1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN FD device driver
4 * Copyright (C) 2015 Renesas Electronics Corp.
7 /* The R-Car CAN FD controller can operate in either one of the below two modes
9 * - Classical CAN (CAN 2.0) only mode
11 * This driver puts the controller in CAN FD only mode by default. In this
12 * mode, the controller acts as a CAN FD node that can also interoperate with
15 * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16 * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17 * also required to switch modes.
19 * Note: The h/w manual register naming convention is clumsy and not acceptable
20 * to use as it is in the driver. However, those names are added as comments
21 * wherever it is modified to a readable name.
24 #include <linux/bitmap.h>
25 #include <linux/bitops.h>
26 #include <linux/can/dev.h>
27 #include <linux/clk.h>
28 #include <linux/errno.h>
29 #include <linux/ethtool.h>
30 #include <linux/interrupt.h>
31 #include <linux/iopoll.h>
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/netdevice.h>
37 #include <linux/of_device.h>
38 #include <linux/phy/phy.h>
39 #include <linux/platform_device.h>
40 #include <linux/reset.h>
41 #include <linux/types.h>
43 #define RCANFD_DRV_NAME "rcar_canfd"
45 /* Global register bits */
48 #define RCANFD_GRMCFG_RCMC BIT(0)
50 /* RSCFDnCFDGCFG / RSCFDnGCFG */
51 #define RCANFD_GCFG_EEFE BIT(6)
52 #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */
53 #define RCANFD_GCFG_DCS BIT(4)
54 #define RCANFD_GCFG_DCE BIT(1)
55 #define RCANFD_GCFG_TPRI BIT(0)
57 /* RSCFDnCFDGCTR / RSCFDnGCTR */
58 #define RCANFD_GCTR_TSRST BIT(16)
59 #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */
60 #define RCANFD_GCTR_THLEIE BIT(10)
61 #define RCANFD_GCTR_MEIE BIT(9)
62 #define RCANFD_GCTR_DEIE BIT(8)
63 #define RCANFD_GCTR_GSLPR BIT(2)
64 #define RCANFD_GCTR_GMDC_MASK (0x3)
65 #define RCANFD_GCTR_GMDC_GOPM (0x0)
66 #define RCANFD_GCTR_GMDC_GRESET (0x1)
67 #define RCANFD_GCTR_GMDC_GTEST (0x2)
69 /* RSCFDnCFDGSTS / RSCFDnGSTS */
70 #define RCANFD_GSTS_GRAMINIT BIT(3)
71 #define RCANFD_GSTS_GSLPSTS BIT(2)
72 #define RCANFD_GSTS_GHLTSTS BIT(1)
73 #define RCANFD_GSTS_GRSTSTS BIT(0)
74 /* Non-operational status */
75 #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3))
77 /* RSCFDnCFDGERFL / RSCFDnGERFL */
78 #define RCANFD_GERFL_EEF0_7 GENMASK(23, 16)
79 #define RCANFD_GERFL_EEF(ch) BIT(16 + (ch))
80 #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */
81 #define RCANFD_GERFL_THLES BIT(2)
82 #define RCANFD_GERFL_MES BIT(1)
83 #define RCANFD_GERFL_DEF BIT(0)
85 #define RCANFD_GERFL_ERR(gpriv, x) \
86 ((x) & (reg_gen4(gpriv, RCANFD_GERFL_EEF0_7, \
87 RCANFD_GERFL_EEF(0) | RCANFD_GERFL_EEF(1)) | \
89 ((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0)))
91 /* AFL Rx rules registers */
93 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
94 #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \
95 (((x) & reg_gen4(gpriv, 0x1ff, 0xff)) << \
96 (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8)))
98 #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \
99 (((x) >> (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8))) & \
100 reg_gen4(gpriv, 0x1ff, 0xff))
102 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
103 #define RCANFD_GAFLECTR_AFLDAE BIT(8)
104 #define RCANFD_GAFLECTR_AFLPN(gpriv, x) ((x) & reg_gen4(gpriv, 0x7f, 0x1f))
106 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
107 #define RCANFD_GAFLID_GAFLLB BIT(29)
109 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
110 #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x))
112 /* Channel register bits */
114 /* RSCFDnCmCFG - Classical CAN only */
115 #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24)
116 #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20)
117 #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16)
118 #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0)
120 /* RSCFDnCFDCmNCFG - CAN FD only */
121 #define RCANFD_NCFG_NTSEG2(gpriv, x) \
122 (((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 25, 24))
124 #define RCANFD_NCFG_NTSEG1(gpriv, x) \
125 (((x) & reg_gen4(gpriv, 0xff, 0x7f)) << reg_gen4(gpriv, 17, 16))
127 #define RCANFD_NCFG_NSJW(gpriv, x) \
128 (((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 10, 11))
130 #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0)
132 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
133 #define RCANFD_CCTR_CTME BIT(24)
134 #define RCANFD_CCTR_ERRD BIT(23)
135 #define RCANFD_CCTR_BOM_MASK (0x3 << 21)
136 #define RCANFD_CCTR_BOM_ISO (0x0 << 21)
137 #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21)
138 #define RCANFD_CCTR_BOM_BEND (0x2 << 21)
139 #define RCANFD_CCTR_TDCVFIE BIT(19)
140 #define RCANFD_CCTR_SOCOIE BIT(18)
141 #define RCANFD_CCTR_EOCOIE BIT(17)
142 #define RCANFD_CCTR_TAIE BIT(16)
143 #define RCANFD_CCTR_ALIE BIT(15)
144 #define RCANFD_CCTR_BLIE BIT(14)
145 #define RCANFD_CCTR_OLIE BIT(13)
146 #define RCANFD_CCTR_BORIE BIT(12)
147 #define RCANFD_CCTR_BOEIE BIT(11)
148 #define RCANFD_CCTR_EPIE BIT(10)
149 #define RCANFD_CCTR_EWIE BIT(9)
150 #define RCANFD_CCTR_BEIE BIT(8)
151 #define RCANFD_CCTR_CSLPR BIT(2)
152 #define RCANFD_CCTR_CHMDC_MASK (0x3)
153 #define RCANFD_CCTR_CHDMC_COPM (0x0)
154 #define RCANFD_CCTR_CHDMC_CRESET (0x1)
155 #define RCANFD_CCTR_CHDMC_CHLT (0x2)
157 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
158 #define RCANFD_CSTS_COMSTS BIT(7)
159 #define RCANFD_CSTS_RECSTS BIT(6)
160 #define RCANFD_CSTS_TRMSTS BIT(5)
161 #define RCANFD_CSTS_BOSTS BIT(4)
162 #define RCANFD_CSTS_EPSTS BIT(3)
163 #define RCANFD_CSTS_SLPSTS BIT(2)
164 #define RCANFD_CSTS_HLTSTS BIT(1)
165 #define RCANFD_CSTS_CRSTSTS BIT(0)
167 #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff)
168 #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff)
170 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
171 #define RCANFD_CERFL_ADERR BIT(14)
172 #define RCANFD_CERFL_B0ERR BIT(13)
173 #define RCANFD_CERFL_B1ERR BIT(12)
174 #define RCANFD_CERFL_CERR BIT(11)
175 #define RCANFD_CERFL_AERR BIT(10)
176 #define RCANFD_CERFL_FERR BIT(9)
177 #define RCANFD_CERFL_SERR BIT(8)
178 #define RCANFD_CERFL_ALF BIT(7)
179 #define RCANFD_CERFL_BLF BIT(6)
180 #define RCANFD_CERFL_OVLF BIT(5)
181 #define RCANFD_CERFL_BORF BIT(4)
182 #define RCANFD_CERFL_BOEF BIT(3)
183 #define RCANFD_CERFL_EPF BIT(2)
184 #define RCANFD_CERFL_EWF BIT(1)
185 #define RCANFD_CERFL_BEF BIT(0)
187 #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */
189 /* RSCFDnCFDCmDCFG */
190 #define RCANFD_DCFG_DSJW(gpriv, x) (((x) & reg_gen4(gpriv, 0xf, 0x7)) << 24)
192 #define RCANFD_DCFG_DTSEG2(gpriv, x) \
193 (((x) & reg_gen4(gpriv, 0x0f, 0x7)) << reg_gen4(gpriv, 16, 20))
195 #define RCANFD_DCFG_DTSEG1(gpriv, x) \
196 (((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 8, 16))
198 #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0)
200 /* RSCFDnCFDCmFDCFG */
201 #define RCANFD_GEN4_FDCFG_CLOE BIT(30)
202 #define RCANFD_GEN4_FDCFG_FDOE BIT(28)
203 #define RCANFD_FDCFG_TDCE BIT(9)
204 #define RCANFD_FDCFG_TDCOC BIT(8)
205 #define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16)
208 #define RCANFD_RFCC_RFIM BIT(12)
209 #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8)
210 #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4)
211 #define RCANFD_RFCC_RFIE BIT(1)
212 #define RCANFD_RFCC_RFE BIT(0)
214 /* RSCFDnCFDRFSTSx */
215 #define RCANFD_RFSTS_RFIF BIT(3)
216 #define RCANFD_RFSTS_RFMLT BIT(2)
217 #define RCANFD_RFSTS_RFFLL BIT(1)
218 #define RCANFD_RFSTS_RFEMP BIT(0)
221 #define RCANFD_RFID_RFIDE BIT(31)
