]> Git Repo - J-linux.git/blob - kernel/exit.c
Merge tag 'riscv-for-linus-6.13-mw1' of git://git.kernel.org/pub/scm/linux/kernel...
[J-linux.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/task_io_accounting_ops.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_work.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/kmsan.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
68 #include <linux/rethook.h>
69 #include <linux/sysfs.h>
70 #include <linux/user_events.h>
71 #include <linux/uaccess.h>
72
73 #include <uapi/linux/wait.h>
74
75 #include <asm/unistd.h>
76 #include <asm/mmu_context.h>
77
78 #include "exit.h"
79
80 /*
81  * The default value should be high enough to not crash a system that randomly
82  * crashes its kernel from time to time, but low enough to at least not permit
83  * overflowing 32-bit refcounts or the ldsem writer count.
84  */
85 static unsigned int oops_limit = 10000;
86
87 #ifdef CONFIG_SYSCTL
88 static struct ctl_table kern_exit_table[] = {
89         {
90                 .procname       = "oops_limit",
91                 .data           = &oops_limit,
92                 .maxlen         = sizeof(oops_limit),
93                 .mode           = 0644,
94                 .proc_handler   = proc_douintvec,
95         },
96 };
97
98 static __init int kernel_exit_sysctls_init(void)
99 {
100         register_sysctl_init("kernel", kern_exit_table);
101         return 0;
102 }
103 late_initcall(kernel_exit_sysctls_init);
104 #endif
105
106 static atomic_t oops_count = ATOMIC_INIT(0);
107
108 #ifdef CONFIG_SYSFS
109 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
110                                char *page)
111 {
112         return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
113 }
114
115 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
116
117 static __init int kernel_exit_sysfs_init(void)
118 {
119         sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
120         return 0;
121 }
122 late_initcall(kernel_exit_sysfs_init);
123 #endif
124
125 static void __unhash_process(struct task_struct *p, bool group_dead)
126 {
127         nr_threads--;
128         detach_pid(p, PIDTYPE_PID);
129         if (group_dead) {
130                 detach_pid(p, PIDTYPE_TGID);
131                 detach_pid(p, PIDTYPE_PGID);
132                 detach_pid(p, PIDTYPE_SID);
133
134                 list_del_rcu(&p->tasks);
135                 list_del_init(&p->sibling);
136                 __this_cpu_dec(process_counts);
137         }
138         list_del_rcu(&p->thread_node);
139 }
140
141 /*
142  * This function expects the tasklist_lock write-locked.
143  */
144 static void __exit_signal(struct task_struct *tsk)
145 {
146         struct signal_struct *sig = tsk->signal;
147         bool group_dead = thread_group_leader(tsk);
148         struct sighand_struct *sighand;
149         struct tty_struct *tty;
150         u64 utime, stime;
151
152         sighand = rcu_dereference_check(tsk->sighand,
153                                         lockdep_tasklist_lock_is_held());
154         spin_lock(&sighand->siglock);
155
156 #ifdef CONFIG_POSIX_TIMERS
157         posix_cpu_timers_exit(tsk);
158         if (group_dead)
159                 posix_cpu_timers_exit_group(tsk);
160 #endif
161
162         if (group_dead) {
163                 tty = sig->tty;
164                 sig->tty = NULL;
165         } else {
166                 /*
167                  * If there is any task waiting for the group exit
168                  * then notify it:
169                  */
170                 if (sig->notify_count > 0 && !--sig->notify_count)
171                         wake_up_process(sig->group_exec_task);
172
173                 if (tsk == sig->curr_target)
174                         sig->curr_target = next_thread(tsk);
175         }
176
177         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
178                               sizeof(unsigned long long));
179
180         /*
181          * Accumulate here the counters for all threads as they die. We could
182          * skip the group leader because it is the last user of signal_struct,
183          * but we want to avoid the race with thread_group_cputime() which can
184          * see the empty ->thread_head list.
185          */
186         task_cputime(tsk, &utime, &stime);
187         write_seqlock(&sig->stats_lock);
188         sig->utime += utime;
189         sig->stime += stime;
190         sig->gtime += task_gtime(tsk);
191         sig->min_flt += tsk->min_flt;
192         sig->maj_flt += tsk->maj_flt;
193         sig->nvcsw += tsk->nvcsw;
194         sig->nivcsw += tsk->nivcsw;
195         sig->inblock += task_io_get_inblock(tsk);
196         sig->oublock += task_io_get_oublock(tsk);
197         task_io_accounting_add(&sig->ioac, &tsk->ioac);
198         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
199         sig->nr_threads--;
200         __unhash_process(tsk, group_dead);
201         write_sequnlock(&sig->stats_lock);
202
203         /*
204          * Do this under ->siglock, we can race with another thread
205          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
206          */
207         flush_sigqueue(&tsk->pending);
208         tsk->sighand = NULL;
209         spin_unlock(&sighand->siglock);
210
211         __cleanup_sighand(sighand);
212         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
213         if (group_dead) {
214                 flush_sigqueue(&sig->shared_pending);
215                 tty_kref_put(tty);
216         }
217 }
218
219 static void delayed_put_task_struct(struct rcu_head *rhp)
220 {
221         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
222
223         kprobe_flush_task(tsk);
224         rethook_flush_task(tsk);
225         perf_event_delayed_put(tsk);
226         trace_sched_process_free(tsk);
227         put_task_struct(tsk);
228 }
229
230 void put_task_struct_rcu_user(struct task_struct *task)
231 {
232         if (refcount_dec_and_test(&task->rcu_users))
233                 call_rcu(&task->rcu, delayed_put_task_struct);
234 }
235
236 void __weak release_thread(struct task_struct *dead_task)
237 {
238 }
239
240 void release_task(struct task_struct *p)
241 {
242         struct task_struct *leader;
243         struct pid *thread_pid;
244         int zap_leader;
245 repeat:
246         /* don't need to get the RCU readlock here - the process is dead and
247          * can't be modifying its own credentials. But shut RCU-lockdep up */
248         rcu_read_lock();
249         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
250         rcu_read_unlock();
251
252         cgroup_release(p);
253
254         write_lock_irq(&tasklist_lock);
255         ptrace_release_task(p);
256         thread_pid = get_pid(p->thread_pid);
257         __exit_signal(p);
258
259         /*
260          * If we are the last non-leader member of the thread
261          * group, and the leader is zombie, then notify the
262          * group leader's parent process. (if it wants notification.)
263          */
264         zap_leader = 0;
265         leader = p->group_leader;
266         if (leader != p && thread_group_empty(leader)
267                         && leader->exit_state == EXIT_ZOMBIE) {
268                 /*
269                  * If we were the last child thread and the leader has
270                  * exited already, and the leader's parent ignores SIGCHLD,
271                  * then we are the one who should release the leader.
272                  */
273                 zap_leader = do_notify_parent(leader, leader->exit_signal);
274                 if (zap_leader)
275                         leader->exit_state = EXIT_DEAD;
276         }
277
278         write_unlock_irq(&tasklist_lock);
279         proc_flush_pid(thread_pid);
280         put_pid(thread_pid);
281         release_thread(p);
282         put_task_struct_rcu_user(p);
283
284         p = leader;
285         if (unlikely(zap_leader))
286                 goto repeat;
287 }
288
289 int rcuwait_wake_up(struct rcuwait *w)
290 {
291         int ret = 0;
292         struct task_struct *task;
293
294         rcu_read_lock();
295
296         /*
297          * Order condition vs @task, such that everything prior to the load
298          * of @task is visible. This is the condition as to why the user called
299          * rcuwait_wake() in the first place. Pairs with set_current_state()
300          * barrier (A) in rcuwait_wait_event().
