1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/file.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
41 #include "rcu-string.h"
43 #include "dev-replace.h"
48 #include "compression.h"
49 #include "space-info.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
54 #include "accessors.h"
55 #include "extent-tree.h"
56 #include "root-tree.h"
59 #include "uuid-tree.h"
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
71 struct btrfs_ioctl_timespec_32 {
74 } __attribute__ ((__packed__));
76 struct btrfs_ioctl_received_subvol_args_32 {
77 char uuid[BTRFS_UUID_SIZE]; /* in */
78 __u64 stransid; /* in */
79 __u64 rtransid; /* out */
80 struct btrfs_ioctl_timespec_32 stime; /* in */
81 struct btrfs_ioctl_timespec_32 rtime; /* out */
83 __u64 reserved[16]; /* in */
84 } __attribute__ ((__packed__));
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91 struct btrfs_ioctl_send_args_32 {
92 __s64 send_fd; /* in */
93 __u64 clone_sources_count; /* in */
94 compat_uptr_t clone_sources; /* in */
95 __u64 parent_root; /* in */
97 __u32 version; /* in */
98 __u8 reserved[28]; /* in */
99 } __attribute__ ((__packed__));
101 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
102 struct btrfs_ioctl_send_args_32)
104 struct btrfs_ioctl_encoded_io_args_32 {
106 compat_ulong_t iovcnt;
111 __u64 unencoded_offset;
117 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
118 struct btrfs_ioctl_encoded_io_args_32)
119 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
120 struct btrfs_ioctl_encoded_io_args_32)
123 /* Mask out flags that are inappropriate for the given type of inode. */
124 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
127 if (S_ISDIR(inode->i_mode))
129 else if (S_ISREG(inode->i_mode))
130 return flags & ~FS_DIRSYNC_FL;
132 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
136 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
139 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
141 unsigned int iflags = 0;
142 u32 flags = binode->flags;
143 u32 ro_flags = binode->ro_flags;
145 if (flags & BTRFS_INODE_SYNC)
146 iflags |= FS_SYNC_FL;
147 if (flags & BTRFS_INODE_IMMUTABLE)
148 iflags |= FS_IMMUTABLE_FL;
149 if (flags & BTRFS_INODE_APPEND)
150 iflags |= FS_APPEND_FL;
151 if (flags & BTRFS_INODE_NODUMP)
152 iflags |= FS_NODUMP_FL;
153 if (flags & BTRFS_INODE_NOATIME)
154 iflags |= FS_NOATIME_FL;
155 if (flags & BTRFS_INODE_DIRSYNC)
156 iflags |= FS_DIRSYNC_FL;
157 if (flags & BTRFS_INODE_NODATACOW)
158 iflags |= FS_NOCOW_FL;
159 if (ro_flags & BTRFS_INODE_RO_VERITY)
160 iflags |= FS_VERITY_FL;
162 if (flags & BTRFS_INODE_NOCOMPRESS)
163 iflags |= FS_NOCOMP_FL;
164 else if (flags & BTRFS_INODE_COMPRESS)
165 iflags |= FS_COMPR_FL;
171 * Update inode->i_flags based on the btrfs internal flags.
173 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
175 struct btrfs_inode *binode = BTRFS_I(inode);
176 unsigned int new_fl = 0;
178 if (binode->flags & BTRFS_INODE_SYNC)
180 if (binode->flags & BTRFS_INODE_IMMUTABLE)
181 new_fl |= S_IMMUTABLE;
182 if (binode->flags & BTRFS_INODE_APPEND)
184 if (binode->flags & BTRFS_INODE_NOATIME)
186 if (binode->flags & BTRFS_INODE_DIRSYNC)
188 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
191 set_mask_bits(&inode->i_flags,
192 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
197 * Check if @flags are a supported and valid set of FS_*_FL flags and that
198 * the old and new flags are not conflicting
200 static int check_fsflags(unsigned int old_flags, unsigned int flags)
202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 FS_NOATIME_FL | FS_NODUMP_FL | \
204 FS_SYNC_FL | FS_DIRSYNC_FL | \
205 FS_NOCOMP_FL | FS_COMPR_FL |
209 /* COMPR and NOCOMP on new/old are valid */
210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
213 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
216 /* NOCOW and compression options are mutually exclusive */
217 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
219 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
225 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
228 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
235 * Set flags/xflags from the internal inode flags. The remaining items of
236 * fsxattr are zeroed.
238 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
240 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
242 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
246 int btrfs_fileattr_set(struct mnt_idmap *idmap,
247 struct dentry *dentry, struct fileattr *fa)
249 struct inode *inode = d_inode(dentry);
250 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
251 struct btrfs_inode *binode = BTRFS_I(inode);
252 struct btrfs_root *root = binode->root;
253 struct btrfs_trans_handle *trans;
254 unsigned int fsflags, old_fsflags;
256 const char *comp = NULL;
259 if (btrfs_root_readonly(root))
262 if (fileattr_has_fsx(fa))
265 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
266 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
267 ret = check_fsflags(old_fsflags, fsflags);
271 ret = check_fsflags_compatible(fs_info, fsflags);
275 binode_flags = binode->flags;
276 if (fsflags & FS_SYNC_FL)
277 binode_flags |= BTRFS_INODE_SYNC;
279 binode_flags &= ~BTRFS_INODE_SYNC;
280 if (fsflags & FS_IMMUTABLE_FL)
281 binode_flags |= BTRFS_INODE_IMMUTABLE;
283 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
284 if (fsflags & FS_APPEND_FL)
285 binode_flags |= BTRFS_INODE_APPEND;
287 binode_flags &= ~BTRFS_INODE_APPEND;
288 if (fsflags & FS_NODUMP_FL)
289 binode_flags |= BTRFS_INODE_NODUMP;
291 binode_flags &= ~BTRFS_INODE_NODUMP;
292 if (fsflags & FS_NOATIME_FL)
293 binode_flags |= BTRFS_INODE_NOATIME;
295 binode_flags &= ~BTRFS_INODE_NOATIME;
297 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
298 if (!fa->flags_valid) {
299 /* 1 item for the inode */
300 trans = btrfs_start_transaction(root, 1);
302 return PTR_ERR(trans);
306 if (fsflags & FS_DIRSYNC_FL)
307 binode_flags |= BTRFS_INODE_DIRSYNC;
309 binode_flags &= ~BTRFS_INODE_DIRSYNC;
310 if (fsflags & FS_NOCOW_FL) {
311 if (S_ISREG(inode->i_mode)) {
313 * It's safe to turn csums off here, no extents exist.
314 * Otherwise we want the flag to reflect the real COW
315 * status of the file and will not set it.
317 if (inode->i_size == 0)
318 binode_flags |= BTRFS_INODE_NODATACOW |
319 BTRFS_INODE_NODATASUM;
321 binode_flags |= BTRFS_INODE_NODATACOW;
325 * Revert back under same assumptions as above
327 if (S_ISREG(inode->i_mode)) {
328 if (inode->i_size == 0)
329 binode_flags &= ~(BTRFS_INODE_NODATACOW |
330 BTRFS_INODE_NODATASUM);
332 binode_flags &= ~BTRFS_INODE_NODATACOW;
337 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
338 * flag may be changed automatically if compression code won't make
341 if (fsflags & FS_NOCOMP_FL) {
342 binode_flags &= ~BTRFS_INODE_COMPRESS;
343 binode_flags |= BTRFS_INODE_NOCOMPRESS;
344 } else if (fsflags & FS_COMPR_FL) {
346 if (IS_SWAPFILE(inode))
349 binode_flags |= BTRFS_INODE_COMPRESS;
350 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
352 comp = btrfs_compress_type2str(fs_info->compress_type);
353 if (!comp || comp[0] == 0)
354 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
356 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
363 trans = btrfs_start_transaction(root, 3);
365 return PTR_ERR(trans);
368 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
371 btrfs_abort_transaction(trans, ret);
375 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
377 if (ret && ret != -ENODATA) {
378 btrfs_abort_transaction(trans, ret);
384 binode->flags = binode_flags;
385 btrfs_sync_inode_flags_to_i_flags(inode);
386 inode_inc_iversion(inode);
387 inode->i_ctime = current_time(inode);
388 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
391 btrfs_end_transaction(trans);
396 * Start exclusive operation @type, return true on success
398 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
399 enum btrfs_exclusive_operation type)
403 spin_lock(&fs_info->super_lock);
404 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
405 fs_info->exclusive_operation = type;
408 spin_unlock(&fs_info->super_lock);
414 * Conditionally allow to enter the exclusive operation in case it's compatible
415 * with the running one. This must be paired with btrfs_exclop_start_unlock and
416 * btrfs_exclop_finish.
419 * - the same type is already running
420 * - when trying to add a device and balance has been paused
421 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
422 * must check the condition first that would allow none -> @type
424 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
425 enum btrfs_exclusive_operation type)
427 spin_lock(&fs_info->super_lock);
428 if (fs_info->exclusive_operation == type ||
429 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
430 type == BTRFS_EXCLOP_DEV_ADD))
433 spin_unlock(&fs_info->super_lock);
437 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
439 spin_unlock(&fs_info->super_lock);
442 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
444 spin_lock(&fs_info->super_lock);
445 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
446 spin_unlock(&fs_info->super_lock);
447 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
451 enum btrfs_exclusive_operation op)
454 case BTRFS_EXCLOP_BALANCE_PAUSED:
455 spin_lock(&fs_info->super_lock);
456 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
457 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
458 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
459 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
460 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
461 spin_unlock(&fs_info->super_lock);
463 case BTRFS_EXCLOP_BALANCE:
464 spin_lock(&fs_info->super_lock);
465 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
466 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
467 spin_unlock(&fs_info->super_lock);
471 "invalid exclop balance operation %d requested", op);
475 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
477 return put_user(inode->i_generation, arg);
480 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
483 struct btrfs_device *device;
484 struct fstrim_range range;
485 u64 minlen = ULLONG_MAX;
489 if (!capable(CAP_SYS_ADMIN))
493 * btrfs_trim_block_group() depends on space cache, which is not
494 * available in zoned filesystem. So, disallow fitrim on a zoned
495 * filesystem for now.
497 if (btrfs_is_zoned(fs_info))
501 * If the fs is mounted with nologreplay, which requires it to be
502 * mounted in RO mode as well, we can not allow discard on free space
503 * inside block groups, because log trees refer to extents that are not
504 * pinned in a block group's free space cache (pinning the extents is
505 * precisely the first phase of replaying a log tree).
507 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
511 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
513 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
516 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
523 if (copy_from_user(&range, arg, sizeof(range)))
527 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
528 * block group is in the logical address space, which can be any
529 * sectorsize aligned bytenr in the range [0, U64_MAX].
531 if (range.len < fs_info->sb->s_blocksize)
534 range.minlen = max(range.minlen, minlen);
535 ret = btrfs_trim_fs(fs_info, &range);
539 if (copy_to_user(arg, &range, sizeof(range)))
545 int __pure btrfs_is_empty_uuid(u8 *uuid)
549 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
557 * Calculate the number of transaction items to reserve for creating a subvolume
558 * or snapshot, not including the inode, directory entries, or parent directory.
560 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
563 * 1 to add root block
566 * 1 to add root backref
568 * 1 to add qgroup info
569 * 1 to add qgroup limit
571 * Ideally the last two would only be accounted if qgroups are enabled,
572 * but that can change between now and the time we would insert them.