222 #define RCANFD_RFID_RFRTR BIT(30)
224 /* RSCFDnCFDRFPTRx */
225 #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf)
226 #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff)
227 #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff)
229 /* RSCFDnCFDRFFDSTSx */
230 #define RCANFD_RFFDSTS_RFFDF BIT(2)
231 #define RCANFD_RFFDSTS_RFBRS BIT(1)
232 #define RCANFD_RFFDSTS_RFESI BIT(0)
234 /* Common FIFO bits */
237 #define RCANFD_CFCC_CFTML(gpriv, x) \
238 (((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 16, 20))
239 #define RCANFD_CFCC_CFM(gpriv, x) (((x) & 0x3) << reg_gen4(gpriv, 8, 16))
240 #define RCANFD_CFCC_CFIM BIT(12)
241 #define RCANFD_CFCC_CFDC(gpriv, x) (((x) & 0x7) << reg_gen4(gpriv, 21, 8))
242 #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4)
243 #define RCANFD_CFCC_CFTXIE BIT(2)
244 #define RCANFD_CFCC_CFE BIT(0)
246 /* RSCFDnCFDCFSTSk */
247 #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff)
248 #define RCANFD_CFSTS_CFTXIF BIT(4)
249 #define RCANFD_CFSTS_CFMLT BIT(2)
250 #define RCANFD_CFSTS_CFFLL BIT(1)
251 #define RCANFD_CFSTS_CFEMP BIT(0)
254 #define RCANFD_CFID_CFIDE BIT(31)
255 #define RCANFD_CFID_CFRTR BIT(30)
256 #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff)
258 /* RSCFDnCFDCFPTRk */
259 #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28)
260 #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16)
261 #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0)
263 /* RSCFDnCFDCFFDCSTSk */
264 #define RCANFD_CFFDCSTS_CFFDF BIT(2)
265 #define RCANFD_CFFDCSTS_CFBRS BIT(1)
266 #define RCANFD_CFFDCSTS_CFESI BIT(0)
268 /* This controller supports either Classical CAN only mode or CAN FD only mode.
269 * These modes are supported in two separate set of register maps & names.
270 * However, some of the register offsets are common for both modes. Those
271 * offsets are listed below as Common registers.
273 * The CAN FD only mode specific registers & Classical CAN only mode specific
274 * registers are listed separately. Their register names starts with
275 * RCANFD_F_xxx & RCANFD_C_xxx respectively.
278 /* Common registers */
280 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
281 #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m)))
282 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
283 #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m)))
284 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
285 #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m)))
286 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
287 #define RCANFD_CERFL(m) (0x000C + (0x10 * (m)))
289 /* RSCFDnCFDGCFG / RSCFDnGCFG */
290 #define RCANFD_GCFG (0x0084)
291 /* RSCFDnCFDGCTR / RSCFDnGCTR */
292 #define RCANFD_GCTR (0x0088)
293 /* RSCFDnCFDGCTS / RSCFDnGCTS */
294 #define RCANFD_GSTS (0x008c)
295 /* RSCFDnCFDGERFL / RSCFDnGERFL */
296 #define RCANFD_GERFL (0x0090)
297 /* RSCFDnCFDGTSC / RSCFDnGTSC */
298 #define RCANFD_GTSC (0x0094)
299 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
300 #define RCANFD_GAFLECTR (0x0098)
301 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
302 #define RCANFD_GAFLCFG(ch) (0x009c + (0x04 * ((ch) / 2)))
303 /* RSCFDnCFDRMNB / RSCFDnRMNB */
304 #define RCANFD_RMNB (0x00a4)
305 /* RSCFDnCFDRMND / RSCFDnRMND */
306 #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y)))
308 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
309 #define RCANFD_RFCC(gpriv, x) (reg_gen4(gpriv, 0x00c0, 0x00b8) + (0x04 * (x)))
310 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
311 #define RCANFD_RFSTS(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x20)
312 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
313 #define RCANFD_RFPCTR(gpriv, x) (RCANFD_RFCC(gpriv, x) + 0x40)
315 /* Common FIFO Control registers */
317 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
318 #define RCANFD_CFCC(gpriv, ch, idx) \
319 (reg_gen4(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx)))
320 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
321 #define RCANFD_CFSTS(gpriv, ch, idx) \
322 (reg_gen4(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx)))
323 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
324 #define RCANFD_CFPCTR(gpriv, ch, idx) \
325 (reg_gen4(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx)))
327 /* RSCFDnCFDFESTS / RSCFDnFESTS */
328 #define RCANFD_FESTS (0x0238)
329 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
330 #define RCANFD_FFSTS (0x023c)
331 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
332 #define RCANFD_FMSTS (0x0240)
333 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
334 #define RCANFD_RFISTS (0x0244)
335 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
336 #define RCANFD_CFRISTS (0x0248)
337 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
338 #define RCANFD_CFTISTS (0x024c)
340 /* RSCFDnCFDTMCp / RSCFDnTMCp */
341 #define RCANFD_TMC(p) (0x0250 + (0x01 * (p)))
342 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
343 #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p)))
345 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
346 #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y)))
347 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
348 #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y)))
349 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
350 #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y)))
351 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
352 #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y)))
353 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
354 #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y)))
356 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
357 #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m)))
358 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
359 #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m)))
360 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
361 #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m)))
363 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
364 #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m)))
365 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
366 #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m)))
367 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
368 #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m)))
370 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
371 #define RCANFD_GTINTSTS0 (0x0460)
372 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
373 #define RCANFD_GTINTSTS1 (0x0464)
374 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
375 #define RCANFD_GTSTCFG (0x0468)
376 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
377 #define RCANFD_GTSTCTR (0x046c)
378 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
379 #define RCANFD_GLOCKK (0x047c)
380 /* RSCFDnCFDGRMCFG */
381 #define RCANFD_GRMCFG (0x04fc)
383 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
384 #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j)))
385 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
386 #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j)))
387 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
388 #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j)))
389 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
390 #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j)))
392 /* Classical CAN only mode register map */
394 /* RSCFDnGAFLXXXj offset */
395 #define RCANFD_C_GAFL_OFFSET (0x0500)
397 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