301          *
302          *    WAIT                WAKE
303          *    [S] tsk = current   [S] cond = true
304          *        MB (A)              MB (B)
305          *    [L] cond            [L] tsk
306          */
307         smp_mb(); /* (B) */
308
309         task = rcu_dereference(w->task);
310         if (task)
311                 ret = wake_up_process(task);
312         rcu_read_unlock();
313
314         return ret;
315 }
316 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
317
318 /*
319  * Determine if a process group is "orphaned", according to the POSIX
320  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
321  * by terminal-generated stop signals.  Newly orphaned process groups are
322  * to receive a SIGHUP and a SIGCONT.
323  *
324  * "I ask you, have you ever known what it is to be an orphan?"
325  */
326 static int will_become_orphaned_pgrp(struct pid *pgrp,
327                                         struct task_struct *ignored_task)
328 {
329         struct task_struct *p;
330
331         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
332                 if ((p == ignored_task) ||
333                     (p->exit_state && thread_group_empty(p)) ||
334                     is_global_init(p->real_parent))
335                         continue;
336
337                 if (task_pgrp(p->real_parent) != pgrp &&
338                     task_session(p->real_parent) == task_session(p))
339                         return 0;
340         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
341
342         return 1;
343 }
344
345 int is_current_pgrp_orphaned(void)
346 {
347         int retval;
348
349         read_lock(&tasklist_lock);
350         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
351         read_unlock(&tasklist_lock);
352
353         return retval;
354 }
355
356 static bool has_stopped_jobs(struct pid *pgrp)
357 {
358         struct task_struct *p;
359
360         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
361                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
362                         return true;
363         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
364
365         return false;
366 }
367
368 /*
369  * Check to see if any process groups have become orphaned as
370  * a result of our exiting, and if they have any stopped jobs,
371  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
372  */
373 static void
374 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
375 {
376         struct pid *pgrp = task_pgrp(tsk);
377         struct task_struct *ignored_task = tsk;
378
379         if (!parent)
380                 /* exit: our father is in a different pgrp than
381                  * we are and we were the only connection outside.
382                  */
383                 parent = tsk->real_parent;
384         else
385                 /* reparent: our child is in a different pgrp than
386                  * we are, and it was the only connection outside.
387                  */
388                 ignored_task = NULL;
389
390         if (task_pgrp(parent) != pgrp &&
391             task_session(parent) == task_session(tsk) &&
392             will_become_orphaned_pgrp(pgrp, ignored_task) &&
393             has_stopped_jobs(pgrp)) {
394                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
395                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
396         }
397 }
398
399 static void coredump_task_exit(struct task_struct *tsk)
400 {
401         struct core_state *core_state;
402
403         /*
404          * Serialize with any possible pending coredump.
405          * We must hold siglock around checking core_state
406          * and setting PF_POSTCOREDUMP.  The core-inducing thread
407          * will increment ->nr_threads for each thread in the
408          * group without PF_POSTCOREDUMP set.
409          */
410         spin_lock_irq(&tsk->sighand->siglock);
411         tsk->flags |= PF_POSTCOREDUMP;
412         core_state = tsk->signal->core_state;
413         spin_unlock_irq(&tsk->sighand->siglock);
414         if (core_state) {
415                 struct core_thread self;
416
417                 self.task = current;
418                 if (self.task->flags & PF_SIGNALED)
419                         self.next = xchg(&core_state->dumper.next, &self);
420                 else
421                         self.task = NULL;
422                 /*
423                  * Implies mb(), the result of xchg() must be visible
424                  * to core_state->dumper.
425                  */
426                 if (atomic_dec_and_test(&core_state->nr_threads))
427                         complete(&core_state->startup);
428
429                 for (;;) {
430                         set_current_state(TASK_IDLE|TASK_FREEZABLE);
431                         if (!self.task) /* see coredump_finish() */
432                                 break;
433                         schedule();
434                 }
435                 __set_current_state(TASK_RUNNING);
436         }
437 }
438
439 #ifdef CONFIG_MEMCG
440 /* drops tasklist_lock if succeeds */
441 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
442 {
443         bool ret = false;
444
445         task_lock(tsk);
446         if (likely(tsk->mm == mm)) {
447                 /* tsk can't pass exit_mm/exec_mmap and exit */
448                 read_unlock(&tasklist_lock);
449                 WRITE_ONCE(mm->owner, tsk);
450                 lru_gen_migrate_mm(mm);
451                 ret = true;
452         }
453         task_unlock(tsk);
454         return ret;
455 }
456
457 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
458 {
459         struct task_struct *t;
460
461         for_each_thread(g, t) {
462                 struct mm_struct *t_mm = READ_ONCE(t->mm);
463                 if (t_mm == mm) {
464                         if (__try_to_set_owner(t, mm))
465                                 return true;
466                 } else if (t_mm)
467                         break;
468         }
469
470         return false;
471 }
472
473 /*
474  * A task is exiting.   If it owned this mm, find a new owner for the mm.
475  */
476 void mm_update_next_owner(struct mm_struct *mm)
477 {
478         struct task_struct *g, *p = current;
479
480         /*
481          * If the exiting or execing task is not the owner, it's
482          * someone else's problem.
483          */
484         if (mm->owner != p)
485                 return;
486         /*
487          * The current owner is exiting/execing and there are no other
488          * candidates.  Do not leave the mm pointing to a possibly
489          * freed task structure.
490          */
491         if (atomic_read(&mm->mm_users) <= 1) {
492                 WRITE_ONCE(mm->owner, NULL);
493                 return;
494         }
495
496         read_lock(&tasklist_lock);
497         /*
498          * Search in the children
499          */
500         list_for_each_entry(g, &p->children, sibling) {
501                 if (try_to_set_owner(g, mm))
502                         goto ret;
503         }
504         /*
505          * Search in the siblings
506          */
507         list_for_each_entry(g, &p->real_parent->children, sibling) {
508                 if (try_to_set_owner(g, mm))
509                         goto ret;
510         }
511         /*
512          * Search through everything else, we should not get here often.
513          */
514         for_each_process(g) {
515                 if (atomic_read(&mm->mm_users) <= 1)
516                         break;
517                 if (g->flags & PF_KTHREAD)
518                         continue;
519                 if (try_to_set_owner(g, mm))
520                         goto ret;
521         }
522         read_unlock(&tasklist_lock);
523         /*
524          * We found no owner yet mm_users > 1: this implies that we are
525          * most likely racing with swapoff (try_to_unuse()) or /proc or
526          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
527          */
528         WRITE_ONCE(mm->owner, NULL);
529  ret:
530         return;
531
532 }
533 #endif /* CONFIG_MEMCG */
534
535 /*
536  * Turn us into a lazy TLB process if we
537  * aren't already..
538  */
539 static void exit_mm(void)
540 {
541         struct mm_struct *mm = current->mm;
542
543         exit_mm_release(current, mm);
544         if (!mm)
545                 return;
546         mmap_read_lock(mm);
547         mmgrab_lazy_tlb(mm);
548         BUG_ON(mm != current->active_mm);
549         /* more a memory barrier than a real lock */
550         task_lock(current);
551         /*
552          * When a thread stops operating on an address space, the loop
553          * in membarrier_private_expedited() may not observe that
554          * tsk->mm, and the loop in membarrier_global_expedited() may
555          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
556          * rq->membarrier_state, so those would not issue an IPI.
