),
502 TCR2_EL2, /* Extended Translation Control Register (EL2) */
503 MDCR_EL2, /* Monitor Debug Configuration Register (EL2) */
505 /* Any VNCR-capable reg goes after this point */
506 MARKER(__VNCR_START__),
508 VNCR(SCTLR_EL1),/* System Control Register */
509 VNCR(ACTLR_EL1),/* Auxiliary Control Register */
510 VNCR(CPACR_EL1),/* Coprocessor Access Control */
511 VNCR(ZCR_EL1), /* SVE Control */
512 VNCR(TTBR0_EL1),/* Translation Table Base Register 0 */
513 VNCR(TTBR1_EL1),/* Translation Table Base Register 1 */
514 VNCR(TCR_EL1), /* Translation Control Register */
515 VNCR(TCR2_EL1), /* Extended Translation Control Register */
516 VNCR(ESR_EL1), /* Exception Syndrome Register */
517 VNCR(AFSR0_EL1),/* Auxiliary Fault Status Register 0 */
518 VNCR(AFSR1_EL1),/* Auxiliary Fault Status Register 1 */
519 VNCR(FAR_EL1), /* Fault Address Register */
520 VNCR(MAIR_EL1), /* Memory Attribute Indirection Register */
521 VNCR(VBAR_EL1), /* Vector Base Address Register */
522 VNCR(CONTEXTIDR_EL1), /* Context ID Register */
523 VNCR(AMAIR_EL1),/* Aux Memory Attribute Indirection Register */
524 VNCR(MDSCR_EL1),/* Monitor Debug System Control Register */
528 VNCR(TFSR_EL1), /* Tag Fault Status Register (EL1) */
529 VNCR(VPIDR_EL2),/* Virtualization Processor ID Register */
530 VNCR(VMPIDR_EL2),/* Virtualization Multiprocessor ID Register */
531 VNCR(HCR_EL2), /* Hypervisor Configuration Register */
532 VNCR(HSTR_EL2), /* Hypervisor System Trap Register */
533 VNCR(VTTBR_EL2),/* Virtualization Translation Table Base Register */
534 VNCR(VTCR_EL2), /* Virtualization Translation Control Register */
535 VNCR(TPIDR_EL2),/* EL2 Software Thread ID Register */
536 VNCR(HCRX_EL2), /* Extended Hypervisor Configuration Register */
538 /* Permission Indirection Extension registers */
539 VNCR(PIR_EL1), /* Permission Indirection Register 1 (EL1) */
540 VNCR(PIRE0_EL1), /* Permission Indirection Register 0 (EL1) */
542 VNCR(POR_EL1), /* Permission Overlay Register 1 (EL1) */
559 NR_SYS_REGS /* Nothing after this line! */
562 struct kvm_sysreg_masks {
566 } mask[NR_SYS_REGS - __SANITISED_REG_START__];
569 struct kvm_cpu_context {
570 struct user_pt_regs regs; /* sp = sp_el0 */
577 struct user_fpsimd_state fp_regs;
579 u64 sys_regs[NR_SYS_REGS];
581 struct kvm_vcpu *__hyp_running_vcpu;
583 /* This pointer has to be 4kB aligned. */
587 struct cpu_sve_state {
591 * Ordering is important since __sve_save_state/__sve_restore_state
597 /* Must be SVE_VQ_BYTES (128 bit) aligned. */
602 * This structure is instantiated on a per-CPU basis, and contains
605 * - tied to a single physical CPU, and
606 * - either have a lifetime that does not extend past vcpu_put()
607 * - or is an invariant for the lifetime of the system
609 * Use host_data_ptr(field) as a way to access a pointer to such a
612 struct kvm_host_data {
613 struct kvm_cpu_context host_ctxt;
616 * All pointers in this union are hyp VA.
617 * sve_state is only used in pKVM and if system_supports_sve().