398 #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q)))
399 #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q)))
400 #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q)))
401 #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q)))
403 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
404 #define RCANFD_C_RFOFFSET (0x0e00)
405 #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x)))
406 #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
407 #define RCANFD_C_RFDF(x, df) \
408 (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
410 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
411 #define RCANFD_C_CFOFFSET (0x0e80)
413 #define RCANFD_C_CFID(ch, idx) \
414 (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
416 #define RCANFD_C_CFPTR(ch, idx) \
417 (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
419 #define RCANFD_C_CFDF(ch, idx, df) \
420 (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
422 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
423 #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p)))
424 #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p)))
425 #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p)))
426 #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p)))
429 #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m)))
431 #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r)))
433 /* R-Car Gen4 Classical and CAN FD mode specific register map */
434 #define RCANFD_GEN4_FDCFG(m) (0x1404 + (0x20 * (m)))
436 #define RCANFD_GEN4_GAFL_OFFSET (0x1800)
438 /* CAN FD mode specific register map */
440 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
441 #define RCANFD_F_DCFG(gpriv, m) (reg_gen4(gpriv, 0x1400, 0x0500) + (0x20 * (m)))
442 #define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m)))
443 #define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m)))
444 #define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m)))
445 #define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m)))
447 /* RSCFDnCFDGAFLXXXj offset */
448 #define RCANFD_F_GAFL_OFFSET (0x1000)
450 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
451 #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q)))
452 #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q)))
453 #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q)))
454 #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q)))
456 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
457 #define RCANFD_F_RFOFFSET(gpriv) reg_gen4(gpriv, 0x6000, 0x3000)
458 #define RCANFD_F_RFID(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
459 #define RCANFD_F_RFPTR(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
460 #define RCANFD_F_RFFDSTS(gpriv, x) (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
461 #define RCANFD_F_RFDF(gpriv, x, df) \
462 (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
464 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
465 #define RCANFD_F_CFOFFSET(gpriv) reg_gen4(gpriv, 0x6400, 0x3400)
467 #define RCANFD_F_CFID(gpriv, ch, idx) \
468 (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
470 #define RCANFD_F_CFPTR(gpriv, ch, idx) \
471 (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
473 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
474 (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
476 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
477 (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
480 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
481 #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p)))
482 #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p)))
483 #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p)))
484 #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b)))
486 /* RSCFDnCFDTHLACCm */
487 #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m)))
488 /* RSCFDnCFDRPGACCr */
489 #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r)))
492 #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */
493 #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */
495 #define RCANFD_NUM_CHANNELS 8 /* Eight channels max */
496 #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1)
498 #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16)
499 #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */
501 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
502 * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
503 * number is added to RFFIFO index.
505 #define RCANFD_RFFIFO_IDX 0
507 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
508 * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
510 #define RCANFD_CFFIFO_IDX 0
512 /* fCAN clock select register settings */
513 enum rcar_canfd_fcanclk {
514 RCANFD_CANFDCLK = 0, /* CANFD clock */
515 RCANFD_EXTCLK, /* Externally input clock */
518 struct rcar_canfd_global;
520 struct rcar_canfd_hw_info {
523 /* hardware features */
524 unsigned shared_global_irqs:1; /* Has shared global irqs */
525 unsigned multi_channel_irqs:1; /* Has multiple channel irqs */
528 /* Channel priv data */
529 struct rcar_canfd_channel {
530 struct can_priv can; /* Must be the first member */
531 struct net_device *ndev;
532 struct rcar_canfd_global *gpriv; /* Controller reference */
533 void __iomem *base; /* Register base address */
534 struct phy *transceiver; /* Optional transceiver */
535 struct napi_struct napi;
536 u32 tx_head; /* Incremented on xmit */
537 u32 tx_tail; /* Incremented on xmit done */
538 u32 channel; /* Channel number */
539 spinlock_t tx_lock; /* To protect tx path */
542 /* Global priv data */
543 struct rcar_canfd_global {
544 struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
545 void __iomem *base; /* Register base address */
546 struct platform_device *pdev; /* Respective platform device */
547 struct clk *clkp; /* Peripheral clock */
548 struct clk *can_clk; /* fCAN clock */
549 enum rcar_canfd_fcanclk fcan; /* CANFD or Ext clock */
550 unsigned long channels_mask; /* Enabled channels mask */
551 bool fdmode; /* CAN FD or Classical CAN only mode */
552 struct reset_control *rstc1;
553 struct reset_control *rstc2;
554 const struct rcar_canfd_hw_info *info;
557 /* CAN FD mode nominal rate constants */
558 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
559 .name = RCANFD_DRV_NAME,
570 /* CAN FD mode data rate constants */
571 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
572 .name = RCANFD_DRV_NAME,
583 /* Classical CAN mode bitrate constants */
584 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
585 .name = RCANFD_DRV_NAME,
596 static const struct rcar_canfd_hw_info rcar_gen3_hw_info = {
599 .shared_global_irqs = 1,
602 static const struct rcar_canfd_hw_info rcar_gen4_hw_info = {
605 .shared_global_irqs = 1,
608 static const struct rcar_canfd_hw_info rzg2l_hw_info = {
611 .multi_channel_irqs = 1,
614 /* Helper functions */
615 static inline bool is_gen4(struct rcar_canfd_global *gpriv)
617 return gpriv->info == &rcar_gen4_hw_info;
620 static inline u32 reg_gen4(struct rcar_canfd_global *gpriv,
621 u32 gen4, u32 not_gen4)
623 return is_gen4(gpriv) ? gen4 : not_gen4;
626 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
628 u32 data = readl(reg);
631 data |= (val & mask);
635 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
637 return readl(base + (offset));
640 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
642 writel(val, base + (offset));
645 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
647 rcar_canfd_update(val, val, base + (reg));
650 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
652 rcar_canfd_update(val, 0, base + (reg));
