]> Git Repo - J-linux.git/blob - fs/btrfs/delayed-ref.c
Merge tag 'amd-drm-next-6.5-2023-06-09' of https://gitlab.freedesktop.org/agd5f/linux...
[J-linux.git] / fs / btrfs / delayed-ref.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/sort.h>
9 #include "messages.h"
10 #include "ctree.h"
11 #include "delayed-ref.h"
12 #include "transaction.h"
13 #include "qgroup.h"
14 #include "space-info.h"
15 #include "tree-mod-log.h"
16 #include "fs.h"
17
18 struct kmem_cache *btrfs_delayed_ref_head_cachep;
19 struct kmem_cache *btrfs_delayed_tree_ref_cachep;
20 struct kmem_cache *btrfs_delayed_data_ref_cachep;
21 struct kmem_cache *btrfs_delayed_extent_op_cachep;
22 /*
23  * delayed back reference update tracking.  For subvolume trees
24  * we queue up extent allocations and backref maintenance for
25  * delayed processing.   This avoids deep call chains where we
26  * add extents in the middle of btrfs_search_slot, and it allows
27  * us to buffer up frequently modified backrefs in an rb tree instead
28  * of hammering updates on the extent allocation tree.
29  */
30
31 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
32 {
33         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
34         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
35         bool ret = false;
36         u64 reserved;
37
38         spin_lock(&global_rsv->lock);
39         reserved = global_rsv->reserved;
40         spin_unlock(&global_rsv->lock);
41
42         /*
43          * Since the global reserve is just kind of magic we don't really want
44          * to rely on it to save our bacon, so if our size is more than the
45          * delayed_refs_rsv and the global rsv then it's time to think about
46          * bailing.
47          */
48         spin_lock(&delayed_refs_rsv->lock);
49         reserved += delayed_refs_rsv->reserved;
50         if (delayed_refs_rsv->size >= reserved)
51                 ret = true;
52         spin_unlock(&delayed_refs_rsv->lock);
53         return ret;
54 }
55
56 /*
57  * Release a ref head's reservation.
58  *
59  * @fs_info:  the filesystem
60  * @nr:       number of items to drop
61  *
62  * Drops the delayed ref head's count from the delayed refs rsv and free any
63  * excess reservation we had.
64  */
65 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
66 {
67         struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
68         const u64 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr);
69         u64 released = 0;
70
71         released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
72         if (released)
73                 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
74                                               0, released, 0);
75 }
76
77 /*
78  * Adjust the size of the delayed refs rsv.
79  *
80  * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
81  * it'll calculate the additional size and add it to the delayed_refs_rsv.
82  */
83 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
84 {
85         struct btrfs_fs_info *fs_info = trans->fs_info;
86         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
87         u64 num_bytes;
88
89         if (!trans->delayed_ref_updates)
90                 return;
91
92         num_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
93                                                  trans->delayed_ref_updates);
94
95         spin_lock(&delayed_rsv->lock);
96         delayed_rsv->size += num_bytes;
97         delayed_rsv->full = false;
98         spin_unlock(&delayed_rsv->lock);
99         trans->delayed_ref_updates = 0;
100 }
101
102 /*
103  * Transfer bytes to our delayed refs rsv.
104  *
105  * @fs_info:   the filesystem
106  * @src:       source block rsv to transfer from
107  * @num_bytes: number of bytes to transfer
108  *
109  * This transfers up to the num_bytes amount from the src rsv to the
110  * delayed_refs_rsv.  Any extra bytes are returned to the space info.
111  */
112 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
113                                        struct btrfs_block_rsv *src,
114                                        u64 num_bytes)
115 {
116         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
117         u64 to_free = 0;
118
119         spin_lock(&src->lock);
120         src->reserved -= num_bytes;
121         src->size -= num_bytes;
122         spin_unlock(&src->lock);
123
124         spin_lock(&delayed_refs_rsv->lock);
125         if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
126                 u64 delta = delayed_refs_rsv->size -
127                         delayed_refs_rsv->reserved;
128                 if (num_bytes > delta) {
129                         to_free = num_bytes - delta;
130                         num_bytes = delta;
131                 }
132         } else {
133                 to_free = num_bytes;
134                 num_bytes = 0;
135         }
136
137         if (num_bytes)
138                 delayed_refs_rsv->reserved += num_bytes;
139         if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
140                 delayed_refs_rsv->full = true;
141         spin_unlock(&delayed_refs_rsv->lock);
142
143         if (num_bytes)
144                 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
145                                               0, num_bytes, 1);
146         if (to_free)
147                 btrfs_space_info_free_bytes_may_use(fs_info,
148                                 delayed_refs_rsv->space_info, to_free);
149 }
150
151 /*
152  * Refill based on our delayed refs usage.