557          * Membarrier requires a memory barrier after accessing
558          * user-space memory, before clearing tsk->mm or the
559          * rq->membarrier_state.
560          */
561         smp_mb__after_spinlock();
562         local_irq_disable();
563         current->mm = NULL;
564         membarrier_update_current_mm(NULL);
565         enter_lazy_tlb(mm, current);
566         local_irq_enable();
567         task_unlock(current);
568         mmap_read_unlock(mm);
569         mm_update_next_owner(mm);
570         mmput(mm);
571         if (test_thread_flag(TIF_MEMDIE))
572                 exit_oom_victim();
573 }
574
575 static struct task_struct *find_alive_thread(struct task_struct *p)
576 {
577         struct task_struct *t;
578
579         for_each_thread(p, t) {
580                 if (!(t->flags & PF_EXITING))
581                         return t;
582         }
583         return NULL;
584 }
585
586 static struct task_struct *find_child_reaper(struct task_struct *father,
587                                                 struct list_head *dead)
588         __releases(&tasklist_lock)
589         __acquires(&tasklist_lock)
590 {
591         struct pid_namespace *pid_ns = task_active_pid_ns(father);
592         struct task_struct *reaper = pid_ns->child_reaper;
593         struct task_struct *p, *n;
594
595         if (likely(reaper != father))
596                 return reaper;
597
598         reaper = find_alive_thread(father);
599         if (reaper) {
600                 pid_ns->child_reaper = reaper;
601                 return reaper;
602         }
603
604         write_unlock_irq(&tasklist_lock);
605
606         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
607                 list_del_init(&p->ptrace_entry);
608                 release_task(p);
609         }
610
611         zap_pid_ns_processes(pid_ns);
612         write_lock_irq(&tasklist_lock);
613
614         return father;
615 }
616
617 /*
618  * When we die, we re-parent all our children, and try to:
619  * 1. give them to another thread in our thread group, if such a member exists
620  * 2. give it to the first ancestor process which prctl'd itself as a
621  *    child_subreaper for its children (like a service manager)
622  * 3. give it to the init process (PID 1) in our pid namespace
623  */
624 static struct task_struct *find_new_reaper(struct task_struct *father,
625                                            struct task_struct *child_reaper)
626 {
627         struct task_struct *thread, *reaper;
628
629         thread = find_alive_thread(father);
630         if (thread)
631                 return thread;
632
633         if (father->signal->has_child_subreaper) {
634                 unsigned int ns_level = task_pid(father)->level;
635                 /*
636                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
637                  * We can't check reaper != child_reaper to ensure we do not
638                  * cross the namespaces, the exiting parent could be injected
639                  * by setns() + fork().
640                  * We check pid->level, this is slightly more efficient than
641                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
642                  */
643                 for (reaper = father->real_parent;
644                      task_pid(reaper)->level == ns_level;
645                      reaper = reaper->real_parent) {
646                         if (reaper == &init_task)
647                                 break;
648                         if (!reaper->signal->is_child_subreaper)
649                                 continue;
650                         thread = find_alive_thread(reaper);
651                         if (thread)
652                                 return thread;
653                 }
654         }
655
656         return child_reaper;
657 }
658
659 /*
660 * Any that need to be release_task'd are put on the @dead list.
661  */
662 static void reparent_leader(struct task_struct *father, struct task_struct *p,
663                                 struct list_head *dead)
664 {
665         if (unlikely(p->exit_state == EXIT_DEAD))
666                 return;
667
668         /* We don't want people slaying init. */
669         p->exit_signal = SIGCHLD;
670
671         /* If it has exited notify the new parent about this child's death. */
672         if (!p->ptrace &&
673             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
674                 if (do_notify_parent(p, p->exit_signal)) {
675                         p->exit_state = EXIT_DEAD;
676                         list_add(&p->ptrace_entry, dead);
677                 }
678         }
679
680         kill_orphaned_pgrp(p, father);
681 }
682
683 /*
684  * This does two things:
685  *
686  * A.  Make init inherit all the child processes
687  * B.  Check to see if any process groups have become orphaned
688  *      as a result of our exiting, and if they have any stopped
689  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
690  */
691 static void forget_original_parent(struct task_struct *father,
692                                         struct list_head *dead)
693 {
694         struct task_struct *p, *t, *reaper;
695
696         if (unlikely(!list_empty(&father->ptraced)))
697                 exit_ptrace(father, dead);
698
699         /* Can drop and reacquire tasklist_lock */
700         reaper = find_child_reaper(father, dead);
701         if (list_empty(&father->children))
702                 return;
703
704         reaper = find_new_reaper(father, reaper);
705         list_for_each_entry(p, &father->children, sibling) {
706                 for_each_thread(p, t) {
707                         RCU_INIT_POINTER(t->real_parent, reaper);
708                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
709                         if (likely(!t->ptrace))
710                                 t->parent = t->real_parent;
711                         if (t->pdeath_signal)
712                                 group_send_sig_info(t->pdeath_signal,
713                                                     SEND_SIG_NOINFO, t,
714                                                     PIDTYPE_TGID);
715                 }
716                 /*
717                  * If this is a threaded reparent there is no need to
718                  * notify anyone anything has happened.
719                  */
720                 if (!same_thread_group(reaper, father))
721                         reparent_leader(father, p, dead);
722         }
723         list_splice_tail_init(&father->children, &reaper->children);
724 }
725
726 /*
727  * Send signals to all our closest relatives so that they know
728  * to properly mourn us..
729  */
730 static void exit_notify(struct task_struct *tsk, int group_dead)
731 {
732         bool autoreap;
733         struct task_struct *p, *n;
734         LIST_HEAD(dead);
735
736         write_lock_irq(&tasklist_lock);
737         forget_original_parent(tsk, &dead);
738
739         if (group_dead)
740                 kill_orphaned_pgrp(tsk->group_leader, NULL);
741
742         tsk->exit_state = EXIT_ZOMBIE;
743         /*
744          * sub-thread or delay_group_leader(), wake up the
745          * PIDFD_THREAD waiters.
746          */
747         if (!thread_group_empty(tsk))
748                 do_notify_pidfd(tsk);
749
750         if (unlikely(tsk->ptrace)) {
751                 int sig = thread_group_leader(tsk) &&
752                                 thread_group_empty(tsk) &&
753                                 !ptrace_reparented(tsk) ?
