2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h> /* To get host page size per arch */
65 #include "mpt3sas_base.h"
67 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72 /* maximum controller queue depth */
73 #define MAX_HBA_QUEUE_DEPTH 30000
74 #define MAX_CHAIN_DEPTH 100000
75 static int max_queue_depth = -1;
76 module_param(max_queue_depth, int, 0444);
77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79 static int max_sgl_entries = -1;
80 module_param(max_sgl_entries, int, 0444);
81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83 static int msix_disable = -1;
84 module_param(msix_disable, int, 0444);
85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87 static int smp_affinity_enable = 1;
88 module_param(smp_affinity_enable, int, 0444);
89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91 static int max_msix_vectors = -1;
92 module_param(max_msix_vectors, int, 0444);
93 MODULE_PARM_DESC(max_msix_vectors,
96 static int irqpoll_weight = -1;
97 module_param(irqpoll_weight, int, 0444);
98 MODULE_PARM_DESC(irqpoll_weight,
99 "irq poll weight (default= one fourth of HBA queue depth)");
101 static int mpt3sas_fwfault_debug;
102 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
103 " enable detection of firmware fault and halt firmware - (default=0)");
105 static int perf_mode = -1;
106 module_param(perf_mode, int, 0444);
107 MODULE_PARM_DESC(perf_mode,
108 "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
109 "0 - balanced: high iops mode is enabled &\n\t\t"
110 "interrupt coalescing is enabled only on high iops queues,\n\t\t"
111 "1 - iops: high iops mode is disabled &\n\t\t"
112 "interrupt coalescing is enabled on all queues,\n\t\t"
113 "2 - latency: high iops mode is disabled &\n\t\t"
114 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
115 "\t\tdefault - default perf_mode is 'balanced'"
118 static int poll_queues;
119 module_param(poll_queues, int, 0444);
120 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
121 "This parameter is effective only if host_tagset_enable=1. &\n\t\t"
122 "when poll_queues are enabled then &\n\t\t"
123 "perf_mode is set to latency mode. &\n\t\t"
126 enum mpt3sas_perf_mode {
127 MPT_PERF_MODE_DEFAULT = -1,
128 MPT_PERF_MODE_BALANCED = 0,
129 MPT_PERF_MODE_IOPS = 1,
130 MPT_PERF_MODE_LATENCY = 2,
134 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
135 u32 ioc_state, int timeout);
137 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
139 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
142 * mpt3sas_base_check_cmd_timeout - Function
143 * to check timeout and command termination due
146 * @ioc: per adapter object.
147 * @status: Status of issued command.
148 * @mpi_request:mf request pointer.
149 * @sz: size of buffer.
151 * Return: 1/0 Reset to be done or Not
154 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
155 u8 status, void *mpi_request, int sz)
159 if (!(status & MPT3_CMD_RESET))
162 ioc_err(ioc, "Command %s\n",
163 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
164 _debug_dump_mf(mpi_request, sz);
170 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
177 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
179 int ret = param_set_int(val, kp);
180 struct MPT3SAS_ADAPTER *ioc;
185 /* global ioc spinlock to protect controller list on list operations */
186 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
187 spin_lock(&gioc_lock);
188 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
189 ioc->fwfault_debug = mpt3sas_fwfault_debug;
190 spin_unlock(&gioc_lock);
193 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
194 param_get_int, &mpt3sas_fwfault_debug, 0644);
197 * _base_readl_aero - retry readl for max three times.
198 * @addr: MPT Fusion system interface register address
200 * Retry the readl() for max three times if it gets zero value
201 * while reading the system interface register.
204 _base_readl_aero(const volatile void __iomem *addr)
209 ret_val = readl(addr);
211 } while (ret_val == 0 && i < 3);
217 _base_readl(const volatile void __iomem *addr)
223 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
226 * @ioc: per adapter object
227 * @reply: reply message frame(lower 32bit addr)
228 * @index: System request message index.
231 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
235 * 256 is offset within sys register.
236 * 256 offset MPI frame starts. Max MPI frame supported is 32.
237 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
239 u16 cmd_credit = ioc->facts.RequestCredit + 1;
240 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
241 MPI_FRAME_START_OFFSET +
242 (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
244 writel(reply, reply_free_iomem);
248 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
249 * to system/BAR0 region.
251 * @dst_iomem: Pointer to the destination location in BAR0 space.
252 * @src: Pointer to the Source data.
253 * @size: Size of data to be copied.
256 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
259 u32 *src_virt_mem = (u32 *)src;
261 for (i = 0; i < size/4; i++)
262 writel((u32)src_virt_mem[i],
263 (void __iomem *)dst_iomem + (i * 4));
267 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
269 * @dst_iomem: Pointer to the destination location in BAR0 space.
270 * @src: Pointer to the Source data.
271 * @size: Size of data to be copied.
274 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
277 u32 *src_virt_mem = (u32 *)(src);
279 for (i = 0; i < size/4; i++)
280 writel((u32)src_virt_mem[i],
281 (void __iomem *)dst_iomem + (i * 4));
285 * _base_get_chain - Calculates and Returns virtual chain address
286 * for the provided smid in BAR0 space.
288 * @ioc: per adapter object
289 * @smid: system request message index
290 * @sge_chain_count: Scatter gather chain count.
292 * Return: the chain address.
294 static inline void __iomem*
295 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
298 void __iomem *base_chain, *chain_virt;
299 u16 cmd_credit = ioc->facts.RequestCredit + 1;
301 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
302 (cmd_credit * ioc->request_sz) +
303 REPLY_FREE_POOL_SIZE;
304 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
305 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
310 * _base_get_chain_phys - Calculates and Returns physical address
311 * in BAR0 for scatter gather chains, for
314 * @ioc: per adapter object
315 * @smid: system request message index
316 * @sge_chain_count: Scatter gather chain count.
318 * Return: Physical chain address.
320 static inline phys_addr_t
321 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
324 phys_addr_t base_chain_phys, chain_phys;
325 u16 cmd_credit = ioc->facts.RequestCredit + 1;
327 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET +
328 (cmd_credit * ioc->request_sz) +
329 REPLY_FREE_POOL_SIZE;
330 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
331 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
336 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
337 * buffer address for the provided smid.
338 * (Each smid can have 64K starts from 17024)
340 * @ioc: per adapter object
341 * @smid: system request message index
343 * Return: Pointer to buffer location in BAR0.
346 static void __iomem *
347 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
349 u16 cmd_credit = ioc->facts.RequestCredit + 1;
350 // Added extra 1 to reach end of chain.
351 void __iomem *chain_end = _base_get_chain(ioc,
353 ioc->facts.MaxChainDepth);
354 return chain_end + (smid * 64 * 1024);
358 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
359 * Host buffer Physical address for the provided smid.
360 * (Each smid can have 64K starts from 17024)
362 * @ioc: per adapter object
363 * @smid: system request message index
365 * Return: Pointer to buffer location in BAR0.
368 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
370 u16 cmd_credit = ioc->facts.RequestCredit + 1;
371 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
373 ioc->facts.MaxChainDepth);
374 return chain_end_phys + (smid * 64 * 1024);
378 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
379 * lookup list and Provides chain_buffer
380 * address for the matching dma address.
381 * (Each smid can have 64K starts from 17024)
383 * @ioc: per adapter object
384 * @chain_buffer_dma: Chain buffer dma address.
386 * Return: Pointer to chain buffer. Or Null on Failure.
389 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
390 dma_addr_t chain_buffer_dma)
393 struct chain_tracker *ct;
395 for (index = 0; index < ioc->scsiio_depth; index++) {
396 for (j = 0; j < ioc->chains_needed_per_io; j++) {
397 ct = &ioc->chain_lookup[index].chains_per_smid[j];
398 if (ct && ct->chain_buffer_dma == chain_buffer_dma)
399 return ct->chain_buffer;
402 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
407 * _clone_sg_entries - MPI EP's scsiio and config requests
408 * are handled here. Base function for
409 * double buffering, before submitting
412 * @ioc: per adapter object.
413 * @mpi_request: mf request pointer.
414 * @smid: system request message index.
416 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
417 void *mpi_request, u16 smid)
419 Mpi2SGESimple32_t *sgel, *sgel_next;
420 u32 sgl_flags, sge_chain_count = 0;
421 bool is_write = false;
423 void __iomem *buffer_iomem;
424 phys_addr_t buffer_iomem_phys;
425 void __iomem *buff_ptr;
426 phys_addr_t buff_ptr_phys;
427 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
428 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
429 phys_addr_t dst_addr_phys;
430 MPI2RequestHeader_t *request_hdr;
431 struct scsi_cmnd *scmd;
432 struct scatterlist *sg_scmd = NULL;
433 int is_scsiio_req = 0;
435 request_hdr = (MPI2RequestHeader_t *) mpi_request;
437 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
438 Mpi25SCSIIORequest_t *scsiio_request =
439 (Mpi25SCSIIORequest_t *)mpi_request;
440 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
442 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
443 Mpi2ConfigRequest_t *config_req =
444 (Mpi2ConfigRequest_t *)mpi_request;
445 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
449 /* From smid we can get scsi_cmd, once we have sg_scmd,
450 * we just need to get sg_virt and sg_next to get virtual
451 * address associated with sgel->Address.
455 /* Get scsi_cmd using smid */
456 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
458 ioc_err(ioc, "scmd is NULL\n");
462 /* Get sg_scmd from scmd provided */
463 sg_scmd = scsi_sglist(scmd);
467 * 0 - 255 System register
468 * 256 - 4352 MPI Frame. (This is based on maxCredit 32)
469 * 4352 - 4864 Reply_free pool (512 byte is reserved
470 * considering maxCredit 32. Reply need extra
471 * room, for mCPU case kept four times of
473 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
474 * 128 byte size = 12288)
475 * 17152 - x Host buffer mapped with smid.
476 * (Each smid can have 64K Max IO.)
477 * BAR0+Last 1K MSIX Addr and Data
478 * Total size in use 2113664 bytes of 4MB BAR0
481 buffer_iomem = _base_get_buffer_bar0(ioc, smid);
482 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
484 buff_ptr = buffer_iomem;
485 buff_ptr_phys = buffer_iomem_phys;
486 WARN_ON(buff_ptr_phys > U32_MAX);
488 if (le32_to_cpu(sgel->FlagsLength) &
489 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
492 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
495 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
497 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
498 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
500 * Helper function which on passing
501 * chain_buffer_dma returns chain_buffer. Get
502 * the virtual address for sgel->Address
505 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
506 le32_to_cpu(sgel->Address));
507 if (sgel_next == NULL)
510 * This is coping 128 byte chain
511 * frame (not a host buffer)
513 dst_chain_addr[sge_chain_count] =
515 smid, sge_chain_count);
516 src_chain_addr[sge_chain_count] =
518 dst_addr_phys = _base_get_chain_phys(ioc,
519 smid, sge_chain_count);
520 WARN_ON(dst_addr_phys > U32_MAX);
522 cpu_to_le32(lower_32_bits(dst_addr_phys));
526 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
529 _base_clone_to_sys_mem(buff_ptr,
531 (le32_to_cpu(sgel->FlagsLength) &
534 * FIXME: this relies on a a zero
538 cpu_to_le32((u32)buff_ptr_phys);
540 _base_clone_to_sys_mem(buff_ptr,
542 (le32_to_cpu(sgel->FlagsLength) &
545 cpu_to_le32((u32)buff_ptr_phys);
548 buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
550 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
552 if ((le32_to_cpu(sgel->FlagsLength) &
553 (MPI2_SGE_FLAGS_END_OF_BUFFER
554 << MPI2_SGE_FLAGS_SHIFT)))
555 goto eob_clone_chain;
558 * Every single element in MPT will have
559 * associated sg_next. Better to sanity that
560 * sg_next is not NULL, but it will be a bug
564 sg_scmd = sg_next(sg_scmd);
568 goto eob_clone_chain;
576 for (i = 0; i < sge_chain_count; i++) {
578 _base_clone_to_sys_mem(dst_chain_addr[i],
579 src_chain_addr[i], ioc->request_sz);
584 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
585 * @arg: input argument, used to derive ioc
588 * 0 if controller is removed from pci subsystem.
591 static int mpt3sas_remove_dead_ioc_func(void *arg)
593 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
594 struct pci_dev *pdev;
602 pci_stop_and_remove_bus_device_locked(pdev);
607 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
608 * @ioc: Per Adapter Object
612 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
614 Mpi26IoUnitControlRequest_t *mpi_request;
615 Mpi26IoUnitControlReply_t *mpi_reply;
617 ktime_t current_time;
621 mutex_lock(&ioc->scsih_cmds.mutex);
622 if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
623 ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
626 ioc->scsih_cmds.status = MPT3_CMD_PENDING;
627 smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
629 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
630 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
633 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
634 ioc->scsih_cmds.smid = smid;
635 memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
636 mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
637 mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
638 mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
639 current_time = ktime_get_real();
640 TimeStamp = ktime_to_ms(current_time);
641 mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32);
642 mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
643 init_completion(&ioc->scsih_cmds.done);
644 ioc->put_smid_default(ioc, smid);
645 dinitprintk(ioc, ioc_info(ioc,
646 "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
648 wait_for_completion_timeout(&ioc->scsih_cmds.done,
649 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
650 if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
651 mpt3sas_check_cmd_timeout(ioc,
652 ioc->scsih_cmds.status, mpi_request,
653 sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
654 goto issue_host_reset;
656 if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
657 mpi_reply = ioc->scsih_cmds.reply;
658 dinitprintk(ioc, ioc_info(ioc,
659 "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
660 le16_to_cpu(mpi_reply->IOCStatus),
661 le32_to_cpu(mpi_reply->IOCLogInfo)));
665 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
666 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
668 mutex_unlock(&ioc->scsih_cmds.mutex);
672 * _base_fault_reset_work - workq handling ioc fault conditions
673 * @work: input argument, used to derive ioc
678 _base_fault_reset_work(struct work_struct *work)
680 struct MPT3SAS_ADAPTER *ioc =
681 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
685 struct task_struct *p;
688 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
689 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
690 ioc->pci_error_recovery)
692 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
694 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
695 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
696 ioc_err(ioc, "SAS host is non-operational !!!!\n");
698 /* It may be possible that EEH recovery can resolve some of
699 * pci bus failure issues rather removing the dead ioc function
700 * by considering controller is in a non-operational state. So
701 * here priority is given to the EEH recovery. If it doesn't
702 * not resolve this issue, mpt3sas driver will consider this
703 * controller to non-operational state and remove the dead ioc
706 if (ioc->non_operational_loop++ < 5) {
707 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
713 * Call _scsih_flush_pending_cmds callback so that we flush all
714 * pending commands back to OS. This call is required to avoid
715 * deadlock at block layer. Dead IOC will fail to do diag reset,
716 * and this call is safe since dead ioc will never return any
717 * command back from HW.
719 mpt3sas_base_pause_mq_polling(ioc);
720 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
722 * Set remove_host flag early since kernel thread will
723 * take some time to execute.
725 ioc->remove_host = 1;
726 /*Remove the Dead Host */
727 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
728 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
730 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
733 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
735 return; /* don't rearm timer */
738 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
739 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
740 ioc->manu_pg11.CoreDumpTOSec :
741 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
743 timeout /= (FAULT_POLLING_INTERVAL/1000);
745 if (ioc->ioc_coredump_loop == 0) {
746 mpt3sas_print_coredump_info(ioc,
747 doorbell & MPI2_DOORBELL_DATA_MASK);
748 /* do not accept any IOs and disable the interrupts */
750 &ioc->ioc_reset_in_progress_lock, flags);
751 ioc->shost_recovery = 1;
752 spin_unlock_irqrestore(
753 &ioc->ioc_reset_in_progress_lock, flags);
754 mpt3sas_base_mask_interrupts(ioc);
755 mpt3sas_base_pause_mq_polling(ioc);
756 _base_clear_outstanding_commands(ioc);
759 ioc_info(ioc, "%s: CoreDump loop %d.",
760 __func__, ioc->ioc_coredump_loop);
762 /* Wait until CoreDump completes or times out */
763 if (ioc->ioc_coredump_loop++ < timeout) {
765 &ioc->ioc_reset_in_progress_lock, flags);
770 if (ioc->ioc_coredump_loop) {
771 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
772 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
773 __func__, ioc->ioc_coredump_loop);
775 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
776 __func__, ioc->ioc_coredump_loop);
777 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
779 ioc->non_operational_loop = 0;
780 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
781 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
782 ioc_warn(ioc, "%s: hard reset: %s\n",
783 __func__, rc == 0 ? "success" : "failed");
784 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
785 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
786 mpt3sas_print_fault_code(ioc, doorbell &
787 MPI2_DOORBELL_DATA_MASK);
788 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
789 MPI2_IOC_STATE_COREDUMP)
790 mpt3sas_print_coredump_info(ioc, doorbell &
791 MPI2_DOORBELL_DATA_MASK);
792 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
793 MPI2_IOC_STATE_OPERATIONAL)
794 return; /* don't rearm timer */
796 ioc->ioc_coredump_loop = 0;
797 if (ioc->time_sync_interval &&
798 ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
799 ioc->timestamp_update_count = 0;
800 _base_sync_drv_fw_timestamp(ioc);
802 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
804 if (ioc->fault_reset_work_q)
805 queue_delayed_work(ioc->fault_reset_work_q,
806 &ioc->fault_reset_work,
807 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
808 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
812 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
813 * @ioc: per adapter object
818 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
822 if (ioc->fault_reset_work_q)
825 ioc->timestamp_update_count = 0;
826 /* initialize fault polling */
828 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
829 snprintf(ioc->fault_reset_work_q_name,
830 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
831 ioc->driver_name, ioc->id);
832 ioc->fault_reset_work_q =
833 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
834 if (!ioc->fault_reset_work_q) {
835 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
838 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
839 if (ioc->fault_reset_work_q)
840 queue_delayed_work(ioc->fault_reset_work_q,
841 &ioc->fault_reset_work,
842 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
843 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
847 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
848 * @ioc: per adapter object
853 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
856 struct workqueue_struct *wq;
858 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
859 wq = ioc->fault_reset_work_q;
860 ioc->fault_reset_work_q = NULL;
861 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
863 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
865 destroy_workqueue(wq);
870 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
871 * @ioc: per adapter object
872 * @fault_code: fault code
875 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
877 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
881 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
882 * @ioc: per adapter object
883 * @fault_code: fault code
888 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
890 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
894 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
895 * completes or times out
896 * @ioc: per adapter object
897 * @caller: caller function name
899 * Return: 0 for success, non-zero for failure.
902 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
905 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
906 ioc->manu_pg11.CoreDumpTOSec :
907 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
909 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
914 "%s: CoreDump timed out. (ioc_state=0x%x)\n",
918 "%s: CoreDump completed. (ioc_state=0x%x)\n",
925 * mpt3sas_halt_firmware - halt's mpt controller firmware
926 * @ioc: per adapter object
928 * For debugging timeout related issues. Writing 0xCOFFEE00
929 * to the doorbell register will halt controller firmware. With
930 * the purpose to stop both driver and firmware, the enduser can
931 * obtain a ring buffer from controller UART.
934 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
938 if (!ioc->fwfault_debug)
943 doorbell = ioc->base_readl(&ioc->chip->Doorbell);
944 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
945 mpt3sas_print_fault_code(ioc, doorbell &
946 MPI2_DOORBELL_DATA_MASK);
947 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
948 MPI2_IOC_STATE_COREDUMP) {
949 mpt3sas_print_coredump_info(ioc, doorbell &
950 MPI2_DOORBELL_DATA_MASK);
952 writel(0xC0FFEE00, &ioc->chip->Doorbell);
953 ioc_err(ioc, "Firmware is halted due to command timeout\n");
956 if (ioc->fwfault_debug == 2)
960 panic("panic in %s\n", __func__);
964 * _base_sas_ioc_info - verbose translation of the ioc status
965 * @ioc: per adapter object
966 * @mpi_reply: reply mf payload returned from firmware
967 * @request_hdr: request mf
970 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
971 MPI2RequestHeader_t *request_hdr)
973 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
977 char *func_str = NULL;
979 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
980 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
981 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
982 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
985 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
988 * Older Firmware version doesn't support driver trigger pages.