153  *
154  * @fs_info: the filesystem
155  * @flush:   control how we can flush for this reservation.
156  *
157  * This will refill the delayed block_rsv up to 1 items size worth of space and
158  * will return -ENOSPC if we can't make the reservation.
159  */
160 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
161                                   enum btrfs_reserve_flush_enum flush)
162 {
163         struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
164         u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
165         u64 num_bytes = 0;
166         int ret = -ENOSPC;
167
168         spin_lock(&block_rsv->lock);
169         if (block_rsv->reserved < block_rsv->size) {
170                 num_bytes = block_rsv->size - block_rsv->reserved;
171                 num_bytes = min(num_bytes, limit);
172         }
173         spin_unlock(&block_rsv->lock);
174
175         if (!num_bytes)
176                 return 0;
177
178         ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
179         if (ret)
180                 return ret;
181         btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
182         trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
183                                       0, num_bytes, 1);
184         return 0;
185 }
186
187 /*
188  * compare two delayed tree backrefs with same bytenr and type
189  */
190 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
191                           struct btrfs_delayed_tree_ref *ref2)
192 {
193         if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
194                 if (ref1->root < ref2->root)
195                         return -1;
196                 if (ref1->root > ref2->root)
197                         return 1;
198         } else {
199                 if (ref1->parent < ref2->parent)
200                         return -1;
201                 if (ref1->parent > ref2->parent)
202                         return 1;
203         }
204         return 0;
205 }
206
207 /*
208  * compare two delayed data backrefs with same bytenr and type
209  */
210 static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
211                           struct btrfs_delayed_data_ref *ref2)
212 {
213         if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
214                 if (ref1->root < ref2->root)
215                         return -1;
216                 if (ref1->root > ref2->root)
217                         return 1;
218                 if (ref1->objectid < ref2->objectid)
219                         return -1;
220                 if (ref1->objectid > ref2->objectid)
221                         return 1;
222                 if (ref1->offset < ref2->offset)
223                         return -1;
224                 if (ref1->offset > ref2->offset)
225                         return 1;
226         } else {
227                 if (ref1->parent < ref2->parent)
228                         return -1;
229                 if (ref1->parent > ref2->parent)
230                         return 1;
231         }
232         return 0;
233 }
234
235 static int comp_refs(struct btrfs_delayed_ref_node *ref1,
236                      struct btrfs_delayed_ref_node *ref2,
237                      bool check_seq)
238 {
239         int ret = 0;
240
241         if (ref1->type < ref2->type)
242                 return -1;
243         if (ref1->type > ref2->type)
244                 return 1;
245         if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
246             ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
247                 ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
248                                      btrfs_delayed_node_to_tree_ref(ref2));
249         else
250                 ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
251                                      btrfs_delayed_node_to_data_ref(ref2));
252         if (ret)
253                 return ret;
254         if (check_seq) {
255                 if (ref1->seq < ref2->seq)
256                         return -1;
257                 if (ref1->seq > ref2->seq)
258                         return 1;
259         }
260         return 0;
261 }
262
263 /* insert a new ref to head ref rbtree */
264 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
265                                                    struct rb_node *node)
266 {
267         struct rb_node **p = &root->rb_root.rb_node;
268         struct rb_node *parent_node = NULL;
269         struct btrfs_delayed_ref_head *entry;
270         struct btrfs_delayed_ref_head *ins;
271         u64 bytenr;
272         bool leftmost = true;
273
274         ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
275         bytenr = ins->bytenr;
276         while (*p) {
277                 parent_node = *p;
278                 entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
279                                  href_node);
280
281                 if (bytenr < entry->bytenr) {
282                         p = &(*p)->rb_left;
283                 } else if (bytenr > entry->bytenr) {
284                         p = &(*p)->rb_right;
285                         leftmost = false;
286                 } else {
287                         return entry;
288                 }
289         }
290
291         rb_link_node(node, parent_node, p);
292         rb_insert_color_cached(node, root, leftmost);
293         return NULL;
294 }
295
296 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
297                 struct btrfs_delayed_ref_node *ins)
298 {
299         struct rb_node **p = &root->rb_root.rb_node;
300         struct rb_node *node = &ins->ref_node;
301         struct rb_node *parent_node = NULL;
302         struct btrfs_delayed_ref_node *entry;
303         bool leftmost = true;
304
305         while (*p) {
306                 int comp;
307
308                 parent_node = *p;
309                 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
310                                  ref_node);
311                 comp = comp_refs(ins, entry, true);
312                 if (comp < 0) {
313                         p = &(*p)->rb_left;
314                 } else if (comp > 0) {
315                         p = &(*p)->rb_right;
316                         leftmost = false;
317                 } else {
318                         return entry;
319                 }
320         }
321
322         rb_link_node(node, parent_node, p);
323         rb_insert_color_cached(node, root, leftmost);
324         return NULL;
325 }
326
327 static struct btrfs_delayed_ref_head *find_first_ref_head(
328                 struct btrfs_delayed_ref_root *dr)
329 {
330         struct rb_node *n;
331         struct btrfs_delayed_ref_head *entry;
332
333         n = rb_first_cached(&dr->href_root);
334         if (!n)
335                 return NULL;
336
337         entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
338
339         return entry;
340 }
341
342 /*
343  * Find a head entry based on bytenr. This returns the delayed ref head if it
344  * was able to find one, or NULL if nothing was in that spot.  If return_bigger
345  * is given, the next bigger entry is returned if no exact match is found.