620 struct user_fpsimd_state *fpsimd_state;
621 struct cpu_sve_state *sve_state;
625 /* HYP VA pointer to the host storage for FPMR */
628 * Used by pKVM only, as it needs to provide storage
634 /* Ownership of the FP regs */
638 FP_STATE_GUEST_OWNED,
642 * host_debug_state contains the host registers which are
643 * saved and restored during world switches.
646 /* {Break,watch}point registers */
647 struct kvm_guest_debug_arch regs;
648 /* Statistical profiling extension */
650 /* Self-hosted trace */
652 /* Values of trap registers for the host before guest entry. */
657 struct kvm_host_psci_config {
658 /* PSCI version used by host. */
662 /* Function IDs used by host if version is v0.1. */
663 struct psci_0_1_function_ids function_ids_0_1;
665 bool psci_0_1_cpu_suspend_implemented;
666 bool psci_0_1_cpu_on_implemented;
667 bool psci_0_1_cpu_off_implemented;
668 bool psci_0_1_migrate_implemented;
671 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
672 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
674 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
675 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
677 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
678 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
680 struct vcpu_reset_state {
687 struct kvm_vcpu_arch {
688 struct kvm_cpu_context ctxt;
691 * Guest floating point state
693 * The architecture has two main floating point extensions,
694 * the original FPSIMD and SVE. These have overlapping
695 * register views, with the FPSIMD V registers occupying the
696 * low 128 bits of the SVE Z registers. When the core
697 * floating point code saves the register state of a task it
698 * records which view it saved in fp_type.
701 enum fp_type fp_type;
702 unsigned int sve_max_vl;
704 /* Stage 2 paging state used by the hardware on next switch */
705 struct kvm_s2_mmu *hw_mmu;
707 /* Values of trap registers for the guest. */
713 /* Exception Information */
714 struct kvm_vcpu_fault_info fault;
716 /* Configuration flags, set once and for all before the vcpu can run */
719 /* Input flags to the hypervisor code, potentially cleared after use */
722 /* State flags for kernel bookkeeping, unused by the hypervisor code */
726 * Don't run the guest (internal implementation need).
728 * Contrary to the flags above, this is set/cleared outside of
729 * a vcpu context, and thus cannot be mixed with the flags
730 * themselves (or the flag accesses need to be made atomic).
735 * We maintain more than a single set of debug registers to support
736 * debugging the guest from the host and to maintain separate host and
737 * guest state during world switches. vcpu_debug_state are the debug
738 * registers of the vcpu as the guest sees them.
740 * external_debug_state contains the debug values we want to debug the
741 * guest. This is set via the KVM_SET_GUEST_DEBUG ioctl.
743 * debug_ptr points to the set of debug registers that should be loaded
744 * onto the hardware when running the guest.
746 struct kvm_guest_debug_arch *debug_ptr;
747 struct kvm_guest_debug_arch vcpu_debug_state;
748 struct kvm_guest_debug_arch external_debug_state;
751 struct vgic_cpu vgic_cpu;
752 struct arch_timer_cpu timer_cpu;
756 * Guest registers we preserve during guest debugging.
758 * These shadow registers are updated by the kvm_handle_sys_reg
759 * trap handler if the guest accesses or updates them while we
760 * are using guest debug.
765 } guest_debug_preserved;
767 /* vcpu power state */
768 struct kvm_mp_state mp_state;
769 spinlock_t mp_state_lock;
771 /* Cache some mmu pages needed inside spinlock regions */
772 struct kvm_mmu_memory_cache mmu_page_cache;
774 /* Virtual SError ESR to restore when HCR_EL2.VSE is set */
777 /* Additional reset state */
778 struct vcpu_reset_state reset_state;
786 /* Per-vcpu CCSIDR override or NULL */
791 * Each 'flag' is composed of a comma-separated triplet:
793 * - the flag-set it belongs to in the vcpu->arch structure
794 * - the value for that flag
795 * - the mask for that flag
797 * __vcpu_single_flag() builds such a triplet for a single-bit flag.
