2 * linux/net/sunrpc/gss_krb5_crypto.c
4 * Copyright (c) 2000-2008 The Regents of the University of Michigan.
12 * Copyright (C) 1998 by the FundsXpress, INC.
14 * All rights reserved.
16 * Export of this software from the United States of America may require
17 * a specific license from the United States Government. It is the
18 * responsibility of any person or organization contemplating export to
19 * obtain such a license before exporting.
21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
22 * distribute this software and its documentation for any purpose and
23 * without fee is hereby granted, provided that the above copyright
24 * notice appear in all copies and that both that copyright notice and
25 * this permission notice appear in supporting documentation, and that
26 * the name of FundsXpress. not be used in advertising or publicity pertaining
27 * to distribution of the software without specific, written prior
28 * permission. FundsXpress makes no representations about the suitability of
29 * this software for any purpose. It is provided "as is" without express
30 * or implied warranty.
32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
37 #include <crypto/algapi.h>
38 #include <crypto/hash.h>
39 #include <crypto/skcipher.h>
40 #include <linux/err.h>
41 #include <linux/types.h>
43 #include <linux/scatterlist.h>
44 #include <linux/highmem.h>
45 #include <linux/pagemap.h>
46 #include <linux/random.h>
47 #include <linux/sunrpc/gss_krb5.h>
48 #include <linux/sunrpc/xdr.h>
49 #include <kunit/visibility.h>
51 #include "gss_krb5_internal.h"
53 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
54 # define RPCDBG_FACILITY RPCDBG_AUTH
58 * krb5_make_confounder - Generate a confounder string
59 * @p: memory location into which to write the string
60 * @conflen: string length to write, in octets
62 * RFCs 1964 and 3961 mention only "a random confounder" without going
63 * into detail about its function or cryptographic requirements. The
64 * assumed purpose is to prevent repeated encryption of a plaintext with
65 * the same key from generating the same ciphertext. It is also used to
66 * pad minimum plaintext length to at least a single cipher block.
68 * However, in situations like the GSS Kerberos 5 mechanism, where the
69 * encryption IV is always all zeroes, the confounder also effectively
70 * functions like an IV. Thus, not only must it be unique from message
71 * to message, but it must also be difficult to predict. Otherwise an
72 * attacker can correlate the confounder to previous or future values,
73 * making the encryption easier to break.
75 * Given that the primary consumer of this encryption mechanism is a
76 * network storage protocol, a type of traffic that often carries
77 * predictable payloads (eg, all zeroes when reading unallocated blocks
78 * from a file), our confounder generation has to be cryptographically
81 void krb5_make_confounder(u8 *p, int conflen)
83 get_random_bytes(p, conflen);
87 * krb5_encrypt - simple encryption of an RPCSEC GSS payload
88 * @tfm: initialized cipher transform
89 * @iv: pointer to an IV
90 * @in: plaintext to encrypt
91 * @out: OUT: ciphertext
92 * @length: length of input and output buffers, in bytes
94 * @iv may be NULL to force the use of an all-zero IV.
95 * The buffer containing the IV must be as large as the
99 * %0: @in successfully encrypted into @out
100 * negative errno: @in not encrypted
104 struct crypto_sync_skcipher *tfm,
111 struct scatterlist sg[1];
112 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
113 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
115 if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
118 if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
119 dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n",
120 crypto_sync_skcipher_ivsize(tfm));
125 memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
127 memcpy(out, in, length);
128 sg_init_one(sg, out, length);
130 skcipher_request_set_sync_tfm(req, tfm);
131 skcipher_request_set_callback(req, 0, NULL, NULL);
132 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
134 ret = crypto_skcipher_encrypt(req);
135 skcipher_request_zero(req);
137 dprintk("RPC: krb5_encrypt returns %d\n", ret);
142 * krb5_decrypt - simple decryption of an RPCSEC GSS payload
143 * @tfm: initialized cipher transform
144 * @iv: pointer to an IV
145 * @in: ciphertext to decrypt
146 * @out: OUT: plaintext
147 * @length: length of input and output buffers, in bytes
149 * @iv may be NULL to force the use of an all-zero IV.