346  */
347 static struct btrfs_delayed_ref_head *find_ref_head(
348                 struct btrfs_delayed_ref_root *dr, u64 bytenr,
349                 bool return_bigger)
350 {
351         struct rb_root *root = &dr->href_root.rb_root;
352         struct rb_node *n;
353         struct btrfs_delayed_ref_head *entry;
354
355         n = root->rb_node;
356         entry = NULL;
357         while (n) {
358                 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
359
360                 if (bytenr < entry->bytenr)
361                         n = n->rb_left;
362                 else if (bytenr > entry->bytenr)
363                         n = n->rb_right;
364                 else
365                         return entry;
366         }
367         if (entry && return_bigger) {
368                 if (bytenr > entry->bytenr) {
369                         n = rb_next(&entry->href_node);
370                         if (!n)
371                                 return NULL;
372                         entry = rb_entry(n, struct btrfs_delayed_ref_head,
373                                          href_node);
374                 }
375                 return entry;
376         }
377         return NULL;
378 }
379
380 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
381                            struct btrfs_delayed_ref_head *head)
382 {
383         lockdep_assert_held(&delayed_refs->lock);
384         if (mutex_trylock(&head->mutex))
385                 return 0;
386
387         refcount_inc(&head->refs);
388         spin_unlock(&delayed_refs->lock);
389
390         mutex_lock(&head->mutex);
391         spin_lock(&delayed_refs->lock);
392         if (RB_EMPTY_NODE(&head->href_node)) {
393                 mutex_unlock(&head->mutex);
394                 btrfs_put_delayed_ref_head(head);
395                 return -EAGAIN;
396         }
397         btrfs_put_delayed_ref_head(head);
398         return 0;
399 }
400
401 static inline void drop_delayed_ref(struct btrfs_delayed_ref_root *delayed_refs,
402                                     struct btrfs_delayed_ref_head *head,
403                                     struct btrfs_delayed_ref_node *ref)
404 {
405         lockdep_assert_held(&head->lock);
406         rb_erase_cached(&ref->ref_node, &head->ref_tree);
407         RB_CLEAR_NODE(&ref->ref_node);
408         if (!list_empty(&ref->add_list))
409                 list_del(&ref->add_list);
410         ref->in_tree = 0;
411         btrfs_put_delayed_ref(ref);
412         atomic_dec(&delayed_refs->num_entries);
413 }
414
415 static bool merge_ref(struct btrfs_delayed_ref_root *delayed_refs,
416                       struct btrfs_delayed_ref_head *head,
417                       struct btrfs_delayed_ref_node *ref,
418                       u64 seq)
419 {
420         struct btrfs_delayed_ref_node *next;
421         struct rb_node *node = rb_next(&ref->ref_node);
422         bool done = false;
423
424         while (!done && node) {
425                 int mod;
426
427                 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
428                 node = rb_next(node);
429                 if (seq && next->seq >= seq)
430                         break;
431                 if (comp_refs(ref, next, false))
432                         break;
433
434                 if (ref->action == next->action) {
435                         mod = next->ref_mod;
436                 } else {
437                         if (ref->ref_mod < next->ref_mod) {
438                                 swap(ref, next);
439                                 done = true;
440                         }
441                         mod = -next->ref_mod;
442                 }
443
444                 drop_delayed_ref(delayed_refs, head, next);
445                 ref->ref_mod += mod;
446                 if (ref->ref_mod == 0) {
447                         drop_delayed_ref(delayed_refs, head, ref);
448                         done = true;
449                 } else {
450                         /*
451                          * Can't have multiples of the same ref on a tree block.
