]> Git Repo - J-linux.git/blob - drivers/nvme/target/io-cmd-bdev.c
Merge tag 'amd-drm-next-6.5-2023-06-09' of https://gitlab.freedesktop.org/agd5f/linux...
[J-linux.git] / drivers / nvme / target / io-cmd-bdev.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe I/O command implementation.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/blkdev.h>
8 #include <linux/blk-integrity.h>
9 #include <linux/memremap.h>
10 #include <linux/module.h>
11 #include "nvmet.h"
12
13 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
14 {
15         /* Logical blocks per physical block, 0's based. */
16         const __le16 lpp0b = to0based(bdev_physical_block_size(bdev) /
17                                       bdev_logical_block_size(bdev));
18
19         /*
20          * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
21          * NAWUPF, and NACWU are defined for this namespace and should be
22          * used by the host for this namespace instead of the AWUN, AWUPF,
23          * and ACWU fields in the Identify Controller data structure. If
24          * any of these fields are zero that means that the corresponding
25          * field from the identify controller data structure should be used.
26          */
27         id->nsfeat |= 1 << 1;
28         id->nawun = lpp0b;
29         id->nawupf = lpp0b;
30         id->nacwu = lpp0b;
31
32         /*
33          * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
34          * NOWS are defined for this namespace and should be used by
35          * the host for I/O optimization.
36          */
37         id->nsfeat |= 1 << 4;
38         /* NPWG = Namespace Preferred Write Granularity. 0's based */
39         id->npwg = lpp0b;
40         /* NPWA = Namespace Preferred Write Alignment. 0's based */
41         id->npwa = id->npwg;
42         /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
43         id->npdg = to0based(bdev_discard_granularity(bdev) /
44                             bdev_logical_block_size(bdev));
45         /* NPDG = Namespace Preferred Deallocate Alignment */
46         id->npda = id->npdg;
47         /* NOWS = Namespace Optimal Write Size */
48         id->nows = to0based(bdev_io_opt(bdev) / bdev_logical_block_size(bdev));
49 }
50
51 void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
52 {
53         if (ns->bdev) {
54                 blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ);
55                 ns->bdev = NULL;
56         }
57 }
58
59 static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns)
60 {
61         struct blk_integrity *bi = bdev_get_integrity(ns->bdev);
62
63         if (bi) {
64                 ns->metadata_size = bi->tuple_size;
65                 if (bi->profile == &t10_pi_type1_crc)
66                         ns->pi_type = NVME_NS_DPS_PI_TYPE1;
67                 else if (bi->profile == &t10_pi_type3_crc)
68                         ns->pi_type = NVME_NS_DPS_PI_TYPE3;
69                 else
70                         /* Unsupported metadata type */
71                         ns->metadata_size = 0;
72         }
73 }
74
75 int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
76 {
77         int ret;
78
79         /*
80          * When buffered_io namespace attribute is enabled that means user want
81          * this block device to be used as a file, so block device can take
82          * an advantage of cache.
83          */
84         if (ns->buffered_io)
85                 return -ENOTBLK;
86
87         ns->bdev = blkdev_get_by_path(ns->device_path,
88                         FMODE_READ | FMODE_WRITE, NULL);
89         if (IS_ERR(ns->bdev)) {
90                 ret = PTR_ERR(ns->bdev);
91                 if (ret != -ENOTBLK) {
92                         pr_err("failed to open block device %s: (%ld)\n",
93                                         ns->device_path, PTR_ERR(ns->bdev));
94                 }
95                 ns->bdev = NULL;
96                 return ret;
97         }
98         ns->size = bdev_nr_bytes(ns->bdev);
99         ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
100
101         ns->pi_type = 0;
102         ns->metadata_size = 0;
103         if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10))
104                 nvmet_bdev_ns_enable_integrity(ns);
105
106         if (bdev_is_zoned(ns->bdev)) {
107                 if (!nvmet_bdev_zns_enable(ns)) {
108                         nvmet_bdev_ns_disable(ns);
109                         return -EINVAL;
110                 }
111                 ns->csi = NVME_CSI_ZNS;
112         }
113
114         return 0;
115 }
116
117 void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns)
118 {
119         ns->size = bdev_nr_bytes(ns->bdev);
120 }
121
122 u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
123 {
124         u16 status = NVME_SC_SUCCESS;
125
126         if (likely(blk_sts == BLK_STS_OK))
127                 return status;
128         /*
129          * Right now there exists M : 1 mapping between block layer error
130          * to the NVMe status code (see nvme_error_status()). For consistency,
131          * when we reverse map we use most appropriate NVMe Status code from
132          * the group of the NVMe staus codes used in the nvme_error_status().
