]> Git Repo - J-linux.git/blob - drivers/spi/spi-cadence-quadspi.c
Merge tag 'amd-drm-next-6.5-2023-06-09' of https://gitlab.freedesktop.org/agd5f/linux...
[J-linux.git] / drivers / spi / spi-cadence-quadspi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of_device.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/reset.h>
29 #include <linux/sched.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi-mem.h>
32 #include <linux/timer.h>
33
34 #define CQSPI_NAME                      "cadence-qspi"
35 #define CQSPI_MAX_CHIPSELECT            16
36
37 /* Quirks */
38 #define CQSPI_NEEDS_WR_DELAY            BIT(0)
39 #define CQSPI_DISABLE_DAC_MODE          BIT(1)
40 #define CQSPI_SUPPORT_EXTERNAL_DMA      BIT(2)
41 #define CQSPI_NO_SUPPORT_WR_COMPLETION  BIT(3)
42 #define CQSPI_SLOW_SRAM         BIT(4)
43
44 /* Capabilities */
45 #define CQSPI_SUPPORTS_OCTAL            BIT(0)
46
47 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
48
49 struct cqspi_st;
50
51 struct cqspi_flash_pdata {
52         struct cqspi_st *cqspi;
53         u32             clk_rate;
54         u32             read_delay;
55         u32             tshsl_ns;
56         u32             tsd2d_ns;
57         u32             tchsh_ns;
58         u32             tslch_ns;
59         u8              cs;
60 };
61
62 struct cqspi_st {
63         struct platform_device  *pdev;
64         struct spi_master       *master;
65         struct clk              *clk;
66         unsigned int            sclk;
67
68         void __iomem            *iobase;
69         void __iomem            *ahb_base;
70         resource_size_t         ahb_size;
71         struct completion       transfer_complete;
72
73         struct dma_chan         *rx_chan;
74         struct completion       rx_dma_complete;
75         dma_addr_t              mmap_phys_base;
76
77         int                     current_cs;
78         unsigned long           master_ref_clk_hz;
79         bool                    is_decoded_cs;
80         u32                     fifo_depth;
81         u32                     fifo_width;
82         u32                     num_chipselect;
83         bool                    rclk_en;
84         u32                     trigger_address;
85         u32                     wr_delay;
86         bool                    use_direct_mode;
87         bool                    use_direct_mode_wr;
88         struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
89         bool                    use_dma_read;
90         u32                     pd_dev_id;
91         bool                    wr_completion;
92         bool                    slow_sram;
93 };
94
95 struct cqspi_driver_platdata {
96         u32 hwcaps_mask;
97         u8 quirks;
98         int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
99                                  u_char *rxbuf, loff_t from_addr, size_t n_rx);
100         u32 (*get_dma_status)(struct cqspi_st *cqspi);
101 };
102
103 /* Operation timeout value */
104 #define CQSPI_TIMEOUT_MS                        500
105 #define CQSPI_READ_TIMEOUT_MS                   10
106
107 #define CQSPI_DUMMY_CLKS_PER_BYTE               8
108 #define CQSPI_DUMMY_BYTES_MAX                   4
109 #define CQSPI_DUMMY_CLKS_MAX                    31
110
111 #define CQSPI_STIG_DATA_LEN_MAX                 8
112
113 /* Register map */
114 #define CQSPI_REG_CONFIG                        0x00
115 #define CQSPI_REG_CONFIG_ENABLE_MASK            BIT(0)
116 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL       BIT(7)
117 #define CQSPI_REG_CONFIG_DECODE_MASK            BIT(9)
118 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB         10
119 #define CQSPI_REG_CONFIG_DMA_MASK               BIT(15)
120 #define CQSPI_REG_CONFIG_BAUD_LSB               19
121 #define CQSPI_REG_CONFIG_DTR_PROTO              BIT(24)
122 #define CQSPI_REG_CONFIG_DUAL_OPCODE            BIT(30)
123 #define CQSPI_REG_CONFIG_IDLE_LSB               31
124 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK        0xF
125 #define CQSPI_REG_CONFIG_BAUD_MASK              0xF
126
127 #define CQSPI_REG_RD_INSTR                      0x04
128 #define CQSPI_REG_RD_INSTR_OPCODE_LSB           0
129 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB       8
130 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB        12
131 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB        16
132 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB          20
133 #define CQSPI_REG_RD_INSTR_DUMMY_LSB            24
134 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK      0x3
135 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK       0x3
136 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK       0x3
137 #define CQSPI_REG_RD_INSTR_DUMMY_MASK           0x1F
138
139 #define CQSPI_REG_WR_INSTR                      0x08
140 #define CQSPI_REG_WR_INSTR_OPCODE_LSB           0
141 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB        12
142 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB        16
143
144 #define CQSPI_REG_DELAY                         0x0C
145 #define CQSPI_REG_DELAY_TSLCH_LSB               0
146 #define CQSPI_REG_DELAY_TCHSH_LSB               8
147 #define CQSPI_REG_DELAY_TSD2D_LSB               16
148 #define CQSPI_REG_DELAY_TSHSL_LSB               24
149 #define CQSPI_REG_DELAY_TSLCH_MASK              0xFF
150 #define CQSPI_REG_DELAY_TCHSH_MASK              0xFF
151 #define CQSPI_REG_DELAY_TSD2D_MASK              0xFF
152 #define CQSPI_REG_DELAY_TSHSL_MASK              0xFF
153
154 #define CQSPI_REG_READCAPTURE                   0x10
155 #define CQSPI_REG_READCAPTURE_BYPASS_LSB        0
156 #define CQSPI_REG_READCAPTURE_DELAY_LSB         1
157 #define CQSPI_REG_READCAPTURE_DELAY_MASK        0xF
158
159 #define CQSPI_REG_SIZE                          0x14
160 #define CQSPI_REG_SIZE_ADDRESS_LSB              0
161 #define CQSPI_REG_SIZE_PAGE_LSB                 4
162 #define CQSPI_REG_SIZE_BLOCK_LSB                16
163 #define CQSPI_REG_SIZE_ADDRESS_MASK             0xF
164 #define CQSPI_REG_SIZE_PAGE_MASK                0xFFF
165 #define CQSPI_REG_SIZE_BLOCK_MASK               0x3F
166
167 #define CQSPI_REG_SRAMPARTITION                 0x18
168 #define CQSPI_REG_INDIRECTTRIGGER               0x1C
169
170 #define CQSPI_REG_DMA                           0x20
171 #define CQSPI_REG_DMA_SINGLE_LSB                0
172 #define CQSPI_REG_DMA_BURST_LSB                 8
173 #define CQSPI_REG_DMA_SINGLE_MASK               0xFF
174 #define CQSPI_REG_DMA_BURST_MASK                0xFF
175
176 #define CQSPI_REG_REMAP                         0x24
177 #define CQSPI_REG_MODE_BIT                      0x28
178
179 #define CQSPI_REG_SDRAMLEVEL                    0x2C
180 #define CQSPI_REG_SDRAMLEVEL_RD_LSB             0
181 #define CQSPI_REG_SDRAMLEVEL_WR_LSB             16
182 #define CQSPI_REG_SDRAMLEVEL_RD_MASK            0xFFFF
183 #define CQSPI_REG_SDRAMLEVEL_WR_MASK            0xFFFF
184
185 #define CQSPI_REG_WR_COMPLETION_CTRL            0x38
186 #define CQSPI_REG_WR_DISABLE_AUTO_POLL          BIT(14)
187
188 #define CQSPI_REG_IRQSTATUS                     0x40
189 #define CQSPI_REG_IRQMASK                       0x44
190
191 #define CQSPI_REG_INDIRECTRD                    0x60
192 #define CQSPI_REG_INDIRECTRD_START_MASK         BIT(0)
193 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK        BIT(1)
194 #define CQSPI_REG_INDIRECTRD_DONE_MASK          BIT(5)
195
196 #define CQSPI_REG_INDIRECTRDWATERMARK           0x64
197 #define CQSPI_REG_INDIRECTRDSTARTADDR           0x68
198 #define CQSPI_REG_INDIRECTRDBYTES               0x6C
