]> Git Repo - J-linux.git/blob - arch/arm/mm/dma-mapping.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / arch / arm / mm / dma-mapping.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/dma-mapping.c
4  *
5  *  Copyright (C) 2000-2004 Russell King
6  *
7  *  DMA uncached mapping support.
8  */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dma-map-ops.h>
19 #include <linux/highmem.h>
20 #include <linux/memblock.h>
21 #include <linux/slab.h>
22 #include <linux/iommu.h>
23 #include <linux/io.h>
24 #include <linux/vmalloc.h>
25 #include <linux/sizes.h>
26 #include <linux/cma.h>
27
28 #include <asm/page.h>
29 #include <asm/highmem.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mach/arch.h>
33 #include <asm/dma-iommu.h>
34 #include <asm/mach/map.h>
35 #include <asm/system_info.h>
36 #include <asm/xen/xen-ops.h>
37
38 #include "dma.h"
39 #include "mm.h"
40
41 struct arm_dma_alloc_args {
42         struct device *dev;
43         size_t size;
44         gfp_t gfp;
45         pgprot_t prot;
46         const void *caller;
47         bool want_vaddr;
48         int coherent_flag;
49 };
50
51 struct arm_dma_free_args {
52         struct device *dev;
53         size_t size;
54         void *cpu_addr;
55         struct page *page;
56         bool want_vaddr;
57 };
58
59 #define NORMAL      0
60 #define COHERENT    1
61
62 struct arm_dma_allocator {
63         void *(*alloc)(struct arm_dma_alloc_args *args,
64                        struct page **ret_page);
65         void (*free)(struct arm_dma_free_args *args);
66 };
67
68 struct arm_dma_buffer {
69         struct list_head list;
70         void *virt;
71         struct arm_dma_allocator *allocator;
72 };
73
74 static LIST_HEAD(arm_dma_bufs);
75 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76
77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78 {
79         struct arm_dma_buffer *buf, *found = NULL;
80         unsigned long flags;
81
82         spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83         list_for_each_entry(buf, &arm_dma_bufs, list) {
84                 if (buf->virt == virt) {
85                         list_del(&buf->list);
86                         found = buf;
87                         break;
88                 }
89         }
90         spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91         return found;
92 }
93
94 /*
95  * The DMA API is built upon the notion of "buffer ownership".  A buffer
96  * is either exclusively owned by the CPU (and therefore may be accessed
97  * by it) or exclusively owned by the DMA device.  These helper functions
98  * represent the transitions between these two ownership states.
99  *
100  * Note, however, that on later ARMs, this notion does not work due to
101  * speculative prefetches.  We model our approach on the assumption that
102  * the CPU does do speculative prefetches, which means we clean caches
103  * before transfers and delay cache invalidation until transfer completion.
104  *
105  */
106
107 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
108 {
109         /*
110          * Ensure that the allocated pages are zeroed, and that any data
111          * lurking in the kernel direct-mapped region is invalidated.
112          */
113         if (PageHighMem(page)) {
114                 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
115                 phys_addr_t end = base + size;
116                 while (size > 0) {
117                         void *ptr = kmap_atomic(page);
118                         memset(ptr, 0, PAGE_SIZE);
119                         if (coherent_flag != COHERENT)
120                                 dmac_flush_range(ptr, ptr + PAGE_SIZE);
121                         kunmap_atomic(ptr);
122                         page++;
123                         size -= PAGE_SIZE;
124                 }
125                 if (coherent_flag != COHERENT)
126                         outer_flush_range(base, end);
127         } else {
128                 void *ptr = page_address(page);
129                 memset(ptr, 0, size);
130                 if (coherent_flag != COHERENT) {
131                         dmac_flush_range(ptr, ptr + size);
132                         outer_flush_range(__pa(ptr), __pa(ptr) + size);
133                 }
134         }
135 }
136
137 /*
138  * Allocate a DMA buffer for 'dev' of size 'size' using the
139  * specified gfp mask.  Note that 'size' must be page aligned.
140  */
141 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
142                                        gfp_t gfp, int coherent_flag)
143 {
144         unsigned long order = get_order(size);
145         struct page *page, *p, *e;
146
147         page = alloc_pages(gfp, order);
148         if (!page)
149                 return NULL;
150
151         /*
152          * Now split the huge page and free the excess pages
153          */
154         split_page(page, order);
155         for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
156                 __free_page(p);
157
158         __dma_clear_buffer(page, size, coherent_flag);
159
160         return page;
161 }
162
163 /*
164  * Free a DMA buffer.  'size' must be page aligned.
165  */
166 static void __dma_free_buffer(struct page *page, size_t size)
167 {
168         struct page *e = page + (size >> PAGE_SHIFT);
169
170         while (page < e) {
171                 __free_page(page);
172                 page++;
173         }
174 }
175
176 static void *__alloc_from_contiguous(struct device *dev, size_t size,
177                                      pgprot_t prot, struct page **ret_page,
178                                      const void *caller, bool want_vaddr,
179                                      int coherent_flag, gfp_t gfp);
180
181 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
182                                  pgprot_t prot, struct page **ret_page,
183                                  const void *caller, bool want_vaddr);
184
185 #define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
186 static struct gen_pool *atomic_pool __ro_after_init;
187
188 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
189
190 static int __init early_coherent_pool(char *p)
191 {
192         atomic_pool_size = memparse(p, &p);
193         return 0;
194 }
195 early_param("coherent_pool", early_coherent_pool);
196
197 /*
198  * Initialise the coherent pool for atomic allocations.
199  */
200 static int __init atomic_pool_init(void)
201 {
202         pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
203         gfp_t gfp = GFP_KERNEL | GFP_DMA;
204         struct page *page;
205         void *ptr;
206
207         atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
208         if (!atomic_pool)
209                 goto out;
210         /*
211          * The atomic pool is only used for non-coherent allocations
212          * so we must pass NORMAL for coherent_flag.
213          */
214         if (dev_get_cma_area(NULL))
215                 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
216                                       &page, atomic_pool_init, true, NORMAL,
217                                       GFP_KERNEL);
218         else
219                 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
220                                            &page, atomic_pool_init, true);
221         if (ptr) {
222                 int ret;
223
224                 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
225                                         page_to_phys(page),
226                                         atomic_pool_size, -1);
227                 if (ret)
228                         goto destroy_genpool;
229
230                 gen_pool_set_algo(atomic_pool,
231                                 gen_pool_first_fit_order_align,
232                                 NULL);
233                 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
234                        atomic_pool_size / 1024);
235                 return 0;
236         }
237
238 destroy_genpool:
239         gen_pool_destroy(atomic_pool);
240         atomic_pool = NULL;
241 out:
242         pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
243                atomic_pool_size / 1024);
244         return -ENOMEM;
245 }
246 /*
247  * CMA is activated by core_initcall, so we must be called after it.