133          */
134         switch (blk_sts) {
135         case BLK_STS_NOSPC:
136                 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
137                 req->error_loc = offsetof(struct nvme_rw_command, length);
138                 break;
139         case BLK_STS_TARGET:
140                 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
141                 req->error_loc = offsetof(struct nvme_rw_command, slba);
142                 break;
143         case BLK_STS_NOTSUPP:
144                 req->error_loc = offsetof(struct nvme_common_command, opcode);
145                 switch (req->cmd->common.opcode) {
146                 case nvme_cmd_dsm:
147                 case nvme_cmd_write_zeroes:
148                         status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
149                         break;
150                 default:
151                         status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
152                 }
153                 break;
154         case BLK_STS_MEDIUM:
155                 status = NVME_SC_ACCESS_DENIED;
156                 req->error_loc = offsetof(struct nvme_rw_command, nsid);
157                 break;
158         case BLK_STS_IOERR:
159         default:
160                 status = NVME_SC_INTERNAL | NVME_SC_DNR;
161                 req->error_loc = offsetof(struct nvme_common_command, opcode);
162         }
163
164         switch (req->cmd->common.opcode) {
165         case nvme_cmd_read:
166         case nvme_cmd_write:
167                 req->error_slba = le64_to_cpu(req->cmd->rw.slba);
168                 break;
169         case nvme_cmd_write_zeroes:
170                 req->error_slba =
171                         le64_to_cpu(req->cmd->write_zeroes.slba);
172                 break;
173         default:
174                 req->error_slba = 0;
175         }
176         return status;
177 }
178
179 static void nvmet_bio_done(struct bio *bio)
180 {
181         struct nvmet_req *req = bio->bi_private;
182
183         nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
184         nvmet_req_bio_put(req, bio);
185 }
186
187 #ifdef CONFIG_BLK_DEV_INTEGRITY
188 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
189                                 struct sg_mapping_iter *miter)
190 {
191         struct blk_integrity *bi;
192         struct bio_integrity_payload *bip;
193         int rc;
194         size_t resid, len;
195
196         bi = bdev_get_integrity(req->ns->bdev);
197         if (unlikely(!bi)) {
198                 pr_err("Unable to locate bio_integrity\n");
199                 return -ENODEV;
200         }
201
202         bip = bio_integrity_alloc(bio, GFP_NOIO,
203                                         bio_max_segs(req->metadata_sg_cnt));
204         if (IS_ERR(bip)) {
205                 pr_err("Unable to allocate bio_integrity_payload\n");
206                 return PTR_ERR(bip);
207         }
208
209         bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
210         /* virtual start sector must be in integrity interval units */
211         bip_set_seed(bip, bio->bi_iter.bi_sector >>
212                      (bi->interval_exp - SECTOR_SHIFT));
213
214         resid = bip->bip_iter.bi_size;
215         while (resid > 0 && sg_miter_next(miter)) {
216                 len = min_t(size_t, miter->length, resid);
217                 rc = bio_integrity_add_page(bio, miter->page, len,
218                                             offset_in_page(miter->addr));
219                 if (unlikely(rc != len)) {
220                         pr_err("bio_integrity_add_page() failed; %d\n", rc);
221                         sg_miter_stop(miter);
222                         return -ENOMEM;
223                 }
224
225                 resid -= len;
226                 if (len < miter->length)
227                         miter->consumed -= miter->length - len;
228         }
229         sg_miter_stop(miter);
230
231         return 0;
232 }
233 #else
234 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
235                                 struct sg_mapping_iter *miter)
236 {
237         return -EINVAL;
238 }
239 #endif /* CONFIG_BLK_DEV_INTEGRITY */
240