150 * The buffer containing the IV must be as large as the
154 * %0: @in successfully decrypted into @out
155 * negative errno: @in not decrypted
159 struct crypto_sync_skcipher *tfm,
166 struct scatterlist sg[1];
167 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
168 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
170 if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
173 if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
174 dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n",
175 crypto_sync_skcipher_ivsize(tfm));
179 memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
181 memcpy(out, in, length);
182 sg_init_one(sg, out, length);
184 skcipher_request_set_sync_tfm(req, tfm);
185 skcipher_request_set_callback(req, 0, NULL, NULL);
186 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
188 ret = crypto_skcipher_decrypt(req);
189 skcipher_request_zero(req);
191 dprintk("RPC: gss_k5decrypt returns %d\n",ret);
196 checksummer(struct scatterlist *sg, void *data)
198 struct ahash_request *req = data;
200 ahash_request_set_crypt(req, sg, NULL, sg->length);
202 return crypto_ahash_update(req);
206 * checksum the plaintext data and hdrlen bytes of the token header
207 * The checksum is performed over the first 8 bytes of the
208 * gss token header and then over the data body
211 make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
212 struct xdr_buf *body, int body_offset, u8 *cksumkey,
213 unsigned int usage, struct xdr_netobj *cksumout)
215 struct crypto_ahash *tfm;
216 struct ahash_request *req;
217 struct scatterlist sg[1];
220 unsigned int checksumlen;
222 if (cksumout->len < kctx->gk5e->cksumlength) {
223 dprintk("%s: checksum buffer length, %u, too small for %s\n",
224 __func__, cksumout->len, kctx->gk5e->name);
225 return GSS_S_FAILURE;
228 checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_KERNEL);
229 if (checksumdata == NULL)
230 return GSS_S_FAILURE;
232 tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
236 req = ahash_request_alloc(tfm, GFP_KERNEL);
240 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
242 checksumlen = crypto_ahash_digestsize(tfm);
244 if (cksumkey != NULL) {
245 err = crypto_ahash_setkey(tfm, cksumkey,
246 kctx->gk5e->keylength);
251 err = crypto_ahash_init(req);
254 sg_init_one(sg, header, hdrlen);
255 ahash_request_set_crypt(req, sg, NULL, hdrlen);
256 err = crypto_ahash_update(req);
259 err = xdr_process_buf(body, body_offset, body->len - body_offset,
263 ahash_request_set_crypt(req, NULL, checksumdata, 0);
264 err = crypto_ahash_final(req);
268 switch (kctx->gk5e->ctype) {
269 case CKSUMTYPE_RSA_MD5:
270 err = krb5_encrypt(kctx->seq, NULL, checksumdata,
271 checksumdata, checksumlen);
274 memcpy(cksumout->data,
275 checksumdata + checksumlen - kctx->gk5e->cksumlength,
276 kctx->gk5e->cksumlength);
278 case CKSUMTYPE_HMAC_SHA1_DES3:
279 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
285 cksumout->len = kctx->gk5e->cksumlength;
287 ahash_request_free(req);
289 crypto_free_ahash(tfm);
292 return err ? GSS_S_FAILURE : 0;
296 * gss_krb5_checksum - Compute the MAC for a GSS Wrap or MIC token
297 * @tfm: an initialized hash transform
298 * @header: pointer to a buffer containing the token header, or NULL
299 * @hdrlen: number of octets in @header
300 * @body: xdr_buf containing an RPC message (body.len is the message length)
301 * @body_offset: byte offset into @body to start checksumming
302 * @cksumout: OUT: a buffer to be filled in with the computed HMAC
304 * Usually expressed as H = HMAC(K, message)[1..h] .
306 * Caller provides the truncation length of the output token (h) in
310 * %GSS_S_COMPLETE: Digest computed, @cksumout filled in
311 * %GSS_S_FAILURE: Call failed
314 gss_krb5_checksum(struct crypto_ahash *tfm, char *header, int hdrlen,
315 const struct xdr_buf *body, int body_offset,
316 struct xdr_netobj *cksumout)
318 struct ahash_request *req;
322 checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL);
324 return GSS_S_FAILURE;
326 req = ahash_request_alloc(tfm, GFP_KERNEL);
329 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
330 err = crypto_ahash_init(req);
335 * Per RFC 4121 Section 4.2.4, the checksum is performed over the
336 * data body first, then over the octets in "header".