248  */
249 postcore_initcall(atomic_pool_init);
250
251 #ifdef CONFIG_CMA_AREAS
252 struct dma_contig_early_reserve {
253         phys_addr_t base;
254         unsigned long size;
255 };
256
257 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
258
259 static int dma_mmu_remap_num __initdata;
260
261 #ifdef CONFIG_DMA_CMA
262 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
263 {
264         dma_mmu_remap[dma_mmu_remap_num].base = base;
265         dma_mmu_remap[dma_mmu_remap_num].size = size;
266         dma_mmu_remap_num++;
267 }
268 #endif
269
270 void __init dma_contiguous_remap(void)
271 {
272         int i;
273         for (i = 0; i < dma_mmu_remap_num; i++) {
274                 phys_addr_t start = dma_mmu_remap[i].base;
275                 phys_addr_t end = start + dma_mmu_remap[i].size;
276                 struct map_desc map;
277                 unsigned long addr;
278
279                 if (end > arm_lowmem_limit)
280                         end = arm_lowmem_limit;
281                 if (start >= end)
282                         continue;
283
284                 map.pfn = __phys_to_pfn(start);
285                 map.virtual = __phys_to_virt(start);
286                 map.length = end - start;
287                 map.type = MT_MEMORY_DMA_READY;
288
289                 /*
290                  * Clear previous low-memory mapping to ensure that the
291                  * TLB does not see any conflicting entries, then flush
292                  * the TLB of the old entries before creating new mappings.
293                  *
294                  * This ensures that any speculatively loaded TLB entries
295                  * (even though they may be rare) can not cause any problems,
296                  * and ensures that this code is architecturally compliant.
297                  */
298                 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
299                      addr += PMD_SIZE)
300                         pmd_clear(pmd_off_k(addr));
301
302                 flush_tlb_kernel_range(__phys_to_virt(start),
303                                        __phys_to_virt(end));
304
305                 iotable_init(&map, 1);
306         }
307 }
308 #endif
309
310 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
311 {
312         struct page *page = virt_to_page((void *)addr);
313         pgprot_t prot = *(pgprot_t *)data;
314
315         set_pte_ext(pte, mk_pte(page, prot), 0);
316         return 0;
317 }
318
319 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
320 {
321         unsigned long start = (unsigned long) page_address(page);
322         unsigned end = start + size;
323
324         apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
325         flush_tlb_kernel_range(start, end);
326 }
327
328 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
329                                  pgprot_t prot, struct page **ret_page,
330                                  const void *caller, bool want_vaddr)
331 {
332         struct page *page;
333         void *ptr = NULL;
334         /*
335          * __alloc_remap_buffer is only called when the device is
336          * non-coherent
337          */
338         page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
339         if (!page)
340                 return NULL;
341         if (!want_vaddr)
342                 goto out;
343
344         ptr = dma_common_contiguous_remap(page, size, prot, caller);
345         if (!ptr) {
346                 __dma_free_buffer(page, size);
347                 return NULL;
348         }
349
350  out:
351         *ret_page = page;
352         return ptr;
353 }
354
355 static void *__alloc_from_pool(size_t size, struct page **ret_page)
356 {
357         unsigned long val;
358         void *ptr = NULL;
359
360         if (!atomic_pool) {
361                 WARN(1, "coherent pool not initialised!\n");
362                 return NULL;
363         }
364
365         val = gen_pool_alloc(atomic_pool, size);
366         if (val) {
367                 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
368
369                 *ret_page = phys_to_page(phys);
370                 ptr = (void *)val;
371         }
372
373         return ptr;
374 }
375
376 static bool __in_atomic_pool(void *start, size_t size)
377 {
378         return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
379 }
380
381 static int __free_from_pool(void *start, size_t size)
382 {
383         if (!__in_atomic_pool(start, size))
384                 return 0;
385
386         gen_pool_free(atomic_pool, (unsigned long)start, size);
387
388         return 1;
389 }
390
391 static void *__alloc_from_contiguous(struct device *dev, size_t size,
392                                      pgprot_t prot, struct page **ret_page,
393                                      const void *caller, bool want_vaddr,
394                                      int coherent_flag, gfp_t gfp)
395 {
396         unsigned long order = get_order(size);
397         size_t count = size >> PAGE_SHIFT;
398         struct page *page;
399         void *ptr = NULL;
400
401         page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
402         if (!page)
403                 return NULL;
404
405         __dma_clear_buffer(page, size, coherent_flag);
406
407         if (!want_vaddr)
408                 goto out;
409
410         if (PageHighMem(page)) {
411                 ptr = dma_common_contiguous_remap(page, size, prot, caller);
412                 if (!ptr) {
413                         dma_release_from_contiguous(dev, page, count);
414                         return NULL;
415                 }
416         } else {
417                 __dma_remap(page, size, prot);
418                 ptr = page_address(page);
419         }
420
421  out:
422         *ret_page = page;
423         return ptr;
424 }
425
426 static void __free_from_contiguous(struct device *dev, struct page *page,
427                                    void *cpu_addr, size_t size, bool want_vaddr)
428 {
429         if (want_vaddr) {
430                 if (PageHighMem(page))
431                         dma_common_free_remap(cpu_addr, size);
432                 else
433                         __dma_remap(page, size, PAGE_KERNEL);
434         }
435         dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
436 }
437
438 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
439 {
440         prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
441                         pgprot_writecombine(prot) :
442                         pgprot_dmacoherent(prot);
443         return prot;
444 }
445
446 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
447                                    struct page **ret_page)
448 {
449         struct page *page;
450         /* __alloc_simple_buffer is only called when the device is coherent */
451         page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
452         if (!page)
453                 return NULL;
454
455         *ret_page = page;
456         return page_address(page);
457 }
458
459 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
460                                     struct page **ret_page)
461 {
462         return __alloc_simple_buffer(args->dev, args->size, args->gfp,
463                                      ret_page);
464 }
465
466 static void simple_allocator_free(struct arm_dma_free_args *args)
467 {
468         __dma_free_buffer(args->page, args->size);
469 }
470
471 static struct arm_dma_allocator simple_allocator = {
472         .alloc = simple_allocator_alloc,
473         .free = simple_allocator_free,
474 };
475
476 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
477                                  struct page **ret_page)
478 {
479         return __alloc_from_contiguous(args->dev, args->size, args->prot,
480                                        ret_page, args->caller,
481                                        args->want_vaddr, args->coherent_flag,
482                                        args->gfp);
483 }
484
485 static void cma_allocator_free(struct arm_dma_free_args *args)