754                         tsk->exit_signal : SIGCHLD;
755                 autoreap = do_notify_parent(tsk, sig);
756         } else if (thread_group_leader(tsk)) {
757                 autoreap = thread_group_empty(tsk) &&
758                         do_notify_parent(tsk, tsk->exit_signal);
759         } else {
760                 autoreap = true;
761         }
762
763         if (autoreap) {
764                 tsk->exit_state = EXIT_DEAD;
765                 list_add(&tsk->ptrace_entry, &dead);
766         }
767
768         /* mt-exec, de_thread() is waiting for group leader */
769         if (unlikely(tsk->signal->notify_count < 0))
770                 wake_up_process(tsk->signal->group_exec_task);
771         write_unlock_irq(&tasklist_lock);
772
773         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
774                 list_del_init(&p->ptrace_entry);
775                 release_task(p);
776         }
777 }
778
779 #ifdef CONFIG_DEBUG_STACK_USAGE
780 unsigned long stack_not_used(struct task_struct *p)
781 {
782         unsigned long *n = end_of_stack(p);
783
784         do {    /* Skip over canary */
785 # ifdef CONFIG_STACK_GROWSUP
786                 n--;
787 # else
788                 n++;
789 # endif
790         } while (!*n);
791
792 # ifdef CONFIG_STACK_GROWSUP
793         return (unsigned long)end_of_stack(p) - (unsigned long)n;
794 # else
795         return (unsigned long)n - (unsigned long)end_of_stack(p);
796 # endif
797 }
798
799 /* Count the maximum pages reached in kernel stacks */
800 static inline void kstack_histogram(unsigned long used_stack)
801 {
802 #ifdef CONFIG_VM_EVENT_COUNTERS
803         if (used_stack <= 1024)
804                 count_vm_event(KSTACK_1K);
805 #if THREAD_SIZE > 1024
806         else if (used_stack <= 2048)
807                 count_vm_event(KSTACK_2K);
808 #endif
809 #if THREAD_SIZE > 2048
810         else if (used_stack <= 4096)
811                 count_vm_event(KSTACK_4K);
812 #endif
813 #if THREAD_SIZE > 4096
814         else if (used_stack <= 8192)
815                 count_vm_event(KSTACK_8K);
816 #endif
817 #if THREAD_SIZE > 8192
818         else if (used_stack <= 16384)
819                 count_vm_event(KSTACK_16K);
820 #endif
821 #if THREAD_SIZE > 16384
822         else if (used_stack <= 32768)
823                 count_vm_event(KSTACK_32K);
824 #endif
825 #if THREAD_SIZE > 32768
826         else if (used_stack <= 65536)
827                 count_vm_event(KSTACK_64K);
828 #endif
829 #if THREAD_SIZE > 65536
830         else
831                 count_vm_event(KSTACK_REST);
832 #endif
833 #endif /* CONFIG_VM_EVENT_COUNTERS */
834 }
835
836 static void check_stack_usage(void)
837 {
838         static DEFINE_SPINLOCK(low_water_lock);
839         static int lowest_to_date = THREAD_SIZE;
840         unsigned long free;
841
842         free = stack_not_used(current);
843         kstack_histogram(THREAD_SIZE - free);
844
845         if (free >= lowest_to_date)
846                 return;
847
848         spin_lock(&low_water_lock);
849         if (free < lowest_to_date) {
850                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
851                         current->comm, task_pid_nr(current), free);
852                 lowest_to_date = free;
853         }
854         spin_unlock(&low_water_lock);
855 }
856 #else
857 static inline void check_stack_usage(void) {}
858 #endif
859
860 static void synchronize_group_exit(struct task_struct *tsk, long code)
861 {
862         struct sighand_struct *sighand = tsk->sighand;
863         struct signal_struct *signal = tsk->signal;
864
865         spin_lock_irq(&sighand->siglock);
866         signal->quick_threads--;
867         if ((signal->quick_threads == 0) &&
868             !(signal->flags & SIGNAL_GROUP_EXIT)) {
869                 signal->flags = SIGNAL_GROUP_EXIT;
870                 signal->group_exit_code = code;
871                 signal->group_stop_count = 0;
872         }
873         spin_unlock_irq(&sighand->siglock);
874 }
875
876 void __noreturn do_exit(long code)
877 {
878         struct task_struct *tsk = current;
879         int group_dead;
880
881         WARN_ON(irqs_disabled());
882
883         synchronize_group_exit(tsk, code);
884
885         WARN_ON(tsk->plug);
886
887         kcov_task_exit(tsk);
888         kmsan_task_exit(tsk);
889
890         coredump_task_exit(tsk);
891         ptrace_event(PTRACE_EVENT_EXIT, code);
892         user_events_exit(tsk);
893
894         io_uring_files_cancel();
895         exit_signals(tsk);  /* sets PF_EXITING */
896
897         seccomp_filter_release(tsk);
898
899         acct_update_integrals(tsk);
900         group_dead = atomic_dec_and_test(&tsk->signal->live);
901         if (group_dead) {
902                 /*
903                  * If the last thread of global init has exited, panic
904                  * immediately to get a useable coredump.
905                  */
906                 if (unlikely(is_global_init(tsk)))
907                         panic("Attempted to kill init! exitcode=0x%08x\n",
908                                 tsk->signal->group_exit_code ?: (int)code);
909
910 #ifdef CONFIG_POSIX_TIMERS
911                 hrtimer_cancel(&tsk->signal->real_timer);
912                 exit_itimers(tsk);
913 #endif
914                 if (tsk->mm)
915                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
916         }
917         acct_collect(code, group_dead);
918         if (group_dead)
919                 tty_audit_exit();
920         audit_free(tsk);
921
922         tsk->exit_code = code;
923         taskstats_exit(tsk, group_dead);
924
925         exit_mm();
926
927         if (group_dead)
928                 acct_process();
929         trace_sched_process_exit(tsk);
930
931         exit_sem(tsk);
932         exit_shm(tsk);
933         exit_files(tsk);
934         exit_fs(tsk);
935         if (group_dead)
936                 disassociate_ctty(1);
937         exit_task_namespaces(tsk);
938         exit_task_work(tsk);
939         exit_thread(tsk);
940
941         /*
942          * Flush inherited counters to the parent - before the parent
943          * gets woken up by child-exit notifications.
944          *
945          * because of cgroup mode, must be called before cgroup_exit()
946          */
947         perf_event_exit_task(tsk);
948
949         sched_autogroup_exit_task(tsk);
950         cgroup_exit(tsk);
951
952         /*
953          * FIXME: do that only when needed, using sched_exit tracepoint
954          */
955         flush_ptrace_hw_breakpoint(tsk);
956
957         exit_tasks_rcu_start();
958         exit_notify(tsk, group_dead);
959         proc_exit_connector(tsk);
960         mpol_put_task_policy(tsk);
961 #ifdef CONFIG_FUTEX
962         if (unlikely(current->pi_state_cache))
963                 kfree(current->pi_state_cache);
964 #endif
965         /*
966          * Make sure we are holding no locks:
967          */
968         debug_check_no_locks_held();
969
970         if (tsk->io_context)
971                 exit_io_context(tsk);
972
973         if (tsk->splice_pipe)
974                 free_pipe_info(tsk->splice_pipe);
975
976         if (tsk->task_frag.page)
977                 put_page(tsk->task_frag.page);
978
979         exit_task_stack_account(tsk);
980
981         check_stack_usage();
982         preempt_disable();
983         if (tsk->nr_dirtied)
984                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
985         exit_rcu();
986         exit_tasks_rcu_finish();
987
988         lockdep_free_task(tsk);
989         do_task_dead();
990 }
991
992 void __noreturn make_task_dead(int signr)
993 {
994         /*
995          * Take the task off the cpu after something catastrophic has
996          * happened.
997          *
998          * We can get here from a kernel oops, sometimes with preemption off.
999          * Start by checking for critical errors.
1000          * Then fix up important state like USER_DS and preemption.
1001          * Then do everything else.