199
200 #define CQSPI_REG_CMDCTRL                       0x90
201 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK          BIT(0)
202 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK       BIT(1)
203 #define CQSPI_REG_CMDCTRL_DUMMY_LSB             7
204 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB          12
205 #define CQSPI_REG_CMDCTRL_WR_EN_LSB             15
206 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB         16
207 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB           19
208 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB          20
209 #define CQSPI_REG_CMDCTRL_RD_EN_LSB             23
210 #define CQSPI_REG_CMDCTRL_OPCODE_LSB            24
211 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK         0x7
212 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK        0x3
213 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK         0x7
214 #define CQSPI_REG_CMDCTRL_DUMMY_MASK            0x1F
215
216 #define CQSPI_REG_INDIRECTWR                    0x70
217 #define CQSPI_REG_INDIRECTWR_START_MASK         BIT(0)
218 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK        BIT(1)
219 #define CQSPI_REG_INDIRECTWR_DONE_MASK          BIT(5)
220
221 #define CQSPI_REG_INDIRECTWRWATERMARK           0x74
222 #define CQSPI_REG_INDIRECTWRSTARTADDR           0x78
223 #define CQSPI_REG_INDIRECTWRBYTES               0x7C
224
225 #define CQSPI_REG_INDTRIG_ADDRRANGE             0x80
226
227 #define CQSPI_REG_CMDADDRESS                    0x94
228 #define CQSPI_REG_CMDREADDATALOWER              0xA0
229 #define CQSPI_REG_CMDREADDATAUPPER              0xA4
230 #define CQSPI_REG_CMDWRITEDATALOWER             0xA8
231 #define CQSPI_REG_CMDWRITEDATAUPPER             0xAC
232
233 #define CQSPI_REG_POLLING_STATUS                0xB0
234 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB      16
235
236 #define CQSPI_REG_OP_EXT_LOWER                  0xE0
237 #define CQSPI_REG_OP_EXT_READ_LSB               24
238 #define CQSPI_REG_OP_EXT_WRITE_LSB              16
239 #define CQSPI_REG_OP_EXT_STIG_LSB               0
240
241 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR           0x1000
242
243 #define CQSPI_REG_VERSAL_DMA_DST_ADDR           0x1800
244 #define CQSPI_REG_VERSAL_DMA_DST_SIZE           0x1804
245
246 #define CQSPI_REG_VERSAL_DMA_DST_CTRL           0x180C
247
248 #define CQSPI_REG_VERSAL_DMA_DST_I_STS          0x1814
249 #define CQSPI_REG_VERSAL_DMA_DST_I_EN           0x1818
250 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS          0x181C
251 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK      BIT(1)
252
253 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB       0x1828
254
255 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL       0xF43FFA00
256 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL    0x6
257
258 /* Interrupt status bits */
259 #define CQSPI_REG_IRQ_MODE_ERR                  BIT(0)
260 #define CQSPI_REG_IRQ_UNDERFLOW                 BIT(1)
261 #define CQSPI_REG_IRQ_IND_COMP                  BIT(2)
262 #define CQSPI_REG_IRQ_IND_RD_REJECT             BIT(3)
263 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR          BIT(4)
264 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR           BIT(5)
265 #define CQSPI_REG_IRQ_WATERMARK                 BIT(6)
266 #define CQSPI_REG_IRQ_IND_SRAM_FULL             BIT(12)
267
268 #define CQSPI_IRQ_MASK_RD               (CQSPI_REG_IRQ_WATERMARK        | \
269                                          CQSPI_REG_IRQ_IND_SRAM_FULL    | \
270                                          CQSPI_REG_IRQ_IND_COMP)
271
272 #define CQSPI_IRQ_MASK_WR               (CQSPI_REG_IRQ_IND_COMP         | \
273                                          CQSPI_REG_IRQ_WATERMARK        | \
274                                          CQSPI_REG_IRQ_UNDERFLOW)
275
276 #define CQSPI_IRQ_STATUS_MASK           0x1FFFF
277 #define CQSPI_DMA_UNALIGN               0x3
278
279 #define CQSPI_REG_VERSAL_DMA_VAL                0x602
280
281 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
282 {
283         u32 val;
284
285         return readl_relaxed_poll_timeout(reg, val,
286                                           (((clr ? ~val : val) & mask) == mask),
287                                           10, CQSPI_TIMEOUT_MS * 1000);
288 }
289
290 static bool cqspi_is_idle(struct cqspi_st *cqspi)
291 {
292         u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
293
294         return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
295 }
296
297 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
298 {
299         u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
300
301         reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
302         return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
303 }
304
305 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
306 {
307         u32 dma_status;
308
309         dma_status = readl(cqspi->iobase +
310                                            CQSPI_REG_VERSAL_DMA_DST_I_STS);
311         writel(dma_status, cqspi->iobase +
312                    CQSPI_REG_VERSAL_DMA_DST_I_STS);
313
314         return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
315 }
316
317 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
318 {
319         struct cqspi_st *cqspi = dev;
320         unsigned int irq_status;
321         struct device *device = &cqspi->pdev->dev;
322         const struct cqspi_driver_platdata *ddata;
323
324         ddata = of_device_get_match_data(device);
325
326         /* Read interrupt status */
327         irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
328
329         /* Clear interrupt */
330         writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
331
332         if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
333                 if (ddata->get_dma_status(cqspi)) {
334                         complete(&cqspi->transfer_complete);
335                         return IRQ_HANDLED;
336                 }
337         }
338
339         else if (!cqspi->slow_sram)
340                 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
341         else
342                 irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
343
344         if (irq_status)
345                 complete(&cqspi->transfer_complete);
346
347         return IRQ_HANDLED;
348 }
349
350 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
351 {
352         u32 rdreg = 0;
353
354         rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
355         rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
356         rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
357
358         return rdreg;
359 }
360
361 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
362 {
363         unsigned int dummy_clk;
364
365         if (!op->dummy.nbytes)
366                 return 0;
367
368         dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
369         if (op->cmd.dtr)
370                 dummy_clk /= 2;
371
372         return dummy_clk;
373 }
374
375 static int cqspi_wait_idle(struct cqspi_st *cqspi)
376 {
377         const unsigned int poll_idle_retry = 3;
378         unsigned int count = 0;
379         unsigned long timeout;
380
381         timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
382         while (1) {
383                 /*
384                  * Read few times in succession to ensure the controller
385                  * is indeed idle, that is, the bit does not transition
386                  * low again.