486 {
487         __free_from_contiguous(args->dev, args->page, args->cpu_addr,
488                                args->size, args->want_vaddr);
489 }
490
491 static struct arm_dma_allocator cma_allocator = {
492         .alloc = cma_allocator_alloc,
493         .free = cma_allocator_free,
494 };
495
496 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
497                                   struct page **ret_page)
498 {
499         return __alloc_from_pool(args->size, ret_page);
500 }
501
502 static void pool_allocator_free(struct arm_dma_free_args *args)
503 {
504         __free_from_pool(args->cpu_addr, args->size);
505 }
506
507 static struct arm_dma_allocator pool_allocator = {
508         .alloc = pool_allocator_alloc,
509         .free = pool_allocator_free,
510 };
511
512 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
513                                    struct page **ret_page)
514 {
515         return __alloc_remap_buffer(args->dev, args->size, args->gfp,
516                                     args->prot, ret_page, args->caller,
517                                     args->want_vaddr);
518 }
519
520 static void remap_allocator_free(struct arm_dma_free_args *args)
521 {
522         if (args->want_vaddr)
523                 dma_common_free_remap(args->cpu_addr, args->size);
524
525         __dma_free_buffer(args->page, args->size);
526 }
527
528 static struct arm_dma_allocator remap_allocator = {
529         .alloc = remap_allocator_alloc,
530         .free = remap_allocator_free,
531 };
532
533 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
534                          gfp_t gfp, pgprot_t prot, bool is_coherent,
535                          unsigned long attrs, const void *caller)
536 {
537         u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
538         struct page *page = NULL;
539         void *addr;
540         bool allowblock, cma;
541         struct arm_dma_buffer *buf;
542         struct arm_dma_alloc_args args = {
543                 .dev = dev,
544                 .size = PAGE_ALIGN(size),
545                 .gfp = gfp,
546                 .prot = prot,
547                 .caller = caller,
548                 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
549                 .coherent_flag = is_coherent ? COHERENT : NORMAL,
550         };
551
552 #ifdef CONFIG_DMA_API_DEBUG
553         u64 limit = (mask + 1) & ~mask;
554         if (limit && size >= limit) {
555                 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
556                         size, mask);
557                 return NULL;
558         }
559 #endif
560
561         buf = kzalloc(sizeof(*buf),
562                       gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
563         if (!buf)
564                 return NULL;
565
566         if (mask < 0xffffffffULL)
567                 gfp |= GFP_DMA;
568
569         args.gfp = gfp;
570
571         *handle = DMA_MAPPING_ERROR;
572         allowblock = gfpflags_allow_blocking(gfp);
573         cma = allowblock ? dev_get_cma_area(dev) : NULL;
574
575         if (cma)
576                 buf->allocator = &cma_allocator;
577         else if (is_coherent)
578                 buf->allocator = &simple_allocator;
579         else if (allowblock)
580                 buf->allocator = &remap_allocator;
581         else
582                 buf->allocator = &pool_allocator;
583
584         addr = buf->allocator->alloc(&args, &page);
585
586         if (page) {
587                 unsigned long flags;
588
589                 *handle = phys_to_dma(dev, page_to_phys(page));
590                 buf->virt = args.want_vaddr ? addr : page;
591
592                 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
593                 list_add(&buf->list, &arm_dma_bufs);
594                 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
595         } else {
596                 kfree(buf);
597         }
598
599         return args.want_vaddr ? addr : page;
600 }
601
602 /*
603  * Free a buffer as defined by the above mapping.
604  */
605 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
606                            dma_addr_t handle, unsigned long attrs,
607                            bool is_coherent)
608 {
609         struct page *page = phys_to_page(dma_to_phys(dev, handle));
610         struct arm_dma_buffer *buf;
611         struct arm_dma_free_args args = {
612                 .dev = dev,
613                 .size = PAGE_ALIGN(size),
614                 .cpu_addr = cpu_addr,
615                 .page = page,
616                 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
617         };
618
619         buf = arm_dma_buffer_find(cpu_addr);
620         if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
621                 return;
622
623         buf->allocator->free(&args);
624         kfree(buf);
625 }
626
627 static void dma_cache_maint_page(struct page *page, unsigned long offset,
628         size_t size, enum dma_data_direction dir,
629         void (*op)(const void *, size_t, int))
630 {
631         unsigned long pfn;
632         size_t left = size;
633
634         pfn = page_to_pfn(page) + offset / PAGE_SIZE;
635         offset %= PAGE_SIZE;
636
637         /*
638          * A single sg entry may refer to multiple physically contiguous
639          * pages.  But we still need to process highmem pages individually.
640          * If highmem is not configured then the bulk of this loop gets
641          * optimized out.
642          */
643         do {
644                 size_t len = left;
645                 void *vaddr;
646
647                 page = pfn_to_page(pfn);
648
649                 if (PageHighMem(page)) {
650                         if (len + offset > PAGE_SIZE)
651                                 len = PAGE_SIZE - offset;
652
653                         if (cache_is_vipt_nonaliasing()) {
654                                 vaddr = kmap_atomic(page);
655                                 op(vaddr + offset, len, dir);
656                                 kunmap_atomic(vaddr);
657                         } else {
658                                 vaddr = kmap_high_get(page);
659                                 if (vaddr) {
660                                         op(vaddr + offset, len, dir);
661                                         kunmap_high(page);
662                                 }
663                         }
664                 } else {
665                         vaddr = page_address(page) + offset;
666                         op(vaddr, len, dir);
667                 }
668                 offset = 0;
669                 pfn++;
670                 left -= len;
671         } while (left);
672 }
673
674 /*
675  * Make an area consistent for devices.
676  * Note: Drivers should NOT use this function directly.
677  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
678  */
679 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
680         size_t size, enum dma_data_direction dir)
681 {
682         phys_addr_t paddr;
683
684         dma_cache_maint_page(page, off, size, dir, dmac_map_area);
685
686         paddr = page_to_phys(page) + off;
687         if (dir == DMA_FROM_DEVICE) {
688                 outer_inv_range(paddr, paddr + size);
689         } else {
690                 outer_clean_range(paddr, paddr + size);
691         }
692         /* FIXME: non-speculating: flush on bidirectional mappings? */
693 }
694
695 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
696         size_t size, enum dma_data_direction dir)
697 {
698         phys_addr_t paddr = page_to_phys(page) + off;
699
700         /* FIXME: non-speculating: not required */
701         /* in any case, don't bother invalidating if DMA to device */
702         if (dir != DMA_TO_DEVICE) {
703                 outer_inv_range(paddr, paddr + size);
704
705                 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
706         }
707
708         /*
709          * Mark the D-cache clean for these pages to avoid extra flushing.