989 * So, skip displaying 'config invalid type' type
992 if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
993 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
995 if ((rqst->ExtPageType ==
996 MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
997 !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
1002 switch (ioc_status) {
1004 /****************************************************************************
1005 * Common IOCStatus values for all replies
1006 ****************************************************************************/
1008 case MPI2_IOCSTATUS_INVALID_FUNCTION:
1009 desc = "invalid function";
1011 case MPI2_IOCSTATUS_BUSY:
1014 case MPI2_IOCSTATUS_INVALID_SGL:
1015 desc = "invalid sgl";
1017 case MPI2_IOCSTATUS_INTERNAL_ERROR:
1018 desc = "internal error";
1020 case MPI2_IOCSTATUS_INVALID_VPID:
1021 desc = "invalid vpid";
1023 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1024 desc = "insufficient resources";
1026 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1027 desc = "insufficient power";
1029 case MPI2_IOCSTATUS_INVALID_FIELD:
1030 desc = "invalid field";
1032 case MPI2_IOCSTATUS_INVALID_STATE:
1033 desc = "invalid state";
1035 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1036 desc = "op state not supported";
1039 /****************************************************************************
1040 * Config IOCStatus values
1041 ****************************************************************************/
1043 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1044 desc = "config invalid action";
1046 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1047 desc = "config invalid type";
1049 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1050 desc = "config invalid page";
1052 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1053 desc = "config invalid data";
1055 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1056 desc = "config no defaults";
1058 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1059 desc = "config can't commit";
1062 /****************************************************************************
1064 ****************************************************************************/
1066 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1067 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1068 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1069 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1070 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1071 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1072 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1073 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1074 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1075 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1076 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1077 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1080 /****************************************************************************
1081 * For use by SCSI Initiator and SCSI Target end-to-end data protection
1082 ****************************************************************************/
1084 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1085 desc = "eedp guard error";
1087 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1088 desc = "eedp ref tag error";
1090 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1091 desc = "eedp app tag error";
1094 /****************************************************************************
1095 * SCSI Target values
1096 ****************************************************************************/
1098 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1099 desc = "target invalid io index";
1101 case MPI2_IOCSTATUS_TARGET_ABORTED:
1102 desc = "target aborted";
1104 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1105 desc = "target no conn retryable";
1107 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1108 desc = "target no connection";
1110 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1111 desc = "target xfer count mismatch";
1113 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1114 desc = "target data offset error";
1116 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1117 desc = "target too much write data";
1119 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1120 desc = "target iu too short";
1122 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1123 desc = "target ack nak timeout";
1125 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1126 desc = "target nak received";
1129 /****************************************************************************
1130 * Serial Attached SCSI values
1131 ****************************************************************************/
1133 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1134 desc = "smp request failed";
1136 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1137 desc = "smp data overrun";
1140 /****************************************************************************
1141 * Diagnostic Buffer Post / Diagnostic Release values
1142 ****************************************************************************/
1144 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1145 desc = "diagnostic released";
1154 switch (request_hdr->Function) {
1155 case MPI2_FUNCTION_CONFIG:
1156 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1157 func_str = "config_page";
1159 case MPI2_FUNCTION_SCSI_TASK_MGMT:
1160 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1161 func_str = "task_mgmt";
1163 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1164 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1165 func_str = "sas_iounit_ctl";
1167 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1168 frame_sz = sizeof(Mpi2SepRequest_t);
1169 func_str = "enclosure";
1171 case MPI2_FUNCTION_IOC_INIT:
1172 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1173 func_str = "ioc_init";
1175 case MPI2_FUNCTION_PORT_ENABLE:
1176 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1177 func_str = "port_enable";
1179 case MPI2_FUNCTION_SMP_PASSTHROUGH:
1180 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1181 func_str = "smp_passthru";
1183 case MPI2_FUNCTION_NVME_ENCAPSULATED:
1184 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1186 func_str = "nvme_encapsulated";
1190 func_str = "unknown";
1194 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1195 desc, ioc_status, request_hdr, func_str);
1197 _debug_dump_mf(request_hdr, frame_sz/4);
1201 * _base_display_event_data - verbose translation of firmware asyn events
1202 * @ioc: per adapter object
1203 * @mpi_reply: reply mf payload returned from firmware
1206 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1207 Mpi2EventNotificationReply_t *mpi_reply)
1212 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1215 event = le16_to_cpu(mpi_reply->Event);
1218 case MPI2_EVENT_LOG_DATA:
1221 case MPI2_EVENT_STATE_CHANGE:
1222 desc = "Status Change";
1224 case MPI2_EVENT_HARD_RESET_RECEIVED:
1225 desc = "Hard Reset Received";
1227 case MPI2_EVENT_EVENT_CHANGE:
1228 desc = "Event Change";
1230 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1231 desc = "Device Status Change";
1233 case MPI2_EVENT_IR_OPERATION_STATUS:
1234 if (!ioc->hide_ir_msg)
1235 desc = "IR Operation Status";
1237 case MPI2_EVENT_SAS_DISCOVERY:
1239 Mpi2EventDataSasDiscovery_t *event_data =
1240 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1241 ioc_info(ioc, "Discovery: (%s)",
1242 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1244 if (event_data->DiscoveryStatus)
1245 pr_cont(" discovery_status(0x%08x)",
1246 le32_to_cpu(event_data->DiscoveryStatus));
1250 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1251 desc = "SAS Broadcast Primitive";
1253 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1254 desc = "SAS Init Device Status Change";
1256 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1257 desc = "SAS Init Table Overflow";
1259 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1260 desc = "SAS Topology Change List";
1262 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1263 desc = "SAS Enclosure Device Status Change";
1265 case MPI2_EVENT_IR_VOLUME:
1266 if (!ioc->hide_ir_msg)
1269 case MPI2_EVENT_IR_PHYSICAL_DISK:
1270 if (!ioc->hide_ir_msg)
1271 desc = "IR Physical Disk";
1273 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1274 if (!ioc->hide_ir_msg)
1275 desc = "IR Configuration Change List";
1277 case MPI2_EVENT_LOG_ENTRY_ADDED:
1278 if (!ioc->hide_ir_msg)
1279 desc = "Log Entry Added";
1281 case MPI2_EVENT_TEMP_THRESHOLD:
1282 desc = "Temperature Threshold";
1284 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1285 desc = "Cable Event";
1287 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1288 desc = "SAS Device Discovery Error";
1290 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1291 desc = "PCIE Device Status Change";
1293 case MPI2_EVENT_PCIE_ENUMERATION:
1295 Mpi26EventDataPCIeEnumeration_t *event_data =
1296 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1297 ioc_info(ioc, "PCIE Enumeration: (%s)",
1298 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1300 if (event_data->EnumerationStatus)
1301 pr_cont("enumeration_status(0x%08x)",
1302 le32_to_cpu(event_data->EnumerationStatus));
1306 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1307 desc = "PCIE Topology Change List";
1314 ioc_info(ioc, "%s\n", desc);
1318 * _base_sas_log_info - verbose translation of firmware log info
1319 * @ioc: per adapter object
1320 * @log_info: log info
1323 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc, u32 log_info)
1325 union loginfo_type {
1334 union loginfo_type sas_loginfo;
1335 char *originator_str = NULL;
1337 sas_loginfo.loginfo = log_info;
1338 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1341 /* each nexus loss loginfo */
1342 if (log_info == 0x31170000)
1345 /* eat the loginfos associated with task aborts */
1346 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1347 0x31140000 || log_info == 0x31130000))
1350 switch (sas_loginfo.dw.originator) {
1352 originator_str = "IOP";
1355 originator_str = "PL";
1358 if (!ioc->hide_ir_msg)
1359 originator_str = "IR";
1361 originator_str = "WarpDrive";
1365 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1367 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1371 * _base_display_reply_info - handle reply descriptors depending on IOC Status
1372 * @ioc: per adapter object
1373 * @smid: system request message index
1374 * @msix_index: MSIX table index supplied by the OS
1375 * @reply: reply message frame (lower 32bit addr)
1378 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1381 MPI2DefaultReply_t *mpi_reply;
1385 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1386 if (unlikely(!mpi_reply)) {
1387 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1388 __FILE__, __LINE__, __func__);
1391 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1393 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1394 (ioc->logging_level & MPT_DEBUG_REPLY)) {
1395 _base_sas_ioc_info(ioc, mpi_reply,
1396 mpt3sas_base_get_msg_frame(ioc, smid));
1399 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1400 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1401 _base_sas_log_info(ioc, loginfo);
1404 if (ioc_status || loginfo) {
1405 ioc_status &= MPI2_IOCSTATUS_MASK;
1406 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1411 * mpt3sas_base_done - base internal command completion routine
1412 * @ioc: per adapter object
1413 * @smid: system request message index
1414 * @msix_index: MSIX table index supplied by the OS
1415 * @reply: reply message frame(lower 32bit addr)
1418 * 1 meaning mf should be freed from _base_interrupt
1419 * 0 means the mf is freed from this function.
1422 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1425 MPI2DefaultReply_t *mpi_reply;
1427 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1428 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1429 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1431 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1434 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1436 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1437 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1439 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1441 complete(&ioc->base_cmds.done);
1446 * _base_async_event - main callback handler for firmware asyn events
1447 * @ioc: per adapter object
1448 * @msix_index: MSIX table index supplied by the OS
1449 * @reply: reply message frame(lower 32bit addr)
1452 * 1 meaning mf should be freed from _base_interrupt
1453 * 0 means the mf is freed from this function.
1456 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1458 Mpi2EventNotificationReply_t *mpi_reply;
1459 Mpi2EventAckRequest_t *ack_request;
1461 struct _event_ack_list *delayed_event_ack;
1463 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1466 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1469 _base_display_event_data(ioc, mpi_reply);
1471 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1473 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1475 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1477 if (!delayed_event_ack)
1479 INIT_LIST_HEAD(&delayed_event_ack->list);
1480 delayed_event_ack->Event = mpi_reply->Event;
1481 delayed_event_ack->EventContext = mpi_reply->EventContext;
1482 list_add_tail(&delayed_event_ack->list,
1483 &ioc->delayed_event_ack_list);
1485 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1486 le16_to_cpu(mpi_reply->Event)));
1490 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1491 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1492 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1493 ack_request->Event = mpi_reply->Event;
1494 ack_request->EventContext = mpi_reply->EventContext;
1495 ack_request->VF_ID = 0; /* TODO */
1496 ack_request->VP_ID = 0;
1497 ioc->put_smid_default(ioc, smid);
1501 /* scsih callback handler */
1502 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1504 /* ctl callback handler */
1505 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1510 static struct scsiio_tracker *
1511 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1513 struct scsi_cmnd *cmd;
1515 if (WARN_ON(!smid) ||
1516 WARN_ON(smid >= ioc->hi_priority_smid))
1519 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1521 return scsi_cmd_priv(cmd);
1527 * _base_get_cb_idx - obtain the callback index
1528 * @ioc: per adapter object
1529 * @smid: system request message index
1531 * Return: callback index.
1534 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1537 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1540 if (smid < ioc->hi_priority_smid) {
1541 struct scsiio_tracker *st;
1543 if (smid < ctl_smid) {
1544 st = _get_st_from_smid(ioc, smid);
1546 cb_idx = st->cb_idx;
1547 } else if (smid == ctl_smid)
1548 cb_idx = ioc->ctl_cb_idx;
1549 } else if (smid < ioc->internal_smid) {
1550 i = smid - ioc->hi_priority_smid;
1551 cb_idx = ioc->hpr_lookup[i].cb_idx;
1552 } else if (smid <= ioc->hba_queue_depth) {
1553 i = smid - ioc->internal_smid;
1554 cb_idx = ioc->internal_lookup[i].cb_idx;
1560 * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1561 * when driver is flushing out the IOs.
1562 * @ioc: per adapter object
1564 * Pause polling on the mq poll (io uring) queues when driver is flushing
1565 * out the IOs. Otherwise we may see the race condition of completing the same
1566 * IO from two paths.
1571 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1573 int iopoll_q_count =
1574 ioc->reply_queue_count - ioc->iopoll_q_start_index;
1577 for (qid = 0; qid < iopoll_q_count; qid++)
1578 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1581 * wait for current poll to complete.
1583 for (qid = 0; qid < iopoll_q_count; qid++) {
1584 while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) {
1592 * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1593 * @ioc: per adapter object
1598 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1600 int iopoll_q_count =
1601 ioc->reply_queue_count - ioc->iopoll_q_start_index;
1604 for (qid = 0; qid < iopoll_q_count; qid++)
1605 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1609 * mpt3sas_base_mask_interrupts - disable interrupts
1610 * @ioc: per adapter object
1612 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1615 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1619 ioc->mask_interrupts = 1;
1620 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1621 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1622 writel(him_register, &ioc->chip->HostInterruptMask);
1623 ioc->base_readl(&ioc->chip->HostInterruptMask);
1627 * mpt3sas_base_unmask_interrupts - enable interrupts
1628 * @ioc: per adapter object
1630 * Enabling only Reply Interrupts
1633 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1637 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1638 him_register &= ~MPI2_HIM_RIM;
1639 writel(him_register, &ioc->chip->HostInterruptMask);
1640 ioc->mask_interrupts = 0;
1643 union reply_descriptor {
1651 static u32 base_mod64(u64 dividend, u32 divisor)
1656 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1657 remainder = do_div(dividend, divisor);
1662 * _base_process_reply_queue - Process reply descriptors from reply
1663 * descriptor post queue.
1664 * @reply_q: per IRQ's reply queue object.
1666 * Return: number of reply descriptors processed from reply
1670 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1672 union reply_descriptor rd;
1674 u8 request_descript_type;
1678 u8 msix_index = reply_q->msix_index;
1679 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1680 Mpi2ReplyDescriptorsUnion_t *rpf;
1684 if (!atomic_add_unless(&reply_q->busy, 1, 1))
1685 return completed_cmds;
1687 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1688 request_descript_type = rpf->Default.ReplyFlags
1689 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1690 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1691 atomic_dec(&reply_q->busy);
1692 return completed_cmds;
1697 rd.word = le64_to_cpu(rpf->Words);
1698 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1701 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1702 if (request_descript_type ==
1703 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1704 request_descript_type ==
1705 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1706 request_descript_type ==
1707 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1708 cb_idx = _base_get_cb_idx(ioc, smid);
1709 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1710 (likely(mpt_callbacks[cb_idx] != NULL))) {
1711 rc = mpt_callbacks[cb_idx](ioc, smid,
1714 mpt3sas_base_free_smid(ioc, smid);
1716 } else if (request_descript_type ==
1717 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1718 reply = le32_to_cpu(
1719 rpf->AddressReply.ReplyFrameAddress);
1720 if (reply > ioc->reply_dma_max_address ||
1721 reply < ioc->reply_dma_min_address)
1724 cb_idx = _base_get_cb_idx(ioc, smid);
1725 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1726 (likely(mpt_callbacks[cb_idx] != NULL))) {
1727 rc = mpt_callbacks[cb_idx](ioc, smid,
1730 _base_display_reply_info(ioc,
1731 smid, msix_index, reply);
1733 mpt3sas_base_free_smid(ioc,
1737 _base_async_event(ioc, msix_index, reply);
1740 /* reply free queue handling */
1742 ioc->reply_free_host_index =
1743 (ioc->reply_free_host_index ==
1744 (ioc->reply_free_queue_depth - 1)) ?
1745 0 : ioc->reply_free_host_index + 1;
1746 ioc->reply_free[ioc->reply_free_host_index] =
1748 if (ioc->is_mcpu_endpoint)
1749 _base_clone_reply_to_sys_mem(ioc,
1751 ioc->reply_free_host_index);
1752 writel(ioc->reply_free_host_index,
1753 &ioc->chip->ReplyFreeHostIndex);
1757 rpf->Words = cpu_to_le64(ULLONG_MAX);
1758 reply_q->reply_post_host_index =
1759 (reply_q->reply_post_host_index ==
1760 (ioc->reply_post_queue_depth - 1)) ? 0 :
1761 reply_q->reply_post_host_index + 1;
1762 request_descript_type =
1763 reply_q->reply_post_free[reply_q->reply_post_host_index].
1764 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1766 /* Update the reply post host index after continuously
1767 * processing the threshold number of Reply Descriptors.
1768 * So that FW can find enough entries to post the Reply
1769 * Descriptors in the reply descriptor post queue.
1771 if (completed_cmds >= ioc->thresh_hold) {
1772 if (ioc->combined_reply_queue) {
1773 writel(reply_q->reply_post_host_index |
1774 ((msix_index & 7) <<
1775 MPI2_RPHI_MSIX_INDEX_SHIFT),
1776 ioc->replyPostRegisterIndex[msix_index/8]);
1778 writel(reply_q->reply_post_host_index |
1780 MPI2_RPHI_MSIX_INDEX_SHIFT),
1781 &ioc->chip->ReplyPostHostIndex);
1783 if (!reply_q->is_iouring_poll_q &&
1784 !reply_q->irq_poll_scheduled) {
1785 reply_q->irq_poll_scheduled = true;
1786 irq_poll_sched(&reply_q->irqpoll);
1788 atomic_dec(&reply_q->busy);
1789 return completed_cmds;
1791 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1793 if (!reply_q->reply_post_host_index)
1794 rpf = reply_q->reply_post_free;
1801 if (!completed_cmds) {
1802 atomic_dec(&reply_q->busy);
1803 return completed_cmds;
1806 if (ioc->is_warpdrive) {
1807 writel(reply_q->reply_post_host_index,
1808 ioc->reply_post_host_index[msix_index]);
1809 atomic_dec(&reply_q->busy);
1810 return completed_cmds;
1813 /* Update Reply Post Host Index.
1814 * For those HBA's which support combined reply queue feature
1815 * 1. Get the correct Supplemental Reply Post Host Index Register.
1816 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1817 * Index Register address bank i.e replyPostRegisterIndex[],
1818 * 2. Then update this register with new reply host index value
1819 * in ReplyPostIndex field and the MSIxIndex field with
1820 * msix_index value reduced to a value between 0 and 7,
1821 * using a modulo 8 operation. Since each Supplemental Reply Post
1822 * Host Index Register supports 8 MSI-X vectors.
1824 * For other HBA's just update the Reply Post Host Index register with
1825 * new reply host index value in ReplyPostIndex Field and msix_index
1826 * value in MSIxIndex field.
1828 if (ioc->combined_reply_queue)
1829 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1830 MPI2_RPHI_MSIX_INDEX_SHIFT),
1831 ioc->replyPostRegisterIndex[msix_index/8]);
1833 writel(reply_q->reply_post_host_index | (msix_index <<
1834 MPI2_RPHI_MSIX_INDEX_SHIFT),
1835 &ioc->chip->ReplyPostHostIndex);
1836 atomic_dec(&reply_q->busy);
1837 return completed_cmds;
1841 * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1842 * @shost: Scsi_Host object
1843 * @queue_num: hw ctx queue number
1845 * Return number of entries that has been processed from poll queue.
1847 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1849 struct MPT3SAS_ADAPTER *ioc =
1850 (struct MPT3SAS_ADAPTER *)shost->hostdata;
1851 struct adapter_reply_queue *reply_q;
1852 int num_entries = 0;
1853 int qid = queue_num - ioc->iopoll_q_start_index;
1855 if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1856 !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1859 reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1861 num_entries = _base_process_reply_queue(reply_q);
1862 atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1868 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1869 * @irq: irq number (not used)
1870 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1872 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1875 _base_interrupt(int irq, void *bus_id)
1877 struct adapter_reply_queue *reply_q = bus_id;
1878 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1880 if (ioc->mask_interrupts)
1882 if (reply_q->irq_poll_scheduled)
1884 return ((_base_process_reply_queue(reply_q) > 0) ?
1885 IRQ_HANDLED : IRQ_NONE);
1889 * _base_irqpoll - IRQ poll callback handler
1890 * @irqpoll: irq_poll object
1891 * @budget: irq poll weight
1893 * Return: number of reply descriptors processed
1896 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1898 struct adapter_reply_queue *reply_q;
1899 int num_entries = 0;
1901 reply_q = container_of(irqpoll, struct adapter_reply_queue,
1903 if (reply_q->irq_line_enable) {
1904 disable_irq_nosync(reply_q->os_irq);
1905 reply_q->irq_line_enable = false;
1907 num_entries = _base_process_reply_queue(reply_q);
1908 if (num_entries < budget) {
1909 irq_poll_complete(irqpoll);
1910 reply_q->irq_poll_scheduled = false;
1911 reply_q->irq_line_enable = true;
1912 enable_irq(reply_q->os_irq);
1914 * Go for one more round of processing the
1915 * reply descriptor post queue in case the HBA
1916 * Firmware has posted some reply descriptors
1917 * while reenabling the IRQ.
1919 _base_process_reply_queue(reply_q);
1926 * _base_init_irqpolls - initliaze IRQ polls
1927 * @ioc: per adapter object
1932 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1934 struct adapter_reply_queue *reply_q, *next;
1936 if (list_empty(&ioc->reply_queue_list))
1939 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1940 if (reply_q->is_iouring_poll_q)
1942 irq_poll_init(&reply_q->irqpoll,
1943 ioc->hba_queue_depth/4, _base_irqpoll);
1944 reply_q->irq_poll_scheduled = false;
1945 reply_q->irq_line_enable = true;
1946 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1947 reply_q->msix_index);
1952 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1953 * @ioc: per adapter object
1955 * Return: Whether or not MSI/X is enabled.
1958 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1960 return (ioc->facts.IOCCapabilities &
1961 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1965 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1966 * @ioc: per adapter object
1967 * @poll: poll over reply descriptor pools incase interrupt for
1968 * timed-out SCSI command got delayed
1969 * Context: non-ISR context
1971 * Called when a Task Management request has completed.
1974 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1976 struct adapter_reply_queue *reply_q;
1978 /* If MSIX capability is turned off
1979 * then multi-queues are not enabled
1981 if (!_base_is_controller_msix_enabled(ioc))
1984 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1985 if (ioc->shost_recovery || ioc->remove_host ||
1986 ioc->pci_error_recovery)
1988 /* TMs are on msix_index == 0 */
1989 if (reply_q->msix_index == 0)
1992 if (reply_q->is_iouring_poll_q) {
1993 _base_process_reply_queue(reply_q);
1997 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1998 if (reply_q->irq_poll_scheduled) {
1999 /* Calling irq_poll_disable will wait for any pending
2000 * callbacks to have completed.
2002 irq_poll_disable(&reply_q->irqpoll);
2003 irq_poll_enable(&reply_q->irqpoll);
2004 /* check how the scheduled poll has ended,
2005 * clean up only if necessary
2007 if (reply_q->irq_poll_scheduled) {
2008 reply_q->irq_poll_scheduled = false;
2009 reply_q->irq_line_enable = true;
2010 enable_irq(reply_q->os_irq);
2015 _base_process_reply_queue(reply_q);
2020 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2021 * @cb_idx: callback index
2024 mpt3sas_base_release_callback_handler(u8 cb_idx)
2026 mpt_callbacks[cb_idx] = NULL;
2030 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2031 * @cb_func: callback function
2033 * Return: Index of @cb_func.
2036 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2040 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2041 if (mpt_callbacks[cb_idx] == NULL)
2044 mpt_callbacks[cb_idx] = cb_func;
2049 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2052 mpt3sas_base_initialize_callback_handler(void)
2056 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2057 mpt3sas_base_release_callback_handler(cb_idx);
2062 * _base_build_zero_len_sge - build zero length sg entry
2063 * @ioc: per adapter object
2064 * @paddr: virtual address for SGE
2066 * Create a zero length scatter gather entry to insure the IOCs hardware has
2067 * something to use if the target device goes brain dead and tries
2068 * to send data even when none is asked for.
2071 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2073 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2074 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2075 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2076 MPI2_SGE_FLAGS_SHIFT);
2077 ioc->base_add_sg_single(paddr, flags_length, -1);
2081 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2082 * @paddr: virtual address for SGE
2083 * @flags_length: SGE flags and data transfer length
2084 * @dma_addr: Physical address
2087 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2089 Mpi2SGESimple32_t *sgel = paddr;
2091 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2092 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2093 sgel->FlagsLength = cpu_to_le32(flags_length);
2094 sgel->Address = cpu_to_le32(dma_addr);
2099 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2100 * @paddr: virtual address for SGE
2101 * @flags_length: SGE flags and data transfer length
2102 * @dma_addr: Physical address
2105 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2107 Mpi2SGESimple64_t *sgel = paddr;
2109 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2110 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2111 sgel->FlagsLength = cpu_to_le32(flags_length);
2112 sgel->Address = cpu_to_le64(dma_addr);
2116 * _base_get_chain_buffer_tracker - obtain chain tracker
2117 * @ioc: per adapter object
2118 * @scmd: SCSI commands of the IO request
2120 * Return: chain tracker from chain_lookup table using key as
2121 * smid and smid's chain_offset.
2123 static struct chain_tracker *
2124 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2125 struct scsi_cmnd *scmd)
2127 struct chain_tracker *chain_req;
2128 struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2129 u16 smid = st->smid;
2131 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2133 if (chain_offset == ioc->chains_needed_per_io)
2136 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2137 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2143 * _base_build_sg - build generic sg
2144 * @ioc: per adapter object
2145 * @psge: virtual address for SGE
2146 * @data_out_dma: physical address for WRITES
2147 * @data_out_sz: data xfer size for WRITES
2148 * @data_in_dma: physical address for READS
2149 * @data_in_sz: data xfer size for READS
2152 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2153 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2158 if (!data_out_sz && !data_in_sz) {
2159 _base_build_zero_len_sge(ioc, psge);
2163 if (data_out_sz && data_in_sz) {
2164 /* WRITE sgel first */
2165 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2166 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2167 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2168 ioc->base_add_sg_single(psge, sgl_flags |
2169 data_out_sz, data_out_dma);
2172 psge += ioc->sge_size;
2174 /* READ sgel last */
2175 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2176 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2177 MPI2_SGE_FLAGS_END_OF_LIST);
2178 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2179 ioc->base_add_sg_single(psge, sgl_flags |
2180 data_in_sz, data_in_dma);
2181 } else if (data_out_sz) /* WRITE */ {
2182 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2183 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2184 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2185 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2186 ioc->base_add_sg_single(psge, sgl_flags |
2187 data_out_sz, data_out_dma);
2188 } else if (data_in_sz) /* READ */ {
2189 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2190 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2191 MPI2_SGE_FLAGS_END_OF_LIST);
2192 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2193 ioc->base_add_sg_single(psge, sgl_flags |
2194 data_in_sz, data_in_dma);
2198 /* IEEE format sgls */
2201 * _base_build_nvme_prp - This function is called for NVMe end devices to build
2202 * a native SGL (NVMe PRP).
2203 * @ioc: per adapter object
2204 * @smid: system request message index for getting asscociated SGL
2205 * @nvme_encap_request: the NVMe request msg frame pointer
2206 * @data_out_dma: physical address for WRITES
2207 * @data_out_sz: data xfer size for WRITES
2208 * @data_in_dma: physical address for READS
2209 * @data_in_sz: data xfer size for READS
2211 * The native SGL is built starting in the first PRP
2212 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
2213 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
2214 * used to describe a larger data buffer. If the data buffer is too large to
2215 * describe using the two PRP entriess inside the NVMe message, then PRP1
2216 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2217 * list located elsewhere in memory to describe the remaining data memory
2218 * segments. The PRP list will be contiguous.
2220 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2221 * consists of a list of PRP entries to describe a number of noncontigous
2222 * physical memory segments as a single memory buffer, just as a SGL does. Note
2223 * however, that this function is only used by the IOCTL call, so the memory
2224 * given will be guaranteed to be contiguous. There is no need to translate
2225 * non-contiguous SGL into a PRP in this case. All PRPs will describe
2226 * contiguous space that is one page size each.
2228 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2229 * a PRP list pointer or a PRP element, depending upon the command. PRP2
2230 * contains the second PRP element if the memory being described fits within 2
2231 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2233 * A PRP list pointer contains the address of a PRP list, structured as a linear
2234 * array of PRP entries. Each PRP entry in this list describes a segment of
2237 * Each 64-bit PRP entry comprises an address and an offset field. The address
2238 * always points at the beginning of a 4KB physical memory page, and the offset
2239 * describes where within that 4KB page the memory segment begins. Only the
2240 * first element in a PRP list may contain a non-zero offset, implying that all
2241 * memory segments following the first begin at the start of a 4KB page.