338 err = xdr_process_buf(body, body_offset, body->len - body_offset,
343 struct scatterlist sg[1];
345 sg_init_one(sg, header, hdrlen);
346 ahash_request_set_crypt(req, sg, NULL, hdrlen);
347 err = crypto_ahash_update(req);
352 ahash_request_set_crypt(req, NULL, checksumdata, 0);
353 err = crypto_ahash_final(req);
357 memcpy(cksumout->data, checksumdata,
358 min_t(int, cksumout->len, crypto_ahash_digestsize(tfm)));
361 ahash_request_free(req);
363 kfree_sensitive(checksumdata);
364 return err ? GSS_S_FAILURE : GSS_S_COMPLETE;
366 EXPORT_SYMBOL_IF_KUNIT(gss_krb5_checksum);
368 struct encryptor_desc {
369 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
370 struct skcipher_request *req;
372 struct xdr_buf *outbuf;
374 struct scatterlist infrags[4];
375 struct scatterlist outfrags[4];
381 encryptor(struct scatterlist *sg, void *data)
383 struct encryptor_desc *desc = data;
384 struct xdr_buf *outbuf = desc->outbuf;
385 struct crypto_sync_skcipher *tfm =
386 crypto_sync_skcipher_reqtfm(desc->req);
387 struct page *in_page;
388 int thislen = desc->fraglen + sg->length;
392 /* Worst case is 4 fragments: head, end of page 1, start
393 * of page 2, tail. Anything more is a bug. */
394 BUG_ON(desc->fragno > 3);
396 page_pos = desc->pos - outbuf->head[0].iov_len;
397 if (page_pos >= 0 && page_pos < outbuf->page_len) {
398 /* pages are not in place: */
399 int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
400 in_page = desc->pages[i];
402 in_page = sg_page(sg);
404 sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
406 sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
409 desc->fraglen += sg->length;
410 desc->pos += sg->length;
412 fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
418 sg_mark_end(&desc->infrags[desc->fragno - 1]);
419 sg_mark_end(&desc->outfrags[desc->fragno - 1]);
421 skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
424 ret = crypto_skcipher_encrypt(desc->req);
428 sg_init_table(desc->infrags, 4);
429 sg_init_table(desc->outfrags, 4);
432 sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
433 sg->offset + sg->length - fraglen);
434 desc->infrags[0] = desc->outfrags[0];
435 sg_assign_page(&desc->infrags[0], in_page);
437 desc->fraglen = fraglen;
446 gss_encrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
447 int offset, struct page **pages)
450 struct encryptor_desc desc;
451 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
453 BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
455 skcipher_request_set_sync_tfm(req, tfm);
456 skcipher_request_set_callback(req, 0, NULL, NULL);
458 memset(desc.iv, 0, sizeof(desc.iv));
466 sg_init_table(desc.infrags, 4);
467 sg_init_table(desc.outfrags, 4);
469 ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
470 skcipher_request_zero(req);
474 struct decryptor_desc {
475 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
476 struct skcipher_request *req;
477 struct scatterlist frags[4];
483 decryptor(struct scatterlist *sg, void *data)
485 struct decryptor_desc *desc = data;
486 int thislen = desc->fraglen + sg->length;
487 struct crypto_sync_skcipher *tfm =
488 crypto_sync_skcipher_reqtfm(desc->req);
491 /* Worst case is 4 fragments: head, end of page 1, start
492 * of page 2, tail. Anything more is a bug. */
493 BUG_ON(desc->fragno > 3);
494 sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
497 desc->fraglen += sg->length;
499 fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
505 sg_mark_end(&desc->frags[desc->fragno - 1]);
507 skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
510 ret = crypto_skcipher_decrypt(desc->req);
514 sg_init_table(desc->frags, 4);
517 sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
518 sg->offset + sg->length - fraglen);
520 desc->fraglen = fraglen;
529 gss_decrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
533 struct decryptor_desc desc;
534 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
537 BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
539 skcipher_request_set_sync_tfm(req, tfm);
540 skcipher_request_set_callback(req, 0, NULL, NULL);
542 memset(desc.iv, 0, sizeof(desc.iv));
547 sg_init_table(desc.frags, 4);
549 ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
550 skcipher_request_zero(req);
555 * This function makes the assumption that it was ultimately called
558 * The client auth_gss code moves any existing tail data into a
559 * separate page before calling gss_wrap.