710          */
711         if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
712                 struct folio *folio = pfn_folio(paddr / PAGE_SIZE);
713                 size_t offset = offset_in_folio(folio, paddr);
714
715                 for (;;) {
716                         size_t sz = folio_size(folio) - offset;
717
718                         if (size < sz)
719                                 break;
720                         if (!offset)
721                                 set_bit(PG_dcache_clean, &folio->flags);
722                         offset = 0;
723                         size -= sz;
724                         if (!size)
725                                 break;
726                         folio = folio_next(folio);
727                 }
728         }
729 }
730
731 #ifdef CONFIG_ARM_DMA_USE_IOMMU
732
733 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
734 {
735         int prot = 0;
736
737         if (attrs & DMA_ATTR_PRIVILEGED)
738                 prot |= IOMMU_PRIV;
739
740         switch (dir) {
741         case DMA_BIDIRECTIONAL:
742                 return prot | IOMMU_READ | IOMMU_WRITE;
743         case DMA_TO_DEVICE:
744                 return prot | IOMMU_READ;
745         case DMA_FROM_DEVICE:
746                 return prot | IOMMU_WRITE;
747         default:
748                 return prot;
749         }
750 }
751
752 /* IOMMU */
753
754 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
755
756 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
757                                       size_t size)
758 {
759         unsigned int order = get_order(size);
760         unsigned int align = 0;
761         unsigned int count, start;
762         size_t mapping_size = mapping->bits << PAGE_SHIFT;
763         unsigned long flags;
764         dma_addr_t iova;
765         int i;
766
767         if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
768                 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
769
770         count = PAGE_ALIGN(size) >> PAGE_SHIFT;
771         align = (1 << order) - 1;
772
773         spin_lock_irqsave(&mapping->lock, flags);
774         for (i = 0; i < mapping->nr_bitmaps; i++) {
775                 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
776                                 mapping->bits, 0, count, align);
777
778                 if (start > mapping->bits)
779                         continue;
780
781                 bitmap_set(mapping->bitmaps[i], start, count);
782                 break;
783         }
784
785         /*
786          * No unused range found. Try to extend the existing mapping
787          * and perform a second attempt to reserve an IO virtual
788          * address range of size bytes.
789          */
790         if (i == mapping->nr_bitmaps) {
791                 if (extend_iommu_mapping(mapping)) {
792                         spin_unlock_irqrestore(&mapping->lock, flags);
793                         return DMA_MAPPING_ERROR;
794                 }
795
796                 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
797                                 mapping->bits, 0, count, align);
798
799                 if (start > mapping->bits) {
800                         spin_unlock_irqrestore(&mapping->lock, flags);
801                         return DMA_MAPPING_ERROR;
802                 }
803
804                 bitmap_set(mapping->bitmaps[i], start, count);
805         }
806         spin_unlock_irqrestore(&mapping->lock, flags);
807
808         iova = mapping->base + (mapping_size * i);
809         iova += start << PAGE_SHIFT;
810
811         return iova;
812 }
813
814 static inline void __free_iova(struct dma_iommu_mapping *mapping,
815                                dma_addr_t addr, size_t size)
816 {
817         unsigned int start, count;
818         size_t mapping_size = mapping->bits << PAGE_SHIFT;
819         unsigned long flags;
820         dma_addr_t bitmap_base;
821         u32 bitmap_index;
822
823         if (!size)
824                 return;
825
826         bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
827         BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
828
829         bitmap_base = mapping->base + mapping_size * bitmap_index;
830
831         start = (addr - bitmap_base) >> PAGE_SHIFT;
832
833         if (addr + size > bitmap_base + mapping_size) {
834                 /*
835                  * The address range to be freed reaches into the iova
836                  * range of the next bitmap. This should not happen as
837                  * we don't allow this in __alloc_iova (at the
838                  * moment).
839                  */
840                 BUG();
841         } else
842                 count = size >> PAGE_SHIFT;
843
844         spin_lock_irqsave(&mapping->lock, flags);
845         bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
846         spin_unlock_irqrestore(&mapping->lock, flags);
847 }
848
849 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
850 static const int iommu_order_array[] = { 9, 8, 4, 0 };
851
852 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
853                                           gfp_t gfp, unsigned long attrs,
854                                           int coherent_flag)
855 {
856         struct page **pages;
857         int count = size >> PAGE_SHIFT;
858         int array_size = count * sizeof(struct page *);
859         int i = 0;
860         int order_idx = 0;
861
862         pages = kvzalloc(array_size, GFP_KERNEL);
863         if (!pages)
864                 return NULL;
865
866         if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
867         {
868                 unsigned long order = get_order(size);
869                 struct page *page;
870
871                 page = dma_alloc_from_contiguous(dev, count, order,
872                                                  gfp & __GFP_NOWARN);
873                 if (!page)
874                         goto error;
875
876                 __dma_clear_buffer(page, size, coherent_flag);
877
878                 for (i = 0; i < count; i++)
879                         pages[i] = page + i;
880
881                 return pages;
882         }
883
884         /* Go straight to 4K chunks if caller says it's OK. */
885         if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
886                 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
887
888         /*
889          * IOMMU can map any pages, so himem can also be used here
890          */
891         gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
892
893         while (count) {
894                 int j, order;
895
896                 order = iommu_order_array[order_idx];
897
898                 /* Drop down when we get small */
899                 if (__fls(count) < order) {
900                         order_idx++;
901                         continue;
902                 }
903
904                 if (order) {
905                         /* See if it's easy to allocate a high-order chunk */
906                         pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
907
908                         /* Go down a notch at first sign of pressure */
909                         if (!pages[i]) {
910                                 order_idx++;
911                                 continue;
912                         }
913                 } else {
914                         pages[i] = alloc_pages(gfp, 0);
915                         if (!pages[i])
916                                 goto error;
917                 }
918
919                 if (order) {
920                         split_page(pages[i], order);
921                         j = 1 << order;
922                         while (--j)
923                                 pages[i + j] = pages[i] + j;
924                 }
925
926                 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
927                 i += 1 << order;
928                 count -= 1 << order;
929         }
930
931         return pages;
932 error:
933         while (i--)
934                 if (pages[i])
935                         __free_pages(pages[i], 0);
936         kvfree(pages);
937         return NULL;
938 }
939
940 static int __iommu_free_buffer(struct device *dev, struct page **pages,
941                                size_t size, unsigned long attrs)
942 {
943         int count = size >> PAGE_SHIFT;
944         int i;
945
946         if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
947                 dma_release_from_contiguous(dev, pages[0], count);
948         } else {
949                 for (i = 0; i < count; i++)
950                         if (pages[i])
951                                 __free_pages(pages[i], 0);
952         }
953
954         kvfree(pages);
955         return 0;
956 }
957
958 /*
959  * Create a mapping in device IO address space for specified pages
960  */
961 static dma_addr_t
962 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
963                        unsigned long attrs)
964 {
965         struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
966         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
967         dma_addr_t dma_addr, iova;
968         int i;
969
970         dma_addr = __alloc_iova(mapping, size);
971         if (dma_addr == DMA_MAPPING_ERROR)
972                 return dma_addr;
973
974         iova = dma_addr;
975         for (i = 0; i < count; ) {