2243 * Each PRP element normally describes 4KB of physical memory, with exceptions
2244 * for the first and last elements in the list. If the memory being described
2245 * by the list begins at a non-zero offset within the first 4KB page, then the
2246 * first PRP element will contain a non-zero offset indicating where the region
2247 * begins within the 4KB page. The last memory segment may end before the end
2248 * of the 4KB segment, depending upon the overall size of the memory being
2249 * described by the PRP list.
2251 * Since PRP entries lack any indication of size, the overall data buffer length
2252 * is used to determine where the end of the data memory buffer is located, and
2253 * how many PRP entries are required to describe it.
2256 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2257 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2258 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2261 int prp_size = NVME_PRP_SIZE;
2262 __le64 *prp_entry, *prp1_entry, *prp2_entry;
2264 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
2265 u32 offset, entry_len;
2266 u32 page_mask_result, page_mask;
2268 struct mpt3sas_nvme_cmd *nvme_cmd =
2269 (void *)nvme_encap_request->NVMe_Command;
2272 * Not all commands require a data transfer. If no data, just return
2273 * without constructing any PRP.
2275 if (!data_in_sz && !data_out_sz)
2277 prp1_entry = &nvme_cmd->prp1;
2278 prp2_entry = &nvme_cmd->prp2;
2279 prp_entry = prp1_entry;
2281 * For the PRP entries, use the specially allocated buffer of
2282 * contiguous memory.
2284 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2285 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2288 * Check if we are within 1 entry of a page boundary we don't
2289 * want our first entry to be a PRP List entry.
2291 page_mask = ioc->page_size - 1;
2292 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2293 if (!page_mask_result) {
2294 /* Bump up to next page boundary. */
2295 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2296 prp_page_dma = prp_page_dma + prp_size;
2300 * Set PRP physical pointer, which initially points to the current PRP
2303 prp_entry_dma = prp_page_dma;
2305 /* Get physical address and length of the data buffer. */
2307 dma_addr = data_in_dma;
2308 length = data_in_sz;
2310 dma_addr = data_out_dma;
2311 length = data_out_sz;
2314 /* Loop while the length is not zero. */
2317 * Check if we need to put a list pointer here if we are at
2318 * page boundary - prp_size (8 bytes).
2320 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2321 if (!page_mask_result) {
2323 * This is the last entry in a PRP List, so we need to
2324 * put a PRP list pointer here. What this does is:
2325 * - bump the current memory pointer to the next
2326 * address, which will be the next full page.
2327 * - set the PRP Entry to point to that page. This
2328 * is now the PRP List pointer.
2329 * - bump the PRP Entry pointer the start of the
2330 * next page. Since all of this PRP memory is
2331 * contiguous, no need to get a new page - it's
2332 * just the next address.
2335 *prp_entry = cpu_to_le64(prp_entry_dma);
2339 /* Need to handle if entry will be part of a page. */
2340 offset = dma_addr & page_mask;
2341 entry_len = ioc->page_size - offset;
2343 if (prp_entry == prp1_entry) {
2345 * Must fill in the first PRP pointer (PRP1) before
2348 *prp1_entry = cpu_to_le64(dma_addr);
2351 * Now point to the second PRP entry within the
2354 prp_entry = prp2_entry;
2355 } else if (prp_entry == prp2_entry) {
2357 * Should the PRP2 entry be a PRP List pointer or just
2358 * a regular PRP pointer? If there is more than one
2359 * more page of data, must use a PRP List pointer.
2361 if (length > ioc->page_size) {
2363 * PRP2 will contain a PRP List pointer because
2364 * more PRP's are needed with this command. The
2365 * list will start at the beginning of the
2366 * contiguous buffer.
2368 *prp2_entry = cpu_to_le64(prp_entry_dma);
2371 * The next PRP Entry will be the start of the
2374 prp_entry = prp_page;
2377 * After this, the PRP Entries are complete.
2378 * This command uses 2 PRP's and no PRP list.
2380 *prp2_entry = cpu_to_le64(dma_addr);
2384 * Put entry in list and bump the addresses.
2386 * After PRP1 and PRP2 are filled in, this will fill in
2387 * all remaining PRP entries in a PRP List, one per
2388 * each time through the loop.
2390 *prp_entry = cpu_to_le64(dma_addr);
2396 * Bump the phys address of the command's data buffer by the
2399 dma_addr += entry_len;
2401 /* Decrement length accounting for last partial page. */
2402 if (entry_len > length)
2405 length -= entry_len;
2410 * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2411 * SGLs specific to NVMe drives only
2413 * @ioc: per adapter object
2414 * @scmd: SCSI command from the mid-layer
2415 * @mpi_request: mpi request
2417 * @sge_count: scatter gather element count.
2419 * Return: true: PRPs are built
2420 * false: IEEE SGLs needs to be built
2423 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2424 struct scsi_cmnd *scmd,
2425 Mpi25SCSIIORequest_t *mpi_request,
2426 u16 smid, int sge_count)
2428 int sge_len, num_prp_in_chain = 0;
2429 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2431 dma_addr_t msg_dma, sge_addr, offset;
2432 u32 page_mask, page_mask_result;
2433 struct scatterlist *sg_scmd;
2435 int data_len = scsi_bufflen(scmd);
2438 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2440 * Nvme has a very convoluted prp format. One prp is required
2441 * for each page or partial page. Driver need to split up OS sg_list
2442 * entries if it is longer than one page or cross a page
2443 * boundary. Driver also have to insert a PRP list pointer entry as
2444 * the last entry in each physical page of the PRP list.
2446 * NOTE: The first PRP "entry" is actually placed in the first
2447 * SGL entry in the main message as IEEE 64 format. The 2nd
2448 * entry in the main message is the chain element, and the rest
2449 * of the PRP entries are built in the contiguous pcie buffer.
2451 page_mask = nvme_pg_size - 1;
2454 * Native SGL is needed.
2455 * Put a chain element in main message frame that points to the first
2458 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2462 /* Set main message chain element pointer */
2463 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2465 * For NVMe the chain element needs to be the 2nd SG entry in the main
2468 main_chain_element = (Mpi25IeeeSgeChain64_t *)
2469 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2472 * For the PRP entries, use the specially allocated buffer of
2473 * contiguous memory. Normal chain buffers can't be used
2474 * because each chain buffer would need to be the size of an OS
2477 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2478 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2480 main_chain_element->Address = cpu_to_le64(msg_dma);
2481 main_chain_element->NextChainOffset = 0;
2482 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2483 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2484 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2486 /* Build first prp, sge need not to be page aligned*/
2487 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2488 sg_scmd = scsi_sglist(scmd);
2489 sge_addr = sg_dma_address(sg_scmd);
2490 sge_len = sg_dma_len(sg_scmd);
2492 offset = sge_addr & page_mask;
2493 first_prp_len = nvme_pg_size - offset;
2495 ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2496 ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2498 data_len -= first_prp_len;
2500 if (sge_len > first_prp_len) {
2501 sge_addr += first_prp_len;
2502 sge_len -= first_prp_len;
2503 } else if (data_len && (sge_len == first_prp_len)) {
2504 sg_scmd = sg_next(sg_scmd);
2505 sge_addr = sg_dma_address(sg_scmd);
2506 sge_len = sg_dma_len(sg_scmd);
2510 offset = sge_addr & page_mask;
2512 /* Put PRP pointer due to page boundary*/
2513 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2514 if (unlikely(!page_mask_result)) {
2515 scmd_printk(KERN_NOTICE,
2516 scmd, "page boundary curr_buff: 0x%p\n",
2519 *curr_buff = cpu_to_le64(msg_dma);
2524 *curr_buff = cpu_to_le64(sge_addr);
2529 sge_addr += nvme_pg_size;
2530 sge_len -= nvme_pg_size;
2531 data_len -= nvme_pg_size;
2539 sg_scmd = sg_next(sg_scmd);
2540 sge_addr = sg_dma_address(sg_scmd);
2541 sge_len = sg_dma_len(sg_scmd);
2544 main_chain_element->Length =
2545 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2550 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2551 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2553 u32 data_length = 0;
2554 bool build_prp = true;
2556 data_length = scsi_bufflen(scmd);
2558 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2563 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2566 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2573 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2574 * determine if the driver needs to build a native SGL. If so, that native
2575 * SGL is built in the special contiguous buffers allocated especially for
2576 * PCIe SGL creation. If the driver will not build a native SGL, return
2577 * TRUE and a normal IEEE SGL will be built. Currently this routine
2579 * @ioc: per adapter object
2580 * @mpi_request: mf request pointer
2581 * @smid: system request message index
2582 * @scmd: scsi command
2583 * @pcie_device: points to the PCIe device's info
2585 * Return: 0 if native SGL was built, 1 if no SGL was built
2588 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2589 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2590 struct _pcie_device *pcie_device)
2594 /* Get the SG list pointer and info. */
2595 sges_left = scsi_dma_map(scmd);
2599 /* Check if we need to build a native SG list. */
2600 if (!base_is_prp_possible(ioc, pcie_device,
2602 /* We built a native SG list, just return. */
2607 * Build native NVMe PRP.
2609 base_make_prp_nvme(ioc, scmd, mpi_request,
2614 scsi_dma_unmap(scmd);
2619 * _base_add_sg_single_ieee - add sg element for IEEE format
2620 * @paddr: virtual address for SGE
2622 * @chain_offset: number of 128 byte elements from start of segment
2623 * @length: data transfer length
2624 * @dma_addr: Physical address
2627 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2628 dma_addr_t dma_addr)
2630 Mpi25IeeeSgeChain64_t *sgel = paddr;
2632 sgel->Flags = flags;
2633 sgel->NextChainOffset = chain_offset;
2634 sgel->Length = cpu_to_le32(length);
2635 sgel->Address = cpu_to_le64(dma_addr);
2639 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2640 * @ioc: per adapter object
2641 * @paddr: virtual address for SGE
2643 * Create a zero length scatter gather entry to insure the IOCs hardware has
2644 * something to use if the target device goes brain dead and tries
2645 * to send data even when none is asked for.
2648 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2650 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2651 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2652 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2654 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2658 * _base_build_sg_scmd - main sg creation routine
2659 * pcie_device is unused here!
2660 * @ioc: per adapter object
2661 * @scmd: scsi command
2662 * @smid: system request message index
2663 * @unused: unused pcie_device pointer
2666 * The main routine that builds scatter gather table from a given
2667 * scsi request sent via the .queuecommand main handler.
2669 * Return: 0 success, anything else error
2672 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2673 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2675 Mpi2SCSIIORequest_t *mpi_request;
2676 dma_addr_t chain_dma;
2677 struct scatterlist *sg_scmd;
2678 void *sg_local, *chain;
2683 u32 sges_in_segment;
2685 u32 sgl_flags_last_element;
2686 u32 sgl_flags_end_buffer;
2687 struct chain_tracker *chain_req;
2689 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2691 /* init scatter gather flags */
2692 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2693 if (scmd->sc_data_direction == DMA_TO_DEVICE)
2694 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2695 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2696 << MPI2_SGE_FLAGS_SHIFT;
2697 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2698 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2699 << MPI2_SGE_FLAGS_SHIFT;
2700 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2702 sg_scmd = scsi_sglist(scmd);
2703 sges_left = scsi_dma_map(scmd);
2707 sg_local = &mpi_request->SGL;
2708 sges_in_segment = ioc->max_sges_in_main_message;
2709 if (sges_left <= sges_in_segment)
2710 goto fill_in_last_segment;
2712 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2713 (sges_in_segment * ioc->sge_size))/4;
2715 /* fill in main message segment when there is a chain following */
2716 while (sges_in_segment) {
2717 if (sges_in_segment == 1)
2718 ioc->base_add_sg_single(sg_local,
2719 sgl_flags_last_element | sg_dma_len(sg_scmd),
2720 sg_dma_address(sg_scmd));
2722 ioc->base_add_sg_single(sg_local, sgl_flags |
2723 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2724 sg_scmd = sg_next(sg_scmd);
2725 sg_local += ioc->sge_size;
2730 /* initializing the chain flags and pointers */
2731 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2732 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2735 chain = chain_req->chain_buffer;
2736 chain_dma = chain_req->chain_buffer_dma;
2738 sges_in_segment = (sges_left <=
2739 ioc->max_sges_in_chain_message) ? sges_left :
2740 ioc->max_sges_in_chain_message;
2741 chain_offset = (sges_left == sges_in_segment) ?
2742 0 : (sges_in_segment * ioc->sge_size)/4;
2743 chain_length = sges_in_segment * ioc->sge_size;
2745 chain_offset = chain_offset <<
2746 MPI2_SGE_CHAIN_OFFSET_SHIFT;
2747 chain_length += ioc->sge_size;
2749 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2750 chain_length, chain_dma);
2753 goto fill_in_last_segment;
2755 /* fill in chain segments */
2756 while (sges_in_segment) {
2757 if (sges_in_segment == 1)
2758 ioc->base_add_sg_single(sg_local,
2759 sgl_flags_last_element |
2760 sg_dma_len(sg_scmd),
2761 sg_dma_address(sg_scmd));
2763 ioc->base_add_sg_single(sg_local, sgl_flags |
2764 sg_dma_len(sg_scmd),
2765 sg_dma_address(sg_scmd));
2766 sg_scmd = sg_next(sg_scmd);
2767 sg_local += ioc->sge_size;
2772 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2775 chain = chain_req->chain_buffer;
2776 chain_dma = chain_req->chain_buffer_dma;
2780 fill_in_last_segment:
2782 /* fill the last segment */
2785 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2786 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2788 ioc->base_add_sg_single(sg_local, sgl_flags |
2789 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2790 sg_scmd = sg_next(sg_scmd);
2791 sg_local += ioc->sge_size;
2799 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2800 * @ioc: per adapter object
2801 * @scmd: scsi command
2802 * @smid: system request message index
2803 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2804 * constructed on need.
2807 * The main routine that builds scatter gather table from a given
2808 * scsi request sent via the .queuecommand main handler.
2810 * Return: 0 success, anything else error
2813 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2814 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2816 Mpi25SCSIIORequest_t *mpi_request;
2817 dma_addr_t chain_dma;
2818 struct scatterlist *sg_scmd;
2819 void *sg_local, *chain;
2823 u32 sges_in_segment;
2824 u8 simple_sgl_flags;
2825 u8 simple_sgl_flags_last;
2827 struct chain_tracker *chain_req;
2829 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2831 /* init scatter gather flags */
2832 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2833 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2834 simple_sgl_flags_last = simple_sgl_flags |
2835 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2836 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2837 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2839 /* Check if we need to build a native SG list. */
2840 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2841 smid, scmd, pcie_device) == 0)) {
2842 /* We built a native SG list, just return. */
2846 sg_scmd = scsi_sglist(scmd);
2847 sges_left = scsi_dma_map(scmd);
2851 sg_local = &mpi_request->SGL;
2852 sges_in_segment = (ioc->request_sz -
2853 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2854 if (sges_left <= sges_in_segment)
2855 goto fill_in_last_segment;
2857 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2858 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2860 /* fill in main message segment when there is a chain following */
2861 while (sges_in_segment > 1) {
2862 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2863 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2864 sg_scmd = sg_next(sg_scmd);
2865 sg_local += ioc->sge_size_ieee;
2870 /* initializing the pointers */
2871 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2874 chain = chain_req->chain_buffer;
2875 chain_dma = chain_req->chain_buffer_dma;
2877 sges_in_segment = (sges_left <=
2878 ioc->max_sges_in_chain_message) ? sges_left :
2879 ioc->max_sges_in_chain_message;
2880 chain_offset = (sges_left == sges_in_segment) ?
2881 0 : sges_in_segment;
2882 chain_length = sges_in_segment * ioc->sge_size_ieee;
2884 chain_length += ioc->sge_size_ieee;
2885 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2886 chain_offset, chain_length, chain_dma);
2890 goto fill_in_last_segment;
2892 /* fill in chain segments */
2893 while (sges_in_segment) {
2894 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2895 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2896 sg_scmd = sg_next(sg_scmd);
2897 sg_local += ioc->sge_size_ieee;
2902 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2905 chain = chain_req->chain_buffer;
2906 chain_dma = chain_req->chain_buffer_dma;
2910 fill_in_last_segment:
2912 /* fill the last segment */
2913 while (sges_left > 0) {
2915 _base_add_sg_single_ieee(sg_local,
2916 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2917 sg_dma_address(sg_scmd));
2919 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2920 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2921 sg_scmd = sg_next(sg_scmd);
2922 sg_local += ioc->sge_size_ieee;
2930 * _base_build_sg_ieee - build generic sg for IEEE format
2931 * @ioc: per adapter object
2932 * @psge: virtual address for SGE
2933 * @data_out_dma: physical address for WRITES
2934 * @data_out_sz: data xfer size for WRITES
2935 * @data_in_dma: physical address for READS
2936 * @data_in_sz: data xfer size for READS
2939 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2940 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2945 if (!data_out_sz && !data_in_sz) {
2946 _base_build_zero_len_sge_ieee(ioc, psge);
2950 if (data_out_sz && data_in_sz) {
2951 /* WRITE sgel first */
2952 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2953 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2954 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2958 psge += ioc->sge_size_ieee;
2960 /* READ sgel last */
2961 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2962 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2964 } else if (data_out_sz) /* WRITE */ {
2965 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2966 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2967 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2968 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2970 } else if (data_in_sz) /* READ */ {
2971 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2972 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2973 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2974 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2979 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2982 * _base_config_dma_addressing - set dma addressing
2983 * @ioc: per adapter object
2984 * @pdev: PCI device struct
2986 * Return: 0 for success, non-zero for failure.
2989 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2992 u64 coherent_dma_mask, dma_mask;
2994 if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4) {
2996 coherent_dma_mask = dma_mask = DMA_BIT_MASK(32);
2997 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2998 } else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) {
3000 coherent_dma_mask = dma_mask = DMA_BIT_MASK(63);
3003 coherent_dma_mask = dma_mask = DMA_BIT_MASK(64);
3006 if (ioc->use_32bit_dma)
3007 coherent_dma_mask = DMA_BIT_MASK(32);
3009 if (dma_set_mask(&pdev->dev, dma_mask) ||
3010 dma_set_coherent_mask(&pdev->dev, coherent_dma_mask))
3013 if (ioc->dma_mask > 32) {
3014 ioc->base_add_sg_single = &_base_add_sg_single_64;
3015 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3017 ioc->base_add_sg_single = &_base_add_sg_single_32;
3018 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3022 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3023 ioc->dma_mask, convert_to_kb(s.totalram));
3029 * _base_check_enable_msix - checks MSIX capabable.
3030 * @ioc: per adapter object
3032 * Check to see if card is capable of MSIX, and set number
3033 * of available msix vectors
3036 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3039 u16 message_control;
3041 /* Check whether controller SAS2008 B0 controller,
3042 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3044 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3045 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3049 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3051 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3055 /* get msix vector count */
3056 /* NUMA_IO not supported for older controllers */
3057 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3058 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3059 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3060 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3061 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3062 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3063 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3064 ioc->msix_vector_count = 1;
3066 pci_read_config_word(ioc->pdev, base + 2, &message_control);
3067 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3069 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3070 ioc->msix_vector_count));
3075 * mpt3sas_base_free_irq - free irq
3076 * @ioc: per adapter object
3078 * Freeing respective reply_queue from the list.
3081 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3084 struct adapter_reply_queue *reply_q, *next;
3086 if (list_empty(&ioc->reply_queue_list))
3089 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3090 list_del(&reply_q->list);
3091 if (reply_q->is_iouring_poll_q) {
3096 if (ioc->smp_affinity_enable) {
3097 irq = pci_irq_vector(ioc->pdev, reply_q->msix_index);
3098 irq_update_affinity_hint(irq, NULL);
3100 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3107 * _base_request_irq - request irq
3108 * @ioc: per adapter object
3109 * @index: msix index into vector table
3111 * Inserting respective reply_queue into the list.
3114 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3116 struct pci_dev *pdev = ioc->pdev;
3117 struct adapter_reply_queue *reply_q;
3120 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3122 ioc_err(ioc, "unable to allocate memory %zu!\n",
3123 sizeof(struct adapter_reply_queue));
3127 reply_q->msix_index = index;
3129 atomic_set(&reply_q->busy, 0);
3131 if (index >= ioc->iopoll_q_start_index) {
3132 qid = index - ioc->iopoll_q_start_index;
3133 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3134 ioc->driver_name, ioc->id, qid);
3135 reply_q->is_iouring_poll_q = 1;
3136 ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3141 if (ioc->msix_enable)
3142 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3143 ioc->driver_name, ioc->id, index);
3145 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3146 ioc->driver_name, ioc->id);
3147 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3148 IRQF_SHARED, reply_q->name, reply_q);
3150 pr_err("%s: unable to allocate interrupt %d!\n",
3151 reply_q->name, pci_irq_vector(pdev, index));
3156 INIT_LIST_HEAD(&reply_q->list);
3157 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3162 * _base_assign_reply_queues - assigning msix index for each cpu
3163 * @ioc: per adapter object
3165 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3168 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3170 unsigned int cpu, nr_cpus, nr_msix, index = 0, irq;
3171 struct adapter_reply_queue *reply_q;
3172 int iopoll_q_count = ioc->reply_queue_count -
3173 ioc->iopoll_q_start_index;
3174 const struct cpumask *mask;
3176 if (!_base_is_controller_msix_enabled(ioc))
3179 if (ioc->msix_load_balance)
3182 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3184 nr_cpus = num_online_cpus();
3185 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3186 ioc->facts.MaxMSIxVectors);
3190 if (ioc->smp_affinity_enable) {
3193 * set irq affinity to local numa node for those irqs
3194 * corresponding to high iops queues.
3196 if (ioc->high_iops_queues) {
3197 mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev));
3198 for (index = 0; index < ioc->high_iops_queues;
3200 irq = pci_irq_vector(ioc->pdev, index);
3201 irq_set_affinity_and_hint(irq, mask);
3205 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3206 const cpumask_t *mask;
3208 if (reply_q->msix_index < ioc->high_iops_queues ||
3209 reply_q->msix_index >= ioc->iopoll_q_start_index)
3212 mask = pci_irq_get_affinity(ioc->pdev,
3213 reply_q->msix_index);
3215 ioc_warn(ioc, "no affinity for msi %x\n",
3216 reply_q->msix_index);
3220 for_each_cpu_and(cpu, mask, cpu_online_mask) {
3221 if (cpu >= ioc->cpu_msix_table_sz)
3223 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3230 cpu = cpumask_first(cpu_online_mask);
3231 nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3234 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3235 unsigned int i, group = nr_cpus / nr_msix;
3237 if (reply_q->msix_index < ioc->high_iops_queues ||
3238 reply_q->msix_index >= ioc->iopoll_q_start_index)
3244 if (index < nr_cpus % nr_msix)
3247 for (i = 0 ; i < group ; i++) {
3248 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3249 cpu = cpumask_next(cpu, cpu_online_mask);
3256 * _base_check_and_enable_high_iops_queues - enable high iops mode
3257 * @ioc: per adapter object
3258 * @hba_msix_vector_count: msix vectors supported by HBA
3260 * Enable high iops queues only if
3261 * - HBA is a SEA/AERO controller and
3262 * - MSI-Xs vector supported by the HBA is 128 and
3263 * - total CPU count in the system >=16 and
3264 * - loaded driver with default max_msix_vectors module parameter and
3265 * - system booted in non kdump mode
3270 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3271 int hba_msix_vector_count)
3276 * Disable high iops queues if io uring poll queues are enabled.
3278 if (perf_mode == MPT_PERF_MODE_IOPS ||
3279 perf_mode == MPT_PERF_MODE_LATENCY ||
3280 ioc->io_uring_poll_queues) {
3281 ioc->high_iops_queues = 0;
3285 if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3287 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3288 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3291 ioc->high_iops_queues = 0;
3296 if (!reset_devices && ioc->is_aero_ioc &&
3297 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3298 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3299 max_msix_vectors == -1)
3300 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3302 ioc->high_iops_queues = 0;
3306 * mpt3sas_base_disable_msix - disables msix
3307 * @ioc: per adapter object
3311 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3313 if (!ioc->msix_enable)
3315 pci_free_irq_vectors(ioc->pdev);
3316 ioc->msix_enable = 0;
3317 kfree(ioc->io_uring_poll_queues);
3321 * _base_alloc_irq_vectors - allocate msix vectors
3322 * @ioc: per adapter object
3326 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3328 int i, irq_flags = PCI_IRQ_MSIX;
3329 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3330 struct irq_affinity *descp = &desc;
3332 * Don't allocate msix vectors for poll_queues.