798 * unpack_vcpu_flag() extract the flag value from the triplet for
799 * direct use outside of the flag accessors.
801 #define __vcpu_single_flag(_set, _f) _set, (_f), (_f)
803 #define __unpack_flag(_set, _f, _m) _f
804 #define unpack_vcpu_flag(...) __unpack_flag(__VA_ARGS__)
806 #define __build_check_flag(v, flagset, f, m) \
808 typeof(v->arch.flagset) *_fset; \
810 /* Check that the flags fit in the mask */ \
811 BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \
812 /* Check that the flags fit in the type */ \
813 BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \
816 #define __vcpu_get_flag(v, flagset, f, m) \
818 __build_check_flag(v, flagset, f, m); \
820 READ_ONCE(v->arch.flagset) & (m); \
824 * Note that the set/clear accessors must be preempt-safe in order to
825 * avoid nesting them with load/put which also manipulate flags...
827 #ifdef __KVM_NVHE_HYPERVISOR__
828 /* the nVHE hypervisor is always non-preemptible */
829 #define __vcpu_flags_preempt_disable()
830 #define __vcpu_flags_preempt_enable()
832 #define __vcpu_flags_preempt_disable() preempt_disable()
833 #define __vcpu_flags_preempt_enable() preempt_enable()
836 #define __vcpu_set_flag(v, flagset, f, m) \
838 typeof(v->arch.flagset) *fset; \
840 __build_check_flag(v, flagset, f, m); \
842 fset = &v->arch.flagset; \
843 __vcpu_flags_preempt_disable(); \
844 if (HWEIGHT(m) > 1) \
847 __vcpu_flags_preempt_enable(); \
850 #define __vcpu_clear_flag(v, flagset, f, m) \
852 typeof(v->arch.flagset) *fset; \
854 __build_check_flag(v, flagset, f, m); \
856 fset = &v->arch.flagset; \
857 __vcpu_flags_preempt_disable(); \
859 __vcpu_flags_preempt_enable(); \
862 #define vcpu_get_flag(v, ...) __vcpu_get_flag((v), __VA_ARGS__)
863 #define vcpu_set_flag(v, ...) __vcpu_set_flag((v), __VA_ARGS__)
864 #define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__)
866 /* SVE exposed to guest */
867 #define GUEST_HAS_SVE __vcpu_single_flag(cflags, BIT(0))
868 /* SVE config completed */
869 #define VCPU_SVE_FINALIZED __vcpu_single_flag(cflags, BIT(1))
870 /* PTRAUTH exposed to guest */
871 #define GUEST_HAS_PTRAUTH __vcpu_single_flag(cflags, BIT(2))
872 /* KVM_ARM_VCPU_INIT completed */
873 #define VCPU_INITIALIZED __vcpu_single_flag(cflags, BIT(3))
875 /* Exception pending */
876 #define PENDING_EXCEPTION __vcpu_single_flag(iflags, BIT(0))
878 * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
879 * be set together with an exception...