452                          */
453                         WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
454                                 ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
455                 }
456         }
457
458         return done;
459 }
460
461 void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
462                               struct btrfs_delayed_ref_root *delayed_refs,
463                               struct btrfs_delayed_ref_head *head)
464 {
465         struct btrfs_delayed_ref_node *ref;
466         struct rb_node *node;
467         u64 seq = 0;
468
469         lockdep_assert_held(&head->lock);
470
471         if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
472                 return;
473
474         /* We don't have too many refs to merge for data. */
475         if (head->is_data)
476                 return;
477
478         seq = btrfs_tree_mod_log_lowest_seq(fs_info);
479 again:
480         for (node = rb_first_cached(&head->ref_tree); node;
481              node = rb_next(node)) {
482                 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
483                 if (seq && ref->seq >= seq)
484                         continue;
485                 if (merge_ref(delayed_refs, head, ref, seq))
486                         goto again;
487         }
488 }
489
490 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
491 {
492         int ret = 0;
493         u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
494
495         if (min_seq != 0 && seq >= min_seq) {
496                 btrfs_debug(fs_info,
497                             "holding back delayed_ref %llu, lowest is %llu",
498                             seq, min_seq);
499                 ret = 1;
500         }
501
502         return ret;
503 }
504
505 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
506                 struct btrfs_delayed_ref_root *delayed_refs)
507 {
508         struct btrfs_delayed_ref_head *head;
509
510 again:
511         head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
512                              true);
513         if (!head && delayed_refs->run_delayed_start != 0) {
514                 delayed_refs->run_delayed_start = 0;
515                 head = find_first_ref_head(delayed_refs);
516         }
517         if (!head)
518                 return NULL;
519
520         while (head->processing) {
521                 struct rb_node *node;
522
523                 node = rb_next(&head->href_node);
524                 if (!node) {
525                         if (delayed_refs->run_delayed_start == 0)
526                                 return NULL;
527                         delayed_refs->run_delayed_start = 0;
528                         goto again;
529                 }
530                 head = rb_entry(node, struct btrfs_delayed_ref_head,
531                                 href_node);
532         }
533
534         head->processing = 1;
535         WARN_ON(delayed_refs->num_heads_ready == 0);
536         delayed_refs->num_heads_ready--;
537         delayed_refs->run_delayed_start = head->bytenr +
538                 head->num_bytes;
539         return head;
540 }
541
542 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
543                            struct btrfs_delayed_ref_head *head)
544 {
545         lockdep_assert_held(&delayed_refs->lock);
546         lockdep_assert_held(&head->lock);
547
548         rb_erase_cached(&head->href_node, &delayed_refs->href_root);
549         RB_CLEAR_NODE(&head->href_node);
550         atomic_dec(&delayed_refs->num_entries);
551         delayed_refs->num_heads--;
552         if (head->processing == 0)
553                 delayed_refs->num_heads_ready--;
554 }
555
556 /*
557  * Helper to insert the ref_node to the tail or merge with tail.
558  *
559  * Return 0 for insert.
560  * Return >0 for merge.
561  */
562 static int insert_delayed_ref(struct btrfs_delayed_ref_root *root,
563                               struct btrfs_delayed_ref_head *href,
564                               struct btrfs_delayed_ref_node *ref)
565 {
566         struct btrfs_delayed_ref_node *exist;
567         int mod;
568         int ret = 0;
569
570         spin_lock(&href->lock);
571         exist = tree_insert(&href->ref_tree, ref);
572         if (!exist)
573                 goto inserted;
574
575         /* Now we are sure we can merge */
576         ret = 1;
577         if (exist->action == ref->action) {
578                 mod = ref->ref_mod;
579         } else {
580                 /* Need to change action */
581                 if (exist->ref_mod < ref->ref_mod) {
582                         exist->action = ref->action;
583                         mod = -exist->ref_mod;
584                         exist->ref_mod = ref->ref_mod;
585                         if (ref->action == BTRFS_ADD_DELAYED_REF)
586                                 list_add_tail(&exist->add_list,
587                                               &href->ref_add_list);
588                         else if (ref->action == BTRFS_DROP_DELAYED_REF) {
589                                 ASSERT(!list_empty(&exist->add_list));
590                                 list_del(&exist->add_list);
591                         } else {
592                                 ASSERT(0);
593                         }
594                 } else
595                         mod = -ref->ref_mod;
596         }
597         exist->ref_mod += mod;
598
599         /* remove existing tail if its ref_mod is zero */
600         if (exist->ref_mod == 0)
601                 drop_delayed_ref(root, href, exist);
602         spin_unlock(&href->lock);
603         return ret;
604 inserted:
605         if (ref->action == BTRFS_ADD_DELAYED_REF)
606                 list_add_tail(&ref->add_list, &href->ref_add_list);
607         atomic_inc(&root->num_entries);
608         spin_unlock(&href->lock);
609         return ret;
610 }
611
612 /*
613  * helper function to update the accounting in the head ref
614  * existing and update must have the same bytenr
615  */
616 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
617                          struct btrfs_delayed_ref_head *existing,
618                          struct btrfs_delayed_ref_head *update)
619 {
620         struct btrfs_delayed_ref_root *delayed_refs =
621                 &trans->transaction->delayed_refs;
622         struct btrfs_fs_info *fs_info = trans->fs_info;
623         int old_ref_mod;
624
625         BUG_ON(existing->is_data != update->is_data);
626
627         spin_lock(&existing->lock);
628         if (update->must_insert_reserved) {
629                 /* if the extent was freed and then
630                  * reallocated before the delayed ref
631                  * entries were processed, we can end up
632                  * with an existing head ref without
633                  * the must_insert_reserved flag set.