3333 * msix_vectors is always within a range of FW supported reply queue.
3335 int nr_msix_vectors = ioc->iopoll_q_start_index;
3338 if (ioc->smp_affinity_enable)
3339 irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3343 ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3344 ioc->reply_queue_count, nr_msix_vectors);
3346 i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3347 ioc->high_iops_queues,
3348 nr_msix_vectors, irq_flags, descp);
3354 * _base_enable_msix - enables msix, failback to io_apic
3355 * @ioc: per adapter object
3359 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3362 int i, local_max_msix_vectors;
3364 int iopoll_q_count = 0;
3366 ioc->msix_load_balance = false;
3368 if (msix_disable == -1 || msix_disable == 0)
3374 if (_base_check_enable_msix(ioc) != 0)
3377 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3378 pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3379 ioc->cpu_count, max_msix_vectors);
3381 ioc->reply_queue_count =
3382 min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3384 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3385 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3387 local_max_msix_vectors = max_msix_vectors;
3389 if (local_max_msix_vectors == 0)
3393 * Enable msix_load_balance only if combined reply queue mode is
3394 * disabled on SAS3 & above generation HBA devices.
3396 if (!ioc->combined_reply_queue &&
3397 ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3399 "combined ReplyQueue is off, Enabling msix load balance\n");
3400 ioc->msix_load_balance = true;
3404 * smp affinity setting is not need when msix load balance
3407 if (ioc->msix_load_balance)
3408 ioc->smp_affinity_enable = 0;
3410 if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3411 ioc->shost->host_tagset = 0;
3414 * Enable io uring poll queues only if host_tagset is enabled.
3416 if (ioc->shost->host_tagset)
3417 iopoll_q_count = poll_queues;
3419 if (iopoll_q_count) {
3420 ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3421 sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3422 if (!ioc->io_uring_poll_queues)
3426 if (ioc->is_aero_ioc)
3427 _base_check_and_enable_high_iops_queues(ioc,
3428 ioc->msix_vector_count);
3431 * Add high iops queues count to reply queue count if high iops queues
3434 ioc->reply_queue_count = min_t(int,
3435 ioc->reply_queue_count + ioc->high_iops_queues,
3436 ioc->msix_vector_count);
3439 * Adjust the reply queue count incase reply queue count
3440 * exceeds the user provided MSIx vectors count.
3442 if (local_max_msix_vectors > 0)
3443 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3444 ioc->reply_queue_count);
3446 * Add io uring poll queues count to reply queues count
3447 * if io uring is enabled in driver.
3449 if (iopoll_q_count) {
3450 if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3452 ioc->reply_queue_count = min_t(int,
3453 ioc->reply_queue_count + iopoll_q_count,
3454 ioc->msix_vector_count);
3458 * Starting index of io uring poll queues in reply queue list.
3460 ioc->iopoll_q_start_index =
3461 ioc->reply_queue_count - iopoll_q_count;
3463 r = _base_alloc_irq_vectors(ioc);
3465 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3470 * Adjust the reply queue count if the allocated
3471 * MSIx vectors is less then the requested number
3474 if (r < ioc->iopoll_q_start_index) {
3475 ioc->reply_queue_count = r + iopoll_q_count;
3476 ioc->iopoll_q_start_index =
3477 ioc->reply_queue_count - iopoll_q_count;
3480 ioc->msix_enable = 1;
3481 for (i = 0; i < ioc->reply_queue_count; i++) {
3482 r = _base_request_irq(ioc, i);
3484 mpt3sas_base_free_irq(ioc);
3485 mpt3sas_base_disable_msix(ioc);
3490 ioc_info(ioc, "High IOPs queues : %s\n",
3491 ioc->high_iops_queues ? "enabled" : "disabled");
3495 /* failback to io_apic interrupt routing */
3497 ioc->high_iops_queues = 0;
3498 ioc_info(ioc, "High IOPs queues : disabled\n");
3499 ioc->reply_queue_count = 1;
3500 ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3501 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3504 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3507 r = _base_request_irq(ioc, 0);
3513 * mpt3sas_base_unmap_resources - free controller resources
3514 * @ioc: per adapter object
3517 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3519 struct pci_dev *pdev = ioc->pdev;
3521 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3523 mpt3sas_base_free_irq(ioc);
3524 mpt3sas_base_disable_msix(ioc);
3526 kfree(ioc->replyPostRegisterIndex);
3527 ioc->replyPostRegisterIndex = NULL;
3530 if (ioc->chip_phys) {
3535 if (pci_is_enabled(pdev)) {
3536 pci_release_selected_regions(ioc->pdev, ioc->bars);
3537 pci_disable_device(pdev);
3542 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3545 * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3546 * and if it is in fault state then issue diag reset.
3547 * @ioc: per adapter object
3549 * Return: 0 for success, non-zero for failure.
3552 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3557 dinitprintk(ioc, pr_info("%s\n", __func__));
3558 if (ioc->pci_error_recovery)
3560 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3561 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3563 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3564 mpt3sas_print_fault_code(ioc, ioc_state &
3565 MPI2_DOORBELL_DATA_MASK);
3566 mpt3sas_base_mask_interrupts(ioc);
3567 rc = _base_diag_reset(ioc);
3568 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3569 MPI2_IOC_STATE_COREDUMP) {
3570 mpt3sas_print_coredump_info(ioc, ioc_state &
3571 MPI2_DOORBELL_DATA_MASK);
3572 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3573 mpt3sas_base_mask_interrupts(ioc);
3574 rc = _base_diag_reset(ioc);
3581 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3582 * @ioc: per adapter object
3584 * Return: 0 for success, non-zero for failure.
3587 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3589 struct pci_dev *pdev = ioc->pdev;
3594 phys_addr_t chip_phys = 0;
3595 struct adapter_reply_queue *reply_q;
3596 int iopoll_q_count = 0;
3598 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3600 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3601 if (pci_enable_device_mem(pdev)) {
3602 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3608 if (pci_request_selected_regions(pdev, ioc->bars,
3609 ioc->driver_name)) {
3610 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3616 pci_set_master(pdev);
3619 if (_base_config_dma_addressing(ioc, pdev) != 0) {
3620 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3625 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3626 (!memap_sz || !pio_sz); i++) {
3627 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3630 pio_chip = (u64)pci_resource_start(pdev, i);
3631 pio_sz = pci_resource_len(pdev, i);
3632 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3635 ioc->chip_phys = pci_resource_start(pdev, i);
3636 chip_phys = ioc->chip_phys;
3637 memap_sz = pci_resource_len(pdev, i);
3638 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3642 if (ioc->chip == NULL) {
3644 "unable to map adapter memory! or resource not found\n");
3649 mpt3sas_base_mask_interrupts(ioc);
3651 r = _base_get_ioc_facts(ioc);
3653 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3654 if (rc || (_base_get_ioc_facts(ioc)))
3658 if (!ioc->rdpq_array_enable_assigned) {
3659 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3660 ioc->rdpq_array_enable_assigned = 1;
3663 r = _base_enable_msix(ioc);
3667 iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3668 for (i = 0; i < iopoll_q_count; i++) {
3669 atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3670 atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3673 if (!ioc->is_driver_loading)
3674 _base_init_irqpolls(ioc);
3675 /* Use the Combined reply queue feature only for SAS3 C0 & higher
3676 * revision HBAs and also only when reply queue count is greater than 8
3678 if (ioc->combined_reply_queue) {
3679 /* Determine the Supplemental Reply Post Host Index Registers
3680 * Addresse. Supplemental Reply Post Host Index Registers
3681 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3682 * each register is at offset bytes of
3683 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3685 ioc->replyPostRegisterIndex = kcalloc(
3686 ioc->combined_reply_index_count,
3687 sizeof(resource_size_t *), GFP_KERNEL);
3688 if (!ioc->replyPostRegisterIndex) {
3690 "allocation for replyPostRegisterIndex failed!\n");
3695 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3696 ioc->replyPostRegisterIndex[i] =
3697 (resource_size_t __iomem *)
3698 ((u8 __force *)&ioc->chip->Doorbell +
3699 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3700 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3704 if (ioc->is_warpdrive) {
3705 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3706 &ioc->chip->ReplyPostHostIndex;
3708 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3709 ioc->reply_post_host_index[i] =
3710 (resource_size_t __iomem *)
3711 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3715 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3716 if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3717 pr_info("%s: enabled: index: %d\n",
3718 reply_q->name, reply_q->msix_index);
3722 pr_info("%s: %s enabled: IRQ %d\n",
3724 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3725 pci_irq_vector(ioc->pdev, reply_q->msix_index));
3728 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3729 &chip_phys, ioc->chip, memap_sz);
3730 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3731 (unsigned long long)pio_chip, pio_sz);
3733 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3734 pci_save_state(pdev);
3738 mpt3sas_base_unmap_resources(ioc);
3743 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3744 * @ioc: per adapter object
3745 * @smid: system request message index(smid zero is invalid)
3747 * Return: virt pointer to message frame.
3750 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3752 return (void *)(ioc->request + (smid * ioc->request_sz));
3756 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3757 * @ioc: per adapter object
3758 * @smid: system request message index
3760 * Return: virt pointer to sense buffer.
3763 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3765 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3769 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3770 * @ioc: per adapter object
3771 * @smid: system request message index
3773 * Return: phys pointer to the low 32bit address of the sense buffer.
3776 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3778 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3779 SCSI_SENSE_BUFFERSIZE));
3783 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3784 * @ioc: per adapter object
3785 * @smid: system request message index
3787 * Return: virt pointer to a PCIe SGL.
3790 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3792 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3796 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3797 * @ioc: per adapter object
3798 * @smid: system request message index
3800 * Return: phys pointer to the address of the PCIe buffer.
3803 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3805 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3809 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3810 * @ioc: per adapter object
3811 * @phys_addr: lower 32 physical addr of the reply
3813 * Converts 32bit lower physical addr into a virt address.
3816 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3820 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3824 * _base_get_msix_index - get the msix index
3825 * @ioc: per adapter object
3826 * @scmd: scsi_cmnd object
3828 * Return: msix index of general reply queues,
3829 * i.e. reply queue on which IO request's reply
3830 * should be posted by the HBA firmware.
3833 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3834 struct scsi_cmnd *scmd)
3836 /* Enables reply_queue load balancing */
3837 if (ioc->msix_load_balance)
3838 return ioc->reply_queue_count ?
3839 base_mod64(atomic64_add_return(1,
3840 &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3842 if (scmd && ioc->shost->nr_hw_queues > 1) {
3843 u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3845 return blk_mq_unique_tag_to_hwq(tag) +
3846 ioc->high_iops_queues;
3849 return ioc->cpu_msix_table[raw_smp_processor_id()];
3853 * _base_get_high_iops_msix_index - get the msix index of
3855 * @ioc: per adapter object
3856 * @scmd: scsi_cmnd object
3858 * Return: msix index of high iops reply queues.
3859 * i.e. high iops reply queue on which IO request's
3860 * reply should be posted by the HBA firmware.
3863 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3864 struct scsi_cmnd *scmd)
3867 * Round robin the IO interrupts among the high iops
3868 * reply queues in terms of batch count 16 when outstanding
3869 * IOs on the target device is >=8.
3872 if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3874 atomic64_add_return(1, &ioc->high_iops_outstanding) /
3875 MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3876 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3878 return _base_get_msix_index(ioc, scmd);
3882 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3883 * @ioc: per adapter object
3884 * @cb_idx: callback index
3886 * Return: smid (zero is invalid)
3889 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3891 unsigned long flags;
3892 struct request_tracker *request;
3895 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3896 if (list_empty(&ioc->internal_free_list)) {
3897 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3898 ioc_err(ioc, "%s: smid not available\n", __func__);
3902 request = list_entry(ioc->internal_free_list.next,
3903 struct request_tracker, tracker_list);
3904 request->cb_idx = cb_idx;
3905 smid = request->smid;
3906 list_del(&request->tracker_list);
3907 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3912 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3913 * @ioc: per adapter object
3914 * @cb_idx: callback index
3915 * @scmd: pointer to scsi command object
3917 * Return: smid (zero is invalid)
3920 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3921 struct scsi_cmnd *scmd)
3923 struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3925 u32 tag, unique_tag;
3927 unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3928 tag = blk_mq_unique_tag_to_tag(unique_tag);
3931 * Store hw queue number corresponding to the tag.
3932 * This hw queue number is used later to determine
3933 * the unique_tag using the logic below. This unique_tag
3934 * is used to retrieve the scmd pointer corresponding
3935 * to tag using scsi_host_find_tag() API.
3938 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3940 ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3943 request->cb_idx = cb_idx;
3944 request->smid = smid;
3945 request->scmd = scmd;
3946 INIT_LIST_HEAD(&request->chain_list);
3951 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3952 * @ioc: per adapter object
3953 * @cb_idx: callback index
3955 * Return: smid (zero is invalid)
3958 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3960 unsigned long flags;
3961 struct request_tracker *request;
3964 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3965 if (list_empty(&ioc->hpr_free_list)) {
3966 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3970 request = list_entry(ioc->hpr_free_list.next,
3971 struct request_tracker, tracker_list);
3972 request->cb_idx = cb_idx;
3973 smid = request->smid;
3974 list_del(&request->tracker_list);
3975 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3980 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3983 * See _wait_for_commands_to_complete() call with regards to this code.
3985 if (ioc->shost_recovery && ioc->pending_io_count) {
3986 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3987 if (ioc->pending_io_count == 0)
3988 wake_up(&ioc->reset_wq);
3992 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3993 struct scsiio_tracker *st)
3995 if (WARN_ON(st->smid == 0))
4000 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4005 * mpt3sas_base_free_smid - put smid back on free_list
4006 * @ioc: per adapter object
4007 * @smid: system request message index
4010 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4012 unsigned long flags;
4015 if (smid < ioc->hi_priority_smid) {
4016 struct scsiio_tracker *st;
4019 st = _get_st_from_smid(ioc, smid);
4021 _base_recovery_check(ioc);
4025 /* Clear MPI request frame */
4026 request = mpt3sas_base_get_msg_frame(ioc, smid);
4027 memset(request, 0, ioc->request_sz);
4029 mpt3sas_base_clear_st(ioc, st);
4030 _base_recovery_check(ioc);
4031 ioc->io_queue_num[smid - 1] = 0;
4035 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4036 if (smid < ioc->internal_smid) {
4038 i = smid - ioc->hi_priority_smid;
4039 ioc->hpr_lookup[i].cb_idx = 0xFF;
4040 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4041 } else if (smid <= ioc->hba_queue_depth) {
4042 /* internal queue */
4043 i = smid - ioc->internal_smid;
4044 ioc->internal_lookup[i].cb_idx = 0xFF;
4045 list_add(&ioc->internal_lookup[i].tracker_list,
4046 &ioc->internal_free_list);
4048 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4052 * _base_mpi_ep_writeq - 32 bit write to MMIO
4054 * @addr: address in MMIO space
4055 * @writeq_lock: spin lock
4057 * This special handling for MPI EP to take care of 32 bit
4058 * environment where its not quarenteed to send the entire word
4062 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4063 spinlock_t *writeq_lock)
4065 unsigned long flags;
4067 spin_lock_irqsave(writeq_lock, flags);
4068 __raw_writel((u32)(b), addr);
4069 __raw_writel((u32)(b >> 32), (addr + 4));
4070 spin_unlock_irqrestore(writeq_lock, flags);
4074 * _base_writeq - 64 bit write to MMIO
4076 * @addr: address in MMIO space
4077 * @writeq_lock: spin lock
4079 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4080 * care of 32 bit environment where its not quarenteed to send the entire word
4083 #if defined(writeq) && defined(CONFIG_64BIT)
4085 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4088 __raw_writeq(b, addr);
4093 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4095 _base_mpi_ep_writeq(b, addr, writeq_lock);
4100 * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4101 * variable of scsi tracker
4102 * @ioc: per adapter object
4103 * @smid: system request message index
4105 * Return: msix index.
4108 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4110 struct scsiio_tracker *st = NULL;
4112 if (smid < ioc->hi_priority_smid)
4113 st = _get_st_from_smid(ioc, smid);
4116 return _base_get_msix_index(ioc, NULL);
4118 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4123 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4124 * @ioc: per adapter object
4125 * @smid: system request message index
4126 * @handle: device handle
4129 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4130 u16 smid, u16 handle)
4132 Mpi2RequestDescriptorUnion_t descriptor;
4133 u64 *request = (u64 *)&descriptor;
4134 void *mpi_req_iomem;
4135 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4137 _clone_sg_entries(ioc, (void *) mfp, smid);
4138 mpi_req_iomem = (void __force *)ioc->chip +
4139 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4140 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4142 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4143 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4144 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4145 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4146 descriptor.SCSIIO.LMID = 0;
4147 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4148 &ioc->scsi_lookup_lock);
4152 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4153 * @ioc: per adapter object
4154 * @smid: system request message index
4155 * @handle: device handle
4158 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4160 Mpi2RequestDescriptorUnion_t descriptor;
4161 u64 *request = (u64 *)&descriptor;
4164 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4165 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4166 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4167 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4168 descriptor.SCSIIO.LMID = 0;
4169 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4170 &ioc->scsi_lookup_lock);
4174 * _base_put_smid_fast_path - send fast path request to firmware
4175 * @ioc: per adapter object
4176 * @smid: system request message index
4177 * @handle: device handle
4180 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4183 Mpi2RequestDescriptorUnion_t descriptor;
4184 u64 *request = (u64 *)&descriptor;
4186 descriptor.SCSIIO.RequestFlags =
4187 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4188 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4189 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4190 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4191 descriptor.SCSIIO.LMID = 0;
4192 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4193 &ioc->scsi_lookup_lock);
4197 * _base_put_smid_hi_priority - send Task Management request to firmware
4198 * @ioc: per adapter object
4199 * @smid: system request message index
4200 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4203 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4206 Mpi2RequestDescriptorUnion_t descriptor;
4207 void *mpi_req_iomem;
4210 if (ioc->is_mcpu_endpoint) {
4211 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4213 /* TBD 256 is offset within sys register. */
4214 mpi_req_iomem = (void __force *)ioc->chip
4215 + MPI_FRAME_START_OFFSET
4216 + (smid * ioc->request_sz);
4217 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4221 request = (u64 *)&descriptor;
4223 descriptor.HighPriority.RequestFlags =
4224 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4225 descriptor.HighPriority.MSIxIndex = msix_task;
4226 descriptor.HighPriority.SMID = cpu_to_le16(smid);
4227 descriptor.HighPriority.LMID = 0;
4228 descriptor.HighPriority.Reserved1 = 0;
4229 if (ioc->is_mcpu_endpoint)
4230 _base_mpi_ep_writeq(*request,
4231 &ioc->chip->RequestDescriptorPostLow,
4232 &ioc->scsi_lookup_lock);
4234 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4235 &ioc->scsi_lookup_lock);
4239 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4241 * @ioc: per adapter object
4242 * @smid: system request message index
4245 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4247 Mpi2RequestDescriptorUnion_t descriptor;
4248 u64 *request = (u64 *)&descriptor;
4250 descriptor.Default.RequestFlags =
4251 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4252 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4253 descriptor.Default.SMID = cpu_to_le16(smid);
4254 descriptor.Default.LMID = 0;
4255 descriptor.Default.DescriptorTypeDependent = 0;
4256 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4257 &ioc->scsi_lookup_lock);
4261 * _base_put_smid_default - Default, primarily used for config pages
4262 * @ioc: per adapter object
4263 * @smid: system request message index
4266 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4268 Mpi2RequestDescriptorUnion_t descriptor;
4269 void *mpi_req_iomem;
4272 if (ioc->is_mcpu_endpoint) {
4273 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4275 _clone_sg_entries(ioc, (void *) mfp, smid);
4276 /* TBD 256 is offset within sys register */
4277 mpi_req_iomem = (void __force *)ioc->chip +
4278 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4279 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4282 request = (u64 *)&descriptor;
4283 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4284 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4285 descriptor.Default.SMID = cpu_to_le16(smid);
4286 descriptor.Default.LMID = 0;
4287 descriptor.Default.DescriptorTypeDependent = 0;
4288 if (ioc->is_mcpu_endpoint)
4289 _base_mpi_ep_writeq(*request,
4290 &ioc->chip->RequestDescriptorPostLow,
4291 &ioc->scsi_lookup_lock);
4293 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4294 &ioc->scsi_lookup_lock);
4298 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4299 * Atomic Request Descriptor
4300 * @ioc: per adapter object
4301 * @smid: system request message index
4302 * @handle: device handle, unused in this function, for function type match
4307 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4310 Mpi26AtomicRequestDescriptor_t descriptor;
4311 u32 *request = (u32 *)&descriptor;
4313 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4314 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4315 descriptor.SMID = cpu_to_le16(smid);
4317 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4321 * _base_put_smid_fast_path_atomic - send fast path request to firmware
4322 * using Atomic Request Descriptor
4323 * @ioc: per adapter object
4324 * @smid: system request message index
4325 * @handle: device handle, unused in this function, for function type match
4329 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4332 Mpi26AtomicRequestDescriptor_t descriptor;
4333 u32 *request = (u32 *)&descriptor;
4335 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4336 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4337 descriptor.SMID = cpu_to_le16(smid);
4339 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4343 * _base_put_smid_hi_priority_atomic - send Task Management request to
4344 * firmware using Atomic Request Descriptor
4345 * @ioc: per adapter object
4346 * @smid: system request message index
4347 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4352 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4355 Mpi26AtomicRequestDescriptor_t descriptor;
4356 u32 *request = (u32 *)&descriptor;
4358 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4359 descriptor.MSIxIndex = msix_task;
4360 descriptor.SMID = cpu_to_le16(smid);
4362 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4366 * _base_put_smid_default_atomic - Default, primarily used for config pages
4367 * use Atomic Request Descriptor
4368 * @ioc: per adapter object
4369 * @smid: system request message index
4374 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4376 Mpi26AtomicRequestDescriptor_t descriptor;
4377 u32 *request = (u32 *)&descriptor;
4379 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4380 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4381 descriptor.SMID = cpu_to_le16(smid);
4383 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4387 * _base_display_OEMs_branding - Display branding string
4388 * @ioc: per adapter object
4391 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4393 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4396 switch (ioc->pdev->subsystem_vendor) {
4397 case PCI_VENDOR_ID_INTEL:
4398 switch (ioc->pdev->device) {
4399 case MPI2_MFGPAGE_DEVID_SAS2008:
4400 switch (ioc->pdev->subsystem_device) {
4401 case MPT2SAS_INTEL_RMS2LL080_SSDID:
4402 ioc_info(ioc, "%s\n",
4403 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4405 case MPT2SAS_INTEL_RMS2LL040_SSDID:
4406 ioc_info(ioc, "%s\n",
4407 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4409 case MPT2SAS_INTEL_SSD910_SSDID:
4410 ioc_info(ioc, "%s\n",
4411 MPT2SAS_INTEL_SSD910_BRANDING);
4414 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4415 ioc->pdev->subsystem_device);
4419 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4420 switch (ioc->pdev->subsystem_device) {
4421 case MPT2SAS_INTEL_RS25GB008_SSDID:
4422 ioc_info(ioc, "%s\n",
4423 MPT2SAS_INTEL_RS25GB008_BRANDING);
4425 case MPT2SAS_INTEL_RMS25JB080_SSDID:
4426 ioc_info(ioc, "%s\n",
4427 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4429 case MPT2SAS_INTEL_RMS25JB040_SSDID:
4430 ioc_info(ioc, "%s\n",
4431 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4433 case MPT2SAS_INTEL_RMS25KB080_SSDID:
4434 ioc_info(ioc, "%s\n",
4435 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4437 case MPT2SAS_INTEL_RMS25KB040_SSDID:
4438 ioc_info(ioc, "%s\n",
4439 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4441 case MPT2SAS_INTEL_RMS25LB040_SSDID:
4442 ioc_info(ioc, "%s\n",
4443 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4445 case MPT2SAS_INTEL_RMS25LB080_SSDID:
4446 ioc_info(ioc, "%s\n",
4447 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4450 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4451 ioc->pdev->subsystem_device);
4455 case MPI25_MFGPAGE_DEVID_SAS3008:
4456 switch (ioc->pdev->subsystem_device) {
4457 case MPT3SAS_INTEL_RMS3JC080_SSDID:
4458 ioc_info(ioc, "%s\n",
4459 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4462 case MPT3SAS_INTEL_RS3GC008_SSDID:
4463 ioc_info(ioc, "%s\n",
4464 MPT3SAS_INTEL_RS3GC008_BRANDING);
4466 case MPT3SAS_INTEL_RS3FC044_SSDID:
4467 ioc_info(ioc, "%s\n",
4468 MPT3SAS_INTEL_RS3FC044_BRANDING);
4470 case MPT3SAS_INTEL_RS3UC080_SSDID:
4471 ioc_info(ioc, "%s\n",
4472 MPT3SAS_INTEL_RS3UC080_BRANDING);
4475 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4476 ioc->pdev->subsystem_device);
4481 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4482 ioc->pdev->subsystem_device);
4486 case PCI_VENDOR_ID_DELL:
4487 switch (ioc->pdev->device) {
4488 case MPI2_MFGPAGE_DEVID_SAS2008:
4489 switch (ioc->pdev->subsystem_device) {
4490 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4491 ioc_info(ioc, "%s\n",
4492 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4494 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4495 ioc_info(ioc, "%s\n",
4496 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4498 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4499 ioc_info(ioc, "%s\n",
4500 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4502 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4503 ioc_info(ioc, "%s\n",
4504 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4506 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4507 ioc_info(ioc, "%s\n",
4508 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4510 case MPT2SAS_DELL_PERC_H200_SSDID:
4511 ioc_info(ioc, "%s\n",
4512 MPT2SAS_DELL_PERC_H200_BRANDING);
4514 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4515 ioc_info(ioc, "%s\n",
4516 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4519 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4520 ioc->pdev->subsystem_device);
4524 case MPI25_MFGPAGE_DEVID_SAS3008:
4525 switch (ioc->pdev->subsystem_device) {
4526 case MPT3SAS_DELL_12G_HBA_SSDID:
4527 ioc_info(ioc, "%s\n",
4528 MPT3SAS_DELL_12G_HBA_BRANDING);
4531 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4532 ioc->pdev->subsystem_device);
4537 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4538 ioc->pdev->subsystem_device);
4542 case PCI_VENDOR_ID_CISCO:
4543 switch (ioc->pdev->device) {
4544 case MPI25_MFGPAGE_DEVID_SAS3008:
4545 switch (ioc->pdev->subsystem_device) {
4546 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4547 ioc_info(ioc, "%s\n",
4548 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4550 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4551 ioc_info(ioc, "%s\n",
4552 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4554 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4555 ioc_info(ioc, "%s\n",
4556 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4559 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4560 ioc->pdev->subsystem_device);
4564 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4565 switch (ioc->pdev->subsystem_device) {
4566 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4567 ioc_info(ioc, "%s\n",
4568 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4570 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4571 ioc_info(ioc, "%s\n",
4572 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4575 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4576 ioc->pdev->subsystem_device);
4581 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4582 ioc->pdev->subsystem_device);
4586 case MPT2SAS_HP_3PAR_SSVID:
4587 switch (ioc->pdev->device) {
4588 case MPI2_MFGPAGE_DEVID_SAS2004:
4589 switch (ioc->pdev->subsystem_device) {
4590 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4591 ioc_info(ioc, "%s\n",
4592 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4595 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4596 ioc->pdev->subsystem_device);
4600 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4601 switch (ioc->pdev->subsystem_device) {
4602 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4603 ioc_info(ioc, "%s\n",
4604 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4606 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4607 ioc_info(ioc, "%s\n",
4608 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4610 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4611 ioc_info(ioc, "%s\n",
4612 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4614 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4615 ioc_info(ioc, "%s\n",
4616 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4619 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4620 ioc->pdev->subsystem_device);
4625 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4626 ioc->pdev->subsystem_device);
4636 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4637 * version from FW Image Header.