387                  */
388                 if (cqspi_is_idle(cqspi))
389                         count++;
390                 else
391                         count = 0;
392
393                 if (count >= poll_idle_retry)
394                         return 0;
395
396                 if (time_after(jiffies, timeout)) {
397                         /* Timeout, in busy mode. */
398                         dev_err(&cqspi->pdev->dev,
399                                 "QSPI is still busy after %dms timeout.\n",
400                                 CQSPI_TIMEOUT_MS);
401                         return -ETIMEDOUT;
402                 }
403
404                 cpu_relax();
405         }
406 }
407
408 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
409 {
410         void __iomem *reg_base = cqspi->iobase;
411         int ret;
412
413         /* Write the CMDCTRL without start execution. */
414         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
415         /* Start execute */
416         reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
417         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
418
419         /* Polling for completion. */
420         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
421                                  CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
422         if (ret) {
423                 dev_err(&cqspi->pdev->dev,
424                         "Flash command execution timed out.\n");
425                 return ret;
426         }
427
428         /* Polling QSPI idle status. */
429         return cqspi_wait_idle(cqspi);
430 }
431
432 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
433                                   const struct spi_mem_op *op,
434                                   unsigned int shift)
435 {
436         struct cqspi_st *cqspi = f_pdata->cqspi;
437         void __iomem *reg_base = cqspi->iobase;
438         unsigned int reg;
439         u8 ext;
440
441         if (op->cmd.nbytes != 2)
442                 return -EINVAL;
443
444         /* Opcode extension is the LSB. */
445         ext = op->cmd.opcode & 0xff;
446
447         reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
448         reg &= ~(0xff << shift);
449         reg |= ext << shift;
450         writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
451
452         return 0;
453 }
454
455 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
456                             const struct spi_mem_op *op, unsigned int shift)
457 {
458         struct cqspi_st *cqspi = f_pdata->cqspi;
459         void __iomem *reg_base = cqspi->iobase;
460         unsigned int reg;
461         int ret;
462
463         reg = readl(reg_base + CQSPI_REG_CONFIG);
464
465         /*
466          * We enable dual byte opcode here. The callers have to set up the
467          * extension opcode based on which type of operation it is.
468          */
469         if (op->cmd.dtr) {
470                 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
471                 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
472
473                 /* Set up command opcode extension. */
474                 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
475                 if (ret)
476                         return ret;
477         } else {
478                 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
479                 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
480         }
481
482         writel(reg, reg_base + CQSPI_REG_CONFIG);
483
484         return cqspi_wait_idle(cqspi);
485 }
486
487 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
488                               const struct spi_mem_op *op)
489 {
490         struct cqspi_st *cqspi = f_pdata->cqspi;
491         void __iomem *reg_base = cqspi->iobase;
492         u8 *rxbuf = op->data.buf.in;
493         u8 opcode;
494         size_t n_rx = op->data.nbytes;
495         unsigned int rdreg;
496         unsigned int reg;
497         unsigned int dummy_clk;
498         size_t read_len;
499         int status;
500
501         status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
502         if (status)
503                 return status;
504
505         if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
506                 dev_err(&cqspi->pdev->dev,
507                         "Invalid input argument, len %zu rxbuf 0x%p\n",
508                         n_rx, rxbuf);
509                 return -EINVAL;
510         }
511
512         if (op->cmd.dtr)
513                 opcode = op->cmd.opcode >> 8;
514         else
515                 opcode = op->cmd.opcode;
516
517         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
518
519         rdreg = cqspi_calc_rdreg(op);
520         writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
521
522         dummy_clk = cqspi_calc_dummy(op);
523         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
524                 return -EOPNOTSUPP;
525
526         if (dummy_clk)
527                 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
528                      << CQSPI_REG_CMDCTRL_DUMMY_LSB;
529
530         reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
531
532         /* 0 means 1 byte. */
533         reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
534                 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
535
536         /* setup ADDR BIT field */
537         if (op->addr.nbytes) {
538                 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
539                 reg |= ((op->addr.nbytes - 1) &
540                         CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
541                         << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
542
543                 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
544         }
545
546         status = cqspi_exec_flash_cmd(cqspi, reg);
547         if (status)
548                 return status;
549
550         reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
551
552         /* Put the read value into rx_buf */
553         read_len = (n_rx > 4) ? 4 : n_rx;
554         memcpy(rxbuf, &reg, read_len);
555         rxbuf += read_len;
556
557         if (n_rx > 4) {
558                 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
559
560                 read_len = n_rx - read_len;
561                 memcpy(rxbuf, &reg, read_len);
562         }
563
564         /* Reset CMD_CTRL Reg once command read completes */
565         writel(0, reg_base + CQSPI_REG_CMDCTRL);
566
567         return 0;
568 }
569
570 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
571                                const struct spi_mem_op *op)
572 {
573         struct cqspi_st *cqspi = f_pdata->cqspi;
574         void __iomem *reg_base = cqspi->iobase;
575         u8 opcode;
576         const u8 *txbuf = op->data.buf.out;
577         size_t n_tx = op->data.nbytes;
578         unsigned int reg;
579         unsigned int data;
580         size_t write_len;
581         int ret;
582
583         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
584         if (ret)
585                 return ret;
586
587         if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
588                 dev_err(&cqspi->pdev->dev,
589                         "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
590                         n_tx, txbuf);
591                 return -EINVAL;
592         }
593
594         reg = cqspi_calc_rdreg(op);
595         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
596
597         if (op->cmd.dtr)
598                 opcode = op->cmd.opcode >> 8;
599         else
600                 opcode = op->cmd.opcode;
601
602         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
603
604         if (op->addr.nbytes) {
605                 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
606                 reg |= ((op->addr.nbytes - 1) &
607                         CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
608                         << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
609
610                 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
611         }
612
613         if (n_tx) {
614                 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
615                 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
616                         << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
617                 data = 0;
618                 write_len = (n_tx > 4) ? 4 : n_tx;
619                 memcpy(&data, txbuf, write_len);
620                 txbuf += write_len;
621                 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
622
623                 if (n_tx > 4) {
624                         data = 0;
625                         write_len = n_tx - 4;
626                         memcpy(&data, txbuf, write_len);
627                         writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
628                 }
629         }
630
631         ret = cqspi_exec_flash_cmd(cqspi, reg);
632
633         /* Reset CMD_CTRL Reg once command write completes */
634         writel(0, reg_base + CQSPI_REG_CMDCTRL);
635
636         return ret;
637 }
638
639 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
640                             const struct spi_mem_op *op)
641 {
642         struct cqspi_st *cqspi = f_pdata->cqspi;
643         void __iomem *reg_base = cqspi->iobase;
644         unsigned int dummy_clk = 0;
645         unsigned int reg;
646         int ret;
647         u8 opcode;
648
649         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
650         if (ret)
651                 return ret;
652
653         if (op->cmd.dtr)
654                 opcode = op->cmd.opcode >> 8;
655         else
656                 opcode = op->cmd.opcode;
657
658         reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
659         reg |= cqspi_calc_rdreg(op);
660
661         /* Setup dummy clock cycles */
662         dummy_clk = cqspi_calc_dummy(op);
663
664         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
665                 return -EOPNOTSUPP;
666
667         if (dummy_clk)
668                 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
669                        << CQSPI_REG_RD_INSTR_DUMMY_LSB;
670
671         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
672
673         /* Set address width */
674         reg = readl(reg_base + CQSPI_REG_SIZE);
675         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
676         reg |= (op->addr.nbytes - 1);
677         writel(reg, reg_base + CQSPI_REG_SIZE);
678         return 0;
679 }
680
681 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
682                                        u8 *rxbuf, loff_t from_addr,
683                                        const size_t n_rx)
684 {
685         struct cqspi_st *cqspi = f_pdata->cqspi;
686         struct device *dev = &cqspi->pdev->dev;
687         void __iomem *reg_base = cqspi->iobase;
688         void __iomem *ahb_base = cqspi->ahb_base;
689         unsigned int remaining = n_rx;
690         unsigned int mod_bytes = n_rx % 4;
691         unsigned int bytes_to_read = 0;
692         u8 *rxbuf_end = rxbuf + n_rx;
693         int ret = 0;
694
695         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
696         writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
697
698         /* Clear all interrupts. */
699         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
700
701         /*
702          * On SoCFPGA platform reading the SRAM is slow due to
703          * hardware limitation and causing read interrupt storm to CPU,
704          * so enabling only watermark interrupt to disable all read
705          * interrupts later as we want to run "bytes to read" loop with
706          * all the read interrupts disabled for max performance.