976                 int ret;
977
978                 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
979                 phys_addr_t phys = page_to_phys(pages[i]);
980                 unsigned int len, j;
981
982                 for (j = i + 1; j < count; j++, next_pfn++)
983                         if (page_to_pfn(pages[j]) != next_pfn)
984                                 break;
985
986                 len = (j - i) << PAGE_SHIFT;
987                 ret = iommu_map(mapping->domain, iova, phys, len,
988                                 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs),
989                                 GFP_KERNEL);
990                 if (ret < 0)
991                         goto fail;
992                 iova += len;
993                 i = j;
994         }
995         return dma_addr;
996 fail:
997         iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
998         __free_iova(mapping, dma_addr, size);
999         return DMA_MAPPING_ERROR;
1000 }
1001
1002 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1003 {
1004         struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1005
1006         /*
1007          * add optional in-page offset from iova to size and align
1008          * result to page size
1009          */
1010         size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1011         iova &= PAGE_MASK;
1012
1013         iommu_unmap(mapping->domain, iova, size);
1014         __free_iova(mapping, iova, size);
1015         return 0;
1016 }
1017
1018 static struct page **__atomic_get_pages(void *addr)
1019 {
1020         struct page *page;
1021         phys_addr_t phys;
1022
1023         phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1024         page = phys_to_page(phys);
1025
1026         return (struct page **)page;
1027 }
1028
1029 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1030 {
1031         if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1032                 return __atomic_get_pages(cpu_addr);
1033
1034         if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1035                 return cpu_addr;
1036
1037         return dma_common_find_pages(cpu_addr);
1038 }
1039
1040 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1041                                   dma_addr_t *handle, int coherent_flag,
1042                                   unsigned long attrs)
1043 {
1044         struct page *page;
1045         void *addr;
1046
1047         if (coherent_flag  == COHERENT)
1048                 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1049         else
1050                 addr = __alloc_from_pool(size, &page);
1051         if (!addr)
1052                 return NULL;
1053
1054         *handle = __iommu_create_mapping(dev, &page, size, attrs);
1055         if (*handle == DMA_MAPPING_ERROR)
1056                 goto err_mapping;
1057
1058         return addr;
1059
1060 err_mapping:
1061         __free_from_pool(addr, size);
1062         return NULL;
1063 }
1064
1065 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1066                         dma_addr_t handle, size_t size, int coherent_flag)
1067 {
1068         __iommu_remove_mapping(dev, handle, size);
1069         if (coherent_flag == COHERENT)
1070                 __dma_free_buffer(virt_to_page(cpu_addr), size);
1071         else
1072                 __free_from_pool(cpu_addr, size);
1073 }
1074
1075 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1076             dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1077 {
1078         pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1079         struct page **pages;
1080         void *addr = NULL;
1081         int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1082
1083         *handle = DMA_MAPPING_ERROR;
1084         size = PAGE_ALIGN(size);
1085
1086         if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1087                 return __iommu_alloc_simple(dev, size, gfp, handle,
1088                                             coherent_flag, attrs);
1089
1090         pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1091         if (!pages)
1092                 return NULL;
1093
1094         *handle = __iommu_create_mapping(dev, pages, size, attrs);
1095         if (*handle == DMA_MAPPING_ERROR)
1096                 goto err_buffer;
1097
1098         if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1099                 return pages;
1100
1101         addr = dma_common_pages_remap(pages, size, prot,
1102                                    __builtin_return_address(0));
1103         if (!addr)
1104                 goto err_mapping;
1105
1106         return addr;
1107
1108 err_mapping:
1109         __iommu_remove_mapping(dev, *handle, size);
1110 err_buffer:
1111         __iommu_free_buffer(dev, pages, size, attrs);
1112         return NULL;
1113 }
1114
1115 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1116                     void *cpu_addr, dma_addr_t dma_addr, size_t size,
1117                     unsigned long attrs)
1118 {
1119         struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1120         unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1121         int err;
1122
1123         if (!pages)
1124                 return -ENXIO;
1125
1126         if (vma->vm_pgoff >= nr_pages)
1127                 return -ENXIO;
1128
1129         if (!dev->dma_coherent)
1130                 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1131
1132         err = vm_map_pages(vma, pages, nr_pages);
1133         if (err)
1134                 pr_err("Remapping memory failed: %d\n", err);
1135
1136         return err;
1137 }
1138
1139 /*
1140  * free a page as defined by the above mapping.
1141  * Must not be called with IRQs disabled.
1142  */
1143 static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1144         dma_addr_t handle, unsigned long attrs)
1145 {
1146         int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1147         struct page **pages;
1148         size = PAGE_ALIGN(size);
1149
1150         if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1151                 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1152                 return;
1153         }
1154
1155         pages = __iommu_get_pages(cpu_addr, attrs);
1156         if (!pages) {
1157                 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1158                 return;
1159         }
1160
1161         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1162                 dma_common_free_remap(cpu_addr, size);
1163
1164         __iommu_remove_mapping(dev, handle, size);
1165         __iommu_free_buffer(dev, pages, size, attrs);
1166 }
1167
1168 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1169                                  void *cpu_addr, dma_addr_t dma_addr,
1170                                  size_t size, unsigned long attrs)
1171 {
1172         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1173         struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1174
1175         if (!pages)
1176                 return -ENXIO;
1177
1178         return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1179                                          GFP_KERNEL);
1180 }
1181
1182 /*
1183  * Map a part of the scatter-gather list into contiguous io address space
1184  */
1185 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1186                           size_t size, dma_addr_t *handle,
1187                           enum dma_data_direction dir, unsigned long attrs)
1188 {
1189         struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1190         dma_addr_t iova, iova_base;
1191         int ret = 0;
1192         unsigned int count;
1193         struct scatterlist *s;
1194         int prot;
1195
1196         size = PAGE_ALIGN(size);
1197         *handle = DMA_MAPPING_ERROR;
1198
1199         iova_base = iova = __alloc_iova(mapping, size);
1200         if (iova == DMA_MAPPING_ERROR)
1201                 return -ENOMEM;
1202
1203         for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1204                 phys_addr_t phys = page_to_phys(sg_page(s));
1205                 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1206
1207                 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1208                         __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1209
1210                 prot = __dma_info_to_prot(dir, attrs);
1211
1212                 ret = iommu_map(mapping->domain, iova, phys, len, prot,
1213                                 GFP_KERNEL);
1214                 if (ret < 0)
1215                         goto fail;
1216                 count += len >> PAGE_SHIFT;
1217                 iova += len;
1218         }
1219         *handle = iova_base;
1220
1221         return 0;
1222 fail:
1223         iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1224         __free_iova(mapping, iova_base, size);
1225         return ret;
1226 }
1227
1228 /**
1229  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1230  * @dev: valid struct device pointer
1231  * @sg: list of buffers
1232  * @nents: number of buffers to map
1233  * @dir: DMA transfer direction
1234  *
1235  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1236  * The scatter gather list elements are merged together (if possible) and
1237  * tagged with the appropriate dma address and length. They are obtained via
1238  * sg_dma_{address,length}.