4638 * @ioc: per adapter object
4640 * Return: 0 for success, non-zero for failure.
4643 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4645 Mpi2FWImageHeader_t *fw_img_hdr;
4646 Mpi26ComponentImageHeader_t *cmp_img_hdr;
4647 Mpi25FWUploadRequest_t *mpi_request;
4648 Mpi2FWUploadReply_t mpi_reply;
4649 int r = 0, issue_diag_reset = 0;
4650 u32 package_version = 0;
4651 void *fwpkg_data = NULL;
4652 dma_addr_t fwpkg_data_dma;
4653 u16 smid, ioc_status;
4656 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4658 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4659 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4663 data_length = sizeof(Mpi2FWImageHeader_t);
4664 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4665 &fwpkg_data_dma, GFP_KERNEL);
4668 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4669 __FILE__, __LINE__, __func__);
4673 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4675 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4680 ioc->base_cmds.status = MPT3_CMD_PENDING;
4681 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4682 ioc->base_cmds.smid = smid;
4683 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4684 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4685 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4686 mpi_request->ImageSize = cpu_to_le32(data_length);
4687 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4689 init_completion(&ioc->base_cmds.done);
4690 ioc->put_smid_default(ioc, smid);
4691 /* Wait for 15 seconds */
4692 wait_for_completion_timeout(&ioc->base_cmds.done,
4693 FW_IMG_HDR_READ_TIMEOUT*HZ);
4694 ioc_info(ioc, "%s: complete\n", __func__);
4695 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4696 ioc_err(ioc, "%s: timeout\n", __func__);
4697 _debug_dump_mf(mpi_request,
4698 sizeof(Mpi25FWUploadRequest_t)/4);
4699 issue_diag_reset = 1;
4701 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4702 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4703 memcpy(&mpi_reply, ioc->base_cmds.reply,
4704 sizeof(Mpi2FWUploadReply_t));
4705 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4706 MPI2_IOCSTATUS_MASK;
4707 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4708 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4709 if (le32_to_cpu(fw_img_hdr->Signature) ==
4710 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4712 (Mpi26ComponentImageHeader_t *)
4716 cmp_img_hdr->ApplicationSpecific);
4720 fw_img_hdr->PackageVersion.Word);
4721 if (package_version)
4723 "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4724 ((package_version) & 0xFF000000) >> 24,
4725 ((package_version) & 0x00FF0000) >> 16,
4726 ((package_version) & 0x0000FF00) >> 8,
4727 (package_version) & 0x000000FF);
4729 _debug_dump_mf(&mpi_reply,
4730 sizeof(Mpi2FWUploadReply_t)/4);
4734 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4737 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4739 if (issue_diag_reset) {
4740 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4742 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4750 * _base_display_ioc_capabilities - Display IOC's capabilities.
4751 * @ioc: per adapter object
4754 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4757 char desc[17] = {0};
4758 u32 iounit_pg1_flags;
4760 strncpy(desc, ioc->manu_pg0.ChipName, 16);
4761 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x)\n",
4763 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4764 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4765 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4766 ioc->facts.FWVersion.Word & 0x000000FF,
4767 ioc->pdev->revision);
4769 _base_display_OEMs_branding(ioc);
4771 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4772 pr_info("%sNVMe", i ? "," : "");
4776 ioc_info(ioc, "Protocol=(");
4778 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4779 pr_cont("Initiator");
4783 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4784 pr_cont("%sTarget", i ? "," : "");
4789 pr_cont("), Capabilities=(");
4791 if (!ioc->hide_ir_msg) {
4792 if (ioc->facts.IOCCapabilities &
4793 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4799 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4800 pr_cont("%sTLR", i ? "," : "");
4804 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4805 pr_cont("%sMulticast", i ? "," : "");
4809 if (ioc->facts.IOCCapabilities &
4810 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4811 pr_cont("%sBIDI Target", i ? "," : "");
4815 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4816 pr_cont("%sEEDP", i ? "," : "");
4820 if (ioc->facts.IOCCapabilities &
4821 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4822 pr_cont("%sSnapshot Buffer", i ? "," : "");
4826 if (ioc->facts.IOCCapabilities &
4827 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4828 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4832 if (ioc->facts.IOCCapabilities &
4833 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4834 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4838 if (ioc->facts.IOCCapabilities &
4839 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4840 pr_cont("%sTask Set Full", i ? "," : "");
4844 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4845 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4846 pr_cont("%sNCQ", i ? "," : "");
4854 * mpt3sas_base_update_missing_delay - change the missing delay timers
4855 * @ioc: per adapter object
4856 * @device_missing_delay: amount of time till device is reported missing
4857 * @io_missing_delay: interval IO is returned when there is a missing device
4859 * Passed on the command line, this function will modify the device missing
4860 * delay, as well as the io missing delay. This should be called at driver
4864 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4865 u16 device_missing_delay, u8 io_missing_delay)
4867 u16 dmd, dmd_new, dmd_orignal;
4868 u8 io_missing_delay_original;
4870 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4871 Mpi2ConfigReply_t mpi_reply;
4875 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4879 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4880 sizeof(Mpi2SasIOUnit1PhyData_t));
4881 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4882 if (!sas_iounit_pg1) {
4883 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4884 __FILE__, __LINE__, __func__);
4887 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4888 sas_iounit_pg1, sz))) {
4889 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4890 __FILE__, __LINE__, __func__);
4893 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4894 MPI2_IOCSTATUS_MASK;
4895 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4896 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4897 __FILE__, __LINE__, __func__);
4901 /* device missing delay */
4902 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4903 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4904 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4906 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4908 if (device_missing_delay > 0x7F) {
4909 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4910 device_missing_delay;
4912 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4914 dmd = device_missing_delay;
4915 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4917 /* io missing delay */
4918 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4919 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4921 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4923 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4925 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4928 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4929 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4930 dmd_orignal, dmd_new);
4931 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4932 io_missing_delay_original,
4934 ioc->device_missing_delay = dmd_new;
4935 ioc->io_missing_delay = io_missing_delay;
4939 kfree(sas_iounit_pg1);
4943 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4944 * according to performance mode.
4945 * @ioc : per adapter object
4947 * Return: zero on success; otherwise return EAGAIN error code asking the
4951 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4953 Mpi2IOCPage1_t ioc_pg1;
4954 Mpi2ConfigReply_t mpi_reply;
4957 rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4960 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4962 switch (perf_mode) {
4963 case MPT_PERF_MODE_DEFAULT:
4964 case MPT_PERF_MODE_BALANCED:
4965 if (ioc->high_iops_queues) {
4967 "Enable interrupt coalescing only for first\t"
4968 "%d reply queues\n",
4969 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4971 * If 31st bit is zero then interrupt coalescing is
4972 * enabled for all reply descriptor post queues.
4973 * If 31st bit is set to one then user can
4974 * enable/disable interrupt coalescing on per reply
4975 * descriptor post queue group(8) basis. So to enable
4976 * interrupt coalescing only on first reply descriptor
4977 * post queue group 31st bit and zero th bit is enabled.
4979 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4980 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4981 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4984 ioc_info(ioc, "performance mode: balanced\n");
4988 case MPT_PERF_MODE_LATENCY:
4990 * Enable interrupt coalescing on all reply queues
4991 * with timeout value 0xA
4993 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4994 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4995 ioc_pg1.ProductSpecific = 0;
4996 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4999 ioc_info(ioc, "performance mode: latency\n");
5001 case MPT_PERF_MODE_IOPS:
5003 * Enable interrupt coalescing on all reply queues.
5006 "performance mode: iops with coalescing timeout: 0x%x\n",
5007 le32_to_cpu(ioc_pg1.CoalescingTimeout));
5008 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5009 ioc_pg1.ProductSpecific = 0;
5010 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5019 * _base_get_event_diag_triggers - get event diag trigger values from
5021 * @ioc : per adapter object
5026 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5028 Mpi26DriverTriggerPage2_t trigger_pg2;
5029 struct SL_WH_EVENT_TRIGGER_T *event_tg;
5030 MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
5031 Mpi2ConfigReply_t mpi_reply;
5036 r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5041 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5042 MPI2_IOCSTATUS_MASK;
5043 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5046 "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5047 __func__, ioc_status));
5051 if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5052 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5053 count = min_t(u16, NUM_VALID_ENTRIES, count);
5054 ioc->diag_trigger_event.ValidEntries = count;
5056 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5057 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5058 for (i = 0; i < count; i++) {
5059 event_tg->EventValue = le16_to_cpu(
5060 mpi_event_tg->MPIEventCode);
5061 event_tg->LogEntryQualifier = le16_to_cpu(
5062 mpi_event_tg->MPIEventCodeSpecific);
5071 * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5073 * @ioc : per adapter object
5075 * Return: 0 on success; otherwise return failure status.
5078 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5080 Mpi26DriverTriggerPage3_t trigger_pg3;
5081 struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5082 MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
5083 Mpi2ConfigReply_t mpi_reply;
5088 r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5093 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5094 MPI2_IOCSTATUS_MASK;
5095 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5098 "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5099 __func__, ioc_status));
5103 if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5104 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5105 count = min_t(u16, NUM_VALID_ENTRIES, count);
5106 ioc->diag_trigger_scsi.ValidEntries = count;
5108 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5109 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5110 for (i = 0; i < count; i++) {
5111 scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5112 scsi_tg->ASC = mpi_scsi_tg->ASC;
5113 scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5123 * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5125 * @ioc : per adapter object
5127 * Return: 0 on success; otherwise return failure status.
5130 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5132 Mpi26DriverTriggerPage4_t trigger_pg4;
5133 struct SL_WH_MPI_TRIGGER_T *status_tg;
5134 MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
5135 Mpi2ConfigReply_t mpi_reply;
5140 r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5145 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5146 MPI2_IOCSTATUS_MASK;
5147 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5150 "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5151 __func__, ioc_status));
5155 if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5156 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5157 count = min_t(u16, NUM_VALID_ENTRIES, count);
5158 ioc->diag_trigger_mpi.ValidEntries = count;
5160 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5161 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5163 for (i = 0; i < count; i++) {
5164 status_tg->IOCStatus = le16_to_cpu(
5165 mpi_status_tg->IOCStatus);
5166 status_tg->IocLogInfo = le32_to_cpu(
5167 mpi_status_tg->LogInfo);
5177 * _base_get_master_diag_triggers - get master diag trigger values from
5179 * @ioc : per adapter object
5184 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5186 Mpi26DriverTriggerPage1_t trigger_pg1;
5187 Mpi2ConfigReply_t mpi_reply;
5191 r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5196 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5197 MPI2_IOCSTATUS_MASK;
5198 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5201 "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5202 __func__, ioc_status));
5206 if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5207 ioc->diag_trigger_master.MasterData |=
5209 trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5214 * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5215 * driver trigger pages or not
5216 * @ioc : per adapter object
5217 * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5219 * Return: trigger flags mask if HBA FW supports driver trigger pages;
5220 * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5221 * return EAGAIN if diag reset occurred due to FW fault and asking the
5222 * caller to retry the command.
5226 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5228 Mpi26DriverTriggerPage0_t trigger_pg0;
5230 Mpi2ConfigReply_t mpi_reply;
5233 r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5238 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5239 MPI2_IOCSTATUS_MASK;
5240 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5243 *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5248 * _base_get_diag_triggers - Retrieve diag trigger values from
5250 * @ioc : per adapter object
5252 * Return: zero on success; otherwise return EAGAIN error codes
5253 * asking the caller to retry.
5256 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5262 * Default setting of master trigger.
5264 ioc->diag_trigger_master.MasterData =
5265 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5267 r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5272 * Don't go for error handling when FW doesn't support
5273 * driver trigger pages.
5278 ioc->supports_trigger_pages = 1;
5281 * Retrieve master diag trigger values from driver trigger pg1
5282 * if master trigger bit enabled in TriggerFlags.
5284 if ((u16)trigger_flags &
5285 MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5286 r = _base_get_master_diag_triggers(ioc);
5292 * Retrieve event diag trigger values from driver trigger pg2
5293 * if event trigger bit enabled in TriggerFlags.
5295 if ((u16)trigger_flags &
5296 MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5297 r = _base_get_event_diag_triggers(ioc);
5303 * Retrieve scsi diag trigger values from driver trigger pg3
5304 * if scsi trigger bit enabled in TriggerFlags.
5306 if ((u16)trigger_flags &
5307 MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5308 r = _base_get_scsi_diag_triggers(ioc);
5313 * Retrieve mpi error diag trigger values from driver trigger pg4
5314 * if loginfo trigger bit enabled in TriggerFlags.
5316 if ((u16)trigger_flags &
5317 MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5318 r = _base_get_mpi_diag_triggers(ioc);
5326 * _base_update_diag_trigger_pages - Update the driver trigger pages after
5327 * online FW update, in case updated FW supports driver
5329 * @ioc : per adapter object
5334 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5337 if (ioc->diag_trigger_master.MasterData)
5338 mpt3sas_config_update_driver_trigger_pg1(ioc,
5339 &ioc->diag_trigger_master, 1);
5341 if (ioc->diag_trigger_event.ValidEntries)
5342 mpt3sas_config_update_driver_trigger_pg2(ioc,
5343 &ioc->diag_trigger_event, 1);
5345 if (ioc->diag_trigger_scsi.ValidEntries)
5346 mpt3sas_config_update_driver_trigger_pg3(ioc,
5347 &ioc->diag_trigger_scsi, 1);
5349 if (ioc->diag_trigger_mpi.ValidEntries)
5350 mpt3sas_config_update_driver_trigger_pg4(ioc,
5351 &ioc->diag_trigger_mpi, 1);
5355 * _base_assign_fw_reported_qd - Get FW reported QD for SAS/SATA devices.
5356 * - On failure set default QD values.
5357 * @ioc : per adapter object
5359 * Returns 0 for success, non-zero for failure.
5362 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5364 Mpi2ConfigReply_t mpi_reply;
5365 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
5366 Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5371 ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5372 ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5373 ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5374 ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5375 if (!ioc->is_gen35_ioc)
5377 /* sas iounit page 1 */
5378 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData);
5379 sas_iounit_pg1 = kzalloc(sizeof(Mpi2SasIOUnitPage1_t), GFP_KERNEL);
5380 if (!sas_iounit_pg1) {
5381 pr_err("%s: failure at %s:%d/%s()!\n",
5382 ioc->name, __FILE__, __LINE__, __func__);
5385 rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5386 sas_iounit_pg1, sz);
5388 pr_err("%s: failure at %s:%d/%s()!\n",
5389 ioc->name, __FILE__, __LINE__, __func__);
5393 depth = le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth);
5394 ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5396 depth = le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth);
5397 ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5399 depth = sas_iounit_pg1->SATAMaxQDepth;
5400 ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH);
5402 /* pcie iounit page 1 */
5403 rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5404 &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5406 pr_err("%s: failure at %s:%d/%s()!\n",
5407 ioc->name, __FILE__, __LINE__, __func__);
5410 ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5411 (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5412 MPT3SAS_NVME_QUEUE_DEPTH;
5414 dinitprintk(ioc, pr_err(
5415 "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5416 ioc->max_wideport_qd, ioc->max_narrowport_qd,
5417 ioc->max_sata_qd, ioc->max_nvme_qd));
5418 kfree(sas_iounit_pg1);
5423 * mpt3sas_atto_validate_nvram - validate the ATTO nvram read from mfg pg1
5425 * @ioc : per adapter object
5426 * @n : ptr to the ATTO nvram structure
5427 * Return: 0 for success, non-zero for failure.
5430 mpt3sas_atto_validate_nvram(struct MPT3SAS_ADAPTER *ioc,
5431 struct ATTO_SAS_NVRAM *n)
5434 union ATTO_SAS_ADDRESS *s1;
5439 /* validate nvram checksum */
5441 ckSum = ATTO_SASNVR_CKSUM_SEED;
5442 len = sizeof(struct ATTO_SAS_NVRAM);
5445 ckSum = ckSum + pb[len];
5448 ioc_err(ioc, "Invalid ATTO NVRAM checksum\n");
5452 s1 = (union ATTO_SAS_ADDRESS *) n->SasAddr;
5454 if (n->Signature[0] != 'E'
5455 || n->Signature[1] != 'S'
5456 || n->Signature[2] != 'A'
5457 || n->Signature[3] != 'S')
5458 ioc_err(ioc, "Invalid ATTO NVRAM signature\n");
5459 else if (n->Version > ATTO_SASNVR_VERSION)
5460 ioc_info(ioc, "Invalid ATTO NVRAM version");
5461 else if ((n->SasAddr[7] & (ATTO_SAS_ADDR_ALIGN - 1))
5465 || (s1->b[3] & 0xF0) != 0x60
5466 || ((s1->b[3] & 0x0F) | le32_to_cpu(s1->d[1])) == 0) {
5467 ioc_err(ioc, "Invalid ATTO SAS address\n");
5474 * mpt3sas_atto_get_sas_addr - get the ATTO SAS address from mfg page 1
5476 * @ioc : per adapter object
5477 * @*sas_addr : return sas address
5478 * Return: 0 for success, non-zero for failure.
5481 mpt3sas_atto_get_sas_addr(struct MPT3SAS_ADAPTER *ioc, union ATTO_SAS_ADDRESS *sas_addr)
5483 Mpi2ManufacturingPage1_t mfg_pg1;
5484 Mpi2ConfigReply_t mpi_reply;
5485 struct ATTO_SAS_NVRAM *nvram;
5489 r = mpt3sas_config_get_manufacturing_pg1(ioc, &mpi_reply, &mfg_pg1);
5491 ioc_err(ioc, "Failed to read manufacturing page 1\n");
5495 /* validate nvram */
5496 nvram = (struct ATTO_SAS_NVRAM *) mfg_pg1.VPD;
5497 r = mpt3sas_atto_validate_nvram(ioc, nvram);
5501 addr = *((__be64 *) nvram->SasAddr);
5502 sas_addr->q = cpu_to_le64(be64_to_cpu(addr));
5507 * mpt3sas_atto_init - perform initializaion for ATTO branded
5509 * @ioc : per adapter object
5511 * Return: 0 for success, non-zero for failure.
5514 mpt3sas_atto_init(struct MPT3SAS_ADAPTER *ioc)
5517 Mpi2BiosPage4_t *bios_pg4 = NULL;
5518 Mpi2ConfigReply_t mpi_reply;
5521 union ATTO_SAS_ADDRESS sas_addr;
5522 union ATTO_SAS_ADDRESS temp;
5523 union ATTO_SAS_ADDRESS bias;
5525 r = mpt3sas_atto_get_sas_addr(ioc, &sas_addr);
5529 /* get header first to get size */
5530 r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, NULL, 0);
5532 ioc_err(ioc, "Failed to read ATTO bios page 4 header.\n");
5536 sz = mpi_reply.Header.PageLength * sizeof(u32);
5537 bios_pg4 = kzalloc(sz, GFP_KERNEL);
5539 ioc_err(ioc, "Failed to allocate memory for ATTO bios page.\n");
5543 /* read bios page 4 */
5544 r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5546 ioc_err(ioc, "Failed to read ATTO bios page 4\n");
5550 /* Update bios page 4 with the ATTO WWID */
5551 bias.q = sas_addr.q;
5552 bias.b[7] += ATTO_SAS_ADDR_DEVNAME_BIAS;
5554 for (ix = 0; ix < bios_pg4->NumPhys; ix++) {
5555 temp.q = sas_addr.q;
5557 bios_pg4->Phy[ix].ReassignmentWWID = temp.q;
5558 bios_pg4->Phy[ix].ReassignmentDeviceName = bias.q;
5560 r = mpt3sas_config_set_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5568 * _base_static_config_pages - static start of day config pages
5569 * @ioc: per adapter object
5572 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5574 Mpi2ConfigReply_t mpi_reply;
5575 u32 iounit_pg1_flags;
5578 ioc->nvme_abort_timeout = 30;
5580 rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5584 if (ioc->ir_firmware) {
5585 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5591 if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) {
5592 rc = mpt3sas_atto_init(ioc);
5598 * Ensure correct T10 PI operation if vendor left EEDPTagMode
5599 * flag unset in NVDATA.
5601 rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5605 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5606 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5608 ioc->manu_pg11.EEDPTagMode &= ~0x3;
5609 ioc->manu_pg11.EEDPTagMode |= 0x1;
5610 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5613 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5614 ioc->tm_custom_handling = 1;
5616 ioc->tm_custom_handling = 0;
5617 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5618 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5619 else if (ioc->manu_pg11.NVMeAbortTO >
5620 NVME_TASK_ABORT_MAX_TIMEOUT)
5621 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5623 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5625 ioc->time_sync_interval =
5626 ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5627 if (ioc->time_sync_interval) {
5628 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5629 ioc->time_sync_interval =
5630 ioc->time_sync_interval * SECONDS_PER_HOUR;
5632 ioc->time_sync_interval =
5633 ioc->time_sync_interval * SECONDS_PER_MIN;
5634 dinitprintk(ioc, ioc_info(ioc,
5635 "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5636 ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5637 MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5639 if (ioc->is_gen35_ioc)
5641 "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5643 rc = _base_assign_fw_reported_qd(ioc);
5648 * ATTO doesn't use bios page 2 and 3 for bios settings.