655 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
658 rcar_canfd_update(mask, val, base + (reg));
661 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
662 struct canfd_frame *cf, u32 off)
666 lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
667 for (i = 0; i < lwords; i++)
668 *((u32 *)cf->data + i) =
669 rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
672 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
673 struct canfd_frame *cf, u32 off)
677 lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
678 for (i = 0; i < lwords; i++)
679 rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
680 *((u32 *)cf->data + i));
683 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
687 for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
688 can_free_echo_skb(ndev, i, NULL);
691 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
693 if (is_gen4(gpriv)) {
694 u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE
695 : RCANFD_GEN4_FDCFG_CLOE;
697 for_each_set_bit(ch, &gpriv->channels_mask,
698 gpriv->info->max_channels)
699 rcar_canfd_set_bit(gpriv->base, RCANFD_GEN4_FDCFG(ch),
703 rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
706 rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
711 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
716 /* Check RAMINIT flag as CAN RAM initialization takes place
717 * after the MCU reset
719 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
720 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
722 dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
726 /* Transition to Global Reset mode */
727 rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
728 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
729 RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
731 /* Ensure Global reset mode */
732 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
733 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
735 dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
739 /* Reset Global error flags */
740 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
742 /* Set the controller into appropriate mode */
743 rcar_canfd_set_mode(gpriv);
745 /* Transition all Channels to reset mode */
746 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
747 rcar_canfd_clear_bit(gpriv->base,
748 RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
750 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
751 RCANFD_CCTR_CHMDC_MASK,
752 RCANFD_CCTR_CHDMC_CRESET);
754 /* Ensure Channel reset mode */
755 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
756 (sts & RCANFD_CSTS_CRSTSTS),
759 dev_dbg(&gpriv->pdev->dev,
760 "channel %u reset failed\n", ch);
767 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
771 /* Global configuration settings */
773 /* ECC Error flag Enable */
774 cfg = RCANFD_GCFG_EEFE;
777 /* Truncate payload to configured message size RFPLS */
778 cfg |= RCANFD_GCFG_CMPOC;
780 /* Set External Clock if selected */
781 if (gpriv->fcan != RCANFD_CANFDCLK)
782 cfg |= RCANFD_GCFG_DCS;
784 rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
786 /* Channel configuration settings */
787 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
788 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
790 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
791 RCANFD_CCTR_BOM_MASK,
792 RCANFD_CCTR_BOM_BENTRY);
796 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
800 int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES;
801 u32 ridx = ch + RCANFD_RFFIFO_IDX;
804 start = 0; /* Channel 0 always starts from 0th rule */
806 /* Get number of Channel 0 rules and adjust */
807 cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG(ch));
808 start = RCANFD_GAFLCFG_GETRNC(gpriv, 0, cfg);
811 /* Enable write access to entry */
812 page = RCANFD_GAFL_PAGENUM(start);
813 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
814 (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
815 RCANFD_GAFLECTR_AFLDAE));
817 /* Write number of rules for channel */
818 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch),
819 RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules));
821 offset = RCANFD_GEN4_GAFL_OFFSET;
822 else if (gpriv->fdmode)
823 offset = RCANFD_F_GAFL_OFFSET;
825 offset = RCANFD_C_GAFL_OFFSET;
828 rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0);
829 /* IDE or RTR is not considered for matching */
830 rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0);
831 /* Any data length accepted */
832 rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0);
833 /* Place the msg in corresponding Rx FIFO entry */
834 rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, start),
835 RCANFD_GAFLP1_GAFLFDP(ridx));
837 /* Disable write access to page */
838 rcar_canfd_clear_bit(gpriv->base,
839 RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
842 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
844 /* Rx FIFO is used for reception */
848 /* Select Rx FIFO based on channel */
849 u32 ridx = ch + RCANFD_RFFIFO_IDX;
851 rfdc = 2; /* b010 - 8 messages Rx FIFO depth */
853 rfpls = 7; /* b111 - Max 64 bytes payload */
855 rfpls = 0; /* b000 - Max 8 bytes payload */
857 cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
858 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
859 rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
862 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
864 /* Tx/Rx(Common) FIFO configured in Tx mode is
865 * used for transmission
867 * Each channel has 3 Common FIFO dedicated to them.
868 * Use the 1st (index 0) out of 3
871 u16 cftml, cfm, cfdc, cfpls;
873 cftml = 0; /* 0th buffer */
874 cfm = 1; /* b01 - Transmit mode */
875 cfdc = 2; /* b010 - 8 messages Tx FIFO depth */
877 cfpls = 7; /* b111 - Max 64 bytes payload */
879 cfpls = 0; /* b000 - Max 8 bytes payload */
881 cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
882 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
883 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
884 rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
887 /* Clear FD mode specific control/status register */
888 rcar_canfd_write(gpriv->base,
889 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
892 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
896 /* Clear any stray error interrupt flags */
897 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
899 /* Global interrupts setup */
900 ctr = RCANFD_GCTR_MEIE;
902 ctr |= RCANFD_GCTR_CFMPOFIE;
904 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
907 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
910 /* Disable all interrupts */
911 rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
913 /* Clear any stray error interrupt flags */
914 rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
917 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
920 u32 ctr, ch = priv->channel;
922 /* Clear any stray error flags */
923 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
925 /* Channel interrupts setup */
926 ctr = (RCANFD_CCTR_TAIE |
927 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
928 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
929 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
930 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
931 rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
934 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
937 u32 ctr, ch = priv->channel;
939 ctr = (RCANFD_CCTR_TAIE |
940 RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
941 RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