560 * The server svcauth_gss code ensures that both the head and the
561 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
563 * Even with that guarantee, this function may be called more than
564 * once in the processing of gss_wrap(). The best we can do is
565 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
566 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
567 * At run-time we can verify that a single invocation of this
568 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
572 xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
579 BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
581 p = buf->head[0].iov_base + base;
583 memmove(p + shiftlen, p, buf->head[0].iov_len - base);
585 buf->head[0].iov_len += shiftlen;
586 buf->len += shiftlen;
592 gss_krb5_cts_crypt(struct crypto_sync_skcipher *cipher, struct xdr_buf *buf,
593 u32 offset, u8 *iv, struct page **pages, int encrypt)
596 struct scatterlist sg[1];
597 SYNC_SKCIPHER_REQUEST_ON_STACK(req, cipher);
599 struct page **save_pages;
600 u32 len = buf->len - offset;
602 if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
606 data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_KERNEL);
611 * For encryption, we want to read from the cleartext
612 * page cache pages, and write the encrypted data to
613 * the supplied xdr_buf pages.
615 save_pages = buf->pages;
619 ret = read_bytes_from_xdr_buf(buf, offset, data, len);
620 buf->pages = save_pages;
624 sg_init_one(sg, data, len);
626 skcipher_request_set_sync_tfm(req, cipher);
627 skcipher_request_set_callback(req, 0, NULL, NULL);
628 skcipher_request_set_crypt(req, sg, sg, len, iv);
631 ret = crypto_skcipher_encrypt(req);
633 ret = crypto_skcipher_decrypt(req);
635 skcipher_request_zero(req);
640 ret = write_bytes_to_xdr_buf(buf, offset, data, len);
648 * krb5_cbc_cts_encrypt - encrypt in CBC mode with CTS
649 * @cts_tfm: CBC cipher with CTS
650 * @cbc_tfm: base CBC cipher
651 * @offset: starting byte offset for plaintext
652 * @buf: OUT: output buffer
654 * @iv: output CBC initialization vector, or NULL
655 * @ivsize: size of @iv, in octets
657 * To provide confidentiality, encrypt using cipher block chaining
658 * with ciphertext stealing. Message integrity is handled separately.
661 * %0: encryption successful
662 * negative errno: encryption could not be completed
665 int krb5_cbc_cts_encrypt(struct crypto_sync_skcipher *cts_tfm,
666 struct crypto_sync_skcipher *cbc_tfm,
667 u32 offset, struct xdr_buf *buf, struct page **pages,
668 u8 *iv, unsigned int ivsize)
670 u32 blocksize, nbytes, nblocks, cbcbytes;
671 struct encryptor_desc desc;
674 blocksize = crypto_sync_skcipher_blocksize(cts_tfm);
675 nbytes = buf->len - offset;
676 nblocks = (nbytes + blocksize - 1) / blocksize;
679 cbcbytes = (nblocks - 2) * blocksize;
681 memset(desc.iv, 0, sizeof(desc.iv));
683 /* Handle block-sized chunks of plaintext with CBC. */
685 SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm);
694 skcipher_request_set_sync_tfm(req, cbc_tfm);
695 skcipher_request_set_callback(req, 0, NULL, NULL);
697 sg_init_table(desc.infrags, 4);
698 sg_init_table(desc.outfrags, 4);
700 err = xdr_process_buf(buf, offset, cbcbytes, encryptor, &desc);
701 skcipher_request_zero(req);
706 /* Remaining plaintext is handled with CBC-CTS. */
707 err = gss_krb5_cts_crypt(cts_tfm, buf, offset + cbcbytes,
713 memcpy(iv, desc.iv, ivsize);
716 EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_encrypt);
719 * krb5_cbc_cts_decrypt - decrypt in CBC mode with CTS
720 * @cts_tfm: CBC cipher with CTS
721 * @cbc_tfm: base CBC cipher
722 * @offset: starting byte offset for plaintext
723 * @buf: OUT: output buffer
726 * %0: decryption successful
727 * negative errno: decryption could not be completed
730 int krb5_cbc_cts_decrypt(struct crypto_sync_skcipher *cts_tfm,
731 struct crypto_sync_skcipher *cbc_tfm,
732 u32 offset, struct xdr_buf *buf)
734 u32 blocksize, nblocks, cbcbytes;
735 struct decryptor_desc desc;
738 blocksize = crypto_sync_skcipher_blocksize(cts_tfm);
739 nblocks = (buf->len + blocksize - 1) / blocksize;
742 cbcbytes = (nblocks - 2) * blocksize;
744 memset(desc.iv, 0, sizeof(desc.iv));
746 /* Handle block-sized chunks of plaintext with CBC. */
748 SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm);
754 skcipher_request_set_sync_tfm(req, cbc_tfm);