5650 if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO)
5651 ioc->bios_pg3.BiosVersion = 0;
5653 rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5656 rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5661 rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5664 rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5667 rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5670 rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5673 _base_display_ioc_capabilities(ioc);
5676 * Enable task_set_full handling in iounit_pg1 when the
5677 * facts capabilities indicate that its supported.
5679 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5680 if ((ioc->facts.IOCCapabilities &
5681 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5683 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5686 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5687 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5688 rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5692 if (ioc->iounit_pg8.NumSensors)
5693 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5694 if (ioc->is_aero_ioc) {
5695 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5699 if (ioc->is_gen35_ioc) {
5700 if (ioc->is_driver_loading) {
5701 rc = _base_get_diag_triggers(ioc);
5706 * In case of online HBA FW update operation,
5707 * check whether updated FW supports the driver trigger
5709 * - If previous FW has not supported driver trigger
5710 * pages and newer FW supports them then update these
5711 * pages with current diag trigger values.
5712 * - If previous FW has supported driver trigger pages
5713 * and new FW doesn't support them then disable
5714 * support_trigger_pages flag.
5716 _base_check_for_trigger_pages_support(ioc, &tg_flags);
5717 if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5718 _base_update_diag_trigger_pages(ioc);
5719 else if (ioc->supports_trigger_pages &&
5720 tg_flags == -EFAULT)
5721 ioc->supports_trigger_pages = 0;
5728 * mpt3sas_free_enclosure_list - release memory
5729 * @ioc: per adapter object
5731 * Free memory allocated during enclosure add.
5734 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5736 struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5738 /* Free enclosure list */
5739 list_for_each_entry_safe(enclosure_dev,
5740 enclosure_dev_next, &ioc->enclosure_list, list) {
5741 list_del(&enclosure_dev->list);
5742 kfree(enclosure_dev);
5747 * _base_release_memory_pools - release memory
5748 * @ioc: per adapter object
5750 * Free memory allocated from _base_allocate_memory_pools.
5753 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5757 int dma_alloc_count = 0;
5758 struct chain_tracker *ct;
5759 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5761 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5764 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5765 ioc->request, ioc->request_dma);
5767 ioc_info(ioc, "request_pool(0x%p): free\n",
5769 ioc->request = NULL;
5773 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5774 dma_pool_destroy(ioc->sense_dma_pool);
5776 ioc_info(ioc, "sense_pool(0x%p): free\n",
5782 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5783 dma_pool_destroy(ioc->reply_dma_pool);
5785 ioc_info(ioc, "reply_pool(0x%p): free\n",
5790 if (ioc->reply_free) {
5791 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5792 ioc->reply_free_dma);
5793 dma_pool_destroy(ioc->reply_free_dma_pool);
5795 ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5797 ioc->reply_free = NULL;
5800 if (ioc->reply_post) {
5801 dma_alloc_count = DIV_ROUND_UP(count,
5802 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5803 for (i = 0; i < count; i++) {
5804 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5805 && dma_alloc_count) {
5806 if (ioc->reply_post[i].reply_post_free) {
5808 ioc->reply_post_free_dma_pool,
5809 ioc->reply_post[i].reply_post_free,
5810 ioc->reply_post[i].reply_post_free_dma);
5811 dexitprintk(ioc, ioc_info(ioc,
5812 "reply_post_free_pool(0x%p): free\n",
5813 ioc->reply_post[i].reply_post_free));
5814 ioc->reply_post[i].reply_post_free =
5820 dma_pool_destroy(ioc->reply_post_free_dma_pool);
5821 if (ioc->reply_post_free_array &&
5822 ioc->rdpq_array_enable) {
5823 dma_pool_free(ioc->reply_post_free_array_dma_pool,
5824 ioc->reply_post_free_array,
5825 ioc->reply_post_free_array_dma);
5826 ioc->reply_post_free_array = NULL;
5828 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5829 kfree(ioc->reply_post);
5832 if (ioc->pcie_sgl_dma_pool) {
5833 for (i = 0; i < ioc->scsiio_depth; i++) {
5834 dma_pool_free(ioc->pcie_sgl_dma_pool,
5835 ioc->pcie_sg_lookup[i].pcie_sgl,
5836 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5837 ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5839 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5841 kfree(ioc->pcie_sg_lookup);
5842 ioc->pcie_sg_lookup = NULL;
5844 if (ioc->config_page) {
5846 ioc_info(ioc, "config_page(0x%p): free\n",
5848 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5849 ioc->config_page, ioc->config_page_dma);
5852 kfree(ioc->hpr_lookup);
5853 ioc->hpr_lookup = NULL;
5854 kfree(ioc->internal_lookup);
5855 ioc->internal_lookup = NULL;
5856 if (ioc->chain_lookup) {
5857 for (i = 0; i < ioc->scsiio_depth; i++) {
5858 for (j = ioc->chains_per_prp_buffer;
5859 j < ioc->chains_needed_per_io; j++) {
5860 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5861 if (ct && ct->chain_buffer)
5862 dma_pool_free(ioc->chain_dma_pool,
5864 ct->chain_buffer_dma);
5866 kfree(ioc->chain_lookup[i].chains_per_smid);
5868 dma_pool_destroy(ioc->chain_dma_pool);
5869 kfree(ioc->chain_lookup);
5870 ioc->chain_lookup = NULL;
5873 kfree(ioc->io_queue_num);
5874 ioc->io_queue_num = NULL;
5878 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5879 * having same upper 32bits in their base memory address.
5880 * @start_address: Base address of a reply queue set
5881 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5883 * Return: 1 if reply queues in a set have a same upper 32bits in their base
5884 * memory address, else 0.
5887 mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz)
5889 dma_addr_t end_address;
5891 end_address = start_address + pool_sz - 1;
5893 if (upper_32_bits(start_address) == upper_32_bits(end_address))
5900 * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5901 * @ioc: Adapter object
5903 * Return: 0 for success, non-zero for failure.
5906 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5910 if ((ioc->hba_queue_depth - reduce_sz) >
5911 (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5912 ioc->hba_queue_depth -= reduce_sz;
5919 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5920 * for pcie sgl pools.
5921 * @ioc: Adapter object
5922 * @sz: DMA Pool size
5924 * Return: 0 for success, non-zero for failure.
5928 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5931 struct chain_tracker *ct;
5933 ioc->pcie_sgl_dma_pool =
5934 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5936 if (!ioc->pcie_sgl_dma_pool) {
5937 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5941 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5942 ioc->chains_per_prp_buffer =
5943 min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5944 for (i = 0; i < ioc->scsiio_depth; i++) {
5945 ioc->pcie_sg_lookup[i].pcie_sgl =
5946 dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5947 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5948 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5949 ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5953 if (!mpt3sas_check_same_4gb_region(
5954 ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) {
5955 ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5956 ioc->pcie_sg_lookup[i].pcie_sgl,
5957 (unsigned long long)
5958 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5959 ioc->use_32bit_dma = true;
5963 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5964 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5966 ioc->pcie_sg_lookup[i].pcie_sgl +
5967 (j * ioc->chain_segment_sz);
5968 ct->chain_buffer_dma =
5969 ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5970 (j * ioc->chain_segment_sz);
5973 dinitprintk(ioc, ioc_info(ioc,
5974 "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5975 ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5976 dinitprintk(ioc, ioc_info(ioc,
5977 "Number of chains can fit in a PRP page(%d)\n",
5978 ioc->chains_per_prp_buffer));
5983 * _base_allocate_chain_dma_pool - Allocating DMA'able memory
5984 * for chain dma pool.
5985 * @ioc: Adapter object
5986 * @sz: DMA Pool size
5988 * Return: 0 for success, non-zero for failure.
5991 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5994 struct chain_tracker *ctr;
5996 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5997 ioc->chain_segment_sz, 16, 0);
5998 if (!ioc->chain_dma_pool)
6001 for (i = 0; i < ioc->scsiio_depth; i++) {
6002 for (j = ioc->chains_per_prp_buffer;
6003 j < ioc->chains_needed_per_io; j++) {
6004 ctr = &ioc->chain_lookup[i].chains_per_smid[j];
6005 ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
6006 GFP_KERNEL, &ctr->chain_buffer_dma);
6007 if (!ctr->chain_buffer)
6009 if (!mpt3sas_check_same_4gb_region(
6010 ctr->chain_buffer_dma, ioc->chain_segment_sz)) {
6012 "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
6014 (unsigned long long)ctr->chain_buffer_dma);
6015 ioc->use_32bit_dma = true;
6020 dinitprintk(ioc, ioc_info(ioc,
6021 "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
6022 ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
6023 (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
6024 ioc->chain_segment_sz))/1024));
6029 * _base_allocate_sense_dma_pool - Allocating DMA'able memory
6030 * for sense dma pool.
6031 * @ioc: Adapter object
6032 * @sz: DMA Pool size
6033 * Return: 0 for success, non-zero for failure.
6036 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6038 ioc->sense_dma_pool =
6039 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
6040 if (!ioc->sense_dma_pool)
6042 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
6043 GFP_KERNEL, &ioc->sense_dma);
6046 if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) {
6047 dinitprintk(ioc, pr_err(
6048 "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
6049 ioc->sense, (unsigned long long) ioc->sense_dma));
6050 ioc->use_32bit_dma = true;
6054 "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
6055 ioc->sense, (unsigned long long)ioc->sense_dma,
6056 ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
6061 * _base_allocate_reply_pool - Allocating DMA'able memory
6063 * @ioc: Adapter object
6064 * @sz: DMA Pool size
6065 * Return: 0 for success, non-zero for failure.
6068 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6070 /* reply pool, 4 byte align */
6071 ioc->reply_dma_pool = dma_pool_create("reply pool",
6072 &ioc->pdev->dev, sz, 4, 0);
6073 if (!ioc->reply_dma_pool)
6075 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
6079 if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) {
6080 dinitprintk(ioc, pr_err(
6081 "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
6082 ioc->reply, (unsigned long long) ioc->reply_dma));
6083 ioc->use_32bit_dma = true;
6086 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
6087 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
6089 "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
6090 ioc->reply, (unsigned long long)ioc->reply_dma,
6091 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
6096 * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
6097 * for reply free dma pool.
6098 * @ioc: Adapter object
6099 * @sz: DMA Pool size
6100 * Return: 0 for success, non-zero for failure.
6103 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6105 /* reply free queue, 16 byte align */
6106 ioc->reply_free_dma_pool = dma_pool_create(
6107 "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
6108 if (!ioc->reply_free_dma_pool)
6110 ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
6111 GFP_KERNEL, &ioc->reply_free_dma);
6112 if (!ioc->reply_free)
6114 if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) {
6116 pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6117 ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
6118 ioc->use_32bit_dma = true;
6121 memset(ioc->reply_free, 0, sz);
6122 dinitprintk(ioc, ioc_info(ioc,
6123 "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
6124 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
6125 dinitprintk(ioc, ioc_info(ioc,
6126 "reply_free_dma (0x%llx)\n",
6127 (unsigned long long)ioc->reply_free_dma));
6132 * _base_allocate_reply_post_free_array - Allocating DMA'able memory
6133 * for reply post free array.
6134 * @ioc: Adapter object
6135 * @reply_post_free_array_sz: DMA Pool size
6136 * Return: 0 for success, non-zero for failure.
6140 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
6141 u32 reply_post_free_array_sz)
6143 ioc->reply_post_free_array_dma_pool =
6144 dma_pool_create("reply_post_free_array pool",
6145 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
6146 if (!ioc->reply_post_free_array_dma_pool)
6148 ioc->reply_post_free_array =
6149 dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
6150 GFP_KERNEL, &ioc->reply_post_free_array_dma);
6151 if (!ioc->reply_post_free_array)
6153 if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma,
6154 reply_post_free_array_sz)) {
6155 dinitprintk(ioc, pr_err(
6156 "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6158 (unsigned long long) ioc->reply_free_dma));
6159 ioc->use_32bit_dma = true;
6165 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6167 * @ioc: per adapter object
6168 * @sz: DMA Pool size
6169 * Return: 0 for success, non-zero for failure.
6172 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6175 u32 dma_alloc_count = 0;
6176 int reply_post_free_sz = ioc->reply_post_queue_depth *
6177 sizeof(Mpi2DefaultReplyDescriptor_t);
6178 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6180 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6182 if (!ioc->reply_post)
6185 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6186 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6187 * be within 4GB boundary i.e reply queues in a set must have same
6188 * upper 32-bits in their memory address. so here driver is allocating
6189 * the DMA'able memory for reply queues according.
6190 * Driver uses limitation of
6191 * VENTURA_SERIES to manage INVADER_SERIES as well.
6193 dma_alloc_count = DIV_ROUND_UP(count,
6194 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6195 ioc->reply_post_free_dma_pool =
6196 dma_pool_create("reply_post_free pool",
6197 &ioc->pdev->dev, sz, 16, 0);
6198 if (!ioc->reply_post_free_dma_pool)
6200 for (i = 0; i < count; i++) {
6201 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6202 ioc->reply_post[i].reply_post_free =
6203 dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6205 &ioc->reply_post[i].reply_post_free_dma);
6206 if (!ioc->reply_post[i].reply_post_free)
6209 * Each set of RDPQ pool must satisfy 4gb boundary
6211 * 1) Check if allocated resources for RDPQ pool are in
6212 * the same 4GB range.
6213 * 2) If #1 is true, continue with 64 bit DMA.
6214 * 3) If #1 is false, return 1. which means free all the
6215 * resources and set DMA mask to 32 and allocate.
6217 if (!mpt3sas_check_same_4gb_region(
6218 ioc->reply_post[i].reply_post_free_dma, sz)) {
6220 ioc_err(ioc, "bad Replypost free pool(0x%p)"
6221 "reply_post_free_dma = (0x%llx)\n",
6222 ioc->reply_post[i].reply_post_free,
6223 (unsigned long long)
6224 ioc->reply_post[i].reply_post_free_dma));
6230 ioc->reply_post[i].reply_post_free =
6231 (Mpi2ReplyDescriptorsUnion_t *)
6232 ((long)ioc->reply_post[i-1].reply_post_free
6233 + reply_post_free_sz);
6234 ioc->reply_post[i].reply_post_free_dma =
6236 (ioc->reply_post[i-1].reply_post_free_dma +
6237 reply_post_free_sz);
6244 * _base_allocate_memory_pools - allocate start of day memory pools
6245 * @ioc: per adapter object
6247 * Return: 0 success, anything else error.
6250 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6252 struct mpt3sas_facts *facts;
6253 u16 max_sge_elements;
6254 u16 chains_needed_per_io;
6255 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6257 u32 rdpq_sz = 0, sense_sz = 0;
6258 u16 max_request_credit, nvme_blocks_needed;
6259 unsigned short sg_tablesize;
6262 int ret = 0, rc = 0;
6264 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6268 facts = &ioc->facts;
6270 /* command line tunables for max sgl entries */
6271 if (max_sgl_entries != -1)
6272 sg_tablesize = max_sgl_entries;
6274 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6275 sg_tablesize = MPT2SAS_SG_DEPTH;
6277 sg_tablesize = MPT3SAS_SG_DEPTH;
6280 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6282 sg_tablesize = min_t(unsigned short, sg_tablesize,
6283 MPT_KDUMP_MIN_PHYS_SEGMENTS);
6285 if (ioc->is_mcpu_endpoint)
6286 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6288 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6289 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6290 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6291 sg_tablesize = min_t(unsigned short, sg_tablesize,
6293 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6294 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6296 ioc->shost->sg_tablesize = sg_tablesize;
6299 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6300 (facts->RequestCredit / 4));
6301 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6302 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6303 INTERNAL_SCSIIO_CMDS_COUNT)) {
6304 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6305 facts->RequestCredit);
6308 ioc->internal_depth = 10;
6311 ioc->hi_priority_depth = ioc->internal_depth - (5);
6312 /* command line tunables for max controller queue depth */
6313 if (max_queue_depth != -1 && max_queue_depth != 0) {
6314 max_request_credit = min_t(u16, max_queue_depth +
6315 ioc->internal_depth, facts->RequestCredit);
6316 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6317 max_request_credit = MAX_HBA_QUEUE_DEPTH;
6318 } else if (reset_devices)
6319 max_request_credit = min_t(u16, facts->RequestCredit,
6320 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6322 max_request_credit = min_t(u16, facts->RequestCredit,
6323 MAX_HBA_QUEUE_DEPTH);
6325 /* Firmware maintains additional facts->HighPriorityCredit number of
6326 * credits for HiPriprity Request messages, so hba queue depth will be
6327 * sum of max_request_credit and high priority queue depth.
6329 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6331 /* request frame size */
6332 ioc->request_sz = facts->IOCRequestFrameSize * 4;
6334 /* reply frame size */
6335 ioc->reply_sz = facts->ReplyFrameSize * 4;
6337 /* chain segment size */
6338 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6339 if (facts->IOCMaxChainSegmentSize)
6340 ioc->chain_segment_sz =
6341 facts->IOCMaxChainSegmentSize *
6344 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6345 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6348 ioc->chain_segment_sz = ioc->request_sz;
6350 /* calculate the max scatter element size */
6351 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6355 /* calculate number of sg elements left over in the 1st frame */
6356 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6357 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6358 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6360 /* now do the same for a chain buffer */
6361 max_sge_elements = ioc->chain_segment_sz - sge_size;
6362 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6365 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6367 chains_needed_per_io = ((ioc->shost->sg_tablesize -
6368 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6370 if (chains_needed_per_io > facts->MaxChainDepth) {
6371 chains_needed_per_io = facts->MaxChainDepth;
6372 ioc->shost->sg_tablesize = min_t(u16,
6373 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6374 * chains_needed_per_io), ioc->shost->sg_tablesize);
6376 ioc->chains_needed_per_io = chains_needed_per_io;
6378 /* reply free queue sizing - taking into account for 64 FW events */
6379 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6381 /* mCPU manage single counters for simplicity */
6382 if (ioc->is_mcpu_endpoint)
6383 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6385 /* calculate reply descriptor post queue depth */
6386 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6387 ioc->reply_free_queue_depth + 1;
6388 /* align the reply post queue on the next 16 count boundary */
6389 if (ioc->reply_post_queue_depth % 16)
6390 ioc->reply_post_queue_depth += 16 -
6391 (ioc->reply_post_queue_depth % 16);
6394 if (ioc->reply_post_queue_depth >
6395 facts->MaxReplyDescriptorPostQueueDepth) {
6396 ioc->reply_post_queue_depth =
6397 facts->MaxReplyDescriptorPostQueueDepth -
6398 (facts->MaxReplyDescriptorPostQueueDepth % 16);
6399 ioc->hba_queue_depth =
6400 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
6401 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6405 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6406 "sge_per_io(%d), chains_per_io(%d)\n",
6407 ioc->max_sges_in_main_message,
6408 ioc->max_sges_in_chain_message,
6409 ioc->shost->sg_tablesize,
6410 ioc->chains_needed_per_io);
6412 /* reply post queue, 16 byte align */
6413 reply_post_free_sz = ioc->reply_post_queue_depth *
6414 sizeof(Mpi2DefaultReplyDescriptor_t);
6415 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6416 if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6417 || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6418 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6419 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6420 if (ret == -EAGAIN) {
6422 * Free allocated bad RDPQ memory pools.
6423 * Change dma coherent mask to 32 bit and reallocate RDPQ
6425 _base_release_memory_pools(ioc);
6426 ioc->use_32bit_dma = true;
6427 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6429 "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6432 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6434 } else if (ret == -ENOMEM)
6436 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6437 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6438 ioc->scsiio_depth = ioc->hba_queue_depth -
6439 ioc->hi_priority_depth - ioc->internal_depth;
6441 /* set the scsi host can_queue depth
6442 * with some internal commands that could be outstanding
6444 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6446 ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6447 ioc->shost->can_queue));
6449 /* contiguous pool for request and chains, 16 byte align, one extra "
6452 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6453 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6455 /* hi-priority queue */
6456 sz += (ioc->hi_priority_depth * ioc->request_sz);
6458 /* internal queue */
6459 sz += (ioc->internal_depth * ioc->request_sz);
6461 ioc->request_dma_sz = sz;
6462 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6463 &ioc->request_dma, GFP_KERNEL);
6464 if (!ioc->request) {
6465 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6466 ioc->hba_queue_depth, ioc->chains_needed_per_io,
6467 ioc->request_sz, sz / 1024);
6468 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6471 ioc->hba_queue_depth -= retry_sz;
6472 _base_release_memory_pools(ioc);
6473 goto retry_allocation;
6477 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6478 ioc->hba_queue_depth, ioc->chains_needed_per_io,
6479 ioc->request_sz, sz / 1024);
6481 /* hi-priority queue */
6482 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6484 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6487 /* internal queue */
6488 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6490 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6494 "request pool(0x%p) - dma(0x%llx): "
6495 "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6496 ioc->request, (unsigned long long) ioc->request_dma,
6497 ioc->hba_queue_depth, ioc->request_sz,
6498 (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6503 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6504 ioc->request, ioc->scsiio_depth));
6506 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6507 sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6508 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6509 if (!ioc->chain_lookup) {
6510 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6514 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6515 for (i = 0; i < ioc->scsiio_depth; i++) {
6516 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6517 if (!ioc->chain_lookup[i].chains_per_smid) {
6518 ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6523 /* initialize hi-priority queue smid's */
6524 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6525 sizeof(struct request_tracker), GFP_KERNEL);
6526 if (!ioc->hpr_lookup) {
6527 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6530 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6532 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6534 ioc->hi_priority_depth, ioc->hi_priority_smid));
6536 /* initialize internal queue smid's */
6537 ioc->internal_lookup = kcalloc(ioc->internal_depth,
6538 sizeof(struct request_tracker), GFP_KERNEL);
6539 if (!ioc->internal_lookup) {
6540 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6543 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6545 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6547 ioc->internal_depth, ioc->internal_smid));
6549 ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6550 sizeof(u16), GFP_KERNEL);
6551 if (!ioc->io_queue_num)
6554 * The number of NVMe page sized blocks needed is:
6555 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6556 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6557 * that is placed in the main message frame. 8 is the size of each PRP
6558 * entry or PRP list pointer entry. 8 is subtracted from page_size
6559 * because of the PRP list pointer entry at the end of a page, so this
6560 * is not counted as a PRP entry. The 1 added page is a round up.
6562 * To avoid allocation failures due to the amount of memory that could
6563 * be required for NVMe PRP's, only each set of NVMe blocks will be
6564 * contiguous, so a new set is allocated for each possible I/O.
6567 ioc->chains_per_prp_buffer = 0;
6568 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6569 nvme_blocks_needed =
6570 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6571 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6572 nvme_blocks_needed++;
6574 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6575 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6576 if (!ioc->pcie_sg_lookup) {
6577 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6580 sz = nvme_blocks_needed * ioc->page_size;
6581 rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6584 else if (rc == -EAGAIN)
6586 total_sz += sz * ioc->scsiio_depth;
6589 rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6592 else if (rc == -EAGAIN)
6594 total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6595 ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6597 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6598 ioc->chain_depth, ioc->chain_segment_sz,
6599 (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6600 /* sense buffers, 4 byte align */
6601 sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6602 rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6605 else if (rc == -EAGAIN)
6607 total_sz += sense_sz;
6608 /* reply pool, 4 byte align */
6609 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6610 rc = _base_allocate_reply_pool(ioc, sz);
6613 else if (rc == -EAGAIN)
6617 /* reply free queue, 16 byte align */
6618 sz = ioc->reply_free_queue_depth * 4;
6619 rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6622 else if (rc == -EAGAIN)
6625 ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6626 (unsigned long long)ioc->reply_free_dma));
6628 if (ioc->rdpq_array_enable) {
6629 reply_post_free_array_sz = ioc->reply_queue_count *
6630 sizeof(Mpi2IOCInitRDPQArrayEntry);
6631 rc = _base_allocate_reply_post_free_array(ioc,
6632 reply_post_free_array_sz);
6635 else if (rc == -EAGAIN)
6638 ioc->config_page_sz = 512;
6639 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6640 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6641 if (!ioc->config_page) {
6642 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6646 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6647 ioc->config_page, (unsigned long long)ioc->config_page_dma,
6648 ioc->config_page_sz);
6649 total_sz += ioc->config_page_sz;
6651 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6653 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6654 ioc->shost->can_queue, facts->RequestCredit);
6655 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6656 ioc->shost->sg_tablesize);
6660 _base_release_memory_pools(ioc);
6661 if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6662 /* Change dma coherent mask to 32 bit and reallocate */
6663 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6664 pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6665 pci_name(ioc->pdev));
6668 } else if (_base_reduce_hba_queue_depth(ioc) != 0)
6670 goto retry_allocation;
6677 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6678 * @ioc: Pointer to MPT_ADAPTER structure
6679 * @cooked: Request raw or cooked IOC state
6681 * Return: all IOC Doorbell register bits if cooked==0, else just the
6682 * Doorbell bits in MPI_IOC_STATE_MASK.