942 RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
943 RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
944 rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
946 /* Clear any stray error flags */
947 rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
950 static void rcar_canfd_global_error(struct net_device *ndev)
952 struct rcar_canfd_channel *priv = netdev_priv(ndev);
953 struct rcar_canfd_global *gpriv = priv->gpriv;
954 struct net_device_stats *stats = &ndev->stats;
955 u32 ch = priv->channel;
957 u32 ridx = ch + RCANFD_RFFIFO_IDX;
959 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
960 if (gerfl & RCANFD_GERFL_EEF(ch)) {
961 netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch);
964 if (gerfl & RCANFD_GERFL_MES) {
965 sts = rcar_canfd_read(priv->base,
966 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
967 if (sts & RCANFD_CFSTS_CFMLT) {
968 netdev_dbg(ndev, "Tx Message Lost flag\n");
970 rcar_canfd_write(priv->base,
971 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
972 sts & ~RCANFD_CFSTS_CFMLT);
975 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
976 if (sts & RCANFD_RFSTS_RFMLT) {
977 netdev_dbg(ndev, "Rx Message Lost flag\n");
979 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
980 sts & ~RCANFD_RFSTS_RFMLT);
983 if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
984 /* Message Lost flag will be set for respective channel
985 * when this condition happens with counters and flags
988 netdev_dbg(ndev, "global payload overflow interrupt\n");
991 /* Clear all global error interrupts. Only affected channels bits
994 rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
997 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
998 u16 txerr, u16 rxerr)
1000 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1001 struct net_device_stats *stats = &ndev->stats;
1002 struct can_frame *cf;
1003 struct sk_buff *skb;
1004 u32 ch = priv->channel;
1006 netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
1008 /* Propagate the error condition to the CAN stack */
1009 skb = alloc_can_err_skb(ndev, &cf);
1011 stats->rx_dropped++;
1015 /* Channel error interrupts */
1016 if (cerfl & RCANFD_CERFL_BEF) {
1017 netdev_dbg(ndev, "Bus error\n");
1018 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
1019 cf->data[2] = CAN_ERR_PROT_UNSPEC;
1020 priv->can.can_stats.bus_error++;
1022 if (cerfl & RCANFD_CERFL_ADERR) {
1023 netdev_dbg(ndev, "ACK Delimiter Error\n");
1025 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
1027 if (cerfl & RCANFD_CERFL_B0ERR) {
1028 netdev_dbg(ndev, "Bit Error (dominant)\n");
1030 cf->data[2] |= CAN_ERR_PROT_BIT0;
1032 if (cerfl & RCANFD_CERFL_B1ERR) {
1033 netdev_dbg(ndev, "Bit Error (recessive)\n");
1035 cf->data[2] |= CAN_ERR_PROT_BIT1;
1037 if (cerfl & RCANFD_CERFL_CERR) {
1038 netdev_dbg(ndev, "CRC Error\n");
1040 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1042 if (cerfl & RCANFD_CERFL_AERR) {
1043 netdev_dbg(ndev, "ACK Error\n");
1045 cf->can_id |= CAN_ERR_ACK;
1046 cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
1048 if (cerfl & RCANFD_CERFL_FERR) {
1049 netdev_dbg(ndev, "Form Error\n");
1051 cf->data[2] |= CAN_ERR_PROT_FORM;
1053 if (cerfl & RCANFD_CERFL_SERR) {
1054 netdev_dbg(ndev, "Stuff Error\n");
1056 cf->data[2] |= CAN_ERR_PROT_STUFF;
1058 if (cerfl & RCANFD_CERFL_ALF) {
1059 netdev_dbg(ndev, "Arbitration lost Error\n");
1060 priv->can.can_stats.arbitration_lost++;
1061 cf->can_id |= CAN_ERR_LOSTARB;
1062 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
1064 if (cerfl & RCANFD_CERFL_BLF) {
1065 netdev_dbg(ndev, "Bus Lock Error\n");
1067 cf->can_id |= CAN_ERR_BUSERROR;
1069 if (cerfl & RCANFD_CERFL_EWF) {
1070 netdev_dbg(ndev, "Error warning interrupt\n");
1071 priv->can.state = CAN_STATE_ERROR_WARNING;
1072 priv->can.can_stats.error_warning++;
1073 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1074 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1075 CAN_ERR_CRTL_RX_WARNING;
1076 cf->data[6] = txerr;
1077 cf->data[7] = rxerr;
1079 if (cerfl & RCANFD_CERFL_EPF) {
1080 netdev_dbg(ndev, "Error passive interrupt\n");
1081 priv->can.state = CAN_STATE_ERROR_PASSIVE;
1082 priv->can.can_stats.error_passive++;
1083 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1084 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1085 CAN_ERR_CRTL_RX_PASSIVE;
1086 cf->data[6] = txerr;
1087 cf->data[7] = rxerr;
1089 if (cerfl & RCANFD_CERFL_BOEF) {
1090 netdev_dbg(ndev, "Bus-off entry interrupt\n");
1091 rcar_canfd_tx_failure_cleanup(ndev);
1092 priv->can.state = CAN_STATE_BUS_OFF;
1093 priv->can.can_stats.bus_off++;
1095 cf->can_id |= CAN_ERR_BUSOFF;
1097 if (cerfl & RCANFD_CERFL_OVLF) {
1099 "Overload Frame Transmission error interrupt\n");
1101 cf->can_id |= CAN_ERR_PROT;
1102 cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1105 /* Clear channel error interrupts that are handled */
1106 rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1107 RCANFD_CERFL_ERR(~cerfl));
1111 static void rcar_canfd_tx_done(struct net_device *ndev)
1113 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1114 struct rcar_canfd_global *gpriv = priv->gpriv;
1115 struct net_device_stats *stats = &ndev->stats;
1117 unsigned long flags;
1118 u32 ch = priv->channel;
1123 sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1124 stats->tx_packets++;
1125 stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
1127 spin_lock_irqsave(&priv->tx_lock, flags);
1129 sts = rcar_canfd_read(priv->base,
1130 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1131 unsent = RCANFD_CFSTS_CFMC(sts);
1133 /* Wake producer only when there is room */
1134 if (unsent != RCANFD_FIFO_DEPTH)
1135 netif_wake_queue(ndev);
1137 if (priv->tx_head - priv->tx_tail <= unsent) {
1138 spin_unlock_irqrestore(&priv->tx_lock, flags);
1141 spin_unlock_irqrestore(&priv->tx_lock, flags);
1145 /* Clear interrupt */
1146 rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1147 sts & ~RCANFD_CFSTS_CFTXIF);
1150 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1152 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1153 struct net_device *ndev = priv->ndev;
1156 /* Handle global error interrupts */
1157 gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1158 if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1159 rcar_canfd_global_error(ndev);
1162 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1164 struct rcar_canfd_global *gpriv = dev_id;
1167 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1168 rcar_canfd_handle_global_err(gpriv, ch);
1173 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1175 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1176 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1179 /* Handle Rx interrupts */
1180 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1181 cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx));
1182 if (likely(sts & RCANFD_RFSTS_RFIF &&
1183 cc & RCANFD_RFCC_RFIE)) {
1184 if (napi_schedule_prep(&priv->napi)) {
1185 /* Disable Rx FIFO interrupts */
1186 rcar_canfd_clear_bit(priv->base,
1187 RCANFD_RFCC(gpriv, ridx),
1189 __napi_schedule(&priv->napi);
1194 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1196 struct rcar_canfd_global *gpriv = dev_id;
1199 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1200 rcar_canfd_handle_global_receive(gpriv, ch);
1205 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1207 struct rcar_canfd_global *gpriv = dev_id;
1210 /* Global error interrupts still indicate a condition specific
1211 * to a channel. RxFIFO interrupt is a global interrupt.