241 static void nvmet_bdev_execute_rw(struct nvmet_req *req)
242 {
243         unsigned int sg_cnt = req->sg_cnt;
244         struct bio *bio;
245         struct scatterlist *sg;
246         struct blk_plug plug;
247         sector_t sector;
248         blk_opf_t opf;
249         int i, rc;
250         struct sg_mapping_iter prot_miter;
251         unsigned int iter_flags;
252         unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len;
253
254         if (!nvmet_check_transfer_len(req, total_len))
255                 return;
256
257         if (!req->sg_cnt) {
258                 nvmet_req_complete(req, 0);
259                 return;
260         }
261
262         if (req->cmd->rw.opcode == nvme_cmd_write) {
263                 opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
264                 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
265                         opf |= REQ_FUA;
266                 iter_flags = SG_MITER_TO_SG;
267         } else {
268                 opf = REQ_OP_READ;
269                 iter_flags = SG_MITER_FROM_SG;
270         }
271
272         if (is_pci_p2pdma_page(sg_page(req->sg)))
273                 opf |= REQ_NOMERGE;
274
275         sector = nvmet_lba_to_sect(req->ns, req->cmd->rw.slba);
276
277         if (nvmet_use_inline_bvec(req)) {
278                 bio = &req->b.inline_bio;
279                 bio_init(bio, req->ns->bdev, req->inline_bvec,
280                          ARRAY_SIZE(req->inline_bvec), opf);
281         } else {
282                 bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt), opf,
283                                 GFP_KERNEL);
284         }
285         bio->bi_iter.bi_sector = sector;
286         bio->bi_private = req;
287         bio->bi_end_io = nvmet_bio_done;
288
289         blk_start_plug(&plug);
290         if (req->metadata_len)
291                 sg_miter_start(&prot_miter, req->metadata_sg,
292                                req->metadata_sg_cnt, iter_flags);
293
294         for_each_sg(req->sg, sg, req->sg_cnt, i) {
295                 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
296                                 != sg->length) {
297                         struct bio *prev = bio;
298
299                         if (req->metadata_len) {
300                                 rc = nvmet_bdev_alloc_bip(req, bio,
301                                                           &prot_miter);
302                                 if (unlikely(rc)) {
303                                         bio_io_error(bio);
304                                         return;
305                                 }
306                         }
307
308                         bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt),
309                                         opf, GFP_KERNEL);
310                         bio->bi_iter.bi_sector = sector;
311
312                         bio_chain(bio, prev);
313                         submit_bio(prev);
314                 }
315
316                 sector += sg->length >> 9;
317                 sg_cnt--;
318         }
319
320         if (req->metadata_len) {
321                 rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter);
322                 if (unlikely(rc)) {
323                         bio_io_error(bio);
324                         return;
325                 }
326         }
327
328         submit_bio(bio);
329         blk_finish_plug(&plug);
330 }
331
332 static void nvmet_bdev_execute_flush(struct nvmet_req *req)
333 {
334         struct bio *bio = &req->b.inline_bio;
335
336         if (!bdev_write_cache(req->ns->bdev)) {
337                 nvmet_req_complete(req, NVME_SC_SUCCESS);
338                 return;
339         }
340
341         if (!nvmet_check_transfer_len(req, 0))
342                 return;
343
344         bio_init(bio, req->ns->bdev, req->inline_bvec,
345                  ARRAY_SIZE(req->inline_bvec), REQ_OP_WRITE | REQ_PREFLUSH);
346         bio->bi_private = req;
347         bio->bi_end_io = nvmet_bio_done;
348
349         submit_bio(bio);
350 }
351
352 u16 nvmet_bdev_flush(struct nvmet_req *req)
353 {
354         if (!bdev_write_cache(req->ns->bdev))
355                 return 0;
356
357         if (blkdev_issue_flush(req->ns->bdev))