574 unsigned int num_items = 7;
577 /* 2 to add qgroup relations for each inherited qgroup */
578 num_items += 2 * inherit->num_qgroups;
583 static noinline int create_subvol(struct mnt_idmap *idmap,
584 struct inode *dir, struct dentry *dentry,
585 struct btrfs_qgroup_inherit *inherit)
587 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
588 struct btrfs_trans_handle *trans;
589 struct btrfs_key key;
590 struct btrfs_root_item *root_item;
591 struct btrfs_inode_item *inode_item;
592 struct extent_buffer *leaf;
593 struct btrfs_root *root = BTRFS_I(dir)->root;
594 struct btrfs_root *new_root;
595 struct btrfs_block_rsv block_rsv;
596 struct timespec64 cur_time = current_time(dir);
597 struct btrfs_new_inode_args new_inode_args = {
602 unsigned int trans_num_items;
607 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
611 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
616 * Don't create subvolume whose level is not zero. Or qgroup will be
617 * screwed up since it assumes subvolume qgroup's level to be 0.
619 if (btrfs_qgroup_level(objectid)) {
624 ret = get_anon_bdev(&anon_dev);
628 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
629 if (!new_inode_args.inode) {
633 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
636 trans_num_items += create_subvol_num_items(inherit);
638 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
639 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
640 trans_num_items, false);
642 goto out_new_inode_args;
644 trans = btrfs_start_transaction(root, 0);
646 ret = PTR_ERR(trans);
647 btrfs_subvolume_release_metadata(root, &block_rsv);
648 goto out_new_inode_args;
650 trans->block_rsv = &block_rsv;
651 trans->bytes_reserved = block_rsv.size;
653 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
657 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
658 BTRFS_NESTING_NORMAL);
664 btrfs_mark_buffer_dirty(leaf);
666 inode_item = &root_item->inode;
667 btrfs_set_stack_inode_generation(inode_item, 1);
668 btrfs_set_stack_inode_size(inode_item, 3);
669 btrfs_set_stack_inode_nlink(inode_item, 1);
670 btrfs_set_stack_inode_nbytes(inode_item,
672 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
674 btrfs_set_root_flags(root_item, 0);
675 btrfs_set_root_limit(root_item, 0);
676 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
678 btrfs_set_root_bytenr(root_item, leaf->start);
679 btrfs_set_root_generation(root_item, trans->transid);
680 btrfs_set_root_level(root_item, 0);
681 btrfs_set_root_refs(root_item, 1);
682 btrfs_set_root_used(root_item, leaf->len);
683 btrfs_set_root_last_snapshot(root_item, 0);
685 btrfs_set_root_generation_v2(root_item,
686 btrfs_root_generation(root_item));
687 generate_random_guid(root_item->uuid);
688 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
689 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
690 root_item->ctime = root_item->otime;
691 btrfs_set_root_ctransid(root_item, trans->transid);
692 btrfs_set_root_otransid(root_item, trans->transid);
694 btrfs_tree_unlock(leaf);
696 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
698 key.objectid = objectid;
700 key.type = BTRFS_ROOT_ITEM_KEY;
701 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
705 * Since we don't abort the transaction in this case, free the
706 * tree block so that we don't leak space and leave the
707 * filesystem in an inconsistent state (an extent item in the
708 * extent tree with a backreference for a root that does not
711 btrfs_tree_lock(leaf);
712 btrfs_clear_buffer_dirty(trans, leaf);
713 btrfs_tree_unlock(leaf);
714 btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
715 free_extent_buffer(leaf);
719 free_extent_buffer(leaf);
722 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
723 if (IS_ERR(new_root)) {
724 ret = PTR_ERR(new_root);
725 btrfs_abort_transaction(trans, ret);
728 /* anon_dev is owned by new_root now. */
730 BTRFS_I(new_inode_args.inode)->root = new_root;
731 /* ... and new_root is owned by new_inode_args.inode now. */
733 ret = btrfs_record_root_in_trans(trans, new_root);
735 btrfs_abort_transaction(trans, ret);
739 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
740 BTRFS_UUID_KEY_SUBVOL, objectid);
742 btrfs_abort_transaction(trans, ret);
746 ret = btrfs_create_new_inode(trans, &new_inode_args);
748 btrfs_abort_transaction(trans, ret);
752 d_instantiate_new(dentry, new_inode_args.inode);
753 new_inode_args.inode = NULL;
756 trans->block_rsv = NULL;
757 trans->bytes_reserved = 0;
758 btrfs_subvolume_release_metadata(root, &block_rsv);
761 btrfs_end_transaction(trans);
763 ret = btrfs_commit_transaction(trans);
765 btrfs_new_inode_args_destroy(&new_inode_args);
767 iput(new_inode_args.inode);
770 free_anon_bdev(anon_dev);
776 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
777 struct dentry *dentry, bool readonly,
778 struct btrfs_qgroup_inherit *inherit)
780 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
782 struct btrfs_pending_snapshot *pending_snapshot;
783 unsigned int trans_num_items;
784 struct btrfs_trans_handle *trans;
787 /* We do not support snapshotting right now. */
788 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
790 "extent tree v2 doesn't support snapshotting yet");
794 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
797 if (atomic_read(&root->nr_swapfiles)) {
799 "cannot snapshot subvolume with active swapfile");
803 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
804 if (!pending_snapshot)
807 ret = get_anon_bdev(&pending_snapshot->anon_dev);
810 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
812 pending_snapshot->path = btrfs_alloc_path();
813 if (!pending_snapshot->root_item || !pending_snapshot->path) {
818 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
819 BTRFS_BLOCK_RSV_TEMP);
823 * 1 to update parent inode item
825 trans_num_items = create_subvol_num_items(inherit) + 3;
826 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
827 &pending_snapshot->block_rsv,
828 trans_num_items, false);
832 pending_snapshot->dentry = dentry;
833 pending_snapshot->root = root;
834 pending_snapshot->readonly = readonly;
835 pending_snapshot->dir = dir;
836 pending_snapshot->inherit = inherit;
838 trans = btrfs_start_transaction(root, 0);
840 ret = PTR_ERR(trans);
844 trans->pending_snapshot = pending_snapshot;
846 ret = btrfs_commit_transaction(trans);
850 ret = pending_snapshot->error;
854 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
858 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
860 ret = PTR_ERR(inode);
864 d_instantiate(dentry, inode);
866 pending_snapshot->anon_dev = 0;
868 /* Prevent double freeing of anon_dev */
869 if (ret && pending_snapshot->snap)
870 pending_snapshot->snap->anon_dev = 0;
871 btrfs_put_root(pending_snapshot->snap);
872 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
874 if (pending_snapshot->anon_dev)
875 free_anon_bdev(pending_snapshot->anon_dev);
876 kfree(pending_snapshot->root_item);
877 btrfs_free_path(pending_snapshot->path);
878 kfree(pending_snapshot);
883 /* copy of may_delete in fs/namei.c()
884 * Check whether we can remove a link victim from directory dir, check
885 * whether the type of victim is right.
886 * 1. We can't do it if dir is read-only (done in permission())
887 * 2. We should have write and exec permissions on dir
888 * 3. We can't remove anything from append-only dir
889 * 4. We can't do anything with immutable dir (done in permission())
890 * 5. If the sticky bit on dir is set we should either
891 * a. be owner of dir, or
892 * b. be owner of victim, or
893 * c. have CAP_FOWNER capability
894 * 6. If the victim is append-only or immutable we can't do anything with
895 * links pointing to it.
896 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
897 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
898 * 9. We can't remove a root or mountpoint.
899 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
900 * nfs_async_unlink().
903 static int btrfs_may_delete(struct mnt_idmap *idmap,
904 struct inode *dir, struct dentry *victim, int isdir)
908 if (d_really_is_negative(victim))
911 BUG_ON(d_inode(victim->d_parent) != dir);
912 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
914 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
919 if (check_sticky(idmap, dir, d_inode(victim)) ||
920 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
921 IS_SWAPFILE(d_inode(victim)))
924 if (!d_is_dir(victim))
928 } else if (d_is_dir(victim))
932 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
937 /* copy of may_create in fs/namei.c() */
938 static inline int btrfs_may_create(struct mnt_idmap *idmap,
939 struct inode *dir, struct dentry *child)
941 if (d_really_is_positive(child))
945 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
947 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
951 * Create a new subvolume below @parent. This is largely modeled after
952 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
953 * inside this filesystem so it's quite a bit simpler.
955 static noinline int btrfs_mksubvol(const struct path *parent,
956 struct mnt_idmap *idmap,
957 const char *name, int namelen,
958 struct btrfs_root *snap_src,
960 struct btrfs_qgroup_inherit *inherit)
962 struct inode *dir = d_inode(parent->dentry);
963 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
964 struct dentry *dentry;
965 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
968 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
972 dentry = lookup_one(idmap, name, parent->dentry, namelen);
973 error = PTR_ERR(dentry);
977 error = btrfs_may_create(idmap, dir, dentry);
982 * even if this name doesn't exist, we may get hash collisions.
983 * check for them now when we can safely fail
985 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
986 dir->i_ino, &name_str);
990 down_read(&fs_info->subvol_sem);
992 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
996 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
998 error = create_subvol(idmap, dir, dentry, inherit);
1001 fsnotify_mkdir(dir, dentry);
1003 up_read(&fs_info->subvol_sem);
1007 btrfs_inode_unlock(BTRFS_I(dir), 0);
1011 static noinline int btrfs_mksnapshot(const struct path *parent,
1012 struct mnt_idmap *idmap,
1013 const char *name, int namelen,
1014 struct btrfs_root *root,
1016 struct btrfs_qgroup_inherit *inherit)
1019 bool snapshot_force_cow = false;
1022 * Force new buffered writes to reserve space even when NOCOW is
1023 * possible. This is to avoid later writeback (running dealloc) to
1024 * fallback to COW mode and unexpectedly fail with ENOSPC.
1026 btrfs_drew_read_lock(&root->snapshot_lock);
1028 ret = btrfs_start_delalloc_snapshot(root, false);
1033 * All previous writes have started writeback in NOCOW mode, so now
1034 * we force future writes to fallback to COW mode during snapshot
1037 atomic_inc(&root->snapshot_force_cow);
1038 snapshot_force_cow = true;
1040 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1042 ret = btrfs_mksubvol(parent, idmap, name, namelen,
1043 root, readonly, inherit);
1045 if (snapshot_force_cow)
1046 atomic_dec(&root->snapshot_force_cow);
1047 btrfs_drew_read_unlock(&root->snapshot_lock);
1052 * Try to start exclusive operation @type or cancel it if it's running.
1055 * 0 - normal mode, newly claimed op started
1056 * >0 - normal mode, something else is running,
1057 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1058 * ECANCELED - cancel mode, successful cancel
1059 * ENOTCONN - cancel mode, operation not running anymore
1061 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1062 enum btrfs_exclusive_operation type, bool cancel)
1065 /* Start normal op */
1066 if (!btrfs_exclop_start(fs_info, type))
1067 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1068 /* Exclusive operation is now claimed */
1072 /* Cancel running op */
1073 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1075 * This blocks any exclop finish from setting it to NONE, so we
1076 * request cancellation. Either it runs and we will wait for it,
1077 * or it has finished and no waiting will happen.