634                  * Set it again here
635                  */
636                 existing->must_insert_reserved = update->must_insert_reserved;
637
638                 /*
639                  * update the num_bytes so we make sure the accounting
640                  * is done correctly
641                  */
642                 existing->num_bytes = update->num_bytes;
643
644         }
645
646         if (update->extent_op) {
647                 if (!existing->extent_op) {
648                         existing->extent_op = update->extent_op;
649                 } else {
650                         if (update->extent_op->update_key) {
651                                 memcpy(&existing->extent_op->key,
652                                        &update->extent_op->key,
653                                        sizeof(update->extent_op->key));
654                                 existing->extent_op->update_key = true;
655                         }
656                         if (update->extent_op->update_flags) {
657                                 existing->extent_op->flags_to_set |=
658                                         update->extent_op->flags_to_set;
659                                 existing->extent_op->update_flags = true;
660                         }
661                         btrfs_free_delayed_extent_op(update->extent_op);
662                 }
663         }
664         /*
665          * update the reference mod on the head to reflect this new operation,
666          * only need the lock for this case cause we could be processing it
667          * currently, for refs we just added we know we're a-ok.
668          */
669         old_ref_mod = existing->total_ref_mod;
670         existing->ref_mod += update->ref_mod;
671         existing->total_ref_mod += update->ref_mod;
672
673         /*
674          * If we are going to from a positive ref mod to a negative or vice
675          * versa we need to make sure to adjust pending_csums accordingly.
676          */
677         if (existing->is_data) {
678                 u64 csum_leaves =
679                         btrfs_csum_bytes_to_leaves(fs_info,
680                                                    existing->num_bytes);
681
682                 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
683                         delayed_refs->pending_csums -= existing->num_bytes;
684                         btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
685                 }
686                 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
687                         delayed_refs->pending_csums += existing->num_bytes;
688                         trans->delayed_ref_updates += csum_leaves;
689                 }
690         }
691
692         spin_unlock(&existing->lock);
693 }
694
695 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
696                                   struct btrfs_qgroup_extent_record *qrecord,
697                                   u64 bytenr, u64 num_bytes, u64 ref_root,
698                                   u64 reserved, int action, bool is_data,
699                                   bool is_system)
700 {
701         int count_mod = 1;
702         int must_insert_reserved = 0;
703
704         /* If reserved is provided, it must be a data extent. */
705         BUG_ON(!is_data && reserved);
706
707         /*
708          * The head node stores the sum of all the mods, so dropping a ref
709          * should drop the sum in the head node by one.
710          */
711         if (action == BTRFS_UPDATE_DELAYED_HEAD)
712                 count_mod = 0;
713         else if (action == BTRFS_DROP_DELAYED_REF)
714                 count_mod = -1;
715
716         /*
717          * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
718          * accounting when the extent is finally added, or if a later
719          * modification deletes the delayed ref without ever inserting the
720          * extent into the extent allocation tree.  ref->must_insert_reserved
721          * is the flag used to record that accounting mods are required.
722          *
723          * Once we record must_insert_reserved, switch the action to
724          * BTRFS_ADD_DELAYED_REF because other special casing is not required.