755 skcipher_request_set_callback(req, 0, NULL, NULL);
757 sg_init_table(desc.frags, 4);
759 err = xdr_process_buf(buf, 0, cbcbytes, decryptor, &desc);
760 skcipher_request_zero(req);
765 /* Remaining plaintext is handled with CBC-CTS. */
766 return gss_krb5_cts_crypt(cts_tfm, buf, cbcbytes, desc.iv, NULL, 0);
768 EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_decrypt);
771 gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
772 struct xdr_buf *buf, struct page **pages)
775 struct xdr_netobj hmac;
777 struct crypto_sync_skcipher *cipher, *aux_cipher;
778 struct crypto_ahash *ahash;
779 struct page **save_pages;
780 unsigned int conflen;
782 if (kctx->initiate) {
783 cipher = kctx->initiator_enc;
784 aux_cipher = kctx->initiator_enc_aux;
785 ahash = kctx->initiator_integ;
787 cipher = kctx->acceptor_enc;
788 aux_cipher = kctx->acceptor_enc_aux;
789 ahash = kctx->acceptor_integ;
791 conflen = crypto_sync_skcipher_blocksize(cipher);
793 /* hide the gss token header and insert the confounder */
794 offset += GSS_KRB5_TOK_HDR_LEN;
795 if (xdr_extend_head(buf, offset, conflen))
796 return GSS_S_FAILURE;
797 krb5_make_confounder(buf->head[0].iov_base + offset, conflen);
798 offset -= GSS_KRB5_TOK_HDR_LEN;
800 if (buf->tail[0].iov_base != NULL) {
801 ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
803 buf->tail[0].iov_base = buf->head[0].iov_base
804 + buf->head[0].iov_len;
805 buf->tail[0].iov_len = 0;
806 ecptr = buf->tail[0].iov_base;
809 /* copy plaintext gss token header after filler (if any) */
810 memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
811 buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
812 buf->len += GSS_KRB5_TOK_HDR_LEN;
814 hmac.len = kctx->gk5e->cksumlength;
815 hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
818 * When we are called, pages points to the real page cache
819 * data -- which we can't go and encrypt! buf->pages points
820 * to scratch pages which we are going to send off to the
821 * client/server. Swap in the plaintext pages to calculate
824 save_pages = buf->pages;
827 err = gss_krb5_checksum(ahash, NULL, 0, buf,
828 offset + GSS_KRB5_TOK_HDR_LEN, &hmac);
829 buf->pages = save_pages;
831 return GSS_S_FAILURE;
833 err = krb5_cbc_cts_encrypt(cipher, aux_cipher,
834 offset + GSS_KRB5_TOK_HDR_LEN,
835 buf, pages, NULL, 0);
837 return GSS_S_FAILURE;
839 /* Now update buf to account for HMAC */
840 buf->tail[0].iov_len += kctx->gk5e->cksumlength;
841 buf->len += kctx->gk5e->cksumlength;
843 return GSS_S_COMPLETE;
847 gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len,
848 struct xdr_buf *buf, u32 *headskip, u32 *tailskip)
850 struct crypto_sync_skcipher *cipher, *aux_cipher;
851 struct crypto_ahash *ahash;
852 struct xdr_netobj our_hmac_obj;
853 u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
854 u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
855 struct xdr_buf subbuf;
858 if (kctx->initiate) {
859 cipher = kctx->acceptor_enc;
860 aux_cipher = kctx->acceptor_enc_aux;
861 ahash = kctx->acceptor_integ;
863 cipher = kctx->initiator_enc;
864 aux_cipher = kctx->initiator_enc_aux;
865 ahash = kctx->initiator_integ;
868 /* create a segment skipping the header and leaving out the checksum */
869 xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
870 (len - offset - GSS_KRB5_TOK_HDR_LEN -
871 kctx->gk5e->cksumlength));
873 ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf);
877 our_hmac_obj.len = kctx->gk5e->cksumlength;
878 our_hmac_obj.data = our_hmac;
879 ret = gss_krb5_checksum(ahash, NULL, 0, &subbuf, 0, &our_hmac_obj);
883 /* Get the packet's hmac value */
884 ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength,
885 pkt_hmac, kctx->gk5e->cksumlength);
889 if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
893 *headskip = crypto_sync_skcipher_blocksize(cipher);
894 *tailskip = kctx->gk5e->cksumlength;
896 if (ret && ret != GSS_S_BAD_SIG)
902 * krb5_etm_checksum - Compute a MAC for a GSS Wrap token
903 * @cipher: an initialized cipher transform
904 * @tfm: an initialized hash transform
905 * @body: xdr_buf containing an RPC message (body.len is the message length)
906 * @body_offset: byte offset into @body to start checksumming
907 * @cksumout: OUT: a buffer to be filled in with the computed HMAC
909 * Usually expressed as H = HMAC(K, IV | ciphertext)[1..h] .