1079 atomic_inc(&fs_info->reloc_cancel_req);
1080 btrfs_exclop_start_unlock(fs_info);
1082 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1083 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1084 TASK_INTERRUPTIBLE);
1089 /* Something else is running or none */
1093 static noinline int btrfs_ioctl_resize(struct file *file,
1096 BTRFS_DEV_LOOKUP_ARGS(args);
1097 struct inode *inode = file_inode(file);
1098 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1102 struct btrfs_root *root = BTRFS_I(inode)->root;
1103 struct btrfs_ioctl_vol_args *vol_args;
1104 struct btrfs_trans_handle *trans;
1105 struct btrfs_device *device = NULL;
1108 char *devstr = NULL;
1113 if (!capable(CAP_SYS_ADMIN))
1116 ret = mnt_want_write_file(file);
1121 * Read the arguments before checking exclusivity to be able to
1122 * distinguish regular resize and cancel
1124 vol_args = memdup_user(arg, sizeof(*vol_args));
1125 if (IS_ERR(vol_args)) {
1126 ret = PTR_ERR(vol_args);
1129 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1130 sizestr = vol_args->name;
1131 cancel = (strcmp("cancel", sizestr) == 0);
1132 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1135 /* Exclusive operation is now claimed */
1137 devstr = strchr(sizestr, ':');
1139 sizestr = devstr + 1;
1141 devstr = vol_args->name;
1142 ret = kstrtoull(devstr, 10, &devid);
1149 btrfs_info(fs_info, "resizing devid %llu", devid);
1153 device = btrfs_find_device(fs_info->fs_devices, &args);
1155 btrfs_info(fs_info, "resizer unable to find device %llu",
1161 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1163 "resizer unable to apply on readonly device %llu",
1169 if (!strcmp(sizestr, "max"))
1170 new_size = bdev_nr_bytes(device->bdev);
1172 if (sizestr[0] == '-') {
1175 } else if (sizestr[0] == '+') {
1179 new_size = memparse(sizestr, &retptr);
1180 if (*retptr != '\0' || new_size == 0) {
1186 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1191 old_size = btrfs_device_get_total_bytes(device);
1194 if (new_size > old_size) {
1198 new_size = old_size - new_size;
1199 } else if (mod > 0) {
1200 if (new_size > ULLONG_MAX - old_size) {
1204 new_size = old_size + new_size;
1207 if (new_size < SZ_256M) {
1211 if (new_size > bdev_nr_bytes(device->bdev)) {
1216 new_size = round_down(new_size, fs_info->sectorsize);
1218 if (new_size > old_size) {
1219 trans = btrfs_start_transaction(root, 0);
1220 if (IS_ERR(trans)) {
1221 ret = PTR_ERR(trans);
1224 ret = btrfs_grow_device(trans, device, new_size);
1225 btrfs_commit_transaction(trans);
1226 } else if (new_size < old_size) {
1227 ret = btrfs_shrink_device(device, new_size);
1228 } /* equal, nothing need to do */
1230 if (ret == 0 && new_size != old_size)
1231 btrfs_info_in_rcu(fs_info,
1232 "resize device %s (devid %llu) from %llu to %llu",
1233 btrfs_dev_name(device), device->devid,
1234 old_size, new_size);
1236 btrfs_exclop_finish(fs_info);
1240 mnt_drop_write_file(file);
1244 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1245 struct mnt_idmap *idmap,
1246 const char *name, unsigned long fd, int subvol,
1248 struct btrfs_qgroup_inherit *inherit)
1253 if (!S_ISDIR(file_inode(file)->i_mode))
1256 ret = mnt_want_write_file(file);
1260 namelen = strlen(name);
1261 if (strchr(name, '/')) {
1263 goto out_drop_write;
1266 if (name[0] == '.' &&
1267 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1269 goto out_drop_write;
1273 ret = btrfs_mksubvol(&file->f_path, idmap, name,
1274 namelen, NULL, readonly, inherit);
1276 struct fd src = fdget(fd);
1277 struct inode *src_inode;
1280 goto out_drop_write;
1283 src_inode = file_inode(src.file);
1284 if (src_inode->i_sb != file_inode(file)->i_sb) {
1285 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1286 "Snapshot src from another FS");
1288 } else if (!inode_owner_or_capable(idmap, src_inode)) {
1290 * Subvolume creation is not restricted, but snapshots
1291 * are limited to own subvolumes only
1295 ret = btrfs_mksnapshot(&file->f_path, idmap,
1297 BTRFS_I(src_inode)->root,
1303 mnt_drop_write_file(file);
1308 static noinline int btrfs_ioctl_snap_create(struct file *file,
1309 void __user *arg, int subvol)
1311 struct btrfs_ioctl_vol_args *vol_args;
1314 if (!S_ISDIR(file_inode(file)->i_mode))
1317 vol_args = memdup_user(arg, sizeof(*vol_args));
1318 if (IS_ERR(vol_args))
1319 return PTR_ERR(vol_args);
1320 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1322 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1323 vol_args->name, vol_args->fd, subvol,
1330 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1331 void __user *arg, int subvol)
1333 struct btrfs_ioctl_vol_args_v2 *vol_args;
1335 bool readonly = false;
1336 struct btrfs_qgroup_inherit *inherit = NULL;
1338 if (!S_ISDIR(file_inode(file)->i_mode))
1341 vol_args = memdup_user(arg, sizeof(*vol_args));
1342 if (IS_ERR(vol_args))
1343 return PTR_ERR(vol_args);
1344 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1346 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1351 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1353 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1356 if (vol_args->size < sizeof(*inherit) ||
1357 vol_args->size > PAGE_SIZE) {
1361 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1362 if (IS_ERR(inherit)) {
1363 ret = PTR_ERR(inherit);
1367 if (inherit->num_qgroups > PAGE_SIZE ||
1368 inherit->num_ref_copies > PAGE_SIZE ||
1369 inherit->num_excl_copies > PAGE_SIZE) {
1374 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1375 2 * inherit->num_excl_copies;
1376 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1382 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1383 vol_args->name, vol_args->fd, subvol,
1394 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1398 struct btrfs_root *root = BTRFS_I(inode)->root;
1402 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1405 down_read(&fs_info->subvol_sem);
1406 if (btrfs_root_readonly(root))
1407 flags |= BTRFS_SUBVOL_RDONLY;
1408 up_read(&fs_info->subvol_sem);
1410 if (copy_to_user(arg, &flags, sizeof(flags)))
1416 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1419 struct inode *inode = file_inode(file);
1420 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1421 struct btrfs_root *root = BTRFS_I(inode)->root;
1422 struct btrfs_trans_handle *trans;
1427 if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1430 ret = mnt_want_write_file(file);
1434 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1436 goto out_drop_write;
1439 if (copy_from_user(&flags, arg, sizeof(flags))) {
1441 goto out_drop_write;
1444 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1446 goto out_drop_write;
1449 down_write(&fs_info->subvol_sem);
1452 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1455 root_flags = btrfs_root_flags(&root->root_item);
1456 if (flags & BTRFS_SUBVOL_RDONLY) {
1457 btrfs_set_root_flags(&root->root_item,
1458 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1461 * Block RO -> RW transition if this subvolume is involved in
1464 spin_lock(&root->root_item_lock);
1465 if (root->send_in_progress == 0) {
1466 btrfs_set_root_flags(&root->root_item,
1467 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1468 spin_unlock(&root->root_item_lock);
1470 spin_unlock(&root->root_item_lock);
1472 "Attempt to set subvolume %llu read-write during send",
1473 root->root_key.objectid);
1479 trans = btrfs_start_transaction(root, 1);
1480 if (IS_ERR(trans)) {
1481 ret = PTR_ERR(trans);
1485 ret = btrfs_update_root(trans, fs_info->tree_root,
1486 &root->root_key, &root->root_item);
1488 btrfs_end_transaction(trans);
1492 ret = btrfs_commit_transaction(trans);
1496 btrfs_set_root_flags(&root->root_item, root_flags);
1498 up_write(&fs_info->subvol_sem);
1500 mnt_drop_write_file(file);
1505 static noinline int key_in_sk(struct btrfs_key *key,
1506 struct btrfs_ioctl_search_key *sk)
1508 struct btrfs_key test;
1511 test.objectid = sk->min_objectid;
1512 test.type = sk->min_type;
1513 test.offset = sk->min_offset;
1515 ret = btrfs_comp_cpu_keys(key, &test);
1519 test.objectid = sk->max_objectid;
1520 test.type = sk->max_type;
1521 test.offset = sk->max_offset;
1523 ret = btrfs_comp_cpu_keys(key, &test);
1529 static noinline int copy_to_sk(struct btrfs_path *path,
1530 struct btrfs_key *key,
1531 struct btrfs_ioctl_search_key *sk,
1534 unsigned long *sk_offset,
1538 struct extent_buffer *leaf;
1539 struct btrfs_ioctl_search_header sh;
1540 struct btrfs_key test;
1541 unsigned long item_off;
1542 unsigned long item_len;
1548 leaf = path->nodes[0];
1549 slot = path->slots[0];
1550 nritems = btrfs_header_nritems(leaf);
1552 if (btrfs_header_generation(leaf) > sk->max_transid) {
1556 found_transid = btrfs_header_generation(leaf);
1558 for (i = slot; i < nritems; i++) {
1559 item_off = btrfs_item_ptr_offset(leaf, i);
1560 item_len = btrfs_item_size(leaf, i);
1562 btrfs_item_key_to_cpu(leaf, key, i);
1563 if (!key_in_sk(key, sk))
1566 if (sizeof(sh) + item_len > *buf_size) {
1573 * return one empty item back for v1, which does not
1577 *buf_size = sizeof(sh) + item_len;
1582 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1587 sh.objectid = key->objectid;
1588 sh.offset = key->offset;
1589 sh.type = key->type;
1591 sh.transid = found_transid;
1594 * Copy search result header. If we fault then loop again so we
1595 * can fault in the pages and -EFAULT there if there's a
1596 * problem. Otherwise we'll fault and then copy the buffer in
1597 * properly this next time through
1599 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1604 *sk_offset += sizeof(sh);
1607 char __user *up = ubuf + *sk_offset;
1609 * Copy the item, same behavior as above, but reset the
1610 * * sk_offset so we copy the full thing again.
1612 if (read_extent_buffer_to_user_nofault(leaf, up,
1613 item_off, item_len)) {
1615 *sk_offset -= sizeof(sh);
1619 *sk_offset += item_len;
1623 if (ret) /* -EOVERFLOW from above */
1626 if (*num_found >= sk->nr_items) {
1633 test.objectid = sk->max_objectid;
1634 test.type = sk->max_type;
1635 test.offset = sk->max_offset;
1636 if (btrfs_comp_cpu_keys(key, &test) >= 0)
1638 else if (key->offset < (u64)-1)
1640 else if (key->type < (u8)-1) {
1643 } else if (key->objectid < (u64)-1) {
1651 * 0: all items from this leaf copied, continue with next
1652 * 1: * more items can be copied, but unused buffer is too small
1653 * * all items were found
1654 * Either way, it will stops the loop which iterates to the next
1656 * -EOVERFLOW: item was to large for buffer
1657 * -EFAULT: could not copy extent buffer back to userspace
1662 static noinline int search_ioctl(struct inode *inode,
1663 struct btrfs_ioctl_search_key *sk,
1667 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
1668 struct btrfs_root *root;
1669 struct btrfs_key key;
1670 struct btrfs_path *path;
1673 unsigned long sk_offset = 0;
1675 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1676 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1680 path = btrfs_alloc_path();
1684 if (sk->tree_id == 0) {
1685 /* search the root of the inode that was passed */
1686 root = btrfs_grab_root(BTRFS_I(inode)->root);
1688 root = btrfs_get_fs_root(info, sk->tree_id, true);
1690 btrfs_free_path(path);
1691 return PTR_ERR(root);
1695 key.objectid = sk->min_objectid;
1696 key.type = sk->min_type;
1697 key.offset = sk->min_offset;
1702 * Ensure that the whole user buffer is faulted in at sub-page
1703 * granularity, otherwise the loop may live-lock.
1705 if (fault_in_subpage_writeable(ubuf + sk_offset,
1706 *buf_size - sk_offset))
1709 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1715 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1716 &sk_offset, &num_found);
1717 btrfs_release_path(path);
1725 sk->nr_items = num_found;
1726 btrfs_put_root(root);
1727 btrfs_free_path(path);
1731 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1734 struct btrfs_ioctl_search_args __user *uargs = argp;
1735 struct btrfs_ioctl_search_key sk;
1739 if (!capable(CAP_SYS_ADMIN))
1742 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1745 buf_size = sizeof(uargs->buf);
1747 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1750 * In the origin implementation an overflow is handled by returning a
1751 * search header with a len of zero, so reset ret.