725          */
726         if (action == BTRFS_ADD_DELAYED_EXTENT)
727                 must_insert_reserved = 1;
728         else
729                 must_insert_reserved = 0;
730
731         refcount_set(&head_ref->refs, 1);
732         head_ref->bytenr = bytenr;
733         head_ref->num_bytes = num_bytes;
734         head_ref->ref_mod = count_mod;
735         head_ref->must_insert_reserved = must_insert_reserved;
736         head_ref->is_data = is_data;
737         head_ref->is_system = is_system;
738         head_ref->ref_tree = RB_ROOT_CACHED;
739         INIT_LIST_HEAD(&head_ref->ref_add_list);
740         RB_CLEAR_NODE(&head_ref->href_node);
741         head_ref->processing = 0;
742         head_ref->total_ref_mod = count_mod;
743         spin_lock_init(&head_ref->lock);
744         mutex_init(&head_ref->mutex);
745
746         if (qrecord) {
747                 if (ref_root && reserved) {
748                         qrecord->data_rsv = reserved;
749                         qrecord->data_rsv_refroot = ref_root;
750                 }
751                 qrecord->bytenr = bytenr;
752                 qrecord->num_bytes = num_bytes;
753                 qrecord->old_roots = NULL;
754         }
755 }
756
757 /*
758  * helper function to actually insert a head node into the rbtree.
759  * this does all the dirty work in terms of maintaining the correct
760  * overall modification count.
761  */
762 static noinline struct btrfs_delayed_ref_head *
763 add_delayed_ref_head(struct btrfs_trans_handle *trans,
764                      struct btrfs_delayed_ref_head *head_ref,
765                      struct btrfs_qgroup_extent_record *qrecord,
766                      int action, int *qrecord_inserted_ret)
767 {
768         struct btrfs_delayed_ref_head *existing;
769         struct btrfs_delayed_ref_root *delayed_refs;
770         int qrecord_inserted = 0;
771
772         delayed_refs = &trans->transaction->delayed_refs;
773
774         /* Record qgroup extent info if provided */
775         if (qrecord) {
776                 if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
777                                         delayed_refs, qrecord))
778                         kfree(qrecord);
779                 else
780                         qrecord_inserted = 1;
781         }
782
783         trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
784
785         existing = htree_insert(&delayed_refs->href_root,
786                                 &head_ref->href_node);
787         if (existing) {
788                 update_existing_head_ref(trans, existing, head_ref);
789                 /*
790                  * we've updated the existing ref, free the newly
791                  * allocated ref
792                  */
793                 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
794                 head_ref = existing;
795         } else {
796                 if (head_ref->is_data && head_ref->ref_mod < 0) {
797                         delayed_refs->pending_csums += head_ref->num_bytes;
798                         trans->delayed_ref_updates +=
799                                 btrfs_csum_bytes_to_leaves(trans->fs_info,
800                                                            head_ref->num_bytes);
801                 }
802                 delayed_refs->num_heads++;
803                 delayed_refs->num_heads_ready++;
804                 atomic_inc(&delayed_refs->num_entries);
805                 trans->delayed_ref_updates++;
806         }
807         if (qrecord_inserted_ret)
808                 *qrecord_inserted_ret = qrecord_inserted;
809
810         return head_ref;
811 }
812
813 /*
814  * init_delayed_ref_common - Initialize the structure which represents a
815  *                           modification to a an extent.
816  *
817  * @fs_info:    Internal to the mounted filesystem mount structure.
818  *
819  * @ref:        The structure which is going to be initialized.
820  *
821  * @bytenr:     The logical address of the extent for which a modification is
822  *              going to be recorded.
823  *
824  * @num_bytes:  Size of the extent whose modification is being recorded.
825  *
826  * @ref_root:   The id of the root where this modification has originated, this
827  *              can be either one of the well-known metadata trees or the
828  *              subvolume id which references this extent.
829  *
830  * @action:     Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
831  *              BTRFS_ADD_DELAYED_EXTENT
832  *
833  * @ref_type:   Holds the type of the extent which is being recorded, can be
834  *              one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
835  *              when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
836  *              BTRFS_EXTENT_DATA_REF_KEY when recording data extent
837  */
838 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
839                                     struct btrfs_delayed_ref_node *ref,
840                                     u64 bytenr, u64 num_bytes, u64 ref_root,
841                                     int action, u8 ref_type)
842 {
843         u64 seq = 0;
844
845         if (action == BTRFS_ADD_DELAYED_EXTENT)
846                 action = BTRFS_ADD_DELAYED_REF;
847
848         if (is_fstree(ref_root))
849                 seq = atomic64_read(&fs_info->tree_mod_seq);
850
851         refcount_set(&ref->refs, 1);
852         ref->bytenr = bytenr;
853         ref->num_bytes = num_bytes;
854         ref->ref_mod = 1;
855         ref->action = action;
856         ref->is_head = 0;
857         ref->in_tree = 1;
858         ref->seq = seq;
859         ref->type = ref_type;
860         RB_CLEAR_NODE(&ref->ref_node);
861         INIT_LIST_HEAD(&ref->add_list);
862 }
863
864 /*
865  * add a delayed tree ref.  This does all of the accounting required
866  * to make sure the delayed ref is eventually processed before this
867  * transaction commits.