707          */
708
709         if (!cqspi->slow_sram)
710                 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
711         else
712                 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
713
714         reinit_completion(&cqspi->transfer_complete);
715         writel(CQSPI_REG_INDIRECTRD_START_MASK,
716                reg_base + CQSPI_REG_INDIRECTRD);
717
718         while (remaining > 0) {
719                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
720                                                  msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
721                         ret = -ETIMEDOUT;
722
723                 /*
724                  * Disable all read interrupts until
725                  * we are out of "bytes to read"
726                  */
727                 if (cqspi->slow_sram)
728                         writel(0x0, reg_base + CQSPI_REG_IRQMASK);
729
730                 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
731
732                 if (ret && bytes_to_read == 0) {
733                         dev_err(dev, "Indirect read timeout, no bytes\n");
734                         goto failrd;
735                 }
736
737                 while (bytes_to_read != 0) {
738                         unsigned int word_remain = round_down(remaining, 4);
739
740                         bytes_to_read *= cqspi->fifo_width;
741                         bytes_to_read = bytes_to_read > remaining ?
742                                         remaining : bytes_to_read;
743                         bytes_to_read = round_down(bytes_to_read, 4);
744                         /* Read 4 byte word chunks then single bytes */
745                         if (bytes_to_read) {
746                                 ioread32_rep(ahb_base, rxbuf,
747                                              (bytes_to_read / 4));
748                         } else if (!word_remain && mod_bytes) {
749                                 unsigned int temp = ioread32(ahb_base);
750
751                                 bytes_to_read = mod_bytes;
752                                 memcpy(rxbuf, &temp, min((unsigned int)
753                                                          (rxbuf_end - rxbuf),
754                                                          bytes_to_read));
755                         }
756                         rxbuf += bytes_to_read;
757                         remaining -= bytes_to_read;
758                         bytes_to_read = cqspi_get_rd_sram_level(cqspi);
759                 }
760
761                 if (remaining > 0) {
762                         reinit_completion(&cqspi->transfer_complete);
763                         if (cqspi->slow_sram)
764                                 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
765                 }
766         }
767
768         /* Check indirect done status */
769         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
770                                  CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
771         if (ret) {
772                 dev_err(dev, "Indirect read completion error (%i)\n", ret);
773                 goto failrd;
774         }
775
776         /* Disable interrupt */
777         writel(0, reg_base + CQSPI_REG_IRQMASK);
778
779         /* Clear indirect completion status */
780         writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
781
782         return 0;
783
784 failrd:
785         /* Disable interrupt */
786         writel(0, reg_base + CQSPI_REG_IRQMASK);
787
788         /* Cancel the indirect read */
789         writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
790                reg_base + CQSPI_REG_INDIRECTRD);
791         return ret;
792 }
793
794 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
795 {
796         void __iomem *reg_base = cqspi->iobase;
797         unsigned int reg;
798
799         reg = readl(reg_base + CQSPI_REG_CONFIG);
800
801         if (enable)
802                 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
803         else
804                 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
805
806         writel(reg, reg_base + CQSPI_REG_CONFIG);
807 }
808
809 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
810                                           u_char *rxbuf, loff_t from_addr,
811                                           size_t n_rx)
812 {
813         struct cqspi_st *cqspi = f_pdata->cqspi;
814         struct device *dev = &cqspi->pdev->dev;
815         void __iomem *reg_base = cqspi->iobase;
816         u32 reg, bytes_to_dma;
817         loff_t addr = from_addr;
818         void *buf = rxbuf;
819         dma_addr_t dma_addr;
820         u8 bytes_rem;
821         int ret = 0;
822
823         bytes_rem = n_rx % 4;
824         bytes_to_dma = (n_rx - bytes_rem);
825
826         if (!bytes_to_dma)
827                 goto nondmard;
828
829         ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
830         if (ret)
831                 return ret;
832
833         cqspi_controller_enable(cqspi, 0);
834
835         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
836         reg |= CQSPI_REG_CONFIG_DMA_MASK;
837         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
838
839         cqspi_controller_enable(cqspi, 1);
840
841         dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
842         if (dma_mapping_error(dev, dma_addr)) {
843                 dev_err(dev, "dma mapping failed\n");
844                 return -ENOMEM;
845         }
846
847         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
848         writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
849         writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
850                reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
851
852         /* Clear all interrupts. */
853         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
854
855         /* Enable DMA done interrupt */
856         writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
857                reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
858
859         /* Default DMA periph configuration */
860         writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
861
862         /* Configure DMA Dst address */
863         writel(lower_32_bits(dma_addr),
864                reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
865         writel(upper_32_bits(dma_addr),
866                reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
867
868         /* Configure DMA Src address */
869         writel(cqspi->trigger_address, reg_base +
870                CQSPI_REG_VERSAL_DMA_SRC_ADDR);
871
872         /* Set DMA destination size */
873         writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
874
875         /* Set DMA destination control */
876         writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
877                reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
878
879         writel(CQSPI_REG_INDIRECTRD_START_MASK,
880                reg_base + CQSPI_REG_INDIRECTRD);
881
882         reinit_completion(&cqspi->transfer_complete);
883
884         if (!wait_for_completion_timeout(&cqspi->transfer_complete,
885                                          msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
886                 ret = -ETIMEDOUT;
887                 goto failrd;
888         }
889
890         /* Disable DMA interrupt */
891         writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
892
893         /* Clear indirect completion status */
894         writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
895                cqspi->iobase + CQSPI_REG_INDIRECTRD);
896         dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
897
898         cqspi_controller_enable(cqspi, 0);
899
900         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
901         reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
902         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
903
904         cqspi_controller_enable(cqspi, 1);
905
906         ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
907                                         PM_OSPI_MUX_SEL_LINEAR);
908         if (ret)
909                 return ret;
910
911 nondmard:
912         if (bytes_rem) {
913                 addr += bytes_to_dma;
914                 buf += bytes_to_dma;
915                 ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
916                                                   bytes_rem);
917                 if (ret)
918                         return ret;
919         }
920
921         return 0;
922
923 failrd:
924         /* Disable DMA interrupt */
925         writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
926
927         /* Cancel the indirect read */
928         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
929                reg_base + CQSPI_REG_INDIRECTRD);
930
931         dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
932
933         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
934         reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
935         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
936
937         zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
938
939         return ret;
940 }
941
942 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
943                              const struct spi_mem_op *op)
944 {
945         unsigned int reg;
946         int ret;
947         struct cqspi_st *cqspi = f_pdata->cqspi;
948         void __iomem *reg_base = cqspi->iobase;
949         u8 opcode;
950
951         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
952         if (ret)
953                 return ret;
954
955         if (op->cmd.dtr)
956                 opcode = op->cmd.opcode >> 8;
957         else
958                 opcode = op->cmd.opcode;
959
960         /* Set opcode. */
961         reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
962         reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
963         reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
964         writel(reg, reg_base + CQSPI_REG_WR_INSTR);
965         reg = cqspi_calc_rdreg(op);
966         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
967
968         /*
969          * SPI NAND flashes require the address of the status register to be
970          * passed in the Read SR command. Also, some SPI NOR flashes like the
971          * cypress Semper flash expect a 4-byte dummy address in the Read SR
972          * command in DTR mode.