1213 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1214 rcar_canfd_handle_global_err(gpriv, ch);
1215 rcar_canfd_handle_global_receive(gpriv, ch);
1220 static void rcar_canfd_state_change(struct net_device *ndev,
1221 u16 txerr, u16 rxerr)
1223 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1224 struct net_device_stats *stats = &ndev->stats;
1225 enum can_state rx_state, tx_state, state = priv->can.state;
1226 struct can_frame *cf;
1227 struct sk_buff *skb;
1229 /* Handle transition from error to normal states */
1230 if (txerr < 96 && rxerr < 96)
1231 state = CAN_STATE_ERROR_ACTIVE;
1232 else if (txerr < 128 && rxerr < 128)
1233 state = CAN_STATE_ERROR_WARNING;
1235 if (state != priv->can.state) {
1236 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1237 state, priv->can.state, txerr, rxerr);
1238 skb = alloc_can_err_skb(ndev, &cf);
1240 stats->rx_dropped++;
1243 tx_state = txerr >= rxerr ? state : 0;
1244 rx_state = txerr <= rxerr ? state : 0;
1246 can_change_state(ndev, cf, tx_state, rx_state);
1251 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1253 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1254 struct net_device *ndev = priv->ndev;
1257 /* Handle Tx interrupts */
1258 sts = rcar_canfd_read(priv->base,
1259 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1260 if (likely(sts & RCANFD_CFSTS_CFTXIF))
1261 rcar_canfd_tx_done(ndev);
1264 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1266 struct rcar_canfd_channel *priv = dev_id;
1268 rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel);
1273 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1275 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1276 struct net_device *ndev = priv->ndev;
1280 /* Handle channel error interrupts */
1281 cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1282 sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1283 txerr = RCANFD_CSTS_TECCNT(sts);
1284 rxerr = RCANFD_CSTS_RECCNT(sts);
1285 if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1286 rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1288 /* Handle state change to lower states */
1289 if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1290 priv->can.state != CAN_STATE_BUS_OFF))
1291 rcar_canfd_state_change(ndev, txerr, rxerr);
1294 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1296 struct rcar_canfd_channel *priv = dev_id;
1298 rcar_canfd_handle_channel_err(priv->gpriv, priv->channel);
1303 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1305 struct rcar_canfd_global *gpriv = dev_id;
1308 /* Common FIFO is a per channel resource */
1309 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1310 rcar_canfd_handle_channel_err(gpriv, ch);
1311 rcar_canfd_handle_channel_tx(gpriv, ch);
1317 static void rcar_canfd_set_bittiming(struct net_device *dev)
1319 struct rcar_canfd_channel *priv = netdev_priv(dev);
1320 struct rcar_canfd_global *gpriv = priv->gpriv;
1321 const struct can_bittiming *bt = &priv->can.bittiming;
1322 const struct can_bittiming *dbt = &priv->can.data_bittiming;
1323 u16 brp, sjw, tseg1, tseg2;
1325 u32 ch = priv->channel;
1327 /* Nominal bit timing settings */
1330 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1331 tseg2 = bt->phase_seg2 - 1;
1333 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1334 /* CAN FD only mode */
1335 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
1336 RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1338 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1339 netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1340 brp, sjw, tseg1, tseg2);
1342 /* Data bit timing settings */
1345 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1346 tseg2 = dbt->phase_seg2 - 1;
1348 cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
1349 RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
1351 rcar_canfd_write(priv->base, RCANFD_F_DCFG(gpriv, ch), cfg);
1352 netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1353 brp, sjw, tseg1, tseg2);
1355 /* Classical CAN only mode */
1356 if (is_gen4(gpriv)) {
1357 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) |
1358 RCANFD_NCFG_NBRP(brp) |
1359 RCANFD_NCFG_NSJW(gpriv, sjw) |
1360 RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1362 cfg = (RCANFD_CFG_TSEG1(tseg1) |
1363 RCANFD_CFG_BRP(brp) |
1364 RCANFD_CFG_SJW(sjw) |
1365 RCANFD_CFG_TSEG2(tseg2));
1368 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1369 netdev_dbg(priv->ndev,
1370 "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1371 brp, sjw, tseg1, tseg2);
1375 static int rcar_canfd_start(struct net_device *ndev)
1377 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1378 struct rcar_canfd_global *gpriv = priv->gpriv;
1379 int err = -EOPNOTSUPP;
1380 u32 sts, ch = priv->channel;
1381 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1383 rcar_canfd_set_bittiming(ndev);
1385 rcar_canfd_enable_channel_interrupts(priv);
1387 /* Set channel to Operational mode */
1388 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1389 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1391 /* Verify channel mode change */
1392 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1393 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1395 netdev_err(ndev, "channel %u communication state failed\n", ch);
1396 goto fail_mode_change;
1399 /* Enable Common & Rx FIFO */
1400 rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1402 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1404 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1408 rcar_canfd_disable_channel_interrupts(priv);
1412 static int rcar_canfd_open(struct net_device *ndev)
1414 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1415 struct rcar_canfd_global *gpriv = priv->gpriv;
1418 err = phy_power_on(priv->transceiver);
1420 netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err));
1424 /* Peripheral clock is already enabled in probe */
1425 err = clk_prepare_enable(gpriv->can_clk);
1427 netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err));
1431 err = open_candev(ndev);
1433 netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err));
1437 napi_enable(&priv->napi);
1438 err = rcar_canfd_start(ndev);
1441 netif_start_queue(ndev);
1444 napi_disable(&priv->napi);
1447 clk_disable_unprepare(gpriv->can_clk);
1449 phy_power_off(priv->transceiver);
1453 static void rcar_canfd_stop(struct net_device *ndev)
1455 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1456 struct rcar_canfd_global *gpriv = priv->gpriv;
1458 u32 sts, ch = priv->channel;
1459 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1461 /* Transition to channel reset mode */
1462 rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1463 RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1465 /* Check Channel reset mode */
1466 err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1467 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1469 netdev_err(ndev, "channel %u reset failed\n", ch);
1471 rcar_canfd_disable_channel_interrupts(priv);
1473 /* Disable Common & Rx FIFO */
1474 rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1476 rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1478 /* Set the state as STOPPED */
1479 priv->can.state = CAN_STATE_STOPPED;
1482 static int rcar_canfd_close(struct net_device *ndev)
1484 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1485 struct rcar_canfd_global *gpriv = priv->gpriv;
1487 netif_stop_queue(ndev);
1488 rcar_canfd_stop(ndev);
1489 napi_disable(&priv->napi);
1490 clk_disable_unprepare(gpriv->can_clk);
1492 phy_power_off(priv->transceiver);
1496 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1497 struct net_device *ndev)
1499 struct rcar_canfd_channel *priv = netdev_priv(ndev);
1500 struct rcar_canfd_global *gpriv = priv->gpriv;
1501 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1502 u32 sts = 0, id, dlc;