1753 if (ret == -EOVERFLOW)
1756 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1761 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1764 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1765 struct btrfs_ioctl_search_args_v2 args;
1768 const size_t buf_limit = SZ_16M;
1770 if (!capable(CAP_SYS_ADMIN))
1773 /* copy search header and buffer size */
1774 if (copy_from_user(&args, uarg, sizeof(args)))
1777 buf_size = args.buf_size;
1779 /* limit result size to 16MB */
1780 if (buf_size > buf_limit)
1781 buf_size = buf_limit;
1783 ret = search_ioctl(inode, &args.key, &buf_size,
1784 (char __user *)(&uarg->buf[0]));
1785 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1787 else if (ret == -EOVERFLOW &&
1788 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1795 * Search INODE_REFs to identify path name of 'dirid' directory
1796 * in a 'tree_id' tree. and sets path name to 'name'.
1798 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1799 u64 tree_id, u64 dirid, char *name)
1801 struct btrfs_root *root;
1802 struct btrfs_key key;
1808 struct btrfs_inode_ref *iref;
1809 struct extent_buffer *l;
1810 struct btrfs_path *path;
1812 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1817 path = btrfs_alloc_path();
1821 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1823 root = btrfs_get_fs_root(info, tree_id, true);
1825 ret = PTR_ERR(root);
1830 key.objectid = dirid;
1831 key.type = BTRFS_INODE_REF_KEY;
1832 key.offset = (u64)-1;
1835 ret = btrfs_search_backwards(root, &key, path);
1844 slot = path->slots[0];
1846 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1847 len = btrfs_inode_ref_name_len(l, iref);
1849 total_len += len + 1;
1851 ret = -ENAMETOOLONG;
1856 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1858 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1861 btrfs_release_path(path);
1862 key.objectid = key.offset;
1863 key.offset = (u64)-1;
1864 dirid = key.objectid;
1866 memmove(name, ptr, total_len);
1867 name[total_len] = '\0';
1870 btrfs_put_root(root);
1871 btrfs_free_path(path);
1875 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1876 struct inode *inode,
1877 struct btrfs_ioctl_ino_lookup_user_args *args)
1879 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1880 struct super_block *sb = inode->i_sb;
1881 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1882 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1883 u64 dirid = args->dirid;
1884 unsigned long item_off;
1885 unsigned long item_len;
1886 struct btrfs_inode_ref *iref;
1887 struct btrfs_root_ref *rref;
1888 struct btrfs_root *root = NULL;
1889 struct btrfs_path *path;
1890 struct btrfs_key key, key2;
1891 struct extent_buffer *leaf;
1892 struct inode *temp_inode;
1899 path = btrfs_alloc_path();
1904 * If the bottom subvolume does not exist directly under upper_limit,
1905 * construct the path in from the bottom up.
1907 if (dirid != upper_limit.objectid) {
1908 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1910 root = btrfs_get_fs_root(fs_info, treeid, true);
1912 ret = PTR_ERR(root);
1916 key.objectid = dirid;
1917 key.type = BTRFS_INODE_REF_KEY;
1918 key.offset = (u64)-1;
1920 ret = btrfs_search_backwards(root, &key, path);
1928 leaf = path->nodes[0];
1929 slot = path->slots[0];
1931 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1932 len = btrfs_inode_ref_name_len(leaf, iref);
1934 total_len += len + 1;
1935 if (ptr < args->path) {
1936 ret = -ENAMETOOLONG;
1941 read_extent_buffer(leaf, ptr,
1942 (unsigned long)(iref + 1), len);
1944 /* Check the read+exec permission of this directory */
1945 ret = btrfs_previous_item(root, path, dirid,
1946 BTRFS_INODE_ITEM_KEY);
1949 } else if (ret > 0) {
1954 leaf = path->nodes[0];
1955 slot = path->slots[0];
1956 btrfs_item_key_to_cpu(leaf, &key2, slot);
1957 if (key2.objectid != dirid) {
1962 temp_inode = btrfs_iget(sb, key2.objectid, root);
1963 if (IS_ERR(temp_inode)) {
1964 ret = PTR_ERR(temp_inode);
1967 ret = inode_permission(idmap, temp_inode,
1968 MAY_READ | MAY_EXEC);
1975 if (key.offset == upper_limit.objectid)
1977 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1982 btrfs_release_path(path);
1983 key.objectid = key.offset;
1984 key.offset = (u64)-1;
1985 dirid = key.objectid;
1988 memmove(args->path, ptr, total_len);
1989 args->path[total_len] = '\0';
1990 btrfs_put_root(root);
1992 btrfs_release_path(path);
1995 /* Get the bottom subvolume's name from ROOT_REF */
1996 key.objectid = treeid;
1997 key.type = BTRFS_ROOT_REF_KEY;
1998 key.offset = args->treeid;
1999 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2002 } else if (ret > 0) {
2007 leaf = path->nodes[0];
2008 slot = path->slots[0];
2009 btrfs_item_key_to_cpu(leaf, &key, slot);
2011 item_off = btrfs_item_ptr_offset(leaf, slot);
2012 item_len = btrfs_item_size(leaf, slot);
2013 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2014 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2015 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2020 /* Copy subvolume's name */
2021 item_off += sizeof(struct btrfs_root_ref);
2022 item_len -= sizeof(struct btrfs_root_ref);
2023 read_extent_buffer(leaf, args->name, item_off, item_len);
2024 args->name[item_len] = 0;
2027 btrfs_put_root(root);
2029 btrfs_free_path(path);
2033 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2036 struct btrfs_ioctl_ino_lookup_args *args;
2039 args = memdup_user(argp, sizeof(*args));
2041 return PTR_ERR(args);
2044 * Unprivileged query to obtain the containing subvolume root id. The
2045 * path is reset so it's consistent with btrfs_search_path_in_tree.
2047 if (args->treeid == 0)
2048 args->treeid = root->root_key.objectid;
2050 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2055 if (!capable(CAP_SYS_ADMIN)) {
2060 ret = btrfs_search_path_in_tree(root->fs_info,
2061 args->treeid, args->objectid,
2065 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2073 * Version of ino_lookup ioctl (unprivileged)
2075 * The main differences from ino_lookup ioctl are:
2077 * 1. Read + Exec permission will be checked using inode_permission() during
2078 * path construction. -EACCES will be returned in case of failure.
2079 * 2. Path construction will be stopped at the inode number which corresponds
2080 * to the fd with which this ioctl is called. If constructed path does not
2081 * exist under fd's inode, -EACCES will be returned.
2082 * 3. The name of bottom subvolume is also searched and filled.
2084 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2086 struct btrfs_ioctl_ino_lookup_user_args *args;
2087 struct inode *inode;
2090 args = memdup_user(argp, sizeof(*args));
2092 return PTR_ERR(args);
2094 inode = file_inode(file);
2096 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2097 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2099 * The subvolume does not exist under fd with which this is
2106 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2108 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2115 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2116 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2118 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2119 struct btrfs_fs_info *fs_info;
2120 struct btrfs_root *root;
2121 struct btrfs_path *path;
2122 struct btrfs_key key;
2123 struct btrfs_root_item *root_item;
2124 struct btrfs_root_ref *rref;
2125 struct extent_buffer *leaf;
2126 unsigned long item_off;
2127 unsigned long item_len;
2131 path = btrfs_alloc_path();
2135 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2137 btrfs_free_path(path);
2141 fs_info = BTRFS_I(inode)->root->fs_info;
2143 /* Get root_item of inode's subvolume */
2144 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2145 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2147 ret = PTR_ERR(root);
2150 root_item = &root->root_item;
2152 subvol_info->treeid = key.objectid;
2154 subvol_info->generation = btrfs_root_generation(root_item);
2155 subvol_info->flags = btrfs_root_flags(root_item);
2157 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2158 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2160 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2163 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2164 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2165 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2167 subvol_info->otransid = btrfs_root_otransid(root_item);
2168 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2169 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2171 subvol_info->stransid = btrfs_root_stransid(root_item);
2172 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2173 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2175 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2176 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2177 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2179 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2180 /* Search root tree for ROOT_BACKREF of this subvolume */
2181 key.type = BTRFS_ROOT_BACKREF_KEY;
2183 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2186 } else if (path->slots[0] >=
2187 btrfs_header_nritems(path->nodes[0])) {
2188 ret = btrfs_next_leaf(fs_info->tree_root, path);
2191 } else if (ret > 0) {
2197 leaf = path->nodes[0];
2198 slot = path->slots[0];
2199 btrfs_item_key_to_cpu(leaf, &key, slot);
2200 if (key.objectid == subvol_info->treeid &&
2201 key.type == BTRFS_ROOT_BACKREF_KEY) {
2202 subvol_info->parent_id = key.offset;
2204 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2205 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2207 item_off = btrfs_item_ptr_offset(leaf, slot)
2208 + sizeof(struct btrfs_root_ref);
2209 item_len = btrfs_item_size(leaf, slot)
2210 - sizeof(struct btrfs_root_ref);
2211 read_extent_buffer(leaf, subvol_info->name,
2212 item_off, item_len);
2219 btrfs_free_path(path);
2221 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2225 btrfs_put_root(root);
2227 btrfs_free_path(path);
2233 * Return ROOT_REF information of the subvolume containing this inode
2234 * except the subvolume name.
2236 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2239 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2240 struct btrfs_root_ref *rref;
2241 struct btrfs_path *path;
2242 struct btrfs_key key;
2243 struct extent_buffer *leaf;
2249 path = btrfs_alloc_path();
2253 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2254 if (IS_ERR(rootrefs)) {
2255 btrfs_free_path(path);
2256 return PTR_ERR(rootrefs);
2259 objectid = root->root_key.objectid;
2260 key.objectid = objectid;
2261 key.type = BTRFS_ROOT_REF_KEY;
2262 key.offset = rootrefs->min_treeid;
2265 root = root->fs_info->tree_root;
2266 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2269 } else if (path->slots[0] >=
2270 btrfs_header_nritems(path->nodes[0])) {
2271 ret = btrfs_next_leaf(root, path);
2274 } else if (ret > 0) {
2280 leaf = path->nodes[0];
2281 slot = path->slots[0];
2283 btrfs_item_key_to_cpu(leaf, &key, slot);
2284 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2289 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2294 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2295 rootrefs->rootref[found].treeid = key.offset;
2296 rootrefs->rootref[found].dirid =
2297 btrfs_root_ref_dirid(leaf, rref);
2300 ret = btrfs_next_item(root, path);
2303 } else if (ret > 0) {
2310 btrfs_free_path(path);
2312 if (!ret || ret == -EOVERFLOW) {
2313 rootrefs->num_items = found;
2314 /* update min_treeid for next search */
2316 rootrefs->min_treeid =
2317 rootrefs->rootref[found - 1].treeid + 1;
2318 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2327 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2331 struct dentry *parent = file->f_path.dentry;
2332 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2333 struct dentry *dentry;
2334 struct inode *dir = d_inode(parent);
2335 struct inode *inode;
2336 struct btrfs_root *root = BTRFS_I(dir)->root;
2337 struct btrfs_root *dest = NULL;
2338 struct btrfs_ioctl_vol_args *vol_args = NULL;
2339 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2340 struct mnt_idmap *idmap = file_mnt_idmap(file);
2341 char *subvol_name, *subvol_name_ptr = NULL;
2344 bool destroy_parent = false;
2346 /* We don't support snapshots with extent tree v2 yet. */
2347 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2349 "extent tree v2 doesn't support snapshot deletion yet");
2354 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2355 if (IS_ERR(vol_args2))
2356 return PTR_ERR(vol_args2);
2358 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2364 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2365 * name, same as v1 currently does.