1239  */
1240 static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1241                 int nents, enum dma_data_direction dir, unsigned long attrs)
1242 {
1243         struct scatterlist *s = sg, *dma = sg, *start = sg;
1244         int i, count = 0, ret;
1245         unsigned int offset = s->offset;
1246         unsigned int size = s->offset + s->length;
1247         unsigned int max = dma_get_max_seg_size(dev);
1248
1249         for (i = 1; i < nents; i++) {
1250                 s = sg_next(s);
1251
1252                 s->dma_length = 0;
1253
1254                 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1255                         ret = __map_sg_chunk(dev, start, size,
1256                                              &dma->dma_address, dir, attrs);
1257                         if (ret < 0)
1258                                 goto bad_mapping;
1259
1260                         dma->dma_address += offset;
1261                         dma->dma_length = size - offset;
1262
1263                         size = offset = s->offset;
1264                         start = s;
1265                         dma = sg_next(dma);
1266                         count += 1;
1267                 }
1268                 size += s->length;
1269         }
1270         ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs);
1271         if (ret < 0)
1272                 goto bad_mapping;
1273
1274         dma->dma_address += offset;
1275         dma->dma_length = size - offset;
1276
1277         return count+1;
1278
1279 bad_mapping:
1280         for_each_sg(sg, s, count, i)
1281                 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1282         if (ret == -ENOMEM)
1283                 return ret;
1284         return -EINVAL;
1285 }
1286
1287 /**
1288  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1289  * @dev: valid struct device pointer
1290  * @sg: list of buffers
1291  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1292  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1293  *
1294  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1295  * rules concerning calls here are the same as for dma_unmap_single().
1296  */
1297 static void arm_iommu_unmap_sg(struct device *dev,
1298                                struct scatterlist *sg, int nents,
1299                                enum dma_data_direction dir,
1300                                unsigned long attrs)
1301 {
1302         struct scatterlist *s;
1303         int i;
1304
1305         for_each_sg(sg, s, nents, i) {
1306                 if (sg_dma_len(s))
1307                         __iommu_remove_mapping(dev, sg_dma_address(s),
1308                                                sg_dma_len(s));
1309                 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1310                         __dma_page_dev_to_cpu(sg_page(s), s->offset,
1311                                               s->length, dir);
1312         }
1313 }
1314
1315 /**
1316  * arm_iommu_sync_sg_for_cpu
1317  * @dev: valid struct device pointer
1318  * @sg: list of buffers
1319  * @nents: number of buffers to map (returned from dma_map_sg)
1320  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1321  */
1322 static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1323                         struct scatterlist *sg,
1324                         int nents, enum dma_data_direction dir)
1325 {
1326         struct scatterlist *s;
1327         int i;
1328
1329         if (dev->dma_coherent)
1330                 return;
1331
1332         for_each_sg(sg, s, nents, i)
1333                 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1334
1335 }
1336
1337 /**
1338  * arm_iommu_sync_sg_for_device
1339  * @dev: valid struct device pointer
1340  * @sg: list of buffers
1341  * @nents: number of buffers to map (returned from dma_map_sg)
1342  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1343  */
1344 static void arm_iommu_sync_sg_for_device(struct device *dev,
1345                         struct scatterlist *sg,
1346                         int nents, enum dma_data_direction dir)
1347 {
1348         struct scatterlist *s;
1349         int i;
1350
1351         if (dev->dma_coherent)
1352                 return;
1353
1354         for_each_sg(sg, s, nents, i)
1355                 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1356 }
1357
1358 /**
1359  * arm_iommu_map_page
1360  * @dev: valid struct device pointer
1361  * @page: page that buffer resides in
1362  * @offset: offset into page for start of buffer
1363  * @size: size of buffer to map
1364  * @dir: DMA transfer direction
1365  *
1366  * IOMMU aware version of arm_dma_map_page()
1367  */
1368 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1369              unsigned long offset, size_t size, enum dma_data_direction dir,
1370              unsigned long attrs)
1371 {
1372         struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1373         dma_addr_t dma_addr;
1374         int ret, prot, len = PAGE_ALIGN(size + offset);
1375
1376         if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1377                 __dma_page_cpu_to_dev(page, offset, size, dir);
1378
1379         dma_addr = __alloc_iova(mapping, len);
1380         if (dma_addr == DMA_MAPPING_ERROR)
1381                 return dma_addr;
1382
1383         prot = __dma_info_to_prot(dir, attrs);
1384
1385         ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len,
1386                         prot, GFP_KERNEL);
1387         if (ret < 0)
1388                 goto fail;
1389
1390         return dma_addr + offset;
1391 fail:
1392         __free_iova(mapping, dma_addr, len);
1393         return DMA_MAPPING_ERROR;
1394 }
1395
1396 /**
1397  * arm_iommu_unmap_page
1398  * @dev: valid struct device pointer
1399  * @handle: DMA address of buffer
1400  * @size: size of buffer (same as passed to dma_map_page)
1401  * @dir: DMA transfer direction (same as passed to dma_map_page)
1402  *
1403  * IOMMU aware version of arm_dma_unmap_page()
1404  */
1405 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1406                 size_t size, enum dma_data_direction dir, unsigned long attrs)
1407 {
1408         struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1409         dma_addr_t iova = handle & PAGE_MASK;
1410         struct page *page;
1411         int offset = handle & ~PAGE_MASK;
1412         int len = PAGE_ALIGN(size + offset);
1413
1414         if (!iova)
1415                 return;
1416
1417         if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
1418                 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1419                 __dma_page_dev_to_cpu(page, offset, size, dir);
1420         }
1421
1422         iommu_unmap(mapping->domain, iova, len);
1423         __free_iova(mapping, iova, len);
1424 }
1425
1426 /**
1427  * arm_iommu_map_resource - map a device resource for DMA
1428  * @dev: valid struct device pointer
1429  * @phys_addr: physical address of resource
1430  * @size: size of resource to map
1431  * @dir: DMA transfer direction
1432  */
1433 static dma_addr_t arm_iommu_map_resource(struct device *dev,
1434                 phys_addr_t phys_addr, size_t size,
1435                 enum dma_data_direction dir, unsigned long attrs)
1436 {
1437         struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1438         dma_addr_t dma_addr;
1439         int ret, prot;
1440         phys_addr_t addr = phys_addr & PAGE_MASK;
1441         unsigned int offset = phys_addr & ~PAGE_MASK;
1442         size_t len = PAGE_ALIGN(size + offset);
1443
1444         dma_addr = __alloc_iova(mapping, len);
1445         if (dma_addr == DMA_MAPPING_ERROR)
1446                 return dma_addr;
1447
1448         prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1449