973          *
974          * But this controller does not support address phase in the Read SR
975          * command when doing auto-HW polling. So, disable write completion
976          * polling on the controller's side. spinand and spi-nor will take
977          * care of polling the status register.
978          */
979         if (cqspi->wr_completion) {
980                 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
981                 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
982                 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
983                 /*
984                  * DAC mode require auto polling as flash needs to be polled
985                  * for write completion in case of bubble in SPI transaction
986                  * due to slow CPU/DMA master.
987                  */
988                 cqspi->use_direct_mode_wr = false;
989         }
990
991         reg = readl(reg_base + CQSPI_REG_SIZE);
992         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
993         reg |= (op->addr.nbytes - 1);
994         writel(reg, reg_base + CQSPI_REG_SIZE);
995         return 0;
996 }
997
998 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
999                                         loff_t to_addr, const u8 *txbuf,
1000                                         const size_t n_tx)
1001 {
1002         struct cqspi_st *cqspi = f_pdata->cqspi;
1003         struct device *dev = &cqspi->pdev->dev;
1004         void __iomem *reg_base = cqspi->iobase;
1005         unsigned int remaining = n_tx;
1006         unsigned int write_bytes;
1007         int ret;
1008
1009         writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1010         writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1011
1012         /* Clear all interrupts. */
1013         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1014
1015         writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1016
1017         reinit_completion(&cqspi->transfer_complete);
1018         writel(CQSPI_REG_INDIRECTWR_START_MASK,
1019                reg_base + CQSPI_REG_INDIRECTWR);
1020         /*
1021          * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1022          * Controller programming sequence, couple of cycles of
1023          * QSPI_REF_CLK delay is required for the above bit to
1024          * be internally synchronized by the QSPI module. Provide 5
1025          * cycles of delay.
1026          */
1027         if (cqspi->wr_delay)
1028                 ndelay(cqspi->wr_delay);
1029
1030         while (remaining > 0) {
1031                 size_t write_words, mod_bytes;
1032
1033                 write_bytes = remaining;
1034                 write_words = write_bytes / 4;
1035                 mod_bytes = write_bytes % 4;
1036                 /* Write 4 bytes at a time then single bytes. */
1037                 if (write_words) {
1038                         iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1039                         txbuf += (write_words * 4);
1040                 }
1041                 if (mod_bytes) {
1042                         unsigned int temp = 0xFFFFFFFF;
1043
1044                         memcpy(&temp, txbuf, mod_bytes);
1045                         iowrite32(temp, cqspi->ahb_base);
1046                         txbuf += mod_bytes;
1047                 }
1048
1049                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1050                                                  msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1051                         dev_err(dev, "Indirect write timeout\n");
1052                         ret = -ETIMEDOUT;
1053                         goto failwr;
1054                 }
1055
1056                 remaining -= write_bytes;
1057
1058                 if (remaining > 0)
1059                         reinit_completion(&cqspi->transfer_complete);
1060         }
1061
1062         /* Check indirect done status */
1063         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1064                                  CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1065         if (ret) {
1066                 dev_err(dev, "Indirect write completion error (%i)\n", ret);
1067                 goto failwr;
1068         }
1069
1070         /* Disable interrupt. */
1071         writel(0, reg_base + CQSPI_REG_IRQMASK);
1072
1073         /* Clear indirect completion status */
1074         writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1075
1076         cqspi_wait_idle(cqspi);
1077
1078         return 0;
1079
1080 failwr:
1081         /* Disable interrupt. */
1082         writel(0, reg_base + CQSPI_REG_IRQMASK);
1083
1084         /* Cancel the indirect write */
1085         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1086                reg_base + CQSPI_REG_INDIRECTWR);
1087         return ret;
1088 }
1089
1090 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1091 {
1092         struct cqspi_st *cqspi = f_pdata->cqspi;
1093         void __iomem *reg_base = cqspi->iobase;
1094         unsigned int chip_select = f_pdata->cs;
1095         unsigned int reg;
1096
1097         reg = readl(reg_base + CQSPI_REG_CONFIG);
1098         if (cqspi->is_decoded_cs) {
1099                 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1100         } else {
1101                 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1102
1103                 /* Convert CS if without decoder.
1104                  * CS0 to 4b'1110
1105                  * CS1 to 4b'1101
1106                  * CS2 to 4b'1011
1107                  * CS3 to 4b'0111
1108                  */
1109                 chip_select = 0xF & ~(1 << chip_select);
1110         }
1111
1112         reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1113                  << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1114         reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1115             << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1116         writel(reg, reg_base + CQSPI_REG_CONFIG);
1117 }
1118
1119 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1120                                            const unsigned int ns_val)
1121 {
1122         unsigned int ticks;
1123
1124         ticks = ref_clk_hz / 1000;      /* kHz */
1125         ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1126
1127         return ticks;
1128 }
1129
1130 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1131 {
1132         struct cqspi_st *cqspi = f_pdata->cqspi;
1133         void __iomem *iobase = cqspi->iobase;
1134         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1135         unsigned int tshsl, tchsh, tslch, tsd2d;
1136         unsigned int reg;
1137         unsigned int tsclk;
1138
1139         /* calculate the number of ref ticks for one sclk tick */
1140         tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1141
1142         tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1143         /* this particular value must be at least one sclk */
1144         if (tshsl < tsclk)
1145                 tshsl = tsclk;
1146
1147         tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1148         tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1149         tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1150
1151         reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1152                << CQSPI_REG_DELAY_TSHSL_LSB;
1153         reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1154                 << CQSPI_REG_DELAY_TCHSH_LSB;
1155         reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1156                 << CQSPI_REG_DELAY_TSLCH_LSB;
1157         reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1158                 << CQSPI_REG_DELAY_TSD2D_LSB;
1159         writel(reg, iobase + CQSPI_REG_DELAY);
1160 }
1161
1162 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1163 {
1164         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1165         void __iomem *reg_base = cqspi->iobase;
1166         u32 reg, div;
1167
1168         /* Recalculate the baudrate divisor based on QSPI specification. */
1169         div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1170
1171         /* Maximum baud divisor */
1172         if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1173                 div = CQSPI_REG_CONFIG_BAUD_MASK;
1174                 dev_warn(&cqspi->pdev->dev,
1175                         "Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1176                         cqspi->sclk, ref_clk_hz/((div+1)*2));
1177         }
1178
1179         reg = readl(reg_base + CQSPI_REG_CONFIG);
1180         reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1181         reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1182         writel(reg, reg_base + CQSPI_REG_CONFIG);
1183 }
1184
1185 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1186                                    const bool bypass,
1187                                    const unsigned int delay)
1188 {
1189         void __iomem *reg_base = cqspi->iobase;
1190         unsigned int reg;
1191
1192         reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1193
1194         if (bypass)
1195                 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1196         else
1197                 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1198
1199         reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1200                  << CQSPI_REG_READCAPTURE_DELAY_LSB);
1201
1202         reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1203                 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1204
1205         writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1206 }
1207
1208 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1209                             unsigned long sclk)
1210 {
1211         struct cqspi_st *cqspi = f_pdata->cqspi;
1212         int switch_cs = (cqspi->current_cs != f_pdata->cs);
1213         int switch_ck = (cqspi->sclk != sclk);
1214
1215         if (switch_cs || switch_ck)
1216                 cqspi_controller_enable(cqspi, 0);
1217
1218         /* Switch chip select. */
1219         if (switch_cs) {
1220                 cqspi->current_cs = f_pdata->cs;
1221                 cqspi_chipselect(f_pdata);
1222         }
1223
1224         /* Setup baudrate divisor and delays */
1225         if (switch_ck) {
1226                 cqspi->sclk = sclk;
1227                 cqspi_config_baudrate_div(cqspi);
1228                 cqspi_delay(f_pdata);
1229                 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1230                                        f_pdata->read_delay);
1231         }
1232
1233         if (switch_cs || switch_ck)
1234                 cqspi_controller_enable(cqspi, 1);
1235 }
1236
1237 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1238                            const struct spi_mem_op *op)
1239 {
1240         struct cqspi_st *cqspi = f_pdata->cqspi;
1241         loff_t to = op->addr.val;
1242         size_t len = op->data.nbytes;
1243         const u_char *buf = op->data.buf.out;
1244         int ret;
1245
1246         ret = cqspi_write_setup(f_pdata, op);
1247         if (ret)
1248                 return ret;
1249
1250         /*
1251          * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1252          * address (all 0s) with the read status register command in DTR mode.