1002          */
1003         struct task_struct *tsk = current;
1004         unsigned int limit;
1005
1006         if (unlikely(in_interrupt()))
1007                 panic("Aiee, killing interrupt handler!");
1008         if (unlikely(!tsk->pid))
1009                 panic("Attempted to kill the idle task!");
1010
1011         if (unlikely(irqs_disabled())) {
1012                 pr_info("note: %s[%d] exited with irqs disabled\n",
1013                         current->comm, task_pid_nr(current));
1014                 local_irq_enable();
1015         }
1016         if (unlikely(in_atomic())) {
1017                 pr_info("note: %s[%d] exited with preempt_count %d\n",
1018                         current->comm, task_pid_nr(current),
1019                         preempt_count());
1020                 preempt_count_set(PREEMPT_ENABLED);
1021         }
1022
1023         /*
1024          * Every time the system oopses, if the oops happens while a reference
1025          * to an object was held, the reference leaks.
1026          * If the oops doesn't also leak memory, repeated oopsing can cause
1027          * reference counters to wrap around (if they're not using refcount_t).
1028          * This means that repeated oopsing can make unexploitable-looking bugs
1029          * exploitable through repeated oopsing.
1030          * To make sure this can't happen, place an upper bound on how often the
1031          * kernel may oops without panic().
1032          */
1033         limit = READ_ONCE(oops_limit);
1034         if (atomic_inc_return(&oops_count) >= limit && limit)
1035                 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
1036
1037         /*
1038          * We're taking recursive faults here in make_task_dead. Safest is to just
1039          * leave this task alone and wait for reboot.
1040          */
1041         if (unlikely(tsk->flags & PF_EXITING)) {
1042                 pr_alert("Fixing recursive fault but reboot is needed!\n");
1043                 futex_exit_recursive(tsk);
1044                 tsk->exit_state = EXIT_DEAD;
1045                 refcount_inc(&tsk->rcu_users);
1046                 do_task_dead();
1047         }
1048
1049         do_exit(signr);
1050 }
1051
1052 SYSCALL_DEFINE1(exit, int, error_code)
1053 {
1054         do_exit((error_code&0xff)<<8);
1055 }
1056
1057 /*
1058  * Take down every thread in the group.  This is called by fatal signals
1059  * as well as by sys_exit_group (below).
1060  */
1061 void __noreturn
1062 do_group_exit(int exit_code)
1063 {
1064         struct signal_struct *sig = current->signal;
1065
1066         if (sig->flags & SIGNAL_GROUP_EXIT)
1067                 exit_code = sig->group_exit_code;
1068         else if (sig->group_exec_task)
1069                 exit_code = 0;
1070         else {
1071                 struct sighand_struct *const sighand = current->sighand;
1072
1073                 spin_lock_irq(&sighand->siglock);
1074                 if (sig->flags & SIGNAL_GROUP_EXIT)
1075                         /* Another thread got here before we took the lock.  */
1076                         exit_code = sig->group_exit_code;
1077                 else if (sig->group_exec_task)
1078                         exit_code = 0;
1079                 else {
1080                         sig->group_exit_code = exit_code;
1081                         sig->flags = SIGNAL_GROUP_EXIT;
1082                         zap_other_threads(current);
1083                 }
1084                 spin_unlock_irq(&sighand->siglock);
1085         }
1086
1087         do_exit(exit_code);
1088         /* NOTREACHED */
1089 }
1090
1091 /*
1092  * this kills every thread in the thread group. Note that any externally
1093  * wait4()-ing process will get the correct exit code - even if this
1094  * thread is not the thread group leader.
1095  */
1096 SYSCALL_DEFINE1(exit_group, int, error_code)
1097 {
1098         do_group_exit((error_code & 0xff) << 8);
1099         /* NOTREACHED */
1100         return 0;
1101 }
1102
1103 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1104 {
1105         return  wo->wo_type == PIDTYPE_MAX ||
1106                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1107 }
1108
1109 static int
1110 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1111 {
1112         if (!eligible_pid(wo, p))
1113                 return 0;
1114
1115         /*
1116          * Wait for all children (clone and not) if __WALL is set or
1117          * if it is traced by us.
1118          */
1119         if (ptrace || (wo->wo_flags & __WALL))
1120                 return 1;
1121
1122         /*
1123          * Otherwise, wait for clone children *only* if __WCLONE is set;
1124          * otherwise, wait for non-clone children *only*.
1125          *
1126          * Note: a "clone" child here is one that reports to its parent
1127          * using a signal other than SIGCHLD, or a non-leader thread which
1128          * we can only see if it is traced by us.
1129          */
1130         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1131                 return 0;
1132
1133         return 1;
1134 }
1135
1136 /*
1137  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1138  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1139  * the lock and this task is uninteresting.  If we return nonzero, we have
1140  * released the lock and the system call should return.
1141  */
1142 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1143 {
1144         int state, status;
1145         pid_t pid = task_pid_vnr(p);
1146         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1147         struct waitid_info *infop;
1148
1149         if (!likely(wo->wo_flags & WEXITED))
1150                 return 0;
1151
1152         if (unlikely(wo->wo_flags & WNOWAIT)) {
1153                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1154                         ? p->signal->group_exit_code : p->exit_code;
1155                 get_task_struct(p);
1156                 read_unlock(&tasklist_lock);
1157                 sched_annotate_sleep();
1158                 if (wo->wo_rusage)
1159                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1160                 put_task_struct(p);
1161                 goto out_info;
1162         }
1163         /*
1164          * Move the task's state to DEAD/TRACE, only one thread can do this.
1165          */
1166         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1167                 EXIT_TRACE : EXIT_DEAD;
1168         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1169                 return 0;
1170         /*
1171          * We own this thread, nobody else can reap it.
1172          */
1173         read_unlock(&tasklist_lock);
1174         sched_annotate_sleep();
1175
1176         /*
1177          * Check thread_group_leader() to exclude the traced sub-threads.
1178          */
1179         if (state == EXIT_DEAD && thread_group_leader(p)) {
1180                 struct signal_struct *sig = p->signal;
1181                 struct signal_struct *psig = current->signal;
1182                 unsigned long maxrss;
1183                 u64 tgutime, tgstime;
1184
1185                 /*
1186                  * The resource counters for the group leader are in its
1187                  * own task_struct.  Those for dead threads in the group
1188                  * are in its signal_struct, as are those for the child
1189                  * processes it has previously reaped.  All these
1190                  * accumulate in the parent's signal_struct c* fields.
1191                  *
1192                  * We don't bother to take a lock here to protect these
1193                  * p->signal fields because the whole thread group is dead
1194                  * and nobody can change them.
1195                  *
1196                  * psig->stats_lock also protects us from our sub-threads
1197                  * which can reap other children at the same time.
1198                  *
1199                  * We use thread_group_cputime_adjusted() to get times for
1200                  * the thread group, which consolidates times for all threads
1201                  * in the group including the group leader.