881 #define INCREMENT_PC __vcpu_single_flag(iflags, BIT(1))
882 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
883 #define EXCEPT_MASK __vcpu_single_flag(iflags, GENMASK(3, 1))
885 /* Helpers to encode exceptions with minimum fuss */
886 #define __EXCEPT_MASK_VAL unpack_vcpu_flag(EXCEPT_MASK)
887 #define __EXCEPT_SHIFT __builtin_ctzl(__EXCEPT_MASK_VAL)
888 #define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
891 * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
896 #define EXCEPT_AA32_UND __vcpu_except_flags(0)
897 #define EXCEPT_AA32_IABT __vcpu_except_flags(1)
898 #define EXCEPT_AA32_DABT __vcpu_except_flags(2)
900 #define EXCEPT_AA64_EL1_SYNC __vcpu_except_flags(0)
901 #define EXCEPT_AA64_EL1_IRQ __vcpu_except_flags(1)
902 #define EXCEPT_AA64_EL1_FIQ __vcpu_except_flags(2)
903 #define EXCEPT_AA64_EL1_SERR __vcpu_except_flags(3)
904 /* For AArch64 with NV: */
905 #define EXCEPT_AA64_EL2_SYNC __vcpu_except_flags(4)
906 #define EXCEPT_AA64_EL2_IRQ __vcpu_except_flags(5)
907 #define EXCEPT_AA64_EL2_FIQ __vcpu_except_flags(6)
908 #define EXCEPT_AA64_EL2_SERR __vcpu_except_flags(7)
909 /* Guest debug is live */
910 #define DEBUG_DIRTY __vcpu_single_flag(iflags, BIT(4))
911 /* Save SPE context if active */
912 #define DEBUG_STATE_SAVE_SPE __vcpu_single_flag(iflags, BIT(5))
913 /* Save TRBE context if active */
914 #define DEBUG_STATE_SAVE_TRBE __vcpu_single_flag(iflags, BIT(6))
916 /* SVE enabled for host EL0 */
917 #define HOST_SVE_ENABLED __vcpu_single_flag(sflags, BIT(0))
918 /* SME enabled for EL0 */
919 #define HOST_SME_ENABLED __vcpu_single_flag(sflags, BIT(1))
920 /* Physical CPU not in supported_cpus */
921 #define ON_UNSUPPORTED_CPU __vcpu_single_flag(sflags, BIT(2))
922 /* WFIT instruction trapped */
923 #define IN_WFIT __vcpu_single_flag(sflags, BIT(3))
924 /* vcpu system registers loaded on physical CPU */
925 #define SYSREGS_ON_CPU __vcpu_single_flag(sflags, BIT(4))
926 /* Software step state is Active-pending */
927 #define DBG_SS_ACTIVE_PENDING __vcpu_single_flag(sflags, BIT(5))
928 /* PMUSERENR for the guest EL0 is on physical CPU */
929 #define PMUSERENR_ON_CPU __vcpu_single_flag(sflags, BIT(6))
930 /* WFI instruction trapped */
931 #define IN_WFI __vcpu_single_flag(sflags, BIT(7))
934 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
935 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) + \
936 sve_ffr_offset((vcpu)->arch.sve_max_vl))
938 #define vcpu_sve_max_vq(vcpu) sve_vq_from_vl((vcpu)->arch.sve_max_vl)
940 #define vcpu_sve_zcr_elx(vcpu) \
941 (unlikely(is_hyp_ctxt(vcpu)) ? ZCR_EL2 : ZCR_EL1)
943 #define vcpu_sve_state_size(vcpu) ({ \
945 unsigned int __vcpu_vq; \
947 if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \
950 __vcpu_vq = vcpu_sve_max_vq(vcpu); \
951 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \
957 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
958 KVM_GUESTDBG_USE_SW_BP | \
959 KVM_GUESTDBG_USE_HW | \
960 KVM_GUESTDBG_SINGLESTEP)
962 #define vcpu_has_sve(vcpu) (system_supports_sve() && \
963 vcpu_get_flag(vcpu, GUEST_HAS_SVE))
965 #ifdef CONFIG_ARM64_PTR_AUTH
966 #define vcpu_has_ptrauth(vcpu) \
967 ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) || \
968 cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) && \
969 vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
971 #define vcpu_has_ptrauth(vcpu) false
974 #define vcpu_on_unsupported_cpu(vcpu) \
975 vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
977 #define vcpu_set_on_unsupported_cpu(vcpu) \
978 vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
980 #define vcpu_clear_on_unsupported_cpu(vcpu) \
981 vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
983 #define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs)
986 * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
987 * memory backed version of a register, and not the one most recently
988 * accessed by a running VCPU. For example, for userspace access or
989 * for system registers that are never context switched, but only
992 * Don't bother with VNCR-based accesses in the nVHE code, it has no
993 * business dealing with NV.