358                 return NVME_SC_INTERNAL | NVME_SC_DNR;
359         return 0;
360 }
361
362 static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
363                 struct nvme_dsm_range *range, struct bio **bio)
364 {
365         struct nvmet_ns *ns = req->ns;
366         int ret;
367
368         ret = __blkdev_issue_discard(ns->bdev,
369                         nvmet_lba_to_sect(ns, range->slba),
370                         le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
371                         GFP_KERNEL, bio);
372         if (ret && ret != -EOPNOTSUPP) {
373                 req->error_slba = le64_to_cpu(range->slba);
374                 return errno_to_nvme_status(req, ret);
375         }
376         return NVME_SC_SUCCESS;
377 }
378
379 static void nvmet_bdev_execute_discard(struct nvmet_req *req)
380 {
381         struct nvme_dsm_range range;
382         struct bio *bio = NULL;
383         int i;
384         u16 status;
385
386         for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
387                 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
388                                 sizeof(range));
389                 if (status)
390                         break;
391
392                 status = nvmet_bdev_discard_range(req, &range, &bio);
393                 if (status)
394                         break;
395         }
396
397         if (bio) {
398                 bio->bi_private = req;
399                 bio->bi_end_io = nvmet_bio_done;
400                 if (status)
401                         bio_io_error(bio);
402                 else
403                         submit_bio(bio);
404         } else {
405                 nvmet_req_complete(req, status);
406         }
407 }
408
409 static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
410 {
411         if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req)))
412                 return;
413
414         switch (le32_to_cpu(req->cmd->dsm.attributes)) {
415         case NVME_DSMGMT_AD:
416                 nvmet_bdev_execute_discard(req);
417                 return;
418         case NVME_DSMGMT_IDR:
419         case NVME_DSMGMT_IDW:
420         default:
421                 /* Not supported yet */
422                 nvmet_req_complete(req, 0);
423                 return;
424         }
425 }
426
427 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
428 {
429         struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
430         struct bio *bio = NULL;
431         sector_t sector;
432         sector_t nr_sector;
433         int ret;
434
435         if (!nvmet_check_transfer_len(req, 0))
436                 return;
437
438         sector = nvmet_lba_to_sect(req->ns, write_zeroes->slba);
439         nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
440                 (req->ns->blksize_shift - 9));
441
442         ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
443                         GFP_KERNEL, &bio, 0);
444         if (bio) {
445                 bio->bi_private = req;
446                 bio->bi_end_io = nvmet_bio_done;
447                 submit_bio(bio);
448         } else {
449                 nvmet_req_complete(req, errno_to_nvme_status(req, ret));
450         }
451 }
452
453 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
454 {
455         switch (req->cmd->common.opcode) {
456         case nvme_cmd_read:
457         case nvme_cmd_write:
458                 req->execute = nvmet_bdev_execute_rw;
459                 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
460                         req->metadata_len = nvmet_rw_metadata_len(req);
461                 return 0;
462         case nvme_cmd_flush:
463                 req->execute = nvmet_bdev_execute_flush;
464                 return 0;
465         case nvme_cmd_dsm:
466                 req->execute = nvmet_bdev_execute_dsm;
467                 return 0;
468         case nvme_cmd_write_zeroes:
469                 req->execute = nvmet_bdev_execute_write_zeroes;
470                 return 0;
471         default:
472                 return nvmet_report_invalid_opcode(req);
473         }
474 }
This page took 0.059038 seconds and 4 git commands to generate.