1450         ret = iommu_map(mapping->domain, dma_addr, addr, len, prot, GFP_KERNEL);
1451         if (ret < 0)
1452                 goto fail;
1453
1454         return dma_addr + offset;
1455 fail:
1456         __free_iova(mapping, dma_addr, len);
1457         return DMA_MAPPING_ERROR;
1458 }
1459
1460 /**
1461  * arm_iommu_unmap_resource - unmap a device DMA resource
1462  * @dev: valid struct device pointer
1463  * @dma_handle: DMA address to resource
1464  * @size: size of resource to map
1465  * @dir: DMA transfer direction
1466  */
1467 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1468                 size_t size, enum dma_data_direction dir,
1469                 unsigned long attrs)
1470 {
1471         struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1472         dma_addr_t iova = dma_handle & PAGE_MASK;
1473         unsigned int offset = dma_handle & ~PAGE_MASK;
1474         size_t len = PAGE_ALIGN(size + offset);
1475
1476         if (!iova)
1477                 return;
1478
1479         iommu_unmap(mapping->domain, iova, len);
1480         __free_iova(mapping, iova, len);
1481 }
1482
1483 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1484                 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1485 {
1486         struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1487         dma_addr_t iova = handle & PAGE_MASK;
1488         struct page *page;
1489         unsigned int offset = handle & ~PAGE_MASK;
1490
1491         if (dev->dma_coherent || !iova)
1492                 return;
1493
1494         page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1495         __dma_page_dev_to_cpu(page, offset, size, dir);
1496 }
1497
1498 static void arm_iommu_sync_single_for_device(struct device *dev,
1499                 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1500 {
1501         struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1502         dma_addr_t iova = handle & PAGE_MASK;
1503         struct page *page;
1504         unsigned int offset = handle & ~PAGE_MASK;
1505
1506         if (dev->dma_coherent || !iova)
1507                 return;
1508
1509         page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1510         __dma_page_cpu_to_dev(page, offset, size, dir);
1511 }
1512
1513 static const struct dma_map_ops iommu_ops = {
1514         .alloc          = arm_iommu_alloc_attrs,
1515         .free           = arm_iommu_free_attrs,
1516         .mmap           = arm_iommu_mmap_attrs,
1517         .get_sgtable    = arm_iommu_get_sgtable,
1518
1519         .map_page               = arm_iommu_map_page,
1520         .unmap_page             = arm_iommu_unmap_page,
1521         .sync_single_for_cpu    = arm_iommu_sync_single_for_cpu,
1522         .sync_single_for_device = arm_iommu_sync_single_for_device,
1523
1524         .map_sg                 = arm_iommu_map_sg,
1525         .unmap_sg               = arm_iommu_unmap_sg,
1526         .sync_sg_for_cpu        = arm_iommu_sync_sg_for_cpu,
1527         .sync_sg_for_device     = arm_iommu_sync_sg_for_device,
1528
1529         .map_resource           = arm_iommu_map_resource,
1530         .unmap_resource         = arm_iommu_unmap_resource,
1531 };
1532
1533 /**
1534  * arm_iommu_create_mapping
1535  * @dev: pointer to the client device (for IOMMU calls)
1536  * @base: start address of the valid IO address space
1537  * @size: maximum size of the valid IO address space
1538  *
1539  * Creates a mapping structure which holds information about used/unused
1540  * IO address ranges, which is required to perform memory allocation and
1541  * mapping with IOMMU aware functions.
1542  *
1543  * The client device need to be attached to the mapping with
1544  * arm_iommu_attach_device function.
1545  */
1546 struct dma_iommu_mapping *
1547 arm_iommu_create_mapping(struct device *dev, dma_addr_t base, u64 size)
1548 {
1549         unsigned int bits = size >> PAGE_SHIFT;
1550         unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1551         struct dma_iommu_mapping *mapping;
1552         int extensions = 1;
1553         int err = -ENOMEM;
1554
1555         /* currently only 32-bit DMA address space is supported */
1556         if (size > DMA_BIT_MASK(32) + 1)
1557                 return ERR_PTR(-ERANGE);
1558
1559         if (!bitmap_size)
1560                 return ERR_PTR(-EINVAL);
1561
1562         if (bitmap_size > PAGE_SIZE) {
1563                 extensions = bitmap_size / PAGE_SIZE;
1564                 bitmap_size = PAGE_SIZE;
1565         }
1566
1567         mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1568         if (!mapping)
1569                 goto err;
1570
1571         mapping->bitmap_size = bitmap_size;
1572         mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
1573                                    GFP_KERNEL);
1574         if (!mapping->bitmaps)
1575                 goto err2;
1576
1577         mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1578         if (!mapping->bitmaps[0])
1579                 goto err3;
1580
1581         mapping->nr_bitmaps = 1;
1582         mapping->extensions = extensions;
1583         mapping->base = base;
1584         mapping->bits = BITS_PER_BYTE * bitmap_size;
1585
1586         spin_lock_init(&mapping->lock);
1587
1588         mapping->domain = iommu_paging_domain_alloc(dev);
1589         if (IS_ERR(mapping->domain)) {
1590                 err = PTR_ERR(mapping->domain);
1591                 goto err4;
1592         }
1593
1594         kref_init(&mapping->kref);
1595         return mapping;
1596 err4:
1597         kfree(mapping->bitmaps[0]);
1598 err3:
1599         kfree(mapping->bitmaps);
1600 err2:
1601         kfree(mapping);
1602 err:
1603         return ERR_PTR(err);
1604 }
1605 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1606
1607 static void release_iommu_mapping(struct kref *kref)
1608 {
1609         int i;
1610         struct dma_iommu_mapping *mapping =
1611                 container_of(kref, struct dma_iommu_mapping, kref);
1612
1613         iommu_domain_free(mapping->domain);
1614         for (i = 0; i < mapping->nr_bitmaps; i++)
1615                 kfree(mapping->bitmaps[i]);
1616         kfree(mapping->bitmaps);
1617         kfree(mapping);
1618 }
1619
1620 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1621 {
1622         int next_bitmap;
1623
1624         if (mapping->nr_bitmaps >= mapping->extensions)
1625                 return -EINVAL;
1626
1627         next_bitmap = mapping->nr_bitmaps;
1628         mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1629                                                 GFP_ATOMIC);
1630         if (!mapping->bitmaps[next_bitmap])
1631                 return -ENOMEM;
1632
1633         mapping->nr_bitmaps++;
1634
1635         return 0;
1636 }
1637
1638 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1639 {
1640         if (mapping)
1641                 kref_put(&mapping->kref, release_iommu_mapping);
1642 }
1643 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1644
1645 static int __arm_iommu_attach_device(struct device *dev,
1646                                      struct dma_iommu_mapping *mapping)
1647 {
1648         int err;
1649
1650         err = iommu_attach_device(mapping->domain, dev);
1651         if (err)
1652                 return err;
1653
1654         kref_get(&mapping->kref);
1655         to_dma_iommu_mapping(dev) = mapping;
1656
1657         pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1658         return 0;
1659 }
1660
1661 /**
1662  * arm_iommu_attach_device
1663  * @dev: valid struct device pointer
1664  * @mapping: io address space mapping structure (returned from
1665  *      arm_iommu_create_mapping)
1666  *
1667  * Attaches specified io address space mapping to the provided device.