995 static inline u64 *___ctxt_sys_reg(const struct kvm_cpu_context *ctxt, int r)
997 #if !defined (__KVM_NVHE_HYPERVISOR__)
998 if (unlikely(cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) &&
999 r >= __VNCR_START__ && ctxt->vncr_array))
1000 return &ctxt->vncr_array[r - __VNCR_START__];
1002 return (u64 *)&ctxt->sys_regs[r];
1005 #define __ctxt_sys_reg(c,r) \
1007 BUILD_BUG_ON(__builtin_constant_p(r) && \
1008 (r) >= NR_SYS_REGS); \
1009 ___ctxt_sys_reg(c, r); \
1012 #define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r))
1014 u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *, enum vcpu_sysreg, u64);
1015 #define __vcpu_sys_reg(v,r) \
1017 const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt; \
1018 u64 *__r = __ctxt_sys_reg(ctxt, (r)); \
1019 if (vcpu_has_nv((v)) && (r) >= __SANITISED_REG_START__) \
1020 *__r = kvm_vcpu_apply_reg_masks((v), (r), *__r);\
1024 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
1025 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
1027 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
1032 * System registers listed in the switch are not saved on every
1033 * exit from the guest but are only saved on vcpu_put.
1035 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1036 * should never be listed below, because the guest cannot modify its
1037 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
1038 * thread when emulating cross-VCPU communication.
1044 case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break;
1045 case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break;
1046 case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break;
1047 case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break;
1048 case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break;
1049 case TCR2_EL1: *val = read_sysreg_s(SYS_TCR2_EL12); break;
1050 case PIR_EL1: *val = read_sysreg_s(SYS_PIR_EL12); break;
1051 case PIRE0_EL1: *val = read_sysreg_s(SYS_PIRE0_EL12); break;
1052 case POR_EL1: *val = read_sysreg_s(SYS_POR_EL12); break;
1053 case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break;
1054 case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break;
1055 case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break;
1056 case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break;
1057 case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break;
1058 case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break;
1059 case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
1060 case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break;
1061 case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break;
1062 case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break;
1063 case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break;
1064 case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
1065 case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break;
1066 case SPSR_EL1: *val = read_sysreg_s(SYS_SPSR_EL12); break;
1067 case PAR_EL1: *val = read_sysreg_par(); break;
1068 case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break;
1069 case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break;
1070 case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
1071 case ZCR_EL1: *val = read_sysreg_s(SYS_ZCR_EL12); break;
1072 default: return false;
1078 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
1083 * System registers listed in the switch are not restored on every
1084 * entry to the guest but are only restored on vcpu_load.
1086 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1087 * should never be listed below, because the MPIDR should only be set
1088 * once, before running the VCPU, and never changed later.