1503 unsigned long flags;
1504 u32 ch = priv->channel;
1506 if (can_dev_dropped_skb(ndev, skb))
1507 return NETDEV_TX_OK;
1509 if (cf->can_id & CAN_EFF_FLAG) {
1510 id = cf->can_id & CAN_EFF_MASK;
1511 id |= RCANFD_CFID_CFIDE;
1513 id = cf->can_id & CAN_SFF_MASK;
1516 if (cf->can_id & CAN_RTR_FLAG)
1517 id |= RCANFD_CFID_CFRTR;
1519 dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1521 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) {
1522 rcar_canfd_write(priv->base,
1523 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
1524 rcar_canfd_write(priv->base,
1525 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
1527 if (can_is_canfd_skb(skb)) {
1528 /* CAN FD frame format */
1529 sts |= RCANFD_CFFDCSTS_CFFDF;
1530 if (cf->flags & CANFD_BRS)
1531 sts |= RCANFD_CFFDCSTS_CFBRS;
1533 if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1534 sts |= RCANFD_CFFDCSTS_CFESI;
1537 rcar_canfd_write(priv->base,
1538 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
1540 rcar_canfd_put_data(priv, cf,
1541 RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
1543 rcar_canfd_write(priv->base,
1544 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1545 rcar_canfd_write(priv->base,
1546 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1547 rcar_canfd_put_data(priv, cf,
1548 RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1551 can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1553 spin_lock_irqsave(&priv->tx_lock, flags);
1556 /* Stop the queue if we've filled all FIFO entries */
1557 if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1558 netif_stop_queue(ndev);
1560 /* Start Tx: Write 0xff to CFPC to increment the CPU-side
1561 * pointer for the Common FIFO
1563 rcar_canfd_write(priv->base,
1564 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
1566 spin_unlock_irqrestore(&priv->tx_lock, flags);
1567 return NETDEV_TX_OK;
1570 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1572 struct net_device_stats *stats = &priv->ndev->stats;
1573 struct rcar_canfd_global *gpriv = priv->gpriv;
1574 struct canfd_frame *cf;
1575 struct sk_buff *skb;
1576 u32 sts = 0, id, dlc;
1577 u32 ch = priv->channel;
1578 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1580 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) {
1581 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
1582 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
1584 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
1586 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
1587 sts & RCANFD_RFFDSTS_RFFDF)
1588 skb = alloc_canfd_skb(priv->ndev, &cf);
1590 skb = alloc_can_skb(priv->ndev,
1591 (struct can_frame **)&cf);
1593 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1594 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1595 skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
1599 stats->rx_dropped++;
1603 if (id & RCANFD_RFID_RFIDE)
1604 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1606 cf->can_id = id & CAN_SFF_MASK;
1608 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1609 if (sts & RCANFD_RFFDSTS_RFFDF)
1610 cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1612 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1614 if (sts & RCANFD_RFFDSTS_RFESI) {
1615 cf->flags |= CANFD_ESI;
1616 netdev_dbg(priv->ndev, "ESI Error\n");
1619 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1620 cf->can_id |= CAN_RTR_FLAG;
1622 if (sts & RCANFD_RFFDSTS_RFBRS)
1623 cf->flags |= CANFD_BRS;
1625 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1628 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1629 if (id & RCANFD_RFID_RFRTR)
1630 cf->can_id |= CAN_RTR_FLAG;
1631 else if (is_gen4(gpriv))
1632 rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1634 rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1637 /* Write 0xff to RFPC to increment the CPU-side
1638 * pointer of the Rx FIFO
1640 rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
1642 if (!(cf->can_id & CAN_RTR_FLAG))
1643 stats->rx_bytes += cf->len;
1644 stats->rx_packets++;
1645 netif_receive_skb(skb);
1648 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1650 struct rcar_canfd_channel *priv =
1651 container_of(napi, struct rcar_canfd_channel, napi);
1652 struct rcar_canfd_global *gpriv = priv->gpriv;
1655 u32 ch = priv->channel;
1656 u32 ridx = ch + RCANFD_RFFIFO_IDX;
1658 for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1659 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1660 /* Check FIFO empty condition */
1661 if (sts & RCANFD_RFSTS_RFEMP)
1664 rcar_canfd_rx_pkt(priv);
1666 /* Clear interrupt bit */
1667 if (sts & RCANFD_RFSTS_RFIF)
1668 rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1669 sts & ~RCANFD_RFSTS_RFIF);
1672 /* All packets processed */
1673 if (num_pkts < quota) {
1674 if (napi_complete_done(napi, num_pkts)) {
1675 /* Enable Rx FIFO interrupts */
1676 rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
1683 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1688 case CAN_MODE_START:
1689 err = rcar_canfd_start(ndev);
1692 netif_wake_queue(ndev);
1699 static int rcar_canfd_get_berr_counter(const struct net_device *dev,
1700 struct can_berr_counter *bec)
1702 struct rcar_canfd_channel *priv = netdev_priv(dev);
1703 u32 val, ch = priv->channel;
1705 /* Peripheral clock is already enabled in probe */
1706 val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1707 bec->txerr = RCANFD_CSTS_TECCNT(val);
1708 bec->rxerr = RCANFD_CSTS_RECCNT(val);
1712 static const struct net_device_ops rcar_canfd_netdev_ops = {
1713 .ndo_open = rcar_canfd_open,
1714 .ndo_stop = rcar_canfd_close,
1715 .ndo_start_xmit = rcar_canfd_start_xmit,
1716 .ndo_change_mtu = can_change_mtu,
1719 static const struct ethtool_ops rcar_canfd_ethtool_ops = {
1720 .get_ts_info = ethtool_op_get_ts_info,
1723 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1724 u32 fcan_freq, struct phy *transceiver)
1726 const struct rcar_canfd_hw_info *info = gpriv->info;
1727 struct platform_device *pdev = gpriv->pdev;
1728 struct device *dev = &pdev->dev;
1729 struct rcar_canfd_channel *priv;
1730 struct net_device *ndev;
1733 ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1737 priv = netdev_priv(ndev);
1739 ndev->netdev_ops = &rcar_canfd_netdev_ops;
1740 ndev->ethtool_ops = &rcar_canfd_ethtool_ops;
1741 ndev->flags |= IFF_ECHO;
1743 priv->base = gpriv->base;
1744 priv->transceiver = transceiver;
1746 priv->gpriv = gpriv;
1748 priv->can.bitrate_max = transceiver->attrs.max_link_rate;
1749 priv->can.clock.freq = fcan_freq;
1750 dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq);
1752 if (info->multi_channel_irqs) {
1757 err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err");
1763 tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx");
1769 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err",
1775 err = devm_request_irq(dev, err_irq,
1776 rcar_canfd_channel_err_interrupt, 0,
1779 dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n",
1780 err_irq, ERR_PTR(err));
1783 irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx",
1789 err = devm_request_irq(dev, tx_irq,
1790 rcar_canfd_channel_tx_interrupt, 0,
1793 dev_err(dev, "devm_request_irq Tx %d failed: %pe\n",
1794 tx_irq, ERR_PTR(err));
1799 if (gpriv->fdmode) {
1800 priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
1801 priv->can.data_bittiming_const =
1802 &rcar_canfd_data_bittiming_const;
1804 /* Controller starts in CAN FD only mode */
1805 err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1808 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1810 /* Controller starts in Classical CAN only mode */
1811 priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1812 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1815 priv->can.do_set_mode = rcar_canfd_do_set_mode;