2367 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2368 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2369 subvol_name = vol_args2->name;
2371 err = mnt_want_write_file(file);
2375 struct inode *old_dir;
2377 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2382 err = mnt_want_write_file(file);
2386 dentry = btrfs_get_dentry(fs_info->sb,
2387 BTRFS_FIRST_FREE_OBJECTID,
2388 vol_args2->subvolid, 0);
2389 if (IS_ERR(dentry)) {
2390 err = PTR_ERR(dentry);
2391 goto out_drop_write;
2395 * Change the default parent since the subvolume being
2396 * deleted can be outside of the current mount point.
2398 parent = btrfs_get_parent(dentry);
2401 * At this point dentry->d_name can point to '/' if the
2402 * subvolume we want to destroy is outsite of the
2403 * current mount point, so we need to release the
2404 * current dentry and execute the lookup to return a new
2405 * one with ->d_name pointing to the
2406 * <mount point>/subvol_name.
2409 if (IS_ERR(parent)) {
2410 err = PTR_ERR(parent);
2411 goto out_drop_write;
2414 dir = d_inode(parent);
2417 * If v2 was used with SPEC_BY_ID, a new parent was
2418 * allocated since the subvolume can be outside of the
2419 * current mount point. Later on we need to release this
2420 * new parent dentry.
2422 destroy_parent = true;
2425 * On idmapped mounts, deletion via subvolid is
2426 * restricted to subvolumes that are immediate
2427 * ancestors of the inode referenced by the file
2428 * descriptor in the ioctl. Otherwise the idmapping
2429 * could potentially be abused to delete subvolumes
2430 * anywhere in the filesystem the user wouldn't be able
2431 * to delete without an idmapped mount.
2433 if (old_dir != dir && idmap != &nop_mnt_idmap) {
2438 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2439 fs_info, vol_args2->subvolid);
2440 if (IS_ERR(subvol_name_ptr)) {
2441 err = PTR_ERR(subvol_name_ptr);
2444 /* subvol_name_ptr is already nul terminated */
2445 subvol_name = (char *)kbasename(subvol_name_ptr);
2448 vol_args = memdup_user(arg, sizeof(*vol_args));
2449 if (IS_ERR(vol_args))
2450 return PTR_ERR(vol_args);
2452 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2453 subvol_name = vol_args->name;
2455 err = mnt_want_write_file(file);
2460 subvol_namelen = strlen(subvol_name);
2462 if (strchr(subvol_name, '/') ||
2463 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2465 goto free_subvol_name;
2468 if (!S_ISDIR(dir->i_mode)) {
2470 goto free_subvol_name;
2473 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2475 goto free_subvol_name;
2476 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2477 if (IS_ERR(dentry)) {
2478 err = PTR_ERR(dentry);
2479 goto out_unlock_dir;
2482 if (d_really_is_negative(dentry)) {
2487 inode = d_inode(dentry);
2488 dest = BTRFS_I(inode)->root;
2489 if (!capable(CAP_SYS_ADMIN)) {
2491 * Regular user. Only allow this with a special mount
2492 * option, when the user has write+exec access to the
2493 * subvol root, and when rmdir(2) would have been
2496 * Note that this is _not_ check that the subvol is
2497 * empty or doesn't contain data that we wouldn't
2498 * otherwise be able to delete.
2500 * Users who want to delete empty subvols should try
2504 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2508 * Do not allow deletion if the parent dir is the same
2509 * as the dir to be deleted. That means the ioctl
2510 * must be called on the dentry referencing the root
2511 * of the subvol, not a random directory contained
2518 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2523 /* check if subvolume may be deleted by a user */
2524 err = btrfs_may_delete(idmap, dir, dentry, 1);
2528 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2533 btrfs_inode_lock(BTRFS_I(inode), 0);
2534 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2535 btrfs_inode_unlock(BTRFS_I(inode), 0);
2537 d_delete_notify(dir, dentry);
2542 btrfs_inode_unlock(BTRFS_I(dir), 0);
2544 kfree(subvol_name_ptr);
2549 mnt_drop_write_file(file);
2556 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2558 struct inode *inode = file_inode(file);
2559 struct btrfs_root *root = BTRFS_I(inode)->root;
2560 struct btrfs_ioctl_defrag_range_args range = {0};
2563 ret = mnt_want_write_file(file);
2567 if (btrfs_root_readonly(root)) {
2572 switch (inode->i_mode & S_IFMT) {
2574 if (!capable(CAP_SYS_ADMIN)) {
2578 ret = btrfs_defrag_root(root);
2582 * Note that this does not check the file descriptor for write
2583 * access. This prevents defragmenting executables that are
2584 * running and allows defrag on files open in read-only mode.
2586 if (!capable(CAP_SYS_ADMIN) &&
2587 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2593 if (copy_from_user(&range, argp, sizeof(range))) {
2597 /* compression requires us to start the IO */
2598 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2599 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2600 range.extent_thresh = (u32)-1;
2603 /* the rest are all set to zero by kzalloc */
2604 range.len = (u64)-1;
2606 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2607 &range, BTRFS_OLDEST_GENERATION, 0);
2615 mnt_drop_write_file(file);
2619 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2621 struct btrfs_ioctl_vol_args *vol_args;
2622 bool restore_op = false;
2625 if (!capable(CAP_SYS_ADMIN))
2628 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2629 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2633 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2634 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2635 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2638 * We can do the device add because we have a paused balanced,
2639 * change the exclusive op type and remember we should bring
2640 * back the paused balance
2642 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2643 btrfs_exclop_start_unlock(fs_info);
2647 vol_args = memdup_user(arg, sizeof(*vol_args));
2648 if (IS_ERR(vol_args)) {
2649 ret = PTR_ERR(vol_args);
2653 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2654 ret = btrfs_init_new_device(fs_info, vol_args->name);
2657 btrfs_info(fs_info, "disk added %s", vol_args->name);
2662 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2664 btrfs_exclop_finish(fs_info);
2668 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2670 BTRFS_DEV_LOOKUP_ARGS(args);
2671 struct inode *inode = file_inode(file);
2672 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2673 struct btrfs_ioctl_vol_args_v2 *vol_args;
2674 struct block_device *bdev = NULL;
2677 bool cancel = false;
2679 if (!capable(CAP_SYS_ADMIN))
2682 vol_args = memdup_user(arg, sizeof(*vol_args));
2683 if (IS_ERR(vol_args))
2684 return PTR_ERR(vol_args);
2686 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2691 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2692 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2693 args.devid = vol_args->devid;
2694 } else if (!strcmp("cancel", vol_args->name)) {
2697 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2702 ret = mnt_want_write_file(file);
2706 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2711 /* Exclusive operation is now claimed */
2712 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
2714 btrfs_exclop_finish(fs_info);
2717 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2718 btrfs_info(fs_info, "device deleted: id %llu",
2721 btrfs_info(fs_info, "device deleted: %s",
2725 mnt_drop_write_file(file);
2727 blkdev_put(bdev, mode);
2729 btrfs_put_dev_args_from_path(&args);
2734 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2736 BTRFS_DEV_LOOKUP_ARGS(args);
2737 struct inode *inode = file_inode(file);
2738 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2739 struct btrfs_ioctl_vol_args *vol_args;
2740 struct block_device *bdev = NULL;
2743 bool cancel = false;
2745 if (!capable(CAP_SYS_ADMIN))
2748 vol_args = memdup_user(arg, sizeof(*vol_args));
2749 if (IS_ERR(vol_args))
2750 return PTR_ERR(vol_args);
2752 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2753 if (!strcmp("cancel", vol_args->name)) {
2756 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2761 ret = mnt_want_write_file(file);
2765 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2768 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
2770 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2771 btrfs_exclop_finish(fs_info);
2774 mnt_drop_write_file(file);
2776 blkdev_put(bdev, mode);
2778 btrfs_put_dev_args_from_path(&args);
2783 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2786 struct btrfs_ioctl_fs_info_args *fi_args;
2787 struct btrfs_device *device;
2788 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2792 fi_args = memdup_user(arg, sizeof(*fi_args));
2793 if (IS_ERR(fi_args))
2794 return PTR_ERR(fi_args);
2796 flags_in = fi_args->flags;
2797 memset(fi_args, 0, sizeof(*fi_args));
2800 fi_args->num_devices = fs_devices->num_devices;
2802 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2803 if (device->devid > fi_args->max_id)
2804 fi_args->max_id = device->devid;
2808 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2809 fi_args->nodesize = fs_info->nodesize;
2810 fi_args->sectorsize = fs_info->sectorsize;
2811 fi_args->clone_alignment = fs_info->sectorsize;
2813 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2814 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2815 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2816 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2819 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2820 fi_args->generation = fs_info->generation;
2821 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2824 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2825 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2826 sizeof(fi_args->metadata_uuid));
2827 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2830 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2837 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2840 BTRFS_DEV_LOOKUP_ARGS(args);
2841 struct btrfs_ioctl_dev_info_args *di_args;
2842 struct btrfs_device *dev;
2845 di_args = memdup_user(arg, sizeof(*di_args));
2846 if (IS_ERR(di_args))
2847 return PTR_ERR(di_args);
2849 args.devid = di_args->devid;
2850 if (!btrfs_is_empty_uuid(di_args->uuid))
2851 args.uuid = di_args->uuid;
2854 dev = btrfs_find_device(fs_info->fs_devices, &args);
2860 di_args->devid = dev->devid;
2861 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2862 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2863 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2864 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2866 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2868 di_args->path[0] = '\0';
2872 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2879 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2881 struct inode *inode = file_inode(file);
2882 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2883 struct btrfs_root *root = BTRFS_I(inode)->root;
2884 struct btrfs_root *new_root;
2885 struct btrfs_dir_item *di;
2886 struct btrfs_trans_handle *trans;
2887 struct btrfs_path *path = NULL;
2888 struct btrfs_disk_key disk_key;
2889 struct fscrypt_str name = FSTR_INIT("default", 7);
2894 if (!capable(CAP_SYS_ADMIN))
2897 ret = mnt_want_write_file(file);
2901 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2907 objectid = BTRFS_FS_TREE_OBJECTID;
2909 new_root = btrfs_get_fs_root(fs_info, objectid, true);
2910 if (IS_ERR(new_root)) {
2911 ret = PTR_ERR(new_root);
2914 if (!is_fstree(new_root->root_key.objectid)) {
2919 path = btrfs_alloc_path();
2925 trans = btrfs_start_transaction(root, 1);
2926 if (IS_ERR(trans)) {
2927 ret = PTR_ERR(trans);
2931 dir_id = btrfs_super_root_dir(fs_info->super_copy);
2932 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2934 if (IS_ERR_OR_NULL(di)) {
2935 btrfs_release_path(path);
2936 btrfs_end_transaction(trans);
2938 "Umm, you don't have the default diritem, this isn't going to work");
2943 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2944 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2945 btrfs_mark_buffer_dirty(path->nodes[0]);
2946 btrfs_release_path(path);
2948 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2949 btrfs_end_transaction(trans);