1253          * But this controller does not support sending dummy address bytes to
1254          * the flash when it is polling the write completion register in DTR
1255          * mode. So, we can not use direct mode when in DTR mode for writing
1256          * data.
1257          */
1258         if (!op->cmd.dtr && cqspi->use_direct_mode &&
1259             cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1260                 memcpy_toio(cqspi->ahb_base + to, buf, len);
1261                 return cqspi_wait_idle(cqspi);
1262         }
1263
1264         return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1265 }
1266
1267 static void cqspi_rx_dma_callback(void *param)
1268 {
1269         struct cqspi_st *cqspi = param;
1270
1271         complete(&cqspi->rx_dma_complete);
1272 }
1273
1274 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1275                                      u_char *buf, loff_t from, size_t len)
1276 {
1277         struct cqspi_st *cqspi = f_pdata->cqspi;
1278         struct device *dev = &cqspi->pdev->dev;
1279         enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1280         dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1281         int ret = 0;
1282         struct dma_async_tx_descriptor *tx;
1283         dma_cookie_t cookie;
1284         dma_addr_t dma_dst;
1285         struct device *ddev;
1286
1287         if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1288                 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1289                 return 0;
1290         }
1291
1292         ddev = cqspi->rx_chan->device->dev;
1293         dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1294         if (dma_mapping_error(ddev, dma_dst)) {
1295                 dev_err(dev, "dma mapping failed\n");
1296                 return -ENOMEM;
1297         }
1298         tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1299                                        len, flags);
1300         if (!tx) {
1301                 dev_err(dev, "device_prep_dma_memcpy error\n");
1302                 ret = -EIO;
1303                 goto err_unmap;
1304         }
1305
1306         tx->callback = cqspi_rx_dma_callback;
1307         tx->callback_param = cqspi;
1308         cookie = tx->tx_submit(tx);
1309         reinit_completion(&cqspi->rx_dma_complete);
1310
1311         ret = dma_submit_error(cookie);
1312         if (ret) {
1313                 dev_err(dev, "dma_submit_error %d\n", cookie);
1314                 ret = -EIO;
1315                 goto err_unmap;
1316         }
1317
1318         dma_async_issue_pending(cqspi->rx_chan);
1319         if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1320                                          msecs_to_jiffies(max_t(size_t, len, 500)))) {
1321                 dmaengine_terminate_sync(cqspi->rx_chan);
1322                 dev_err(dev, "DMA wait_for_completion_timeout\n");
1323                 ret = -ETIMEDOUT;
1324                 goto err_unmap;
1325         }
1326
1327 err_unmap:
1328         dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1329
1330         return ret;
1331 }
1332
1333 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1334                           const struct spi_mem_op *op)
1335 {
1336         struct cqspi_st *cqspi = f_pdata->cqspi;
1337         struct device *dev = &cqspi->pdev->dev;
1338         const struct cqspi_driver_platdata *ddata;
1339         loff_t from = op->addr.val;
1340         size_t len = op->data.nbytes;
1341         u_char *buf = op->data.buf.in;
1342         u64 dma_align = (u64)(uintptr_t)buf;
1343         int ret;
1344
1345         ddata = of_device_get_match_data(dev);
1346
1347         ret = cqspi_read_setup(f_pdata, op);
1348         if (ret)
1349                 return ret;
1350
1351         if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1352                 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1353
1354         if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1355             virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1356                 return ddata->indirect_read_dma(f_pdata, buf, from, len);
1357
1358         return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1359 }
1360
1361 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1362 {
1363         struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1364         struct cqspi_flash_pdata *f_pdata;
1365
1366         f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1367         cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1368
1369         if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1370         /*
1371          * Performing reads in DAC mode forces to read minimum 4 bytes
1372          * which is unsupported on some flash devices during register
1373          * reads, prefer STIG mode for such small reads.
1374          */
1375                 if (!op->addr.nbytes ||
1376                     op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
1377                         return cqspi_command_read(f_pdata, op);
1378
1379                 return cqspi_read(f_pdata, op);
1380         }
1381
1382         if (!op->addr.nbytes || !op->data.buf.out)
1383                 return cqspi_command_write(f_pdata, op);
1384
1385         return cqspi_write(f_pdata, op);
1386 }
1387
1388 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1389 {
1390         int ret;
1391
1392         ret = cqspi_mem_process(mem, op);
1393         if (ret)
1394                 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1395
1396         return ret;
1397 }
1398
1399 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1400                                   const struct spi_mem_op *op)
1401 {
1402         bool all_true, all_false;
1403
1404         /*
1405          * op->dummy.dtr is required for converting nbytes into ncycles.
1406          * Also, don't check the dtr field of the op phase having zero nbytes.