1816 priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1817 SET_NETDEV_DEV(ndev, dev);
1819 netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
1820 RCANFD_NAPI_WEIGHT);
1821 spin_lock_init(&priv->tx_lock);
1822 gpriv->ch[priv->channel] = priv;
1823 err = register_candev(ndev);
1825 dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err));
1828 dev_info(dev, "device registered (channel %u)\n", priv->channel);
1832 netif_napi_del(&priv->napi);
1838 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1840 struct rcar_canfd_channel *priv = gpriv->ch[ch];
1843 unregister_candev(priv->ndev);
1844 netif_napi_del(&priv->napi);
1845 free_candev(priv->ndev);
1849 static int rcar_canfd_probe(struct platform_device *pdev)
1851 struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, };
1852 const struct rcar_canfd_hw_info *info;
1853 struct device *dev = &pdev->dev;
1855 u32 sts, ch, fcan_freq;
1856 struct rcar_canfd_global *gpriv;
1857 struct device_node *of_child;
1858 unsigned long channels_mask = 0;
1859 int err, ch_irq, g_irq;
1860 int g_err_irq, g_recc_irq;
1861 bool fdmode = true; /* CAN FD only mode - default */
1862 char name[9] = "channelX";
1865 info = of_device_get_match_data(dev);
1867 if (of_property_read_bool(dev->of_node, "renesas,no-can-fd"))
1868 fdmode = false; /* Classical CAN only mode */
1870 for (i = 0; i < info->max_channels; ++i) {
1872 of_child = of_get_child_by_name(dev->of_node, name);
1873 if (of_child && of_device_is_available(of_child)) {
1874 channels_mask |= BIT(i);
1875 transceivers[i] = devm_of_phy_optional_get(dev,
1878 of_node_put(of_child);
1879 if (IS_ERR(transceivers[i]))
1880 return PTR_ERR(transceivers[i]);
1883 if (info->shared_global_irqs) {
1884 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
1886 /* For backward compatibility get irq by index */
1887 ch_irq = platform_get_irq(pdev, 0);
1892 g_irq = platform_get_irq_byname_optional(pdev, "g_int");
1894 /* For backward compatibility get irq by index */
1895 g_irq = platform_get_irq(pdev, 1);
1900 g_err_irq = platform_get_irq_byname(pdev, "g_err");
1904 g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
1909 /* Global controller context */
1910 gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL);
1915 gpriv->channels_mask = channels_mask;
1916 gpriv->fdmode = fdmode;
1919 gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n");
1920 if (IS_ERR(gpriv->rstc1))
1921 return dev_err_probe(dev, PTR_ERR(gpriv->rstc1),
1922 "failed to get rstp_n\n");
1924 gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n");
1925 if (IS_ERR(gpriv->rstc2))
1926 return dev_err_probe(dev, PTR_ERR(gpriv->rstc2),
1927 "failed to get rstc_n\n");
1929 /* Peripheral clock */
1930 gpriv->clkp = devm_clk_get(dev, "fck");
1931 if (IS_ERR(gpriv->clkp))
1932 return dev_err_probe(dev, PTR_ERR(gpriv->clkp),
1933 "cannot get peripheral clock\n");
1935 /* fCAN clock: Pick External clock. If not available fallback to
1938 gpriv->can_clk = devm_clk_get(dev, "can_clk");
1939 if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
1940 gpriv->can_clk = devm_clk_get(dev, "canfd");
1941 if (IS_ERR(gpriv->can_clk))
1942 return dev_err_probe(dev, PTR_ERR(gpriv->can_clk),
1943 "cannot get canfd clock\n");
1945 gpriv->fcan = RCANFD_CANFDCLK;
1948 gpriv->fcan = RCANFD_EXTCLK;
1950 fcan_freq = clk_get_rate(gpriv->can_clk);
1952 if (gpriv->fcan == RCANFD_CANFDCLK)
1953 /* CANFD clock is further divided by (1/2) within the IP */
1954 fcan_freq /= info->postdiv;
1956 addr = devm_platform_ioremap_resource(pdev, 0);
1958 err = PTR_ERR(addr);
1963 /* Request IRQ that's common for both channels */
1964 if (info->shared_global_irqs) {
1965 err = devm_request_irq(dev, ch_irq,
1966 rcar_canfd_channel_interrupt, 0,
1967 "canfd.ch_int", gpriv);
1969 dev_err(dev, "devm_request_irq %d failed: %pe\n",
1970 ch_irq, ERR_PTR(err));
1974 err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt,
1975 0, "canfd.g_int", gpriv);
1977 dev_err(dev, "devm_request_irq %d failed: %pe\n",
1978 g_irq, ERR_PTR(err));
1982 err = devm_request_irq(dev, g_recc_irq,
1983 rcar_canfd_global_receive_fifo_interrupt, 0,
1984 "canfd.g_recc", gpriv);
1987 dev_err(dev, "devm_request_irq %d failed: %pe\n",
1988 g_recc_irq, ERR_PTR(err));
1992 err = devm_request_irq(dev, g_err_irq,
1993 rcar_canfd_global_err_interrupt, 0,
1994 "canfd.g_err", gpriv);
1996 dev_err(dev, "devm_request_irq %d failed: %pe\n",
1997 g_err_irq, ERR_PTR(err));
2002 err = reset_control_reset(gpriv->rstc1);
2005 err = reset_control_reset(gpriv->rstc2);
2007 reset_control_assert(gpriv->rstc1);
2011 /* Enable peripheral clock for register access */
2012 err = clk_prepare_enable(gpriv->clkp);
2014 dev_err(dev, "failed to enable peripheral clock: %pe\n",
2019 err = rcar_canfd_reset_controller(gpriv);
2021 dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err));
2025 /* Controller in Global reset & Channel reset mode */
2026 rcar_canfd_configure_controller(gpriv);
2028 /* Configure per channel attributes */
2029 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2030 /* Configure Channel's Rx fifo */
2031 rcar_canfd_configure_rx(gpriv, ch);
2033 /* Configure Channel's Tx (Common) fifo */
2034 rcar_canfd_configure_tx(gpriv, ch);
2036 /* Configure receive rules */
2037 rcar_canfd_configure_afl_rules(gpriv, ch);
2040 /* Configure common interrupts */
2041 rcar_canfd_enable_global_interrupts(gpriv);
2043 /* Start Global operation mode */
2044 rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
2045 RCANFD_GCTR_GMDC_GOPM);
2047 /* Verify mode change */
2048 err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
2049 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
2051 dev_err(dev, "global operational mode failed\n");
2055 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2056 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq,
2062 platform_set_drvdata(pdev, gpriv);
2063 dev_info(dev, "global operational state (clk %d, fdmode %d)\n",
2064 gpriv->fcan, gpriv->fdmode);
2068 for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels)
2069 rcar_canfd_channel_remove(gpriv, ch);
2071 rcar_canfd_disable_global_interrupts(gpriv);
2073 clk_disable_unprepare(gpriv->clkp);
2075 reset_control_assert(gpriv->rstc1);
2076 reset_control_assert(gpriv->rstc2);
2081 static int rcar_canfd_remove(struct platform_device *pdev)
2083 struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
2086 rcar_canfd_reset_controller(gpriv);
2087 rcar_canfd_disable_global_interrupts(gpriv);
2089 for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
2090 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
2091 rcar_canfd_channel_remove(gpriv, ch);
2094 /* Enter global sleep mode */
2095 rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2096 clk_disable_unprepare(gpriv->clkp);
2097 reset_control_assert(gpriv->rstc1);
2098 reset_control_assert(gpriv->rstc2);
2103 static int __maybe_unused rcar_canfd_suspend(struct device *dev)
2108 static int __maybe_unused rcar_canfd_resume(struct device *dev)
2113 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2116 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2117 { .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info },
2118 { .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info },
2119 { .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info },
2120 { .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info },
2124 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2126 static struct platform_driver rcar_canfd_driver = {
2128 .name = RCANFD_DRV_NAME,
2129 .of_match_table = of_match_ptr(rcar_canfd_of_table),
2130 .pm = &rcar_canfd_pm_ops,
2132 .probe = rcar_canfd_probe,
2133 .remove = rcar_canfd_remove,
2136 module_platform_driver(rcar_canfd_driver);
2139 MODULE_LICENSE("GPL");
2140 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2141 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);