6685 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6689 s = ioc->base_readl(&ioc->chip->Doorbell);
6690 sc = s & MPI2_IOC_STATE_MASK;
6691 return cooked ? sc : s;
6695 * _base_wait_on_iocstate - waiting on a particular ioc state
6697 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6698 * @timeout: timeout in second
6700 * Return: 0 for success, non-zero for failure.
6703 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6709 cntdn = 1000 * timeout;
6711 current_state = mpt3sas_base_get_iocstate(ioc, 1);
6712 if (current_state == ioc_state)
6714 if (count && current_state == MPI2_IOC_STATE_FAULT)
6716 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6719 usleep_range(1000, 1500);
6723 return current_state;
6727 * _base_dump_reg_set - This function will print hexdump of register set.
6728 * @ioc: per adapter object
6733 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6735 unsigned int i, sz = 256;
6736 u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6738 ioc_info(ioc, "System Register set:\n");
6739 for (i = 0; i < (sz / sizeof(u32)); i++)
6740 pr_info("%08x: %08x\n", (i * 4), readl(®[i]));
6744 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6745 * a write to the doorbell)
6746 * @ioc: per adapter object
6747 * @timeout: timeout in seconds
6749 * Return: 0 for success, non-zero for failure.
6751 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6755 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6761 cntdn = 1000 * timeout;
6763 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6764 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6766 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6767 __func__, count, timeout));
6771 usleep_range(1000, 1500);
6775 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6776 __func__, count, int_status);
6781 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6787 cntdn = 2000 * timeout;
6789 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6790 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6792 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6793 __func__, count, timeout));
6801 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6802 __func__, count, int_status);
6808 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6809 * @ioc: per adapter object
6810 * @timeout: timeout in second
6812 * Return: 0 for success, non-zero for failure.
6814 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6818 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6825 cntdn = 1000 * timeout;
6827 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6828 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6830 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6831 __func__, count, timeout));
6833 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6834 doorbell = ioc->base_readl(&ioc->chip->Doorbell);
6835 if ((doorbell & MPI2_IOC_STATE_MASK) ==
6836 MPI2_IOC_STATE_FAULT) {
6837 mpt3sas_print_fault_code(ioc, doorbell);
6840 if ((doorbell & MPI2_IOC_STATE_MASK) ==
6841 MPI2_IOC_STATE_COREDUMP) {
6842 mpt3sas_print_coredump_info(ioc, doorbell);
6845 } else if (int_status == 0xFFFFFFFF)
6848 usleep_range(1000, 1500);
6853 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6854 __func__, count, int_status);
6859 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6860 * @ioc: per adapter object
6861 * @timeout: timeout in second
6863 * Return: 0 for success, non-zero for failure.
6866 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6872 cntdn = 1000 * timeout;
6874 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
6875 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6877 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6878 __func__, count, timeout));
6882 usleep_range(1000, 1500);
6886 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6887 __func__, count, doorbell_reg);
6892 * _base_send_ioc_reset - send doorbell reset
6893 * @ioc: per adapter object
6894 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6895 * @timeout: timeout in second
6897 * Return: 0 for success, non-zero for failure.
6900 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6904 unsigned long flags;
6906 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6907 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6911 if (!(ioc->facts.IOCCapabilities &
6912 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6915 ioc_info(ioc, "sending message unit reset !!\n");
6917 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6918 &ioc->chip->Doorbell);
6919 if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6924 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6926 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6927 __func__, ioc_state);
6933 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6934 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6936 * Wait for IOC state CoreDump to clear only during
6937 * HBA initialization & release time.
6939 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6940 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6941 ioc->fault_reset_work_q == NULL)) {
6942 spin_unlock_irqrestore(
6943 &ioc->ioc_reset_in_progress_lock, flags);
6944 mpt3sas_print_coredump_info(ioc, ioc_state);
6945 mpt3sas_base_wait_for_coredump_completion(ioc,
6948 &ioc->ioc_reset_in_progress_lock, flags);
6950 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6952 ioc_info(ioc, "message unit reset: %s\n",
6953 r == 0 ? "SUCCESS" : "FAILED");
6958 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6959 * @ioc: per adapter object
6960 * @timeout: timeout in seconds
6962 * Return: Waits up to timeout seconds for the IOC to
6963 * become operational. Returns 0 if IOC is present
6964 * and operational; otherwise returns %-EFAULT.
6968 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6970 int wait_state_count = 0;
6974 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6975 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6979 * Watchdog thread will be started after IOC Initialization, so
6980 * no need to wait here for IOC state to become operational
6981 * when IOC Initialization is on. Instead the driver will
6982 * return ETIME status, so that calling function can issue
6983 * diag reset operation and retry the command.
6985 if (ioc->is_driver_loading)
6989 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
6990 __func__, ++wait_state_count);
6991 } while (--timeout);
6993 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
6996 if (wait_state_count)
6997 ioc_info(ioc, "ioc is operational\n");
7002 * _base_handshake_req_reply_wait - send request thru doorbell interface
7003 * @ioc: per adapter object
7004 * @request_bytes: request length
7005 * @request: pointer having request payload
7006 * @reply_bytes: reply length
7007 * @reply: pointer to reply payload
7008 * @timeout: timeout in second
7010 * Return: 0 for success, non-zero for failure.
7013 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
7014 u32 *request, int reply_bytes, u16 *reply, int timeout)
7016 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
7021 /* make sure doorbell is not in use */
7022 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
7023 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
7027 /* clear pending doorbell interrupts from previous state changes */
7028 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
7029 MPI2_HIS_IOC2SYS_DB_STATUS)
7030 writel(0, &ioc->chip->HostInterruptStatus);
7032 /* send message to ioc */
7033 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
7034 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
7035 &ioc->chip->Doorbell);
7037 if ((_base_spin_on_doorbell_int(ioc, 5))) {
7038 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7042 writel(0, &ioc->chip->HostInterruptStatus);
7044 if ((_base_wait_for_doorbell_ack(ioc, 5))) {
7045 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
7050 /* send message 32-bits at a time */
7051 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
7052 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
7053 if ((_base_wait_for_doorbell_ack(ioc, 5)))
7058 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
7063 /* now wait for the reply */
7064 if ((_base_wait_for_doorbell_int(ioc, timeout))) {
7065 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7070 /* read the first two 16-bits, it gives the total length of the reply */
7071 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
7072 & MPI2_DOORBELL_DATA_MASK);
7073 writel(0, &ioc->chip->HostInterruptStatus);
7074 if ((_base_wait_for_doorbell_int(ioc, 5))) {
7075 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7079 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
7080 & MPI2_DOORBELL_DATA_MASK);
7081 writel(0, &ioc->chip->HostInterruptStatus);
7083 for (i = 2; i < default_reply->MsgLength * 2; i++) {
7084 if ((_base_wait_for_doorbell_int(ioc, 5))) {
7085 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7089 if (i >= reply_bytes/2) /* overflow case */
7090 ioc->base_readl(&ioc->chip->Doorbell);
7092 reply[i] = le16_to_cpu(
7093 ioc->base_readl(&ioc->chip->Doorbell)
7094 & MPI2_DOORBELL_DATA_MASK);
7095 writel(0, &ioc->chip->HostInterruptStatus);
7098 _base_wait_for_doorbell_int(ioc, 5);
7099 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
7101 ioc_info(ioc, "doorbell is in use (line=%d)\n",
7104 writel(0, &ioc->chip->HostInterruptStatus);
7106 if (ioc->logging_level & MPT_DEBUG_INIT) {
7107 mfp = (__le32 *)reply;
7108 pr_info("\toffset:data\n");
7109 for (i = 0; i < reply_bytes/4; i++)
7110 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7111 le32_to_cpu(mfp[i]));
7117 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
7118 * @ioc: per adapter object
7119 * @mpi_reply: the reply payload from FW
7120 * @mpi_request: the request payload sent to FW
7122 * The SAS IO Unit Control Request message allows the host to perform low-level
7123 * operations, such as resets on the PHYs of the IO Unit, also allows the host
7124 * to obtain the IOC assigned device handles for a device if it has other
7125 * identifying information about the device, in addition allows the host to
7126 * remove IOC resources associated with the device.
7128 * Return: 0 for success, non-zero for failure.
7131 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
7132 Mpi2SasIoUnitControlReply_t *mpi_reply,
7133 Mpi2SasIoUnitControlRequest_t *mpi_request)
7140 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7142 mutex_lock(&ioc->base_cmds.mutex);
7144 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7145 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7150 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7154 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7156 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7162 ioc->base_cmds.status = MPT3_CMD_PENDING;
7163 request = mpt3sas_base_get_msg_frame(ioc, smid);
7164 ioc->base_cmds.smid = smid;
7165 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7166 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7167 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7168 ioc->ioc_link_reset_in_progress = 1;
7169 init_completion(&ioc->base_cmds.done);
7170 ioc->put_smid_default(ioc, smid);
7171 wait_for_completion_timeout(&ioc->base_cmds.done,
7172 msecs_to_jiffies(10000));
7173 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7174 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7175 ioc->ioc_link_reset_in_progress)
7176 ioc->ioc_link_reset_in_progress = 0;
7177 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7178 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7179 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7181 goto issue_host_reset;
7183 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7184 memcpy(mpi_reply, ioc->base_cmds.reply,
7185 sizeof(Mpi2SasIoUnitControlReply_t));
7187 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7188 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7193 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7194 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7197 mutex_unlock(&ioc->base_cmds.mutex);
7202 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7203 * @ioc: per adapter object
7204 * @mpi_reply: the reply payload from FW
7205 * @mpi_request: the request payload sent to FW
7207 * The SCSI Enclosure Processor request message causes the IOC to
7208 * communicate with SES devices to control LED status signals.
7210 * Return: 0 for success, non-zero for failure.
7213 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7214 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7221 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7223 mutex_lock(&ioc->base_cmds.mutex);
7225 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7226 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7231 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7235 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7237 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7243 ioc->base_cmds.status = MPT3_CMD_PENDING;
7244 request = mpt3sas_base_get_msg_frame(ioc, smid);
7245 ioc->base_cmds.smid = smid;
7246 memset(request, 0, ioc->request_sz);
7247 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7248 init_completion(&ioc->base_cmds.done);
7249 ioc->put_smid_default(ioc, smid);
7250 wait_for_completion_timeout(&ioc->base_cmds.done,
7251 msecs_to_jiffies(10000));
7252 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7253 mpt3sas_check_cmd_timeout(ioc,
7254 ioc->base_cmds.status, mpi_request,
7255 sizeof(Mpi2SepRequest_t)/4, issue_reset);
7256 goto issue_host_reset;
7258 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7259 memcpy(mpi_reply, ioc->base_cmds.reply,
7260 sizeof(Mpi2SepReply_t));
7262 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7263 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7268 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7269 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7272 mutex_unlock(&ioc->base_cmds.mutex);
7277 * _base_get_port_facts - obtain port facts reply and save in ioc
7278 * @ioc: per adapter object
7281 * Return: 0 for success, non-zero for failure.
7284 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7286 Mpi2PortFactsRequest_t mpi_request;
7287 Mpi2PortFactsReply_t mpi_reply;
7288 struct mpt3sas_port_facts *pfacts;
7289 int mpi_reply_sz, mpi_request_sz, r;
7291 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7293 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7294 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7295 memset(&mpi_request, 0, mpi_request_sz);
7296 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7297 mpi_request.PortNumber = port;
7298 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7299 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7302 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7306 pfacts = &ioc->pfacts[port];
7307 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7308 pfacts->PortNumber = mpi_reply.PortNumber;
7309 pfacts->VP_ID = mpi_reply.VP_ID;
7310 pfacts->VF_ID = mpi_reply.VF_ID;
7311 pfacts->MaxPostedCmdBuffers =
7312 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7318 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7319 * @ioc: per adapter object
7322 * Return: 0 for success, non-zero for failure.
7325 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7330 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7332 if (ioc->pci_error_recovery) {
7334 ioc_info(ioc, "%s: host in pci error recovery\n",
7339 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7341 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7342 __func__, ioc_state));
7344 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7345 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7348 if (ioc_state & MPI2_DOORBELL_USED) {
7349 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7350 goto issue_diag_reset;
7353 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7354 mpt3sas_print_fault_code(ioc, ioc_state &
7355 MPI2_DOORBELL_DATA_MASK);
7356 goto issue_diag_reset;
7357 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7358 MPI2_IOC_STATE_COREDUMP) {
7360 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7361 __func__, ioc_state);
7365 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7368 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7369 __func__, ioc_state));
7374 rc = _base_diag_reset(ioc);
7379 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7380 * @ioc: per adapter object
7382 * Return: 0 for success, non-zero for failure.
7385 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7387 Mpi2IOCFactsRequest_t mpi_request;
7388 Mpi2IOCFactsReply_t mpi_reply;
7389 struct mpt3sas_facts *facts;
7390 int mpi_reply_sz, mpi_request_sz, r;
7392 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7394 r = _base_wait_for_iocstate(ioc, 10);
7397 ioc_info(ioc, "%s: failed getting to correct state\n",
7401 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7402 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7403 memset(&mpi_request, 0, mpi_request_sz);
7404 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7405 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7406 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7409 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7413 facts = &ioc->facts;
7414 memset(facts, 0, sizeof(struct mpt3sas_facts));
7415 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7416 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7417 facts->VP_ID = mpi_reply.VP_ID;
7418 facts->VF_ID = mpi_reply.VF_ID;
7419 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7420 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7421 facts->WhoInit = mpi_reply.WhoInit;
7422 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7423 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7424 if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7425 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7426 ioc->combined_reply_queue = 0;
7427 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7428 facts->MaxReplyDescriptorPostQueueDepth =
7429 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7430 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7431 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7432 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7433 ioc->ir_firmware = 1;
7434 if ((facts->IOCCapabilities &
7435 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7436 ioc->rdpq_array_capable = 1;
7437 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7438 && ioc->is_aero_ioc)
7439 ioc->atomic_desc_capable = 1;
7440 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7441 facts->IOCRequestFrameSize =
7442 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7443 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7444 facts->IOCMaxChainSegmentSize =
7445 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7447 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7448 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7449 ioc->shost->max_id = -1;
7450 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7451 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7452 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7453 facts->HighPriorityCredit =
7454 le16_to_cpu(mpi_reply.HighPriorityCredit);
7455 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7456 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7457 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7460 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7462 ioc->page_size = 1 << facts->CurrentHostPageSize;
7463 if (ioc->page_size == 1) {
7464 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7465 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7468 ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7469 facts->CurrentHostPageSize));
7472 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7473 facts->RequestCredit, facts->MaxChainDepth));
7475 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7476 facts->IOCRequestFrameSize * 4,
7477 facts->ReplyFrameSize * 4));
7482 * _base_send_ioc_init - send ioc_init to firmware
7483 * @ioc: per adapter object
7485 * Return: 0 for success, non-zero for failure.
7488 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7490 Mpi2IOCInitRequest_t mpi_request;
7491 Mpi2IOCInitReply_t mpi_reply;
7493 ktime_t current_time;
7495 u32 reply_post_free_array_sz = 0;
7497 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7499 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7500 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7501 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7502 mpi_request.VF_ID = 0; /* TODO */
7503 mpi_request.VP_ID = 0;
7504 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7505 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7506 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7508 if (_base_is_controller_msix_enabled(ioc))
7509 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7510 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7511 mpi_request.ReplyDescriptorPostQueueDepth =
7512 cpu_to_le16(ioc->reply_post_queue_depth);
7513 mpi_request.ReplyFreeQueueDepth =
7514 cpu_to_le16(ioc->reply_free_queue_depth);
7516 mpi_request.SenseBufferAddressHigh =
7517 cpu_to_le32((u64)ioc->sense_dma >> 32);
7518 mpi_request.SystemReplyAddressHigh =
7519 cpu_to_le32((u64)ioc->reply_dma >> 32);
7520 mpi_request.SystemRequestFrameBaseAddress =
7521 cpu_to_le64((u64)ioc->request_dma);
7522 mpi_request.ReplyFreeQueueAddress =
7523 cpu_to_le64((u64)ioc->reply_free_dma);
7525 if (ioc->rdpq_array_enable) {
7526 reply_post_free_array_sz = ioc->reply_queue_count *
7527 sizeof(Mpi2IOCInitRDPQArrayEntry);
7528 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7529 for (i = 0; i < ioc->reply_queue_count; i++)
7530 ioc->reply_post_free_array[i].RDPQBaseAddress =
7532 (u64)ioc->reply_post[i].reply_post_free_dma);
7533 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7534 mpi_request.ReplyDescriptorPostQueueAddress =
7535 cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7537 mpi_request.ReplyDescriptorPostQueueAddress =
7538 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7542 * Set the flag to enable CoreDump state feature in IOC firmware.
7544 mpi_request.ConfigurationFlags |=
7545 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7547 /* This time stamp specifies number of milliseconds
7548 * since epoch ~ midnight January 1, 1970.
7550 current_time = ktime_get_real();
7551 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7553 if (ioc->logging_level & MPT_DEBUG_INIT) {
7557 mfp = (__le32 *)&mpi_request;
7558 ioc_info(ioc, "\toffset:data\n");
7559 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7560 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7561 le32_to_cpu(mfp[i]));
7564 r = _base_handshake_req_reply_wait(ioc,
7565 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7566 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7569 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7573 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7574 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7575 mpi_reply.IOCLogInfo) {
7576 ioc_err(ioc, "%s: failed\n", __func__);
7580 /* Reset TimeSync Counter*/
7581 ioc->timestamp_update_count = 0;
7586 * mpt3sas_port_enable_done - command completion routine for port enable
7587 * @ioc: per adapter object
7588 * @smid: system request message index
7589 * @msix_index: MSIX table index supplied by the OS
7590 * @reply: reply message frame(lower 32bit addr)
7592 * Return: 1 meaning mf should be freed from _base_interrupt
7593 * 0 means the mf is freed from this function.
7596 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7599 MPI2DefaultReply_t *mpi_reply;
7602 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7605 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7609 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7612 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7613 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7614 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7615 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7616 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7617 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7618 ioc->port_enable_failed = 1;
7620 if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7621 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7622 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7623 mpt3sas_port_enable_complete(ioc);
7626 ioc->start_scan_failed = ioc_status;
7627 ioc->start_scan = 0;
7631 complete(&ioc->port_enable_cmds.done);
7636 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7637 * @ioc: per adapter object
7639 * Return: 0 for success, non-zero for failure.
7642 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7644 Mpi2PortEnableRequest_t *mpi_request;
7645 Mpi2PortEnableReply_t *mpi_reply;
7650 ioc_info(ioc, "sending port enable !!\n");
7652 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7653 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7657 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7659 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7663 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7664 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7665 ioc->port_enable_cmds.smid = smid;
7666 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7667 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7669 init_completion(&ioc->port_enable_cmds.done);
7670 ioc->put_smid_default(ioc, smid);
7671 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7672 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7673 ioc_err(ioc, "%s: timeout\n", __func__);
7674 _debug_dump_mf(mpi_request,
7675 sizeof(Mpi2PortEnableRequest_t)/4);
7676 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7683 mpi_reply = ioc->port_enable_cmds.reply;
7684 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7685 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7686 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7687 __func__, ioc_status);
7693 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7694 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7699 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7700 * @ioc: per adapter object
7702 * Return: 0 for success, non-zero for failure.
7705 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7707 Mpi2PortEnableRequest_t *mpi_request;
7710 ioc_info(ioc, "sending port enable !!\n");
7712 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7713 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7717 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7719 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7722 ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7723 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7724 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7725 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7726 ioc->port_enable_cmds.smid = smid;
7727 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7728 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7730 ioc->put_smid_default(ioc, smid);
7735 * _base_determine_wait_on_discovery - desposition
7736 * @ioc: per adapter object
7738 * Decide whether to wait on discovery to complete. Used to either
7739 * locate boot device, or report volumes ahead of physical devices.
7741 * Return: 1 for wait, 0 for don't wait.
7744 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7746 /* We wait for discovery to complete if IR firmware is loaded.
7747 * The sas topology events arrive before PD events, so we need time to
7748 * turn on the bit in ioc->pd_handles to indicate PD
7749 * Also, it maybe required to report Volumes ahead of physical
7750 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7752 if (ioc->ir_firmware)
7755 /* if no Bios, then we don't need to wait */
7756 if (!ioc->bios_pg3.BiosVersion)
7759 /* Bios is present, then we drop down here.
7761 * If there any entries in the Bios Page 2, then we wait
7762 * for discovery to complete.
7765 /* Current Boot Device */
7766 if ((ioc->bios_pg2.CurrentBootDeviceForm &
7767 MPI2_BIOSPAGE2_FORM_MASK) ==
7768 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7769 /* Request Boot Device */
7770 (ioc->bios_pg2.ReqBootDeviceForm &
7771 MPI2_BIOSPAGE2_FORM_MASK) ==
7772 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7773 /* Alternate Request Boot Device */
7774 (ioc->bios_pg2.ReqAltBootDeviceForm &
7775 MPI2_BIOSPAGE2_FORM_MASK) ==
7776 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7783 * _base_unmask_events - turn on notification for this event
7784 * @ioc: per adapter object
7785 * @event: firmware event
7787 * The mask is stored in ioc->event_masks.
7790 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7797 desired_event = (1 << (event % 32));
7800 ioc->event_masks[0] &= ~desired_event;
7801 else if (event < 64)
7802 ioc->event_masks[1] &= ~desired_event;
7803 else if (event < 96)
7804 ioc->event_masks[2] &= ~desired_event;
7805 else if (event < 128)
7806 ioc->event_masks[3] &= ~desired_event;
7810 * _base_event_notification - send event notification
7811 * @ioc: per adapter object
7813 * Return: 0 for success, non-zero for failure.
7816 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7818 Mpi2EventNotificationRequest_t *mpi_request;
7821 int i, issue_diag_reset = 0;
7823 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7825 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7826 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7830 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7832 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7835 ioc->base_cmds.status = MPT3_CMD_PENDING;
7836 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7837 ioc->base_cmds.smid = smid;
7838 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7839 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7840 mpi_request->VF_ID = 0; /* TODO */
7841 mpi_request->VP_ID = 0;
7842 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7843 mpi_request->EventMasks[i] =
7844 cpu_to_le32(ioc->event_masks[i]);
7845 init_completion(&ioc->base_cmds.done);
7846 ioc->put_smid_default(ioc, smid);
7847 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7848 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7849 ioc_err(ioc, "%s: timeout\n", __func__);
7850 _debug_dump_mf(mpi_request,
7851 sizeof(Mpi2EventNotificationRequest_t)/4);
7852 if (ioc->base_cmds.status & MPT3_CMD_RESET)
7855 issue_diag_reset = 1;
7858 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7859 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7861 if (issue_diag_reset) {
7862 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7864 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7872 * mpt3sas_base_validate_event_type - validating event types
7873 * @ioc: per adapter object
7874 * @event_type: firmware event
7876 * This will turn on firmware event notification when application
7877 * ask for that event. We don't mask events that are already enabled.
7880 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7883 u32 event_mask, desired_event;
7884 u8 send_update_to_fw;
7886 for (i = 0, send_update_to_fw = 0; i <
7887 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7888 event_mask = ~event_type[i];
7890 for (j = 0; j < 32; j++) {
7891 if (!(event_mask & desired_event) &&
7892 (ioc->event_masks[i] & desired_event)) {
7893 ioc->event_masks[i] &= ~desired_event;
7894 send_update_to_fw = 1;
7896 desired_event = (desired_event << 1);
7900 if (!send_update_to_fw)
7903 mutex_lock(&ioc->base_cmds.mutex);
7904 _base_event_notification(ioc);
7905 mutex_unlock(&ioc->base_cmds.mutex);
7909 * _base_diag_reset - the "big hammer" start of day reset
7910 * @ioc: per adapter object
7912 * Return: 0 for success, non-zero for failure.