1407          */
1408         all_true = op->cmd.dtr &&
1409                    (!op->addr.nbytes || op->addr.dtr) &&
1410                    (!op->dummy.nbytes || op->dummy.dtr) &&
1411                    (!op->data.nbytes || op->data.dtr);
1412
1413         all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1414                     !op->data.dtr;
1415
1416         if (all_true) {
1417                 /* Right now we only support 8-8-8 DTR mode. */
1418                 if (op->cmd.nbytes && op->cmd.buswidth != 8)
1419                         return false;
1420                 if (op->addr.nbytes && op->addr.buswidth != 8)
1421                         return false;
1422                 if (op->data.nbytes && op->data.buswidth != 8)
1423                         return false;
1424         } else if (!all_false) {
1425                 /* Mixed DTR modes are not supported. */
1426                 return false;
1427         }
1428
1429         return spi_mem_default_supports_op(mem, op);
1430 }
1431
1432 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1433                                     struct cqspi_flash_pdata *f_pdata,
1434                                     struct device_node *np)
1435 {
1436         if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1437                 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1438                 return -ENXIO;
1439         }
1440
1441         if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1442                 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1443                 return -ENXIO;
1444         }
1445
1446         if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1447                 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1448                 return -ENXIO;
1449         }
1450
1451         if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1452                 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1453                 return -ENXIO;
1454         }
1455
1456         if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1457                 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1458                 return -ENXIO;
1459         }
1460
1461         if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1462                 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1463                 return -ENXIO;
1464         }
1465
1466         return 0;
1467 }
1468
1469 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1470 {
1471         struct device *dev = &cqspi->pdev->dev;
1472         struct device_node *np = dev->of_node;
1473         u32 id[2];
1474
1475         cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1476
1477         if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1478                 dev_err(dev, "couldn't determine fifo-depth\n");
1479                 return -ENXIO;
1480         }
1481
1482         if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1483                 dev_err(dev, "couldn't determine fifo-width\n");
1484                 return -ENXIO;
1485         }
1486
1487         if (of_property_read_u32(np, "cdns,trigger-address",
1488                                  &cqspi->trigger_address)) {
1489                 dev_err(dev, "couldn't determine trigger-address\n");
1490                 return -ENXIO;
1491         }
1492
1493         if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1494                 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1495
1496         cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1497
1498         if (!of_property_read_u32_array(np, "power-domains", id,
1499                                         ARRAY_SIZE(id)))
1500                 cqspi->pd_dev_id = id[1];
1501
1502         return 0;
1503 }
1504
1505 static void cqspi_controller_init(struct cqspi_st *cqspi)
1506 {
1507         u32 reg;
1508
1509         cqspi_controller_enable(cqspi, 0);
1510
1511         /* Configure the remap address register, no remap */
1512         writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1513
1514         /* Disable all interrupts. */
1515         writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1516
1517         /* Configure the SRAM split to 1:1 . */
1518         writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1519
1520         /* Load indirect trigger address. */
1521         writel(cqspi->trigger_address,
1522                cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1523
1524         /* Program read watermark -- 1/2 of the FIFO. */
1525         writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1526                cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1527         /* Program write watermark -- 1/8 of the FIFO. */
1528         writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1529                cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1530
1531         /* Disable direct access controller */
1532         if (!cqspi->use_direct_mode) {
1533                 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1534                 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1535                 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1536         }
1537
1538         /* Enable DMA interface */
1539         if (cqspi->use_dma_read) {
1540                 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1541                 reg |= CQSPI_REG_CONFIG_DMA_MASK;
1542                 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1543         }
1544
1545         cqspi_controller_enable(cqspi, 1);
1546 }
1547
1548 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1549 {
1550         dma_cap_mask_t mask;
1551
1552         dma_cap_zero(mask);
1553         dma_cap_set(DMA_MEMCPY, mask);
1554
1555         cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1556         if (IS_ERR(cqspi->rx_chan)) {
1557                 int ret = PTR_ERR(cqspi->rx_chan);
1558
1559                 cqspi->rx_chan = NULL;
1560                 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1561         }
1562         init_completion(&cqspi->rx_dma_complete);
1563
1564         return 0;
1565 }
1566
1567 static const char *cqspi_get_name(struct spi_mem *mem)
1568 {
1569         struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1570         struct device *dev = &cqspi->pdev->dev;
1571
1572         return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1573                               spi_get_chipselect(mem->spi, 0));
1574 }
1575
1576 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1577         .exec_op = cqspi_exec_mem_op,
1578         .get_name = cqspi_get_name,
1579         .supports_op = cqspi_supports_mem_op,
1580 };
1581
1582 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1583         .dtr = true,
1584 };
1585
1586 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1587 {
1588         struct platform_device *pdev = cqspi->pdev;
1589         struct device *dev = &pdev->dev;
1590         struct device_node *np = dev->of_node;
1591         struct cqspi_flash_pdata *f_pdata;
1592         unsigned int cs;
1593         int ret;
1594
1595         /* Get flash device data */
1596         for_each_available_child_of_node(dev->of_node, np) {
1597                 ret = of_property_read_u32(np, "reg", &cs);
1598                 if (ret) {
1599                         dev_err(dev, "Couldn't determine chip select.\n");
1600                         of_node_put(np);
1601                         return ret;
1602                 }
1603
1604                 if (cs >= CQSPI_MAX_CHIPSELECT) {
1605                         dev_err(dev, "Chip select %d out of range.\n", cs);
1606                         of_node_put(np);
1607                         return -EINVAL;
1608                 }
1609
1610                 f_pdata = &cqspi->f_pdata[cs];
1611                 f_pdata->cqspi = cqspi;
1612                 f_pdata->cs = cs;
1613
1614                 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1615                 if (ret) {
1616                         of_node_put(np);
1617                         return ret;
1618                 }
1619         }
1620
1621         return 0;
1622 }
1623
1624 static int cqspi_probe(struct platform_device *pdev)
1625 {
1626         const struct cqspi_driver_platdata *ddata;
1627         struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1628         struct device *dev = &pdev->dev;
1629         struct spi_master *master;
1630         struct resource *res_ahb;
1631         struct cqspi_st *cqspi;
1632         int ret;
1633         int irq;
1634
1635         master = devm_spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1636         if (!master) {
1637                 dev_err(&pdev->dev, "spi_alloc_master failed\n");
1638                 return -ENOMEM;
1639         }
1640         master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1641         master->mem_ops = &cqspi_mem_ops;
1642         master->mem_caps = &cqspi_mem_caps;
1643         master->dev.of_node = pdev->dev.of_node;
1644
1645         cqspi = spi_master_get_devdata(master);
1646
1647         cqspi->pdev = pdev;
1648         cqspi->master = master;
1649         platform_set_drvdata(pdev, cqspi);
1650
1651         /* Obtain configuration from OF. */
1652         ret = cqspi_of_get_pdata(cqspi);
1653         if (ret) {
1654                 dev_err(dev, "Cannot get mandatory OF data.\n");
1655                 return -ENODEV;
1656         }
1657
1658         /* Obtain QSPI clock. */
1659         cqspi->clk = devm_clk_get(dev, NULL);
1660         if (IS_ERR(cqspi->clk)) {
1661                 dev_err(dev, "Cannot claim QSPI clock.\n");
1662                 ret = PTR_ERR(cqspi->clk);
1663                 return ret;
1664         }
1665
1666         /* Obtain and remap controller address. */
1667         cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1668         if (IS_ERR(cqspi->iobase)) {
1669                 dev_err(dev, "Cannot remap controller address.\n");