911 * Caller provides the truncation length of the output token (h) in
915 * %GSS_S_COMPLETE: Digest computed, @cksumout filled in
916 * %GSS_S_FAILURE: Call failed
919 u32 krb5_etm_checksum(struct crypto_sync_skcipher *cipher,
920 struct crypto_ahash *tfm, const struct xdr_buf *body,
921 int body_offset, struct xdr_netobj *cksumout)
923 unsigned int ivsize = crypto_sync_skcipher_ivsize(cipher);
924 struct ahash_request *req;
925 struct scatterlist sg[1];
926 u8 *iv, *checksumdata;
929 checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL);
931 return GSS_S_FAILURE;
932 /* For RPCSEC, the "initial cipher state" is always all zeroes. */
933 iv = kzalloc(ivsize, GFP_KERNEL);
937 req = ahash_request_alloc(tfm, GFP_KERNEL);
940 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
941 err = crypto_ahash_init(req);
945 sg_init_one(sg, iv, ivsize);
946 ahash_request_set_crypt(req, sg, NULL, ivsize);
947 err = crypto_ahash_update(req);
950 err = xdr_process_buf(body, body_offset, body->len - body_offset,
955 ahash_request_set_crypt(req, NULL, checksumdata, 0);
956 err = crypto_ahash_final(req);
959 memcpy(cksumout->data, checksumdata, cksumout->len);
962 ahash_request_free(req);
965 kfree_sensitive(checksumdata);
966 return err ? GSS_S_FAILURE : GSS_S_COMPLETE;
968 EXPORT_SYMBOL_IF_KUNIT(krb5_etm_checksum);
971 * krb5_etm_encrypt - Encrypt using the RFC 8009 rules
972 * @kctx: Kerberos context
973 * @offset: starting offset of the payload, in bytes
974 * @buf: OUT: send buffer to contain the encrypted payload
975 * @pages: plaintext payload
977 * The main difference with aes_encrypt is that "The HMAC is
978 * calculated over the cipher state concatenated with the AES
979 * output, instead of being calculated over the confounder and
980 * plaintext. This allows the message receiver to verify the
981 * integrity of the message before decrypting the message."
983 * RFC 8009 Section 5:
985 * encryption function: as follows, where E() is AES encryption in
986 * CBC-CS3 mode, and h is the size of truncated HMAC (128 bits or
987 * 192 bits as described above).
989 * N = random value of length 128 bits (the AES block size)
991 * C = E(Ke, N | plaintext, IV)
992 * H = HMAC(Ki, IV | C)
993 * ciphertext = C | H[1..h]
995 * This encryption formula provides AEAD EtM with key separation.