1094 case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break;
1095 case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break;
1096 case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break;
1097 case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break;
1098 case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break;
1099 case TCR2_EL1: write_sysreg_s(val, SYS_TCR2_EL12); break;
1100 case PIR_EL1: write_sysreg_s(val, SYS_PIR_EL12); break;
1101 case PIRE0_EL1: write_sysreg_s(val, SYS_PIRE0_EL12); break;
1102 case POR_EL1: write_sysreg_s(val, SYS_POR_EL12); break;
1103 case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break;
1104 case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break;
1105 case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break;
1106 case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break;
1107 case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break;
1108 case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break;
1109 case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
1110 case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break;
1111 case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break;
1112 case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break;
1113 case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break;
1114 case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break;
1115 case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break;
1116 case SPSR_EL1: write_sysreg_s(val, SYS_SPSR_EL12); break;
1117 case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break;
1118 case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break;
1119 case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break;
1120 case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break;
1121 case ZCR_EL1: write_sysreg_s(val, SYS_ZCR_EL12); break;
1122 default: return false;
1128 struct kvm_vm_stat {
1129 struct kvm_vm_stat_generic generic;
1132 struct kvm_vcpu_stat {
1133 struct kvm_vcpu_stat_generic generic;
1138 u64 mmio_exit_kernel;
1143 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
1144 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
1145 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1146 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1148 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
1149 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
1151 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1152 struct kvm_vcpu_events *events);
1154 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1155 struct kvm_vcpu_events *events);
1157 void kvm_arm_halt_guest(struct kvm *kvm);
1158 void kvm_arm_resume_guest(struct kvm *kvm);
1160 #define vcpu_has_run_once(vcpu) (!!READ_ONCE((vcpu)->pid))
1162 #ifndef __KVM_NVHE_HYPERVISOR__
1163 #define kvm_call_hyp_nvhe(f, ...) \
1165 struct arm_smccc_res res; \
1167 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f), \
1168 ##__VA_ARGS__, &res); \
1169 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); \
1175 * The couple of isb() below are there to guarantee the same behaviour
1176 * on VHE as on !VHE, where the eret to EL1 acts as a context
1177 * synchronization event.
1179 #define kvm_call_hyp(f, ...) \
1185 kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \
1189 #define kvm_call_hyp_ret(f, ...) \
1191 typeof(f(__VA_ARGS__)) ret; \
1194 ret = f(__VA_ARGS__); \
1197 ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \
1202 #else /* __KVM_NVHE_HYPERVISOR__ */
1203 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
1204 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
1205 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
1206 #endif /* __KVM_NVHE_HYPERVISOR__ */
1208 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
1209 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
1211 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
1212 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
1213 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
1214 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
1215 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
1216 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
1217 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
1219 void kvm_sys_regs_create_debugfs(struct kvm *kvm);
1220 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
1222 int __init kvm_sys_reg_table_init(void);
1223 struct sys_reg_desc;
1224 int __init populate_sysreg_config(const struct sys_reg_desc *sr,
1226 int __init populate_nv_trap_config(void);
1228 bool lock_all_vcpus(struct kvm *kvm);
1229 void unlock_all_vcpus(struct kvm *kvm);
1231 void kvm_calculate_traps(struct kvm_vcpu *vcpu);
1234 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
1235 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
1237 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
1238 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
1241 * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
1242 * arrived in guest context. For arm64, any event that arrives while a vCPU is
1243 * loaded is considered to be "in guest".
1245 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1247 return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1250 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1251 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1252 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1254 bool kvm_arm_pvtime_supported(void);
1255 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1256 struct kvm_device_attr *attr);
1257 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1258 struct kvm_device_attr *attr);
1259 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1260 struct kvm_device_attr *attr);
1262 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1263 int __init kvm_arm_vmid_alloc_init(void);
1264 void __init kvm_arm_vmid_alloc_free(void);
1265 bool kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1266 void kvm_arm_vmid_clear_active(void);
1268 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1270 vcpu_arch->steal.base = INVALID_GPA;
1273 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1275 return (vcpu_arch->steal.base != INVALID_GPA);
1278 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1280 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1282 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1285 * How we access per-CPU host data depends on the where we access it from,
1286 * and the mode we're in:
1288 * - VHE and nVHE hypervisor bits use their locally defined instance
1290 * - the rest of the kernel use either the VHE or nVHE one, depending on
1291 * the mode we're running in.
1293 * Unless we're in protected mode, fully deprivileged, and the nVHE
1294 * per-CPU stuff is exclusively accessible to the protected EL2 code.
1295 * In this case, the EL1 code uses the *VHE* data as its private state
1296 * (which makes sense in a way as there shouldn't be any shared state
1297 * between the host and the hypervisor).
1299 * Yes, this is all totally trivial. Shoot me now.