1670                 ret = PTR_ERR(cqspi->iobase);
1671                 return ret;
1672         }
1673
1674         /* Obtain and remap AHB address. */
1675         cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1676         if (IS_ERR(cqspi->ahb_base)) {
1677                 dev_err(dev, "Cannot remap AHB address.\n");
1678                 ret = PTR_ERR(cqspi->ahb_base);
1679                 return ret;
1680         }
1681         cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1682         cqspi->ahb_size = resource_size(res_ahb);
1683
1684         init_completion(&cqspi->transfer_complete);
1685
1686         /* Obtain IRQ line. */
1687         irq = platform_get_irq(pdev, 0);
1688         if (irq < 0)
1689                 return -ENXIO;
1690
1691         pm_runtime_enable(dev);
1692         ret = pm_runtime_resume_and_get(dev);
1693         if (ret < 0)
1694                 goto probe_pm_failed;
1695
1696         ret = clk_prepare_enable(cqspi->clk);
1697         if (ret) {
1698                 dev_err(dev, "Cannot enable QSPI clock.\n");
1699                 goto probe_clk_failed;
1700         }
1701
1702         /* Obtain QSPI reset control */
1703         rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1704         if (IS_ERR(rstc)) {
1705                 ret = PTR_ERR(rstc);
1706                 dev_err(dev, "Cannot get QSPI reset.\n");
1707                 goto probe_reset_failed;
1708         }
1709
1710         rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1711         if (IS_ERR(rstc_ocp)) {
1712                 ret = PTR_ERR(rstc_ocp);
1713                 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1714                 goto probe_reset_failed;
1715         }
1716
1717         if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1718                 rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1719                 if (IS_ERR(rstc_ref)) {
1720                         ret = PTR_ERR(rstc_ref);
1721                         dev_err(dev, "Cannot get QSPI REF reset.\n");
1722                         goto probe_reset_failed;
1723                 }
1724                 reset_control_assert(rstc_ref);
1725                 reset_control_deassert(rstc_ref);
1726         }
1727
1728         reset_control_assert(rstc);
1729         reset_control_deassert(rstc);
1730
1731         reset_control_assert(rstc_ocp);
1732         reset_control_deassert(rstc_ocp);
1733
1734         cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1735         master->max_speed_hz = cqspi->master_ref_clk_hz;
1736
1737         /* write completion is supported by default */
1738         cqspi->wr_completion = true;
1739
1740         ddata  = of_device_get_match_data(dev);
1741         if (ddata) {
1742                 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1743                         cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1744                                                 cqspi->master_ref_clk_hz);
1745                 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1746                         master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1747                 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1748                         cqspi->use_direct_mode = true;
1749                         cqspi->use_direct_mode_wr = true;
1750                 }
1751                 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1752                         cqspi->use_dma_read = true;
1753                 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1754                         cqspi->wr_completion = false;
1755                 if (ddata->quirks & CQSPI_SLOW_SRAM)
1756                         cqspi->slow_sram = true;
1757
1758                 if (of_device_is_compatible(pdev->dev.of_node,
1759                                             "xlnx,versal-ospi-1.0"))
1760                         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1761         }
1762
1763         ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1764                                pdev->name, cqspi);
1765         if (ret) {
1766                 dev_err(dev, "Cannot request IRQ.\n");
1767                 goto probe_reset_failed;
1768         }
1769
1770         cqspi_wait_idle(cqspi);
1771         cqspi_controller_init(cqspi);
1772         cqspi->current_cs = -1;
1773         cqspi->sclk = 0;
1774
1775         master->num_chipselect = cqspi->num_chipselect;
1776
1777         ret = cqspi_setup_flash(cqspi);
1778         if (ret) {
1779                 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1780                 goto probe_setup_failed;
1781         }
1782
1783         if (cqspi->use_direct_mode) {
1784                 ret = cqspi_request_mmap_dma(cqspi);
1785                 if (ret == -EPROBE_DEFER)
1786                         goto probe_setup_failed;
1787         }
1788
1789         ret = spi_register_master(master);
1790         if (ret) {
1791                 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1792                 goto probe_setup_failed;
1793         }
1794
1795         return 0;
1796 probe_setup_failed:
1797         cqspi_controller_enable(cqspi, 0);
1798 probe_reset_failed:
1799         clk_disable_unprepare(cqspi->clk);
1800 probe_clk_failed:
1801         pm_runtime_put_sync(dev);
1802 probe_pm_failed:
1803         pm_runtime_disable(dev);
1804         return ret;
1805 }
1806
1807 static void cqspi_remove(struct platform_device *pdev)
1808 {
1809         struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1810
1811         spi_unregister_master(cqspi->master);
1812         cqspi_controller_enable(cqspi, 0);
1813
1814         if (cqspi->rx_chan)
1815                 dma_release_channel(cqspi->rx_chan);
1816
1817         clk_disable_unprepare(cqspi->clk);
1818
1819         pm_runtime_put_sync(&pdev->dev);
1820         pm_runtime_disable(&pdev->dev);
1821 }
1822
1823 static int cqspi_suspend(struct device *dev)
1824 {
1825         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1826         struct spi_master *master = dev_get_drvdata(dev);
1827         int ret;
1828
1829         ret = spi_master_suspend(master);
1830         cqspi_controller_enable(cqspi, 0);
1831
1832         clk_disable_unprepare(cqspi->clk);
1833
1834         return ret;
1835 }
1836
1837 static int cqspi_resume(struct device *dev)
1838 {
1839         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1840         struct spi_master *master = dev_get_drvdata(dev);
1841
1842         clk_prepare_enable(cqspi->clk);
1843         cqspi_wait_idle(cqspi);
1844         cqspi_controller_init(cqspi);
1845
1846         cqspi->current_cs = -1;
1847         cqspi->sclk = 0;
1848
1849         return spi_master_resume(master);
1850 }
1851
1852 static DEFINE_SIMPLE_DEV_PM_OPS(cqspi_dev_pm_ops, cqspi_suspend, cqspi_resume);
1853
1854 static const struct cqspi_driver_platdata cdns_qspi = {
1855         .quirks = CQSPI_DISABLE_DAC_MODE,
1856 };
1857
1858 static const struct cqspi_driver_platdata k2g_qspi = {
1859         .quirks = CQSPI_NEEDS_WR_DELAY,
1860 };
1861
1862 static const struct cqspi_driver_platdata am654_ospi = {
1863         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1864         .quirks = CQSPI_NEEDS_WR_DELAY,
1865 };
1866
1867 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1868         .quirks = CQSPI_DISABLE_DAC_MODE,
1869 };
1870
1871 static const struct cqspi_driver_platdata socfpga_qspi = {
1872         .quirks = CQSPI_DISABLE_DAC_MODE
1873                         | CQSPI_NO_SUPPORT_WR_COMPLETION
1874                         | CQSPI_SLOW_SRAM,
1875 };
1876
1877 static const struct cqspi_driver_platdata versal_ospi = {
1878         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1879         .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1880         .indirect_read_dma = cqspi_versal_indirect_read_dma,
1881         .get_dma_status = cqspi_get_versal_dma_status,
1882 };
1883
1884 static const struct cqspi_driver_platdata jh7110_qspi = {
1885         .quirks = CQSPI_DISABLE_DAC_MODE,
1886 };
1887
1888 static const struct of_device_id cqspi_dt_ids[] = {
1889         {
1890                 .compatible = "cdns,qspi-nor",
1891                 .data = &cdns_qspi,
1892         },
1893         {
1894                 .compatible = "ti,k2g-qspi",
1895                 .data = &k2g_qspi,
1896         },
1897         {
1898                 .compatible = "ti,am654-ospi",
1899                 .data = &am654_ospi,
1900         },
1901         {
1902                 .compatible = "intel,lgm-qspi",
1903                 .data = &intel_lgm_qspi,
1904         },
1905         {
1906                 .compatible = "xlnx,versal-ospi-1.0",
1907                 .data = &versal_ospi,
1908         },
1909         {
1910                 .compatible = "intel,socfpga-qspi",
1911                 .data = &socfpga_qspi,
1912         },
1913         {
1914                 .compatible = "starfive,jh7110-qspi",
1915                 .data = &jh7110_qspi,
1916         },
1917         { /* end of table */ }
1918 };
1919
1920 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1921
1922 static struct platform_driver cqspi_platform_driver = {
1923         .probe = cqspi_probe,
1924         .remove_new = cqspi_remove,
1925         .driver = {
1926                 .name = CQSPI_NAME,
1927                 .pm = &cqspi_dev_pm_ops,
1928                 .of_match_table = cqspi_dt_ids,
1929         },
1930 };
1931
1932 module_platform_driver(cqspi_platform_driver);
1933
1934 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1935 MODULE_LICENSE("GPL v2");
1936 MODULE_ALIAS("platform:" CQSPI_NAME);
1937 MODULE_AUTHOR("Ley Foon Tan <[email protected]>");
1938 MODULE_AUTHOR("Graham Moore <[email protected]>");
1939 MODULE_AUTHOR("Vadivel Murugan R <[email protected]>");
1940 MODULE_AUTHOR("Vignesh Raghavendra <[email protected]>");
1941 MODULE_AUTHOR("Pratyush Yadav <[email protected]>");
This page took 0.142108 seconds and 4 git commands to generate.