1202                  */
1203                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1204                 write_seqlock_irq(&psig->stats_lock);
1205                 psig->cutime += tgutime + sig->cutime;
1206                 psig->cstime += tgstime + sig->cstime;
1207                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1208                 psig->cmin_flt +=
1209                         p->min_flt + sig->min_flt + sig->cmin_flt;
1210                 psig->cmaj_flt +=
1211                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1212                 psig->cnvcsw +=
1213                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1214                 psig->cnivcsw +=
1215                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1216                 psig->cinblock +=
1217                         task_io_get_inblock(p) +
1218                         sig->inblock + sig->cinblock;
1219                 psig->coublock +=
1220                         task_io_get_oublock(p) +
1221                         sig->oublock + sig->coublock;
1222                 maxrss = max(sig->maxrss, sig->cmaxrss);
1223                 if (psig->cmaxrss < maxrss)
1224                         psig->cmaxrss = maxrss;
1225                 task_io_accounting_add(&psig->ioac, &p->ioac);
1226                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1227                 write_sequnlock_irq(&psig->stats_lock);
1228         }
1229
1230         if (wo->wo_rusage)
1231                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1232         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1233                 ? p->signal->group_exit_code : p->exit_code;
1234         wo->wo_stat = status;
1235
1236         if (state == EXIT_TRACE) {
1237                 write_lock_irq(&tasklist_lock);
1238                 /* We dropped tasklist, ptracer could die and untrace */
1239                 ptrace_unlink(p);
1240
1241                 /* If parent wants a zombie, don't release it now */
1242                 state = EXIT_ZOMBIE;
1243                 if (do_notify_parent(p, p->exit_signal))
1244                         state = EXIT_DEAD;
1245                 p->exit_state = state;
1246                 write_unlock_irq(&tasklist_lock);
1247         }
1248         if (state == EXIT_DEAD)
1249                 release_task(p);
1250
1251 out_info:
1252         infop = wo->wo_info;
1253         if (infop) {
1254                 if ((status & 0x7f) == 0) {
1255                         infop->cause = CLD_EXITED;
1256                         infop->status = status >> 8;
1257                 } else {
1258                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1259                         infop->status = status & 0x7f;
1260                 }
1261                 infop->pid = pid;
1262                 infop->uid = uid;
1263         }
1264
1265         return pid;
1266 }
1267
1268 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1269 {
1270         if (ptrace) {
1271                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1272                         return &p->exit_code;
1273         } else {
1274                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1275                         return &p->signal->group_exit_code;
1276         }
1277         return NULL;
1278 }
1279
1280 /**
1281  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1282  * @wo: wait options
1283  * @ptrace: is the wait for ptrace
1284  * @p: task to wait for
1285  *
1286  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1287  *
1288  * CONTEXT:
1289  * read_lock(&tasklist_lock), which is released if return value is
1290  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1291  *
1292  * RETURNS:
1293  * 0 if wait condition didn't exist and search for other wait conditions
1294  * should continue.  Non-zero return, -errno on failure and @p's pid on
1295  * success, implies that tasklist_lock is released and wait condition
1296  * search should terminate.
1297  */
1298 static int wait_task_stopped(struct wait_opts *wo,
1299                                 int ptrace, struct task_struct *p)
1300 {
1301         struct waitid_info *infop;
1302         int exit_code, *p_code, why;
1303         uid_t uid = 0; /* unneeded, required by compiler */
1304         pid_t pid;
1305
1306         /*
1307          * Traditionally we see ptrace'd stopped tasks regardless of options.
1308          */
1309         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1310                 return 0;
1311
1312         if (!task_stopped_code(p, ptrace))
1313                 return 0;
1314
1315         exit_code = 0;
1316         spin_lock_irq(&p->sighand->siglock);
1317
1318         p_code = task_stopped_code(p, ptrace);
1319         if (unlikely(!p_code))
1320                 goto unlock_sig;
1321
1322         exit_code = *p_code;
1323         if (!exit_code)
1324                 goto unlock_sig;
1325
1326         if (!unlikely(wo->wo_flags & WNOWAIT))
1327                 *p_code = 0;
1328
1329         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1330 unlock_sig:
1331         spin_unlock_irq(&p->sighand->siglock);
1332         if (!exit_code)
1333                 return 0;
1334
1335         /*
1336          * Now we are pretty sure this task is interesting.
1337          * Make sure it doesn't get reaped out from under us while we
1338          * give up the lock and then examine it below.  We don't want to
1339          * keep holding onto the tasklist_lock while we call getrusage and
1340          * possibly take page faults for user memory.
1341          */
1342         get_task_struct(p);
1343         pid = task_pid_vnr(p);
1344         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1345         read_unlock(&tasklist_lock);
1346         sched_annotate_sleep();
1347         if (wo->wo_rusage)
1348                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1349         put_task_struct(p);
1350
1351         if (likely(!(wo->wo_flags & WNOWAIT)))
1352                 wo->wo_stat = (exit_code << 8) | 0x7f;
1353
1354         infop = wo->wo_info;
1355         if (infop) {
1356                 infop->cause = why;
1357                 infop->status = exit_code;
1358                 infop->pid = pid;
1359                 infop->uid = uid;
1360         }
1361         return pid;
1362 }
1363
1364 /*
1365  * Handle do_wait work for one task in a live, non-stopped state.
1366  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1367  * the lock and this task is uninteresting.  If we return nonzero, we have
1368  * released the lock and the system call should return.
1369  */
1370 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1371 {
1372         struct waitid_info *infop;
1373         pid_t pid;
1374         uid_t uid;
1375
1376         if (!unlikely(wo->wo_flags & WCONTINUED))
1377                 return 0;
1378
1379         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1380                 return 0;
1381
1382         spin_lock_irq(&p->sighand->siglock);
1383         /* Re-check with the lock held.  */
1384         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1385                 spin_unlock_irq(&p->sighand->siglock);
1386                 return 0;
1387         }
1388         if (!unlikely(wo->wo_flags & WNOWAIT))
1389                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1390         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1391         spin_unlock_irq(&p->sighand->siglock);
1392
1393         pid = task_pid_vnr(p);
1394         get_task_struct(p);
1395         read_unlock(&tasklist_lock);
1396         sched_annotate_sleep();
1397         if (wo->wo_rusage)
1398                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1399         put_task_struct(p);
1400
1401         infop = wo->wo_info;
1402         if (!infop) {
1403                 wo->wo_stat = 0xffff;
1404         } else {
1405                 infop->cause = CLD_CONTINUED;
1406                 infop->pid = pid;
1407                 infop->uid = uid;
1408                 infop->status = SIGCONT;
1409         }
1410         return pid;
1411 }
1412
1413 /*
1414  * Consider @p for a wait by @parent.
1415  *
1416  * -ECHILD should be in ->notask_error before the first call.
1417  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1418  * Returns zero if the search for a child should continue;
1419  * then ->notask_error is 0 if @p is an eligible child,
1420  * or still -ECHILD.
1421  */
1422 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1423                                 struct task_struct *p)
1424 {
1425         /*
1426          * We can race with wait_task_zombie() from another thread.
1427          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1428          * can't confuse the checks below.
1429          */
1430         int exit_state = READ_ONCE(p->exit_state);
1431         int ret;
1432
1433         if (unlikely(exit_state == EXIT_DEAD))
1434                 return 0;
1435
1436         ret = eligible_child(wo, ptrace, p);
1437         if (!ret)
1438                 return ret;
1439
1440         if (unlikely(exit_state == EXIT_TRACE)) {
1441                 /*
1442                  * ptrace == 0 means we are the natural parent. In this case
1443                  * we should clear notask_error, debugger will notify us.
1444                  */
1445                 if (likely(!ptrace))
1446                         wo->notask_error = 0;
1447                 return 0;
1448         }
1449
1450         if (likely(!ptrace) && unlikely(p->ptrace)) {
1451                 /*
1452                  * If it is traced by its real parent's group, just pretend
1453                  * the caller is ptrace_do_wait() and reap this child if it
1454                  * is zombie.
1455                  *
1456                  * This also hides group stop state from real parent; otherwise
1457                  * a single stop can be reported twice as group and ptrace stop.
1458                  * If a ptracer wants to distinguish these two events for its
1459                  * own children it should create a separate process which takes
1460                  * the role of real parent.