868  */
869 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
870                                struct btrfs_ref *generic_ref,
871                                struct btrfs_delayed_extent_op *extent_op)
872 {
873         struct btrfs_fs_info *fs_info = trans->fs_info;
874         struct btrfs_delayed_tree_ref *ref;
875         struct btrfs_delayed_ref_head *head_ref;
876         struct btrfs_delayed_ref_root *delayed_refs;
877         struct btrfs_qgroup_extent_record *record = NULL;
878         int qrecord_inserted;
879         bool is_system;
880         int action = generic_ref->action;
881         int level = generic_ref->tree_ref.level;
882         int ret;
883         u64 bytenr = generic_ref->bytenr;
884         u64 num_bytes = generic_ref->len;
885         u64 parent = generic_ref->parent;
886         u8 ref_type;
887
888         is_system = (generic_ref->tree_ref.owning_root == BTRFS_CHUNK_TREE_OBJECTID);
889
890         ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
891         ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
892         if (!ref)
893                 return -ENOMEM;
894
895         head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
896         if (!head_ref) {
897                 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
898                 return -ENOMEM;
899         }
900
901         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
902             !generic_ref->skip_qgroup) {
903                 record = kzalloc(sizeof(*record), GFP_NOFS);
904                 if (!record) {
905                         kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
906                         kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
907                         return -ENOMEM;
908                 }
909         }
910
911         if (parent)
912                 ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
913         else
914                 ref_type = BTRFS_TREE_BLOCK_REF_KEY;
915
916         init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
917                                 generic_ref->tree_ref.owning_root, action,
918                                 ref_type);
919         ref->root = generic_ref->tree_ref.owning_root;
920         ref->parent = parent;
921         ref->level = level;
922
923         init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
924                               generic_ref->tree_ref.owning_root, 0, action,
925                               false, is_system);
926         head_ref->extent_op = extent_op;
927
928         delayed_refs = &trans->transaction->delayed_refs;
929         spin_lock(&delayed_refs->lock);
930
931         /*
932          * insert both the head node and the new ref without dropping
933          * the spin lock
934          */
935         head_ref = add_delayed_ref_head(trans, head_ref, record,
936                                         action, &qrecord_inserted);
937
938         ret = insert_delayed_ref(delayed_refs, head_ref, &ref->node);
939         spin_unlock(&delayed_refs->lock);
940
941         /*
942          * Need to update the delayed_refs_rsv with any changes we may have
943          * made.
944          */
945         btrfs_update_delayed_refs_rsv(trans);
946
947         trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
948                                    action == BTRFS_ADD_DELAYED_EXTENT ?
949                                    BTRFS_ADD_DELAYED_REF : action);
950         if (ret > 0)
951                 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
952
953         if (qrecord_inserted)
954                 btrfs_qgroup_trace_extent_post(trans, record);
955
956         return 0;
957 }
958
959 /*
960  * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
961  */
962 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
963                                struct btrfs_ref *generic_ref,
964                                u64 reserved)
965 {
966         struct btrfs_fs_info *fs_info = trans->fs_info;
967         struct btrfs_delayed_data_ref *ref;
968         struct btrfs_delayed_ref_head *head_ref;
969         struct btrfs_delayed_ref_root *delayed_refs;
970         struct btrfs_qgroup_extent_record *record = NULL;
971         int qrecord_inserted;
972         int action = generic_ref->action;
973         int ret;
974         u64 bytenr = generic_ref->bytenr;
975         u64 num_bytes = generic_ref->len;
976         u64 parent = generic_ref->parent;
977         u64 ref_root = generic_ref->data_ref.owning_root;
978         u64 owner = generic_ref->data_ref.ino;
979         u64 offset = generic_ref->data_ref.offset;
980         u8 ref_type;
981
982         ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
983         ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
984         if (!ref)
985                 return -ENOMEM;
986
987         if (parent)
988                 ref_type = BTRFS_SHARED_DATA_REF_KEY;
989         else
990                 ref_type = BTRFS_EXTENT_DATA_REF_KEY;
991         init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
992                                 ref_root, action, ref_type);
993         ref->root = ref_root;
994         ref->parent = parent;
995         ref->objectid = owner;
996         ref->offset = offset;
997
998
999         head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1000         if (!head_ref) {
1001                 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1002                 return -ENOMEM;
1003         }
1004
1005         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1006             !generic_ref->skip_qgroup) {
1007                 record = kzalloc(sizeof(*record), GFP_NOFS);
1008                 if (!record) {
1009                         kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1010                         kmem_cache_free(btrfs_delayed_ref_head_cachep,
1011                                         head_ref);
1012                         return -ENOMEM;
1013                 }
1014         }
1015
1016         init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1017                               reserved, action, true, false);
1018         head_ref->extent_op = NULL;
1019
1020         delayed_refs = &trans->transaction->delayed_refs;
1021         spin_lock(&delayed_refs->lock);
1022
1023         /*
1024          * insert both the head node and the new ref without dropping
1025          * the spin lock
1026          */
1027         head_ref = add_delayed_ref_head(trans, head_ref, record,
1028                                         action, &qrecord_inserted);
1029
1030         ret = insert_delayed_ref(delayed_refs, head_ref, &ref->node);
1031         spin_unlock(&delayed_refs->lock);
1032
1033         /*
1034          * Need to update the delayed_refs_rsv with any changes we may have
1035          * made.