7915 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7917 u32 host_diagnostic;
7922 ioc_info(ioc, "sending diag reset !!\n");
7924 pci_cfg_access_lock(ioc->pdev);
7926 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7930 /* Write magic sequence to WriteSequence register
7931 * Loop until in diagnostic mode
7933 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7934 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7935 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7936 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7937 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7938 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7939 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7940 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7947 "Stop writing magic sequence after 20 retries\n");
7948 _base_dump_reg_set(ioc);
7952 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7954 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7955 count, host_diagnostic));
7957 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7959 hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7961 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7962 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7963 &ioc->chip->HostDiagnostic);
7965 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
7966 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7968 /* Approximately 300 second max wait */
7969 for (count = 0; count < (300000000 /
7970 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7972 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7974 if (host_diagnostic == 0xFFFFFFFF) {
7976 "Invalid host diagnostic register value\n");
7977 _base_dump_reg_set(ioc);
7980 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7983 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
7986 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
7989 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
7990 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
7991 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
7992 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
7994 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
7995 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
7996 &ioc->chip->HCBSize);
7999 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
8000 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
8001 &ioc->chip->HostDiagnostic);
8004 ioc_info(ioc, "disable writes to the diagnostic register\n"));
8005 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
8007 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
8008 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
8010 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8011 __func__, ioc_state);
8012 _base_dump_reg_set(ioc);
8016 pci_cfg_access_unlock(ioc->pdev);
8017 ioc_info(ioc, "diag reset: SUCCESS\n");
8021 pci_cfg_access_unlock(ioc->pdev);
8022 ioc_err(ioc, "diag reset: FAILED\n");
8027 * mpt3sas_base_make_ioc_ready - put controller in READY state
8028 * @ioc: per adapter object
8029 * @type: FORCE_BIG_HAMMER or SOFT_RESET
8031 * Return: 0 for success, non-zero for failure.
8034 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
8040 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8042 if (ioc->pci_error_recovery)
8045 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8047 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
8048 __func__, ioc_state));
8050 /* if in RESET state, it should move to READY state shortly */
8052 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
8053 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
8054 MPI2_IOC_STATE_READY) {
8055 if (count++ == 10) {
8056 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8057 __func__, ioc_state);
8061 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8065 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
8068 if (ioc_state & MPI2_DOORBELL_USED) {
8069 ioc_info(ioc, "unexpected doorbell active!\n");
8070 goto issue_diag_reset;
8073 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
8074 mpt3sas_print_fault_code(ioc, ioc_state &
8075 MPI2_DOORBELL_DATA_MASK);
8076 goto issue_diag_reset;
8079 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
8081 * if host reset is invoked while watch dog thread is waiting
8082 * for IOC state to be changed to Fault state then driver has
8083 * to wait here for CoreDump state to clear otherwise reset
8084 * will be issued to the FW and FW move the IOC state to
8085 * reset state without copying the FW logs to coredump region.
8087 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
8088 mpt3sas_print_coredump_info(ioc, ioc_state &
8089 MPI2_DOORBELL_DATA_MASK);
8090 mpt3sas_base_wait_for_coredump_completion(ioc,
8093 goto issue_diag_reset;
8096 if (type == FORCE_BIG_HAMMER)
8097 goto issue_diag_reset;
8099 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
8100 if (!(_base_send_ioc_reset(ioc,
8101 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
8106 rc = _base_diag_reset(ioc);
8111 * _base_make_ioc_operational - put controller in OPERATIONAL state
8112 * @ioc: per adapter object
8114 * Return: 0 for success, non-zero for failure.
8117 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
8119 int r, i, index, rc;
8120 unsigned long flags;
8123 struct _tr_list *delayed_tr, *delayed_tr_next;
8124 struct _sc_list *delayed_sc, *delayed_sc_next;
8125 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
8127 struct adapter_reply_queue *reply_q;
8128 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
8130 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8132 /* clean the delayed target reset list */
8133 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8134 &ioc->delayed_tr_list, list) {
8135 list_del(&delayed_tr->list);
8140 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8141 &ioc->delayed_tr_volume_list, list) {
8142 list_del(&delayed_tr->list);
8146 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
8147 &ioc->delayed_sc_list, list) {
8148 list_del(&delayed_sc->list);
8152 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
8153 &ioc->delayed_event_ack_list, list) {
8154 list_del(&delayed_event_ack->list);
8155 kfree(delayed_event_ack);
8158 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8160 /* hi-priority queue */
8161 INIT_LIST_HEAD(&ioc->hpr_free_list);
8162 smid = ioc->hi_priority_smid;
8163 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8164 ioc->hpr_lookup[i].cb_idx = 0xFF;
8165 ioc->hpr_lookup[i].smid = smid;
8166 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8167 &ioc->hpr_free_list);
8170 /* internal queue */
8171 INIT_LIST_HEAD(&ioc->internal_free_list);
8172 smid = ioc->internal_smid;
8173 for (i = 0; i < ioc->internal_depth; i++, smid++) {
8174 ioc->internal_lookup[i].cb_idx = 0xFF;
8175 ioc->internal_lookup[i].smid = smid;
8176 list_add_tail(&ioc->internal_lookup[i].tracker_list,
8177 &ioc->internal_free_list);
8180 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8182 /* initialize Reply Free Queue */
8183 for (i = 0, reply_address = (u32)ioc->reply_dma ;
8184 i < ioc->reply_free_queue_depth ; i++, reply_address +=
8186 ioc->reply_free[i] = cpu_to_le32(reply_address);
8187 if (ioc->is_mcpu_endpoint)
8188 _base_clone_reply_to_sys_mem(ioc,
8192 /* initialize reply queues */
8193 if (ioc->is_driver_loading)
8194 _base_assign_reply_queues(ioc);
8196 /* initialize Reply Post Free Queue */
8198 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8199 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8201 * If RDPQ is enabled, switch to the next allocation.
8202 * Otherwise advance within the contiguous region.
8204 if (ioc->rdpq_array_enable) {
8205 reply_q->reply_post_free =
8206 ioc->reply_post[index++].reply_post_free;
8208 reply_q->reply_post_free = reply_post_free_contig;
8209 reply_post_free_contig += ioc->reply_post_queue_depth;
8212 reply_q->reply_post_host_index = 0;
8213 for (i = 0; i < ioc->reply_post_queue_depth; i++)
8214 reply_q->reply_post_free[i].Words =
8215 cpu_to_le64(ULLONG_MAX);
8216 if (!_base_is_controller_msix_enabled(ioc))
8217 goto skip_init_reply_post_free_queue;
8219 skip_init_reply_post_free_queue:
8221 r = _base_send_ioc_init(ioc);
8224 * No need to check IOC state for fault state & issue
8225 * diag reset during host reset. This check is need
8226 * only during driver load time.
8228 if (!ioc->is_driver_loading)
8231 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8232 if (rc || (_base_send_ioc_init(ioc)))
8236 /* initialize reply free host index */
8237 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8238 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8240 /* initialize reply post host index */
8241 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8242 if (ioc->combined_reply_queue)
8243 writel((reply_q->msix_index & 7)<<
8244 MPI2_RPHI_MSIX_INDEX_SHIFT,
8245 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8247 writel(reply_q->msix_index <<
8248 MPI2_RPHI_MSIX_INDEX_SHIFT,
8249 &ioc->chip->ReplyPostHostIndex);
8251 if (!_base_is_controller_msix_enabled(ioc))
8252 goto skip_init_reply_post_host_index;
8255 skip_init_reply_post_host_index:
8257 mpt3sas_base_unmask_interrupts(ioc);
8259 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8260 r = _base_display_fwpkg_version(ioc);
8265 r = _base_static_config_pages(ioc);
8269 r = _base_event_notification(ioc);
8273 if (!ioc->shost_recovery) {
8275 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8278 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8279 MFG_PAGE10_HIDE_SSDS_MASK);
8280 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8281 ioc->mfg_pg10_hide_flag = hide_flag;
8284 ioc->wait_for_discovery_to_complete =
8285 _base_determine_wait_on_discovery(ioc);
8287 return r; /* scan_start and scan_finished support */
8290 r = _base_send_port_enable(ioc);
8298 * mpt3sas_base_free_resources - free resources controller resources
8299 * @ioc: per adapter object
8302 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8304 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8306 /* synchronizing freeing resource with pci_access_mutex lock */
8307 mutex_lock(&ioc->pci_access_mutex);
8308 if (ioc->chip_phys && ioc->chip) {
8309 mpt3sas_base_mask_interrupts(ioc);
8310 ioc->shost_recovery = 1;
8311 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8312 ioc->shost_recovery = 0;
8315 mpt3sas_base_unmap_resources(ioc);
8316 mutex_unlock(&ioc->pci_access_mutex);
8321 * mpt3sas_base_attach - attach controller instance
8322 * @ioc: per adapter object
8324 * Return: 0 for success, non-zero for failure.
8327 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8330 int cpu_id, last_cpu_id = 0;
8332 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8334 /* setup cpu_msix_table */
8335 ioc->cpu_count = num_online_cpus();
8336 for_each_online_cpu(cpu_id)
8337 last_cpu_id = cpu_id;
8338 ioc->cpu_msix_table_sz = last_cpu_id + 1;
8339 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8340 ioc->reply_queue_count = 1;
8341 if (!ioc->cpu_msix_table) {
8342 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8344 goto out_free_resources;
8347 if (ioc->is_warpdrive) {
8348 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8349 sizeof(resource_size_t *), GFP_KERNEL);
8350 if (!ioc->reply_post_host_index) {
8351 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8353 goto out_free_resources;
8357 ioc->smp_affinity_enable = smp_affinity_enable;
8359 ioc->rdpq_array_enable_assigned = 0;
8360 ioc->use_32bit_dma = false;
8362 if (ioc->is_aero_ioc)
8363 ioc->base_readl = &_base_readl_aero;
8365 ioc->base_readl = &_base_readl;
8366 r = mpt3sas_base_map_resources(ioc);
8368 goto out_free_resources;
8370 pci_set_drvdata(ioc->pdev, ioc->shost);
8371 r = _base_get_ioc_facts(ioc);
8373 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8374 if (rc || (_base_get_ioc_facts(ioc)))
8375 goto out_free_resources;
8378 switch (ioc->hba_mpi_version_belonged) {
8380 ioc->build_sg_scmd = &_base_build_sg_scmd;
8381 ioc->build_sg = &_base_build_sg;
8382 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8383 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8389 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8390 * Target Status - all require the IEEE formatted scatter gather
8393 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8394 ioc->build_sg = &_base_build_sg_ieee;
8395 ioc->build_nvme_prp = &_base_build_nvme_prp;
8396 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8397 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8398 if (ioc->high_iops_queues)
8399 ioc->get_msix_index_for_smlio =
8400 &_base_get_high_iops_msix_index;
8402 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8405 if (ioc->atomic_desc_capable) {
8406 ioc->put_smid_default = &_base_put_smid_default_atomic;
8407 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8408 ioc->put_smid_fast_path =
8409 &_base_put_smid_fast_path_atomic;
8410 ioc->put_smid_hi_priority =
8411 &_base_put_smid_hi_priority_atomic;
8413 ioc->put_smid_default = &_base_put_smid_default;
8414 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8415 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8416 if (ioc->is_mcpu_endpoint)
8417 ioc->put_smid_scsi_io =
8418 &_base_put_smid_mpi_ep_scsi_io;
8420 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8423 * These function pointers for other requests that don't
8424 * the require IEEE scatter gather elements.
8426 * For example Configuration Pages and SAS IOUNIT Control don't.
8428 ioc->build_sg_mpi = &_base_build_sg;
8429 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8431 r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8433 goto out_free_resources;
8435 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8436 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8439 goto out_free_resources;
8442 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8443 r = _base_get_port_facts(ioc, i);
8445 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8446 if (rc || (_base_get_port_facts(ioc, i)))
8447 goto out_free_resources;
8451 r = _base_allocate_memory_pools(ioc);
8453 goto out_free_resources;
8455 if (irqpoll_weight > 0)
8456 ioc->thresh_hold = irqpoll_weight;
8458 ioc->thresh_hold = ioc->hba_queue_depth/4;
8460 _base_init_irqpolls(ioc);
8461 init_waitqueue_head(&ioc->reset_wq);
8463 /* allocate memory pd handle bitmask list */
8464 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8465 if (ioc->facts.MaxDevHandle % 8)
8466 ioc->pd_handles_sz++;
8467 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8469 if (!ioc->pd_handles) {
8471 goto out_free_resources;
8473 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8475 if (!ioc->blocking_handles) {
8477 goto out_free_resources;
8480 /* allocate memory for pending OS device add list */
8481 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8482 if (ioc->facts.MaxDevHandle % 8)
8483 ioc->pend_os_device_add_sz++;
8484 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8486 if (!ioc->pend_os_device_add) {
8488 goto out_free_resources;
8491 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8492 ioc->device_remove_in_progress =
8493 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8494 if (!ioc->device_remove_in_progress) {
8496 goto out_free_resources;
8499 ioc->fwfault_debug = mpt3sas_fwfault_debug;
8501 /* base internal command bits */
8502 mutex_init(&ioc->base_cmds.mutex);
8503 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8504 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8506 /* port_enable command bits */
8507 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8508 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8510 /* transport internal command bits */
8511 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8512 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8513 mutex_init(&ioc->transport_cmds.mutex);
8515 /* scsih internal command bits */
8516 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8517 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8518 mutex_init(&ioc->scsih_cmds.mutex);
8520 /* task management internal command bits */
8521 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8522 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8523 mutex_init(&ioc->tm_cmds.mutex);
8525 /* config page internal command bits */
8526 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8527 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8528 mutex_init(&ioc->config_cmds.mutex);
8530 /* ctl module internal command bits */
8531 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8532 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8533 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8534 mutex_init(&ioc->ctl_cmds.mutex);
8536 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8537 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8538 !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8539 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8541 goto out_free_resources;
8544 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8545 ioc->event_masks[i] = -1;
8547 /* here we enable the events we care about */
8548 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8549 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8550 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8551 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8552 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8553 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8554 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8555 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8556 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8557 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8558 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8559 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8560 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8561 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8562 if (ioc->is_gen35_ioc) {
8563 _base_unmask_events(ioc,
8564 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8565 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8566 _base_unmask_events(ioc,
8567 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8570 r = _base_make_ioc_operational(ioc);
8572 r = _base_make_ioc_operational(ioc);
8574 goto out_free_resources;
8578 * Copy current copy of IOCFacts in prev_fw_facts
8579 * and it will be used during online firmware upgrade.
8581 memcpy(&ioc->prev_fw_facts, &ioc->facts,
8582 sizeof(struct mpt3sas_facts));
8584 ioc->non_operational_loop = 0;
8585 ioc->ioc_coredump_loop = 0;
8586 ioc->got_task_abort_from_ioctl = 0;
8591 ioc->remove_host = 1;
8593 mpt3sas_base_free_resources(ioc);
8594 _base_release_memory_pools(ioc);
8595 pci_set_drvdata(ioc->pdev, NULL);
8596 kfree(ioc->cpu_msix_table);
8597 if (ioc->is_warpdrive)
8598 kfree(ioc->reply_post_host_index);
8599 kfree(ioc->pd_handles);
8600 kfree(ioc->blocking_handles);
8601 kfree(ioc->device_remove_in_progress);
8602 kfree(ioc->pend_os_device_add);
8603 kfree(ioc->tm_cmds.reply);
8604 kfree(ioc->transport_cmds.reply);
8605 kfree(ioc->scsih_cmds.reply);
8606 kfree(ioc->config_cmds.reply);
8607 kfree(ioc->base_cmds.reply);
8608 kfree(ioc->port_enable_cmds.reply);
8609 kfree(ioc->ctl_cmds.reply);
8610 kfree(ioc->ctl_cmds.sense);
8612 ioc->ctl_cmds.reply = NULL;
8613 ioc->base_cmds.reply = NULL;
8614 ioc->tm_cmds.reply = NULL;
8615 ioc->scsih_cmds.reply = NULL;
8616 ioc->transport_cmds.reply = NULL;
8617 ioc->config_cmds.reply = NULL;
8624 * mpt3sas_base_detach - remove controller instance
8625 * @ioc: per adapter object
8628 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8630 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8632 mpt3sas_base_stop_watchdog(ioc);
8633 mpt3sas_base_free_resources(ioc);
8634 _base_release_memory_pools(ioc);
8635 mpt3sas_free_enclosure_list(ioc);
8636 pci_set_drvdata(ioc->pdev, NULL);
8637 kfree(ioc->cpu_msix_table);
8638 if (ioc->is_warpdrive)
8639 kfree(ioc->reply_post_host_index);
8640 kfree(ioc->pd_handles);
8641 kfree(ioc->blocking_handles);
8642 kfree(ioc->device_remove_in_progress);
8643 kfree(ioc->pend_os_device_add);
8645 kfree(ioc->ctl_cmds.reply);
8646 kfree(ioc->ctl_cmds.sense);
8647 kfree(ioc->base_cmds.reply);
8648 kfree(ioc->port_enable_cmds.reply);
8649 kfree(ioc->tm_cmds.reply);
8650 kfree(ioc->transport_cmds.reply);
8651 kfree(ioc->scsih_cmds.reply);
8652 kfree(ioc->config_cmds.reply);
8656 * _base_pre_reset_handler - pre reset handler
8657 * @ioc: per adapter object
8659 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8661 mpt3sas_scsih_pre_reset_handler(ioc);
8662 mpt3sas_ctl_pre_reset_handler(ioc);
8663 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8667 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8668 * @ioc: per adapter object
8671 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8674 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8675 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8676 ioc->transport_cmds.status |= MPT3_CMD_RESET;
8677 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8678 complete(&ioc->transport_cmds.done);
8680 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8681 ioc->base_cmds.status |= MPT3_CMD_RESET;
8682 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8683 complete(&ioc->base_cmds.done);
8685 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8686 ioc->port_enable_failed = 1;
8687 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8688 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8689 if (ioc->is_driver_loading) {
8690 ioc->start_scan_failed =
8691 MPI2_IOCSTATUS_INTERNAL_ERROR;
8692 ioc->start_scan = 0;
8694 complete(&ioc->port_enable_cmds.done);
8697 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8698 ioc->config_cmds.status |= MPT3_CMD_RESET;
8699 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8700 ioc->config_cmds.smid = USHRT_MAX;
8701 complete(&ioc->config_cmds.done);
8706 * _base_clear_outstanding_commands - clear all outstanding commands
8707 * @ioc: per adapter object
8709 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8711 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8712 mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8713 _base_clear_outstanding_mpt_commands(ioc);
8717 * _base_reset_done_handler - reset done handler
8718 * @ioc: per adapter object
8720 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8722 mpt3sas_scsih_reset_done_handler(ioc);
8723 mpt3sas_ctl_reset_done_handler(ioc);
8724 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8728 * mpt3sas_wait_for_commands_to_complete - reset controller
8729 * @ioc: Pointer to MPT_ADAPTER structure
8731 * This function is waiting 10s for all pending commands to complete
8732 * prior to putting controller in reset.
8735 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8739 ioc->pending_io_count = 0;
8741 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8742 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8745 /* pending command count */
8746 ioc->pending_io_count = scsi_host_busy(ioc->shost);
8748 if (!ioc->pending_io_count)
8751 /* wait for pending commands to complete */
8752 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8756 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8757 * attributes during online firmware upgrade and update the corresponding
8758 * IOC variables accordingly.
8760 * @ioc: Pointer to MPT_ADAPTER structure
8763 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8766 void *pd_handles = NULL, *blocking_handles = NULL;
8767 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8768 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8770 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8771 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8772 if (ioc->facts.MaxDevHandle % 8)
8775 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8779 "Unable to allocate the memory for pd_handles of sz: %d\n",
8783 memset(pd_handles + ioc->pd_handles_sz, 0,
8784 (pd_handles_sz - ioc->pd_handles_sz));
8785 ioc->pd_handles = pd_handles;
8787 blocking_handles = krealloc(ioc->blocking_handles,
8788 pd_handles_sz, GFP_KERNEL);
8789 if (!blocking_handles) {
8791 "Unable to allocate the memory for "
8792 "blocking_handles of sz: %d\n",
8796 memset(blocking_handles + ioc->pd_handles_sz, 0,
8797 (pd_handles_sz - ioc->pd_handles_sz));
8798 ioc->blocking_handles = blocking_handles;
8799 ioc->pd_handles_sz = pd_handles_sz;
8801 pend_os_device_add = krealloc(ioc->pend_os_device_add,
8802 pd_handles_sz, GFP_KERNEL);
8803 if (!pend_os_device_add) {
8805 "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8809 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8810 (pd_handles_sz - ioc->pend_os_device_add_sz));
8811 ioc->pend_os_device_add = pend_os_device_add;
8812 ioc->pend_os_device_add_sz = pd_handles_sz;
8814 device_remove_in_progress = krealloc(
8815 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8816 if (!device_remove_in_progress) {
8818 "Unable to allocate the memory for "
8819 "device_remove_in_progress of sz: %d\n "
8823 memset(device_remove_in_progress +
8824 ioc->device_remove_in_progress_sz, 0,
8825 (pd_handles_sz - ioc->device_remove_in_progress_sz));
8826 ioc->device_remove_in_progress = device_remove_in_progress;
8827 ioc->device_remove_in_progress_sz = pd_handles_sz;
8830 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8835 * mpt3sas_base_hard_reset_handler - reset controller
8836 * @ioc: Pointer to MPT_ADAPTER structure
8837 * @type: FORCE_BIG_HAMMER or SOFT_RESET
8839 * Return: 0 for success, non-zero for failure.
8842 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8843 enum reset_type type)
8846 unsigned long flags;
8848 u8 is_fault = 0, is_trigger = 0;
8850 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8852 if (ioc->pci_error_recovery) {
8853 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8858 if (mpt3sas_fwfault_debug)
8859 mpt3sas_halt_firmware(ioc);
8861 /* wait for an active reset in progress to complete */
8862 mutex_lock(&ioc->reset_in_progress_mutex);
8864 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8865 ioc->shost_recovery = 1;
8866 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8868 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8869 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8870 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8871 MPT3_DIAG_BUFFER_IS_RELEASED))) {
8873 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8874 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8875 (ioc_state & MPI2_IOC_STATE_MASK) ==
8876 MPI2_IOC_STATE_COREDUMP) {
8878 ioc->htb_rel.trigger_info_dwords[1] =
8879 (ioc_state & MPI2_DOORBELL_DATA_MASK);
8882 _base_pre_reset_handler(ioc);
8883 mpt3sas_wait_for_commands_to_complete(ioc);
8884 mpt3sas_base_mask_interrupts(ioc);
8885 mpt3sas_base_pause_mq_polling(ioc);
8886 r = mpt3sas_base_make_ioc_ready(ioc, type);
8889 _base_clear_outstanding_commands(ioc);
8891 /* If this hard reset is called while port enable is active, then
8892 * there is no reason to call make_ioc_operational
8894 if (ioc->is_driver_loading && ioc->port_enable_failed) {
8895 ioc->remove_host = 1;
8899 r = _base_get_ioc_facts(ioc);
8903 r = _base_check_ioc_facts_changes(ioc);
8906 "Some of the parameters got changed in this new firmware"
8907 " image and it requires system reboot\n");
8910 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8911 panic("%s: Issue occurred with flashing controller firmware."
8912 "Please reboot the system and ensure that the correct"
8913 " firmware version is running\n", ioc->name);
8915 r = _base_make_ioc_operational(ioc);
8917 _base_reset_done_handler(ioc);
8920 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8922 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8923 ioc->shost_recovery = 0;
8924 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8925 ioc->ioc_reset_count++;
8926 mutex_unlock(&ioc->reset_in_progress_mutex);
8927 mpt3sas_base_resume_mq_polling(ioc);
8930 if ((r == 0) && is_trigger) {
8932 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8934 mpt3sas_trigger_master(ioc,
8935 MASTER_TRIGGER_ADAPTER_RESET);
8937 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));