2951 btrfs_put_root(new_root);
2952 btrfs_free_path(path);
2954 mnt_drop_write_file(file);
2958 static void get_block_group_info(struct list_head *groups_list,
2959 struct btrfs_ioctl_space_info *space)
2961 struct btrfs_block_group *block_group;
2963 space->total_bytes = 0;
2964 space->used_bytes = 0;
2966 list_for_each_entry(block_group, groups_list, list) {
2967 space->flags = block_group->flags;
2968 space->total_bytes += block_group->length;
2969 space->used_bytes += block_group->used;
2973 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2976 struct btrfs_ioctl_space_args space_args;
2977 struct btrfs_ioctl_space_info space;
2978 struct btrfs_ioctl_space_info *dest;
2979 struct btrfs_ioctl_space_info *dest_orig;
2980 struct btrfs_ioctl_space_info __user *user_dest;
2981 struct btrfs_space_info *info;
2982 static const u64 types[] = {
2983 BTRFS_BLOCK_GROUP_DATA,
2984 BTRFS_BLOCK_GROUP_SYSTEM,
2985 BTRFS_BLOCK_GROUP_METADATA,
2986 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
2994 if (copy_from_user(&space_args,
2995 (struct btrfs_ioctl_space_args __user *)arg,
2996 sizeof(space_args)))
2999 for (i = 0; i < num_types; i++) {
3000 struct btrfs_space_info *tmp;
3003 list_for_each_entry(tmp, &fs_info->space_info, list) {
3004 if (tmp->flags == types[i]) {
3013 down_read(&info->groups_sem);
3014 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3015 if (!list_empty(&info->block_groups[c]))
3018 up_read(&info->groups_sem);
3022 * Global block reserve, exported as a space_info
3026 /* space_slots == 0 means they are asking for a count */
3027 if (space_args.space_slots == 0) {
3028 space_args.total_spaces = slot_count;
3032 slot_count = min_t(u64, space_args.space_slots, slot_count);
3034 alloc_size = sizeof(*dest) * slot_count;
3036 /* we generally have at most 6 or so space infos, one for each raid
3037 * level. So, a whole page should be more than enough for everyone
3039 if (alloc_size > PAGE_SIZE)
3042 space_args.total_spaces = 0;
3043 dest = kmalloc(alloc_size, GFP_KERNEL);
3048 /* now we have a buffer to copy into */
3049 for (i = 0; i < num_types; i++) {
3050 struct btrfs_space_info *tmp;
3056 list_for_each_entry(tmp, &fs_info->space_info, list) {
3057 if (tmp->flags == types[i]) {
3065 down_read(&info->groups_sem);
3066 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3067 if (!list_empty(&info->block_groups[c])) {
3068 get_block_group_info(&info->block_groups[c],
3070 memcpy(dest, &space, sizeof(space));
3072 space_args.total_spaces++;
3078 up_read(&info->groups_sem);
3082 * Add global block reserve
3085 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3087 spin_lock(&block_rsv->lock);
3088 space.total_bytes = block_rsv->size;
3089 space.used_bytes = block_rsv->size - block_rsv->reserved;
3090 spin_unlock(&block_rsv->lock);
3091 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3092 memcpy(dest, &space, sizeof(space));
3093 space_args.total_spaces++;
3096 user_dest = (struct btrfs_ioctl_space_info __user *)
3097 (arg + sizeof(struct btrfs_ioctl_space_args));
3099 if (copy_to_user(user_dest, dest_orig, alloc_size))
3104 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3110 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3113 struct btrfs_trans_handle *trans;
3116 trans = btrfs_attach_transaction_barrier(root);
3117 if (IS_ERR(trans)) {
3118 if (PTR_ERR(trans) != -ENOENT)
3119 return PTR_ERR(trans);
3121 /* No running transaction, don't bother */
3122 transid = root->fs_info->last_trans_committed;
3125 transid = trans->transid;
3126 btrfs_commit_transaction_async(trans);
3129 if (copy_to_user(argp, &transid, sizeof(transid)))
3134 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3140 if (copy_from_user(&transid, argp, sizeof(transid)))
3143 transid = 0; /* current trans */
3145 return btrfs_wait_for_commit(fs_info, transid);
3148 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3150 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3151 struct btrfs_ioctl_scrub_args *sa;
3154 if (!capable(CAP_SYS_ADMIN))
3157 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3158 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3162 sa = memdup_user(arg, sizeof(*sa));
3166 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3171 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3172 ret = mnt_want_write_file(file);
3177 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3178 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3182 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3183 * error. This is important as it allows user space to know how much
3184 * progress scrub has done. For example, if scrub is canceled we get
3185 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3186 * space. Later user space can inspect the progress from the structure
3187 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3188 * previously (btrfs-progs does this).
3189 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3190 * then return -EFAULT to signal the structure was not copied or it may
3191 * be corrupt and unreliable due to a partial copy.
3193 if (copy_to_user(arg, sa, sizeof(*sa)))
3196 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3197 mnt_drop_write_file(file);
3203 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3205 if (!capable(CAP_SYS_ADMIN))
3208 return btrfs_scrub_cancel(fs_info);
3211 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3214 struct btrfs_ioctl_scrub_args *sa;
3217 if (!capable(CAP_SYS_ADMIN))
3220 sa = memdup_user(arg, sizeof(*sa));
3224 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3226 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3233 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3236 struct btrfs_ioctl_get_dev_stats *sa;
3239 sa = memdup_user(arg, sizeof(*sa));
3243 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3248 ret = btrfs_get_dev_stats(fs_info, sa);
3250 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3257 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3260 struct btrfs_ioctl_dev_replace_args *p;
3263 if (!capable(CAP_SYS_ADMIN))
3266 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3267 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3271 p = memdup_user(arg, sizeof(*p));
3276 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3277 if (sb_rdonly(fs_info->sb)) {
3281 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3282 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3284 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3285 btrfs_exclop_finish(fs_info);
3288 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3289 btrfs_dev_replace_status(fs_info, p);
3292 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3293 p->result = btrfs_dev_replace_cancel(fs_info);
3301 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3308 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3314 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3315 struct inode_fs_paths *ipath = NULL;
3316 struct btrfs_path *path;
3318 if (!capable(CAP_DAC_READ_SEARCH))
3321 path = btrfs_alloc_path();
3327 ipa = memdup_user(arg, sizeof(*ipa));
3334 size = min_t(u32, ipa->size, 4096);
3335 ipath = init_ipath(size, root, path);
3336 if (IS_ERR(ipath)) {
3337 ret = PTR_ERR(ipath);
3342 ret = paths_from_inode(ipa->inum, ipath);
3346 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3347 rel_ptr = ipath->fspath->val[i] -
3348 (u64)(unsigned long)ipath->fspath->val;
3349 ipath->fspath->val[i] = rel_ptr;
3352 btrfs_free_path(path);
3354 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3355 ipath->fspath, size);
3362 btrfs_free_path(path);
3369 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3370 void __user *arg, int version)
3374 struct btrfs_ioctl_logical_ino_args *loi;
3375 struct btrfs_data_container *inodes = NULL;
3376 struct btrfs_path *path = NULL;
3379 if (!capable(CAP_SYS_ADMIN))
3382 loi = memdup_user(arg, sizeof(*loi));
3384 return PTR_ERR(loi);
3387 ignore_offset = false;
3388 size = min_t(u32, loi->size, SZ_64K);
3390 /* All reserved bits must be 0 for now */
3391 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3395 /* Only accept flags we have defined so far */
3396 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3400 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3401 size = min_t(u32, loi->size, SZ_16M);
3404 inodes = init_data_container(size);
3405 if (IS_ERR(inodes)) {
3406 ret = PTR_ERR(inodes);
3410 path = btrfs_alloc_path();
3415 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3416 inodes, ignore_offset);
3417 btrfs_free_path(path);
3423 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3436 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3437 struct btrfs_ioctl_balance_args *bargs)
3439 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3441 bargs->flags = bctl->flags;
3443 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3444 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3445 if (atomic_read(&fs_info->balance_pause_req))
3446 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3447 if (atomic_read(&fs_info->balance_cancel_req))
3448 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3450 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3451 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3452 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3454 spin_lock(&fs_info->balance_lock);
3455 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3456 spin_unlock(&fs_info->balance_lock);
3460 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3463 * @fs_info: the filesystem
3464 * @excl_acquired: ptr to boolean value which is set to false in case balance
3467 * Return 0 on success in which case both fs_info::balance is acquired as well
3468 * as exclusive ops are blocked. In case of failure return an error code.
3470 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3475 * Exclusive operation is locked. Three possibilities:
3476 * (1) some other op is running
3477 * (2) balance is running
3478 * (3) balance is paused -- special case (think resume)
3481 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3482 *excl_acquired = true;
3483 mutex_lock(&fs_info->balance_mutex);
3487 mutex_lock(&fs_info->balance_mutex);
3488 if (fs_info->balance_ctl) {
3489 /* This is either (2) or (3) */
3490 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3496 mutex_unlock(&fs_info->balance_mutex);
3498 * Lock released to allow other waiters to
3499 * continue, we'll reexamine the status again.
3501 mutex_lock(&fs_info->balance_mutex);
3503 if (fs_info->balance_ctl &&
3504 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3506 *excl_acquired = false;
3512 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3516 mutex_unlock(&fs_info->balance_mutex);
3520 mutex_unlock(&fs_info->balance_mutex);
3521 *excl_acquired = false;
3525 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3527 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3528 struct btrfs_fs_info *fs_info = root->fs_info;
3529 struct btrfs_ioctl_balance_args *bargs;
3530 struct btrfs_balance_control *bctl;
3531 bool need_unlock = true;
3534 if (!capable(CAP_SYS_ADMIN))
3537 ret = mnt_want_write_file(file);
3541 bargs = memdup_user(arg, sizeof(*bargs));
3542 if (IS_ERR(bargs)) {
3543 ret = PTR_ERR(bargs);
3548 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3552 lockdep_assert_held(&fs_info->balance_mutex);
3554 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3555 if (!fs_info->balance_ctl) {
3560 bctl = fs_info->balance_ctl;
3561 spin_lock(&fs_info->balance_lock);
3562 bctl->flags |= BTRFS_BALANCE_RESUME;
3563 spin_unlock(&fs_info->balance_lock);
3564 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3569 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3574 if (fs_info->balance_ctl) {
3579 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3585 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3586 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3587 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3589 bctl->flags = bargs->flags;
3592 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3593 * bctl is freed in reset_balance_state, or, if restriper was paused
3594 * all the way until unmount, in free_fs_info. The flag should be
3595 * cleared after reset_balance_state.