1036          */
1037         btrfs_update_delayed_refs_rsv(trans);
1038
1039         trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1040                                    action == BTRFS_ADD_DELAYED_EXTENT ?
1041                                    BTRFS_ADD_DELAYED_REF : action);
1042         if (ret > 0)
1043                 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1044
1045
1046         if (qrecord_inserted)
1047                 return btrfs_qgroup_trace_extent_post(trans, record);
1048         return 0;
1049 }
1050
1051 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1052                                 u64 bytenr, u64 num_bytes,
1053                                 struct btrfs_delayed_extent_op *extent_op)
1054 {
1055         struct btrfs_delayed_ref_head *head_ref;
1056         struct btrfs_delayed_ref_root *delayed_refs;
1057
1058         head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1059         if (!head_ref)
1060                 return -ENOMEM;
1061
1062         init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1063                               BTRFS_UPDATE_DELAYED_HEAD, false, false);
1064         head_ref->extent_op = extent_op;
1065
1066         delayed_refs = &trans->transaction->delayed_refs;
1067         spin_lock(&delayed_refs->lock);
1068
1069         add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1070                              NULL);
1071
1072         spin_unlock(&delayed_refs->lock);
1073
1074         /*
1075          * Need to update the delayed_refs_rsv with any changes we may have
1076          * made.
1077          */
1078         btrfs_update_delayed_refs_rsv(trans);
1079         return 0;
1080 }
1081
1082 /*
1083  * This does a simple search for the head node for a given extent.  Returns the
1084  * head node if found, or NULL if not.
1085  */
1086 struct btrfs_delayed_ref_head *
1087 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1088 {
1089         lockdep_assert_held(&delayed_refs->lock);
1090
1091         return find_ref_head(delayed_refs, bytenr, false);
1092 }
1093
1094 void __cold btrfs_delayed_ref_exit(void)
1095 {
1096         kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1097         kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1098         kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1099         kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1100 }
1101
1102 int __init btrfs_delayed_ref_init(void)
1103 {
1104         btrfs_delayed_ref_head_cachep = kmem_cache_create(
1105                                 "btrfs_delayed_ref_head",
1106                                 sizeof(struct btrfs_delayed_ref_head), 0,
1107                                 SLAB_MEM_SPREAD, NULL);
1108         if (!btrfs_delayed_ref_head_cachep)
1109                 goto fail;
1110
1111         btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1112                                 "btrfs_delayed_tree_ref",
1113                                 sizeof(struct btrfs_delayed_tree_ref), 0,
1114                                 SLAB_MEM_SPREAD, NULL);
1115         if (!btrfs_delayed_tree_ref_cachep)
1116                 goto fail;
1117
1118         btrfs_delayed_data_ref_cachep = kmem_cache_create(
1119                                 "btrfs_delayed_data_ref",
1120                                 sizeof(struct btrfs_delayed_data_ref), 0,
1121                                 SLAB_MEM_SPREAD, NULL);
1122         if (!btrfs_delayed_data_ref_cachep)
1123                 goto fail;
1124
1125         btrfs_delayed_extent_op_cachep = kmem_cache_create(
1126                                 "btrfs_delayed_extent_op",
1127                                 sizeof(struct btrfs_delayed_extent_op), 0,
1128                                 SLAB_MEM_SPREAD, NULL);
1129         if (!btrfs_delayed_extent_op_cachep)
1130                 goto fail;
1131
1132         return 0;
1133 fail:
1134         btrfs_delayed_ref_exit();
1135         return -ENOMEM;
1136 }
This page took 0.128109 seconds and 4 git commands to generate.