1301 #if defined(__KVM_NVHE_HYPERVISOR__) || defined(__KVM_VHE_HYPERVISOR__)
1302 #define host_data_ptr(f) (&this_cpu_ptr(&kvm_host_data)->f)
1304 #define host_data_ptr(f) \
1305 (static_branch_unlikely(&kvm_protected_mode_initialized) ? \
1306 &this_cpu_ptr(&kvm_host_data)->f : \
1307 &this_cpu_ptr_hyp_sym(kvm_host_data)->f)
1310 /* Check whether the FP regs are owned by the guest */
1311 static inline bool guest_owns_fp_regs(void)
1313 return *host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED;
1316 /* Check whether the FP regs are owned by the host */
1317 static inline bool host_owns_fp_regs(void)
1319 return *host_data_ptr(fp_owner) == FP_STATE_HOST_OWNED;
1322 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1324 /* The host's MPIDR is immutable, so let's set it up at boot time */
1325 ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1328 static inline bool kvm_system_needs_idmapped_vectors(void)
1330 return cpus_have_final_cap(ARM64_SPECTRE_V3A);
1333 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1335 void kvm_arm_init_debug(void);
1336 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1337 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1338 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1339 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1341 #define kvm_vcpu_os_lock_enabled(vcpu) \
1342 (!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1344 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1345 struct kvm_device_attr *attr);
1346 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1347 struct kvm_device_attr *attr);
1348 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1349 struct kvm_device_attr *attr);
1351 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1352 struct kvm_arm_copy_mte_tags *copy_tags);
1353 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1354 struct kvm_arm_counter_offset *offset);
1355 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm,
1356 struct reg_mask_range *range);
1358 /* Guest/host FPSIMD coordination helpers */
1359 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1360 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1361 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1362 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1363 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1365 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1367 return (!has_vhe() && attr->exclude_host);
1370 /* Flags for host debug state */
1371 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1372 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1375 void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr);
1376 void kvm_clr_pmu_events(u64 clr);
1377 bool kvm_set_pmuserenr(u64 val);
1379 static inline void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr) {}
1380 static inline void kvm_clr_pmu_events(u64 clr) {}
1381 static inline bool kvm_set_pmuserenr(u64 val)
1387 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu);
1388 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu);
1390 int __init kvm_set_ipa_limit(void);
1391 u32 kvm_get_pa_bits(struct kvm *kvm);
1393 #define __KVM_HAVE_ARCH_VM_ALLOC
1394 struct kvm *kvm_arch_alloc_vm(void);
1396 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1398 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1400 #define kvm_vm_is_protected(kvm) (is_protected_kvm_enabled() && (kvm)->arch.pkvm.enabled)
1402 #define vcpu_is_protected(vcpu) kvm_vm_is_protected((vcpu)->kvm)
1404 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1405 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1407 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1409 #define kvm_has_mte(kvm) \