998 * %GSS_S_COMPLETE: Encryption successful
999 * %GSS_S_FAILURE: Encryption failed
1002 krb5_etm_encrypt(struct krb5_ctx *kctx, u32 offset,
1003 struct xdr_buf *buf, struct page **pages)
1005 struct crypto_sync_skcipher *cipher, *aux_cipher;
1006 struct crypto_ahash *ahash;
1007 struct xdr_netobj hmac;
1008 unsigned int conflen;
1012 if (kctx->initiate) {
1013 cipher = kctx->initiator_enc;
1014 aux_cipher = kctx->initiator_enc_aux;
1015 ahash = kctx->initiator_integ;
1017 cipher = kctx->acceptor_enc;
1018 aux_cipher = kctx->acceptor_enc_aux;
1019 ahash = kctx->acceptor_integ;
1021 conflen = crypto_sync_skcipher_blocksize(cipher);
1023 offset += GSS_KRB5_TOK_HDR_LEN;
1024 if (xdr_extend_head(buf, offset, conflen))
1025 return GSS_S_FAILURE;
1026 krb5_make_confounder(buf->head[0].iov_base + offset, conflen);
1027 offset -= GSS_KRB5_TOK_HDR_LEN;
1029 if (buf->tail[0].iov_base) {
1030 ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
1032 buf->tail[0].iov_base = buf->head[0].iov_base
1033 + buf->head[0].iov_len;
1034 buf->tail[0].iov_len = 0;
1035 ecptr = buf->tail[0].iov_base;
1038 memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
1039 buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
1040 buf->len += GSS_KRB5_TOK_HDR_LEN;
1042 err = krb5_cbc_cts_encrypt(cipher, aux_cipher,
1043 offset + GSS_KRB5_TOK_HDR_LEN,
1044 buf, pages, NULL, 0);
1046 return GSS_S_FAILURE;
1048 hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
1049 hmac.len = kctx->gk5e->cksumlength;
1050 err = krb5_etm_checksum(cipher, ahash,
1051 buf, offset + GSS_KRB5_TOK_HDR_LEN, &hmac);
1054 buf->tail[0].iov_len += kctx->gk5e->cksumlength;
1055 buf->len += kctx->gk5e->cksumlength;
1057 return GSS_S_COMPLETE;
1060 return GSS_S_FAILURE;
1064 * krb5_etm_decrypt - Decrypt using the RFC 8009 rules
1065 * @kctx: Kerberos context
1066 * @offset: starting offset of the ciphertext, in bytes
1069 * @headskip: OUT: the enctype's confounder length, in octets
1070 * @tailskip: OUT: the enctype's HMAC length, in octets
1072 * RFC 8009 Section 5:
1074 * decryption function: as follows, where D() is AES decryption in
1075 * CBC-CS3 mode, and h is the size of truncated HMAC.
1077 * (C, H) = ciphertext
1078 * (Note: H is the last h bits of the ciphertext.)
1080 * if H != HMAC(Ki, IV | C)[1..h]
1081 * stop, report error
1082 * (N, P) = D(Ke, C, IV)
1085 * %GSS_S_COMPLETE: Decryption successful
1086 * %GSS_S_BAD_SIG: computed HMAC != received HMAC
1087 * %GSS_S_FAILURE: Decryption failed
1090 krb5_etm_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len,
1091 struct xdr_buf *buf, u32 *headskip, u32 *tailskip)
1093 struct crypto_sync_skcipher *cipher, *aux_cipher;
1094 u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
1095 u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
1096 struct xdr_netobj our_hmac_obj;
1097 struct crypto_ahash *ahash;
1098 struct xdr_buf subbuf;
1101 if (kctx->initiate) {
1102 cipher = kctx->acceptor_enc;
1103 aux_cipher = kctx->acceptor_enc_aux;
1104 ahash = kctx->acceptor_integ;
1106 cipher = kctx->initiator_enc;
1107 aux_cipher = kctx->initiator_enc_aux;
1108 ahash = kctx->initiator_integ;
1111 /* Extract the ciphertext into @subbuf. */
1112 xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
1113 (len - offset - GSS_KRB5_TOK_HDR_LEN -
1114 kctx->gk5e->cksumlength));
1116 our_hmac_obj.data = our_hmac;
1117 our_hmac_obj.len = kctx->gk5e->cksumlength;
1118 ret = krb5_etm_checksum(cipher, ahash, &subbuf, 0, &our_hmac_obj);
1121 ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength,
1122 pkt_hmac, kctx->gk5e->cksumlength);
1125 if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
1126 ret = GSS_S_BAD_SIG;
1130 ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf);
1132 ret = GSS_S_FAILURE;
1136 *headskip = crypto_sync_skcipher_blocksize(cipher);
1137 *tailskip = kctx->gk5e->cksumlength;
1138 return GSS_S_COMPLETE;
1141 if (ret != GSS_S_BAD_SIG)
1142 ret = GSS_S_FAILURE;