1461                  */
1462                 if (!ptrace_reparented(p))
1463                         ptrace = 1;
1464         }
1465
1466         /* slay zombie? */
1467         if (exit_state == EXIT_ZOMBIE) {
1468                 /* we don't reap group leaders with subthreads */
1469                 if (!delay_group_leader(p)) {
1470                         /*
1471                          * A zombie ptracee is only visible to its ptracer.
1472                          * Notification and reaping will be cascaded to the
1473                          * real parent when the ptracer detaches.
1474                          */
1475                         if (unlikely(ptrace) || likely(!p->ptrace))
1476                                 return wait_task_zombie(wo, p);
1477                 }
1478
1479                 /*
1480                  * Allow access to stopped/continued state via zombie by
1481                  * falling through.  Clearing of notask_error is complex.
1482                  *
1483                  * When !@ptrace:
1484                  *
1485                  * If WEXITED is set, notask_error should naturally be
1486                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1487                  * so, if there are live subthreads, there are events to
1488                  * wait for.  If all subthreads are dead, it's still safe
1489                  * to clear - this function will be called again in finite
1490                  * amount time once all the subthreads are released and
1491                  * will then return without clearing.
1492                  *
1493                  * When @ptrace:
1494                  *
1495                  * Stopped state is per-task and thus can't change once the
1496                  * target task dies.  Only continued and exited can happen.
1497                  * Clear notask_error if WCONTINUED | WEXITED.
1498                  */
1499                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1500                         wo->notask_error = 0;
1501         } else {
1502                 /*
1503                  * @p is alive and it's gonna stop, continue or exit, so
1504                  * there always is something to wait for.
1505                  */
1506                 wo->notask_error = 0;
1507         }
1508
1509         /*
1510          * Wait for stopped.  Depending on @ptrace, different stopped state
1511          * is used and the two don't interact with each other.
1512          */
1513         ret = wait_task_stopped(wo, ptrace, p);
1514         if (ret)
1515                 return ret;
1516
1517         /*
1518          * Wait for continued.  There's only one continued state and the
1519          * ptracer can consume it which can confuse the real parent.  Don't
1520          * use WCONTINUED from ptracer.  You don't need or want it.
1521          */
1522         return wait_task_continued(wo, p);
1523 }
1524
1525 /*
1526  * Do the work of do_wait() for one thread in the group, @tsk.
1527  *
1528  * -ECHILD should be in ->notask_error before the first call.
1529  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1530  * Returns zero if the search for a child should continue; then
1531  * ->notask_error is 0 if there were any eligible children,
1532  * or still -ECHILD.
1533  */
1534 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1535 {
1536         struct task_struct *p;
1537
1538         list_for_each_entry(p, &tsk->children, sibling) {
1539                 int ret = wait_consider_task(wo, 0, p);
1540
1541                 if (ret)
1542                         return ret;
1543         }
1544
1545         return 0;
1546 }
1547
1548 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1549 {
1550         struct task_struct *p;
1551
1552         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1553                 int ret = wait_consider_task(wo, 1, p);
1554
1555                 if (ret)
1556                         return ret;
1557         }
1558
1559         return 0;
1560 }
1561
1562 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1563 {
1564         if (!eligible_pid(wo, p))
1565                 return false;
1566
1567         if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1568                 return false;
1569
1570         return true;
1571 }
1572
1573 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1574                                 int sync, void *key)
1575 {
1576         struct wait_opts *wo = container_of(wait, struct wait_opts,
1577                                                 child_wait);
1578         struct task_struct *p = key;
1579
1580         if (pid_child_should_wake(wo, p))
1581                 return default_wake_function(wait, mode, sync, key);
1582
1583         return 0;
1584 }
1585
1586 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1587 {
1588         __wake_up_sync_key(&parent->signal->wait_chldexit,
1589                            TASK_INTERRUPTIBLE, p);
1590 }
1591
1592 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1593                                  struct task_struct *target)
1594 {
1595         struct task_struct *parent =
1596                 !ptrace ? target->real_parent : target->parent;
1597
1598         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1599                                      same_thread_group(current, parent));
1600 }
1601
1602 /*
1603  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1604  * and tracee lists to find the target task.
1605  */
1606 static int do_wait_pid(struct wait_opts *wo)
1607 {
1608         bool ptrace;
1609         struct task_struct *target;
1610         int retval;
1611
1612         ptrace = false;
1613         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1614         if (target && is_effectively_child(wo, ptrace, target)) {
1615                 retval = wait_consider_task(wo, ptrace, target);
1616                 if (retval)
1617                         return retval;
1618         }
1619
1620         ptrace = true;
1621         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1622         if (target && target->ptrace &&
1623             is_effectively_child(wo, ptrace, target)) {
1624                 retval = wait_consider_task(wo, ptrace, target);
1625                 if (retval)
1626                         return retval;
1627         }
1628
1629         return 0;
1630 }
1631
1632 long __do_wait(struct wait_opts *wo)
1633 {
1634         long retval;
1635
1636         /*
1637          * If there is nothing that can match our criteria, just get out.
1638          * We will clear ->notask_error to zero if we see any child that
1639          * might later match our criteria, even if we are not able to reap
1640          * it yet.
1641          */
1642         wo->notask_error = -ECHILD;
1643         if ((wo->wo_type < PIDTYPE_MAX) &&
1644            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1645                 goto notask;
1646
1647         read_lock(&tasklist_lock);
1648
1649         if (wo->wo_type == PIDTYPE_PID) {
1650                 retval = do_wait_pid(wo);
1651                 if (retval)
1652                         return retval;
1653         } else {
1654                 struct task_struct *tsk = current;
1655
1656                 do {
1657                         retval = do_wait_thread(wo, tsk);
1658                         if (retval)
1659                                 return retval;
1660
1661                         retval = ptrace_do_wait(wo, tsk);
1662                         if (retval)
1663                                 return retval;
1664
1665                         if (wo->wo_flags & __WNOTHREAD)
1666                                 break;
1667                 } while_each_thread(current, tsk);
1668         }
1669         read_unlock(&tasklist_lock);
1670
1671 notask:
1672         retval = wo->notask_error;
1673         if (!retval && !(wo->wo_flags & WNOHANG))
1674                 return -ERESTARTSYS;
1675
1676         return retval;
1677 }
1678
1679 static long do_wait(struct wait_opts *wo)
1680 {
1681         int retval;
1682
1683         trace_sched_process_wait(wo->wo_pid);
1684
1685         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1686         wo->child_wait.private = current;
1687         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1688
1689         do {
1690                 set_current_state(TASK_INTERRUPTIBLE);
1691                 retval = __do_wait(wo);
1692                 if (retval != -ERESTARTSYS)
1693                         break;
1694                 if (signal_pending(current))
1695                         break;
1696                 schedule();
1697         } while (1);
1698
1699         __set_current_state(TASK_RUNNING);
1700         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1701         return retval;
1702 }
1703
1704 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1705                           struct waitid_info *infop, int options,
1706                           struct rusage *ru)