3597 need_unlock = false;
3599 ret = btrfs_balance(fs_info, bctl, bargs);
3602 if (ret == 0 || ret == -ECANCELED) {
3603 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3609 mutex_unlock(&fs_info->balance_mutex);
3611 btrfs_exclop_finish(fs_info);
3613 mnt_drop_write_file(file);
3618 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3620 if (!capable(CAP_SYS_ADMIN))
3624 case BTRFS_BALANCE_CTL_PAUSE:
3625 return btrfs_pause_balance(fs_info);
3626 case BTRFS_BALANCE_CTL_CANCEL:
3627 return btrfs_cancel_balance(fs_info);
3633 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3636 struct btrfs_ioctl_balance_args *bargs;
3639 if (!capable(CAP_SYS_ADMIN))
3642 mutex_lock(&fs_info->balance_mutex);
3643 if (!fs_info->balance_ctl) {
3648 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3654 btrfs_update_ioctl_balance_args(fs_info, bargs);
3656 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3661 mutex_unlock(&fs_info->balance_mutex);
3665 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3667 struct inode *inode = file_inode(file);
3668 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3669 struct btrfs_ioctl_quota_ctl_args *sa;
3672 if (!capable(CAP_SYS_ADMIN))
3675 ret = mnt_want_write_file(file);
3679 sa = memdup_user(arg, sizeof(*sa));
3685 down_write(&fs_info->subvol_sem);
3688 case BTRFS_QUOTA_CTL_ENABLE:
3689 ret = btrfs_quota_enable(fs_info);
3691 case BTRFS_QUOTA_CTL_DISABLE:
3692 ret = btrfs_quota_disable(fs_info);
3700 up_write(&fs_info->subvol_sem);
3702 mnt_drop_write_file(file);
3706 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3708 struct inode *inode = file_inode(file);
3709 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3710 struct btrfs_root *root = BTRFS_I(inode)->root;
3711 struct btrfs_ioctl_qgroup_assign_args *sa;
3712 struct btrfs_trans_handle *trans;
3716 if (!capable(CAP_SYS_ADMIN))
3719 ret = mnt_want_write_file(file);
3723 sa = memdup_user(arg, sizeof(*sa));
3729 trans = btrfs_join_transaction(root);
3730 if (IS_ERR(trans)) {
3731 ret = PTR_ERR(trans);
3736 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3738 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3741 /* update qgroup status and info */
3742 mutex_lock(&fs_info->qgroup_ioctl_lock);
3743 err = btrfs_run_qgroups(trans);
3744 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3746 btrfs_handle_fs_error(fs_info, err,
3747 "failed to update qgroup status and info");
3748 err = btrfs_end_transaction(trans);
3755 mnt_drop_write_file(file);
3759 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3761 struct inode *inode = file_inode(file);
3762 struct btrfs_root *root = BTRFS_I(inode)->root;
3763 struct btrfs_ioctl_qgroup_create_args *sa;
3764 struct btrfs_trans_handle *trans;
3768 if (!capable(CAP_SYS_ADMIN))
3771 ret = mnt_want_write_file(file);
3775 sa = memdup_user(arg, sizeof(*sa));
3781 if (!sa->qgroupid) {
3786 trans = btrfs_join_transaction(root);
3787 if (IS_ERR(trans)) {
3788 ret = PTR_ERR(trans);
3793 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3795 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3798 err = btrfs_end_transaction(trans);
3805 mnt_drop_write_file(file);
3809 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3811 struct inode *inode = file_inode(file);
3812 struct btrfs_root *root = BTRFS_I(inode)->root;
3813 struct btrfs_ioctl_qgroup_limit_args *sa;
3814 struct btrfs_trans_handle *trans;
3819 if (!capable(CAP_SYS_ADMIN))
3822 ret = mnt_want_write_file(file);
3826 sa = memdup_user(arg, sizeof(*sa));
3832 trans = btrfs_join_transaction(root);
3833 if (IS_ERR(trans)) {
3834 ret = PTR_ERR(trans);
3838 qgroupid = sa->qgroupid;
3840 /* take the current subvol as qgroup */
3841 qgroupid = root->root_key.objectid;
3844 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3846 err = btrfs_end_transaction(trans);
3853 mnt_drop_write_file(file);
3857 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3859 struct inode *inode = file_inode(file);
3860 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3861 struct btrfs_ioctl_quota_rescan_args *qsa;
3864 if (!capable(CAP_SYS_ADMIN))
3867 ret = mnt_want_write_file(file);
3871 qsa = memdup_user(arg, sizeof(*qsa));
3882 ret = btrfs_qgroup_rescan(fs_info);
3887 mnt_drop_write_file(file);
3891 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3894 struct btrfs_ioctl_quota_rescan_args qsa = {0};
3896 if (!capable(CAP_SYS_ADMIN))
3899 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3901 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3904 if (copy_to_user(arg, &qsa, sizeof(qsa)))
3910 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3913 if (!capable(CAP_SYS_ADMIN))
3916 return btrfs_qgroup_wait_for_completion(fs_info, true);
3919 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3920 struct mnt_idmap *idmap,
3921 struct btrfs_ioctl_received_subvol_args *sa)
3923 struct inode *inode = file_inode(file);
3924 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3925 struct btrfs_root *root = BTRFS_I(inode)->root;
3926 struct btrfs_root_item *root_item = &root->root_item;
3927 struct btrfs_trans_handle *trans;
3928 struct timespec64 ct = current_time(inode);
3930 int received_uuid_changed;
3932 if (!inode_owner_or_capable(idmap, inode))
3935 ret = mnt_want_write_file(file);
3939 down_write(&fs_info->subvol_sem);
3941 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3946 if (btrfs_root_readonly(root)) {
3953 * 2 - uuid items (received uuid + subvol uuid)
3955 trans = btrfs_start_transaction(root, 3);
3956 if (IS_ERR(trans)) {
3957 ret = PTR_ERR(trans);
3962 sa->rtransid = trans->transid;
3963 sa->rtime.sec = ct.tv_sec;
3964 sa->rtime.nsec = ct.tv_nsec;
3966 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
3968 if (received_uuid_changed &&
3969 !btrfs_is_empty_uuid(root_item->received_uuid)) {
3970 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
3971 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3972 root->root_key.objectid);
3973 if (ret && ret != -ENOENT) {
3974 btrfs_abort_transaction(trans, ret);
3975 btrfs_end_transaction(trans);
3979 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3980 btrfs_set_root_stransid(root_item, sa->stransid);
3981 btrfs_set_root_rtransid(root_item, sa->rtransid);
3982 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
3983 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
3984 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
3985 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
3987 ret = btrfs_update_root(trans, fs_info->tree_root,
3988 &root->root_key, &root->root_item);
3990 btrfs_end_transaction(trans);
3993 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
3994 ret = btrfs_uuid_tree_add(trans, sa->uuid,
3995 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3996 root->root_key.objectid);
3997 if (ret < 0 && ret != -EEXIST) {
3998 btrfs_abort_transaction(trans, ret);
3999 btrfs_end_transaction(trans);
4003 ret = btrfs_commit_transaction(trans);
4005 up_write(&fs_info->subvol_sem);
4006 mnt_drop_write_file(file);
4011 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4014 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4015 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4018 args32 = memdup_user(arg, sizeof(*args32));
4020 return PTR_ERR(args32);
4022 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4028 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4029 args64->stransid = args32->stransid;
4030 args64->rtransid = args32->rtransid;
4031 args64->stime.sec = args32->stime.sec;
4032 args64->stime.nsec = args32->stime.nsec;
4033 args64->rtime.sec = args32->rtime.sec;
4034 args64->rtime.nsec = args32->rtime.nsec;
4035 args64->flags = args32->flags;
4037 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4041 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4042 args32->stransid = args64->stransid;
4043 args32->rtransid = args64->rtransid;
4044 args32->stime.sec = args64->stime.sec;
4045 args32->stime.nsec = args64->stime.nsec;
4046 args32->rtime.sec = args64->rtime.sec;
4047 args32->rtime.nsec = args64->rtime.nsec;
4048 args32->flags = args64->flags;
4050 ret = copy_to_user(arg, args32, sizeof(*args32));
4061 static long btrfs_ioctl_set_received_subvol(struct file *file,
4064 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4067 sa = memdup_user(arg, sizeof(*sa));
4071 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4076 ret = copy_to_user(arg, sa, sizeof(*sa));
4085 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4090 char label[BTRFS_LABEL_SIZE];
4092 spin_lock(&fs_info->super_lock);
4093 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4094 spin_unlock(&fs_info->super_lock);
4096 len = strnlen(label, BTRFS_LABEL_SIZE);
4098 if (len == BTRFS_LABEL_SIZE) {
4100 "label is too long, return the first %zu bytes",
4104 ret = copy_to_user(arg, label, len);
4106 return ret ? -EFAULT : 0;
4109 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4111 struct inode *inode = file_inode(file);
4112 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4113 struct btrfs_root *root = BTRFS_I(inode)->root;
4114 struct btrfs_super_block *super_block = fs_info->super_copy;
4115 struct btrfs_trans_handle *trans;
4116 char label[BTRFS_LABEL_SIZE];
4119 if (!capable(CAP_SYS_ADMIN))
4122 if (copy_from_user(label, arg, sizeof(label)))
4125 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4127 "unable to set label with more than %d bytes",
4128 BTRFS_LABEL_SIZE - 1);
4132 ret = mnt_want_write_file(file);
4136 trans = btrfs_start_transaction(root, 0);
4137 if (IS_ERR(trans)) {
4138 ret = PTR_ERR(trans);
4142 spin_lock(&fs_info->super_lock);
4143 strcpy(super_block->label, label);
4144 spin_unlock(&fs_info->super_lock);
4145 ret = btrfs_commit_transaction(trans);
4148 mnt_drop_write_file(file);
4152 #define INIT_FEATURE_FLAGS(suffix) \
4153 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4154 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4155 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4157 int btrfs_ioctl_get_supported_features(void __user *arg)
4159 static const struct btrfs_ioctl_feature_flags features[3] = {
4160 INIT_FEATURE_FLAGS(SUPP),
4161 INIT_FEATURE_FLAGS(SAFE_SET),
4162 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4165 if (copy_to_user(arg, &features, sizeof(features)))
4171 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4174 struct btrfs_super_block *super_block = fs_info->super_copy;
4175 struct btrfs_ioctl_feature_flags features;
4177 features.compat_flags = btrfs_super_compat_flags(super_block);
4178 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4179 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4181 if (copy_to_user(arg, &features, sizeof(features)))
4187 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4188 enum btrfs_feature_set set,
4189 u64 change_mask, u64 flags, u64 supported_flags,
4190 u64 safe_set, u64 safe_clear)
4192 const char *type = btrfs_feature_set_name(set);
4194 u64 disallowed, unsupported;
4195 u64 set_mask = flags & change_mask;
4196 u64 clear_mask = ~flags & change_mask;
4198 unsupported = set_mask & ~supported_flags;
4200 names = btrfs_printable_features(set, unsupported);
4203 "this kernel does not support the %s feature bit%s",
4204 names, strchr(names, ',') ? "s" : "");
4208 "this kernel does not support %s bits 0x%llx",
4213 disallowed = set_mask & ~safe_set;
4215 names = btrfs_printable_features(set, disallowed);
4218 "can't set the %s feature bit%s while mounted",
4219 names, strchr(names, ',') ? "s" : "");
4223 "can't set %s bits 0x%llx while mounted",
4228 disallowed = clear_mask & ~safe_clear;
4230 names = btrfs_printable_features(set, disallowed);
4233 "can't clear the %s feature bit%s while mounted",
4234 names, strchr(names, ',') ? "s" : "");
4238 "can't clear %s bits 0x%llx while mounted",
4246 #define check_feature(fs_info, change_mask, flags, mask_base) \