1668  * This replaces the dma operations (dma_map_ops pointer) with the
1669  * IOMMU aware version.
1670  *
1671  * More than one client might be attached to the same io address space
1672  * mapping.
1673  */
1674 int arm_iommu_attach_device(struct device *dev,
1675                             struct dma_iommu_mapping *mapping)
1676 {
1677         int err;
1678
1679         err = __arm_iommu_attach_device(dev, mapping);
1680         if (err)
1681                 return err;
1682
1683         set_dma_ops(dev, &iommu_ops);
1684         return 0;
1685 }
1686 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1687
1688 /**
1689  * arm_iommu_detach_device
1690  * @dev: valid struct device pointer
1691  *
1692  * Detaches the provided device from a previously attached map.
1693  * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
1694  */
1695 void arm_iommu_detach_device(struct device *dev)
1696 {
1697         struct dma_iommu_mapping *mapping;
1698
1699         mapping = to_dma_iommu_mapping(dev);
1700         if (!mapping) {
1701                 dev_warn(dev, "Not attached\n");
1702                 return;
1703         }
1704
1705         iommu_detach_device(mapping->domain, dev);
1706         kref_put(&mapping->kref, release_iommu_mapping);
1707         to_dma_iommu_mapping(dev) = NULL;
1708         set_dma_ops(dev, NULL);
1709
1710         pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1711 }
1712 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1713
1714 static void arm_setup_iommu_dma_ops(struct device *dev)
1715 {
1716         struct dma_iommu_mapping *mapping;
1717         u64 dma_base = 0, size = 1ULL << 32;
1718
1719         if (dev->dma_range_map) {
1720                 dma_base = dma_range_map_min(dev->dma_range_map);
1721                 size = dma_range_map_max(dev->dma_range_map) - dma_base;
1722         }
1723         mapping = arm_iommu_create_mapping(dev, dma_base, size);
1724         if (IS_ERR(mapping)) {
1725                 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
1726                                 size, dev_name(dev));
1727                 return;
1728         }
1729
1730         if (__arm_iommu_attach_device(dev, mapping)) {
1731                 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
1732                                 dev_name(dev));
1733                 arm_iommu_release_mapping(mapping);
1734                 return;
1735         }
1736
1737         set_dma_ops(dev, &iommu_ops);
1738 }
1739
1740 static void arm_teardown_iommu_dma_ops(struct device *dev)
1741 {
1742         struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1743
1744         if (!mapping)
1745                 return;
1746
1747         arm_iommu_detach_device(dev);
1748         arm_iommu_release_mapping(mapping);
1749 }
1750
1751 #else
1752
1753 static void arm_setup_iommu_dma_ops(struct device *dev)
1754 {
1755 }
1756
1757 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
1758
1759 #endif  /* CONFIG_ARM_DMA_USE_IOMMU */
1760
1761 void arch_setup_dma_ops(struct device *dev, bool coherent)
1762 {
1763         /*
1764          * Due to legacy code that sets the ->dma_coherent flag from a bus
1765          * notifier we can't just assign coherent to the ->dma_coherent flag
1766          * here, but instead have to make sure we only set but never clear it
1767          * for now.
1768          */
1769         if (coherent)
1770                 dev->dma_coherent = true;
1771
1772         /*
1773          * Don't override the dma_ops if they have already been set. Ideally
1774          * this should be the only location where dma_ops are set, remove this
1775          * check when all other callers of set_dma_ops will have disappeared.
1776          */
1777         if (dev->dma_ops)
1778                 return;
1779
1780         if (device_iommu_mapped(dev))
1781                 arm_setup_iommu_dma_ops(dev);
1782
1783         xen_setup_dma_ops(dev);
1784         dev->archdata.dma_ops_setup = true;
1785 }
1786
1787 void arch_teardown_dma_ops(struct device *dev)
1788 {
1789         if (!dev->archdata.dma_ops_setup)
1790                 return;
1791
1792         arm_teardown_iommu_dma_ops(dev);
1793         /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
1794         set_dma_ops(dev, NULL);
1795 }
1796
1797 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
1798                 enum dma_data_direction dir)
1799 {
1800         __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1801                               size, dir);
1802 }
1803
1804 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
1805                 enum dma_data_direction dir)
1806 {
1807         __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1808                               size, dir);
1809 }
1810
1811 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1812                 gfp_t gfp, unsigned long attrs)
1813 {
1814         return __dma_alloc(dev, size, dma_handle, gfp,
1815                            __get_dma_pgprot(attrs, PAGE_KERNEL), false,
1816                            attrs, __builtin_return_address(0));
1817 }
1818
1819 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
1820                 dma_addr_t dma_handle, unsigned long attrs)
1821 {
1822         __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
1823 }
This page took 0.189464 seconds and 4 git commands to generate.