1707 {
1708         unsigned int f_flags = 0;
1709         struct pid *pid = NULL;
1710         enum pid_type type;
1711
1712         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1713                         __WNOTHREAD|__WCLONE|__WALL))
1714                 return -EINVAL;
1715         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1716                 return -EINVAL;
1717
1718         switch (which) {
1719         case P_ALL:
1720                 type = PIDTYPE_MAX;
1721                 break;
1722         case P_PID:
1723                 type = PIDTYPE_PID;
1724                 if (upid <= 0)
1725                         return -EINVAL;
1726
1727                 pid = find_get_pid(upid);
1728                 break;
1729         case P_PGID:
1730                 type = PIDTYPE_PGID;
1731                 if (upid < 0)
1732                         return -EINVAL;
1733
1734                 if (upid)
1735                         pid = find_get_pid(upid);
1736                 else
1737                         pid = get_task_pid(current, PIDTYPE_PGID);
1738                 break;
1739         case P_PIDFD:
1740                 type = PIDTYPE_PID;
1741                 if (upid < 0)
1742                         return -EINVAL;
1743
1744                 pid = pidfd_get_pid(upid, &f_flags);
1745                 if (IS_ERR(pid))
1746                         return PTR_ERR(pid);
1747
1748                 break;
1749         default:
1750                 return -EINVAL;
1751         }
1752
1753         wo->wo_type     = type;
1754         wo->wo_pid      = pid;
1755         wo->wo_flags    = options;
1756         wo->wo_info     = infop;
1757         wo->wo_rusage   = ru;
1758         if (f_flags & O_NONBLOCK)
1759                 wo->wo_flags |= WNOHANG;
1760
1761         return 0;
1762 }
1763
1764 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1765                           int options, struct rusage *ru)
1766 {
1767         struct wait_opts wo;
1768         long ret;
1769
1770         ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1771         if (ret)
1772                 return ret;
1773
1774         ret = do_wait(&wo);
1775         if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1776                 ret = -EAGAIN;
1777
1778         put_pid(wo.wo_pid);
1779         return ret;
1780 }
1781
1782 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1783                 infop, int, options, struct rusage __user *, ru)
1784 {
1785         struct rusage r;
1786         struct waitid_info info = {.status = 0};
1787         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1788         int signo = 0;
1789
1790         if (err > 0) {
1791                 signo = SIGCHLD;
1792                 err = 0;
1793                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1794                         return -EFAULT;
1795         }
1796         if (!infop)
1797                 return err;
1798
1799         if (!user_write_access_begin(infop, sizeof(*infop)))
1800                 return -EFAULT;
1801
1802         unsafe_put_user(signo, &infop->si_signo, Efault);
1803         unsafe_put_user(0, &infop->si_errno, Efault);
1804         unsafe_put_user(info.cause, &infop->si_code, Efault);
1805         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1806         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1807         unsafe_put_user(info.status, &infop->si_status, Efault);
1808         user_write_access_end();
1809         return err;
1810 Efault:
1811         user_write_access_end();
1812         return -EFAULT;
1813 }
1814
1815 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1816                   struct rusage *ru)
1817 {
1818         struct wait_opts wo;
1819         struct pid *pid = NULL;
1820         enum pid_type type;
1821         long ret;
1822
1823         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1824                         __WNOTHREAD|__WCLONE|__WALL))
1825                 return -EINVAL;
1826
1827         /* -INT_MIN is not defined */
1828         if (upid == INT_MIN)
1829                 return -ESRCH;
1830
1831         if (upid == -1)
1832                 type = PIDTYPE_MAX;
1833         else if (upid < 0) {
1834                 type = PIDTYPE_PGID;
1835                 pid = find_get_pid(-upid);
1836         } else if (upid == 0) {
1837                 type = PIDTYPE_PGID;
1838                 pid = get_task_pid(current, PIDTYPE_PGID);
1839         } else /* upid > 0 */ {
1840                 type = PIDTYPE_PID;
1841                 pid = find_get_pid(upid);
1842         }
1843
1844         wo.wo_type      = type;
1845         wo.wo_pid       = pid;
1846         wo.wo_flags     = options | WEXITED;
1847         wo.wo_info      = NULL;
1848         wo.wo_stat      = 0;
1849         wo.wo_rusage    = ru;
1850         ret = do_wait(&wo);
1851         put_pid(pid);
1852         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1853                 ret = -EFAULT;
1854
1855         return ret;
1856 }
1857
1858 int kernel_wait(pid_t pid, int *stat)
1859 {
1860         struct wait_opts wo = {
1861                 .wo_type        = PIDTYPE_PID,
1862                 .wo_pid         = find_get_pid(pid),
1863                 .wo_flags       = WEXITED,
1864         };
1865         int ret;
1866
1867         ret = do_wait(&wo);
1868         if (ret > 0 && wo.wo_stat)
1869                 *stat = wo.wo_stat;
1870         put_pid(wo.wo_pid);
1871         return ret;
1872 }
1873
1874 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1875                 int, options, struct rusage __user *, ru)
1876 {
1877         struct rusage r;
1878         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1879
1880         if (err > 0) {
1881                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1882                         return -EFAULT;
1883         }
1884         return err;
1885 }
1886
1887 #ifdef __ARCH_WANT_SYS_WAITPID
1888
1889 /*
1890  * sys_waitpid() remains for compatibility. waitpid() should be
1891  * implemented by calling sys_wait4() from libc.a.
1892  */
1893 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1894 {
1895         return kernel_wait4(pid, stat_addr, options, NULL);
1896 }
1897
1898 #endif
1899
1900 #ifdef CONFIG_COMPAT
1901 COMPAT_SYSCALL_DEFINE4(wait4,
1902         compat_pid_t, pid,
1903         compat_uint_t __user *, stat_addr,
1904         int, options,
1905         struct compat_rusage __user *, ru)
1906 {
1907         struct rusage r;
1908         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1909         if (err > 0) {
1910                 if (ru && put_compat_rusage(&r, ru))
1911                         return -EFAULT;
1912         }
1913         return err;
1914 }
1915
1916 COMPAT_SYSCALL_DEFINE5(waitid,
1917                 int, which, compat_pid_t, pid,
1918                 struct compat_siginfo __user *, infop, int, options,
1919                 struct compat_rusage __user *, uru)
1920 {
1921         struct rusage ru;
1922         struct waitid_info info = {.status = 0};
1923         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1924         int signo = 0;
1925         if (err > 0) {
1926                 signo = SIGCHLD;
1927                 err = 0;
1928                 if (uru) {
1929                         /* kernel_waitid() overwrites everything in ru */
1930                         if (COMPAT_USE_64BIT_TIME)
1931                                 err = copy_to_user(uru, &ru, sizeof(ru));
1932                         else
1933                                 err = put_compat_rusage(&ru, uru);
1934                         if (err)
1935                                 return -EFAULT;
1936                 }
1937         }
1938
1939         if (!infop)
1940                 return err;
1941
1942         if (!user_write_access_begin(infop, sizeof(*infop)))
1943                 return -EFAULT;
1944
1945         unsafe_put_user(signo, &infop->si_signo, Efault);
1946         unsafe_put_user(0, &infop->si_errno, Efault);
1947         unsafe_put_user(info.cause, &infop->si_code, Efault);
1948         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1949         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1950         unsafe_put_user(info.status, &infop->si_status, Efault);
1951         user_write_access_end();
1952         return err;
1953 Efault:
1954         user_write_access_end();
1955         return -EFAULT;
1956 }
1957 #endif
1958
1959 /*
1960  * This needs to be __function_aligned as GCC implicitly makes any
1961  * implementation of abort() cold and drops alignment specified by
1962  * -falign-functions=N.
1963  *
1964  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1965  */
1966 __weak __function_aligned void abort(void)
1967 {
1968         BUG();
1969
1970         /* if that doesn't kill us, halt */
1971         panic("Oops failed to kill thread");
1972 }
1973 EXPORT_SYMBOL(abort);
This page took 0.138151 seconds and 4 git commands to generate.