4247 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4248 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4249 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4250 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4252 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4254 struct inode *inode = file_inode(file);
4255 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4256 struct btrfs_root *root = BTRFS_I(inode)->root;
4257 struct btrfs_super_block *super_block = fs_info->super_copy;
4258 struct btrfs_ioctl_feature_flags flags[2];
4259 struct btrfs_trans_handle *trans;
4263 if (!capable(CAP_SYS_ADMIN))
4266 if (copy_from_user(flags, arg, sizeof(flags)))
4270 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4271 !flags[0].incompat_flags)
4274 ret = check_feature(fs_info, flags[0].compat_flags,
4275 flags[1].compat_flags, COMPAT);
4279 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4280 flags[1].compat_ro_flags, COMPAT_RO);
4284 ret = check_feature(fs_info, flags[0].incompat_flags,
4285 flags[1].incompat_flags, INCOMPAT);
4289 ret = mnt_want_write_file(file);
4293 trans = btrfs_start_transaction(root, 0);
4294 if (IS_ERR(trans)) {
4295 ret = PTR_ERR(trans);
4296 goto out_drop_write;
4299 spin_lock(&fs_info->super_lock);
4300 newflags = btrfs_super_compat_flags(super_block);
4301 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4302 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4303 btrfs_set_super_compat_flags(super_block, newflags);
4305 newflags = btrfs_super_compat_ro_flags(super_block);
4306 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4307 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4308 btrfs_set_super_compat_ro_flags(super_block, newflags);
4310 newflags = btrfs_super_incompat_flags(super_block);
4311 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4312 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4313 btrfs_set_super_incompat_flags(super_block, newflags);
4314 spin_unlock(&fs_info->super_lock);
4316 ret = btrfs_commit_transaction(trans);
4318 mnt_drop_write_file(file);
4323 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4325 struct btrfs_ioctl_send_args *arg;
4329 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4330 struct btrfs_ioctl_send_args_32 args32;
4332 ret = copy_from_user(&args32, argp, sizeof(args32));
4335 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4338 arg->send_fd = args32.send_fd;
4339 arg->clone_sources_count = args32.clone_sources_count;
4340 arg->clone_sources = compat_ptr(args32.clone_sources);
4341 arg->parent_root = args32.parent_root;
4342 arg->flags = args32.flags;
4343 memcpy(arg->reserved, args32.reserved,
4344 sizeof(args32.reserved));
4349 arg = memdup_user(argp, sizeof(*arg));
4351 return PTR_ERR(arg);
4353 ret = btrfs_ioctl_send(inode, arg);
4358 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4361 struct btrfs_ioctl_encoded_io_args args = { 0 };
4362 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4365 struct iovec iovstack[UIO_FASTIOV];
4366 struct iovec *iov = iovstack;
4367 struct iov_iter iter;
4372 if (!capable(CAP_SYS_ADMIN)) {
4378 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4379 struct btrfs_ioctl_encoded_io_args_32 args32;
4381 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4383 if (copy_from_user(&args32, argp, copy_end)) {
4387 args.iov = compat_ptr(args32.iov);
4388 args.iovcnt = args32.iovcnt;
4389 args.offset = args32.offset;
4390 args.flags = args32.flags;
4395 copy_end = copy_end_kernel;
4396 if (copy_from_user(&args, argp, copy_end)) {
4401 if (args.flags != 0) {
4406 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4411 if (iov_iter_count(&iter) == 0) {
4416 ret = rw_verify_area(READ, file, &pos, args.len);
4420 init_sync_kiocb(&kiocb, file);
4423 ret = btrfs_encoded_read(&kiocb, &iter, &args);
4425 fsnotify_access(file);
4426 if (copy_to_user(argp + copy_end,
4427 (char *)&args + copy_end_kernel,
4428 sizeof(args) - copy_end_kernel))
4436 add_rchar(current, ret);
4441 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4443 struct btrfs_ioctl_encoded_io_args args;
4444 struct iovec iovstack[UIO_FASTIOV];
4445 struct iovec *iov = iovstack;
4446 struct iov_iter iter;
4451 if (!capable(CAP_SYS_ADMIN)) {
4456 if (!(file->f_mode & FMODE_WRITE)) {
4462 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4463 struct btrfs_ioctl_encoded_io_args_32 args32;
4465 if (copy_from_user(&args32, argp, sizeof(args32))) {
4469 args.iov = compat_ptr(args32.iov);
4470 args.iovcnt = args32.iovcnt;
4471 args.offset = args32.offset;
4472 args.flags = args32.flags;
4473 args.len = args32.len;
4474 args.unencoded_len = args32.unencoded_len;
4475 args.unencoded_offset = args32.unencoded_offset;
4476 args.compression = args32.compression;
4477 args.encryption = args32.encryption;
4478 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4483 if (copy_from_user(&args, argp, sizeof(args))) {
4490 if (args.flags != 0)
4492 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4494 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4495 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4497 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4498 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4500 if (args.unencoded_offset > args.unencoded_len)
4502 if (args.len > args.unencoded_len - args.unencoded_offset)
4505 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4510 file_start_write(file);
4512 if (iov_iter_count(&iter) == 0) {
4517 ret = rw_verify_area(WRITE, file, &pos, args.len);
4521 init_sync_kiocb(&kiocb, file);
4522 ret = kiocb_set_rw_flags(&kiocb, 0);
4527 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4529 fsnotify_modify(file);
4532 file_end_write(file);
4536 add_wchar(current, ret);
4541 long btrfs_ioctl(struct file *file, unsigned int
4542 cmd, unsigned long arg)
4544 struct inode *inode = file_inode(file);
4545 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4546 struct btrfs_root *root = BTRFS_I(inode)->root;
4547 void __user *argp = (void __user *)arg;
4550 case FS_IOC_GETVERSION:
4551 return btrfs_ioctl_getversion(inode, argp);
4552 case FS_IOC_GETFSLABEL:
4553 return btrfs_ioctl_get_fslabel(fs_info, argp);
4554 case FS_IOC_SETFSLABEL:
4555 return btrfs_ioctl_set_fslabel(file, argp);
4557 return btrfs_ioctl_fitrim(fs_info, argp);
4558 case BTRFS_IOC_SNAP_CREATE:
4559 return btrfs_ioctl_snap_create(file, argp, 0);
4560 case BTRFS_IOC_SNAP_CREATE_V2:
4561 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4562 case BTRFS_IOC_SUBVOL_CREATE:
4563 return btrfs_ioctl_snap_create(file, argp, 1);
4564 case BTRFS_IOC_SUBVOL_CREATE_V2:
4565 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4566 case BTRFS_IOC_SNAP_DESTROY:
4567 return btrfs_ioctl_snap_destroy(file, argp, false);
4568 case BTRFS_IOC_SNAP_DESTROY_V2:
4569 return btrfs_ioctl_snap_destroy(file, argp, true);
4570 case BTRFS_IOC_SUBVOL_GETFLAGS:
4571 return btrfs_ioctl_subvol_getflags(inode, argp);
4572 case BTRFS_IOC_SUBVOL_SETFLAGS:
4573 return btrfs_ioctl_subvol_setflags(file, argp);
4574 case BTRFS_IOC_DEFAULT_SUBVOL:
4575 return btrfs_ioctl_default_subvol(file, argp);
4576 case BTRFS_IOC_DEFRAG:
4577 return btrfs_ioctl_defrag(file, NULL);
4578 case BTRFS_IOC_DEFRAG_RANGE:
4579 return btrfs_ioctl_defrag(file, argp);
4580 case BTRFS_IOC_RESIZE:
4581 return btrfs_ioctl_resize(file, argp);
4582 case BTRFS_IOC_ADD_DEV:
4583 return btrfs_ioctl_add_dev(fs_info, argp);
4584 case BTRFS_IOC_RM_DEV:
4585 return btrfs_ioctl_rm_dev(file, argp);
4586 case BTRFS_IOC_RM_DEV_V2:
4587 return btrfs_ioctl_rm_dev_v2(file, argp);
4588 case BTRFS_IOC_FS_INFO:
4589 return btrfs_ioctl_fs_info(fs_info, argp);
4590 case BTRFS_IOC_DEV_INFO:
4591 return btrfs_ioctl_dev_info(fs_info, argp);
4592 case BTRFS_IOC_TREE_SEARCH:
4593 return btrfs_ioctl_tree_search(inode, argp);
4594 case BTRFS_IOC_TREE_SEARCH_V2:
4595 return btrfs_ioctl_tree_search_v2(inode, argp);
4596 case BTRFS_IOC_INO_LOOKUP:
4597 return btrfs_ioctl_ino_lookup(root, argp);
4598 case BTRFS_IOC_INO_PATHS:
4599 return btrfs_ioctl_ino_to_path(root, argp);
4600 case BTRFS_IOC_LOGICAL_INO:
4601 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4602 case BTRFS_IOC_LOGICAL_INO_V2:
4603 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4604 case BTRFS_IOC_SPACE_INFO:
4605 return btrfs_ioctl_space_info(fs_info, argp);
4606 case BTRFS_IOC_SYNC: {
4609 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4612 ret = btrfs_sync_fs(inode->i_sb, 1);
4614 * The transaction thread may want to do more work,
4615 * namely it pokes the cleaner kthread that will start
4616 * processing uncleaned subvols.
4618 wake_up_process(fs_info->transaction_kthread);
4621 case BTRFS_IOC_START_SYNC:
4622 return btrfs_ioctl_start_sync(root, argp);
4623 case BTRFS_IOC_WAIT_SYNC:
4624 return btrfs_ioctl_wait_sync(fs_info, argp);
4625 case BTRFS_IOC_SCRUB:
4626 return btrfs_ioctl_scrub(file, argp);
4627 case BTRFS_IOC_SCRUB_CANCEL:
4628 return btrfs_ioctl_scrub_cancel(fs_info);
4629 case BTRFS_IOC_SCRUB_PROGRESS:
4630 return btrfs_ioctl_scrub_progress(fs_info, argp);
4631 case BTRFS_IOC_BALANCE_V2:
4632 return btrfs_ioctl_balance(file, argp);
4633 case BTRFS_IOC_BALANCE_CTL:
4634 return btrfs_ioctl_balance_ctl(fs_info, arg);
4635 case BTRFS_IOC_BALANCE_PROGRESS:
4636 return btrfs_ioctl_balance_progress(fs_info, argp);
4637 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4638 return btrfs_ioctl_set_received_subvol(file, argp);
4640 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4641 return btrfs_ioctl_set_received_subvol_32(file, argp);
4643 case BTRFS_IOC_SEND:
4644 return _btrfs_ioctl_send(inode, argp, false);
4645 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4646 case BTRFS_IOC_SEND_32:
4647 return _btrfs_ioctl_send(inode, argp, true);
4649 case BTRFS_IOC_GET_DEV_STATS:
4650 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4651 case BTRFS_IOC_QUOTA_CTL:
4652 return btrfs_ioctl_quota_ctl(file, argp);
4653 case BTRFS_IOC_QGROUP_ASSIGN:
4654 return btrfs_ioctl_qgroup_assign(file, argp);
4655 case BTRFS_IOC_QGROUP_CREATE:
4656 return btrfs_ioctl_qgroup_create(file, argp);
4657 case BTRFS_IOC_QGROUP_LIMIT:
4658 return btrfs_ioctl_qgroup_limit(file, argp);
4659 case BTRFS_IOC_QUOTA_RESCAN:
4660 return btrfs_ioctl_quota_rescan(file, argp);
4661 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4662 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4663 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4664 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4665 case BTRFS_IOC_DEV_REPLACE:
4666 return btrfs_ioctl_dev_replace(fs_info, argp);
4667 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4668 return btrfs_ioctl_get_supported_features(argp);
4669 case BTRFS_IOC_GET_FEATURES:
4670 return btrfs_ioctl_get_features(fs_info, argp);
4671 case BTRFS_IOC_SET_FEATURES:
4672 return btrfs_ioctl_set_features(file, argp);
4673 case BTRFS_IOC_GET_SUBVOL_INFO:
4674 return btrfs_ioctl_get_subvol_info(inode, argp);
4675 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4676 return btrfs_ioctl_get_subvol_rootref(root, argp);
4677 case BTRFS_IOC_INO_LOOKUP_USER:
4678 return btrfs_ioctl_ino_lookup_user(file, argp);
4679 case FS_IOC_ENABLE_VERITY:
4680 return fsverity_ioctl_enable(file, (const void __user *)argp);
4681 case FS_IOC_MEASURE_VERITY:
4682 return fsverity_ioctl_measure(file, argp);
4683 case BTRFS_IOC_ENCODED_READ:
4684 return btrfs_ioctl_encoded_read(file, argp, false);
4685 case BTRFS_IOC_ENCODED_WRITE:
4686 return btrfs_ioctl_encoded_write(file, argp, false);
4687 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4688 case BTRFS_IOC_ENCODED_READ_32:
4689 return btrfs_ioctl_encoded_read(file, argp, true);
4690 case BTRFS_IOC_ENCODED_WRITE_32:
4691 return btrfs_ioctl_encoded_write(file, argp, true);
4698 #ifdef CONFIG_COMPAT
4699 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4702 * These all access 32-bit values anyway so no further
4703 * handling is necessary.
4706 case FS_IOC32_GETVERSION:
4707 cmd = FS_IOC_GETVERSION;
4711 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));