1410 (system_supports_mte() && \
1411 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1413 #define kvm_supports_32bit_el0() \
1414 (system_supports_32bit_el0() && \
1415 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1417 #define kvm_vm_has_ran_once(kvm) \
1418 (test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1420 static inline bool __vcpu_has_feature(const struct kvm_arch *ka, int feature)
1422 return test_bit(feature, ka->vcpu_features);
1425 #define vcpu_has_feature(v, f) __vcpu_has_feature(&(v)->kvm->arch, (f))
1427 #define kvm_vcpu_initialized(v) vcpu_get_flag(vcpu, VCPU_INITIALIZED)
1429 int kvm_trng_call(struct kvm_vcpu *vcpu);
1431 extern phys_addr_t hyp_mem_base;
1432 extern phys_addr_t hyp_mem_size;
1433 void __init kvm_hyp_reserve(void);
1435 static inline void kvm_hyp_reserve(void) { }
1438 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1439 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1441 static inline u64 *__vm_id_reg(struct kvm_arch *ka, u32 reg)
1444 case sys_reg(3, 0, 0, 1, 0) ... sys_reg(3, 0, 0, 7, 7):
1445 return &ka->id_regs[IDREG_IDX(reg)];
1447 return &ka->ctr_el0;
1454 #define kvm_read_vm_id_reg(kvm, reg) \
1455 ({ u64 __val = *__vm_id_reg(&(kvm)->arch, reg); __val; })
1457 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val);
1459 #define __expand_field_sign_unsigned(id, fld, val) \
1460 ((u64)SYS_FIELD_VALUE(id, fld, val))
1462 #define __expand_field_sign_signed(id, fld, val) \
1464 u64 __val = SYS_FIELD_VALUE(id, fld, val); \
1465 sign_extend64(__val, id##_##fld##_WIDTH - 1); \
1468 #define get_idreg_field_unsigned(kvm, id, fld) \
1470 u64 __val = kvm_read_vm_id_reg((kvm), SYS_##id); \
1471 FIELD_GET(id##_##fld##_MASK, __val); \
1474 #define get_idreg_field_signed(kvm, id, fld) \
1476 u64 __val = get_idreg_field_unsigned(kvm, id, fld); \
1477 sign_extend64(__val, id##_##fld##_WIDTH - 1); \
1480 #define get_idreg_field_enum(kvm, id, fld) \
1481 get_idreg_field_unsigned(kvm, id, fld)
1483 #define kvm_cmp_feat_signed(kvm, id, fld, op, limit) \
1484 (get_idreg_field_signed((kvm), id, fld) op __expand_field_sign_signed(id, fld, limit))
1486 #define kvm_cmp_feat_unsigned(kvm, id, fld, op, limit) \
1487 (get_idreg_field_unsigned((kvm), id, fld) op __expand_field_sign_unsigned(id, fld, limit))
1489 #define kvm_cmp_feat(kvm, id, fld, op, limit) \
1490 (id##_##fld##_SIGNED ? \
1491 kvm_cmp_feat_signed(kvm, id, fld, op, limit) : \
1492 kvm_cmp_feat_unsigned(kvm, id, fld, op, limit))
1494 #define kvm_has_feat(kvm, id, fld, limit) \
1495 kvm_cmp_feat(kvm, id, fld, >=, limit)
1497 #define kvm_has_feat_enum(kvm, id, fld, val) \
1498 kvm_cmp_feat_unsigned(kvm, id, fld, ==, val)
1500 #define kvm_has_feat_range(kvm, id, fld, min, max) \
1501 (kvm_cmp_feat(kvm, id, fld, >=, min) && \
1502 kvm_cmp_feat(kvm, id, fld, <=, max))
1504 /* Check for a given level of PAuth support */
1505 #define kvm_has_pauth(k, l) \
1509 pa = kvm_has_feat((k), ID_AA64ISAR1_EL1, APA, l); \
1510 pa &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPA, IMP); \
1511 pi = kvm_has_feat((k), ID_AA64ISAR1_EL1, API, l); \
1512 pi &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPI, IMP); \
1513 pa3 = kvm_has_feat((k), ID_AA64ISAR2_EL1, APA3, l); \
1514 pa3 &= kvm_has_feat((k), ID_AA64ISAR2_EL1, GPA3, IMP); \
1516 (pa + pi + pa3) == 1; \
1519 #define kvm_has_fpmr(k) \
1520 (system_supports_fpmr() && \
1521 kvm_has_feat((k), ID_AA64PFR2_EL1, FPMR, IMP))
1523 #define kvm_has_tcr2(k) \
1524 (kvm_has_feat((k), ID_AA64MMFR3_EL1, TCRX, IMP))
1526 #define kvm_has_s1pie(k) \
1527 (kvm_has_feat((k), ID_AA64MMFR3_EL1, S1PIE, IMP))
1529 #define kvm_has_s1poe(k) \
1530 (kvm_has_feat((k), ID_AA64MMFR3_EL1, S1POE, IMP))
1532 #endif /* __ARM64_KVM_HOST_H__ */