1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
7 /* Bosch M_CAN user manual can be obtained from:
8 * https://github.com/linux-can/can-doc/tree/master/m_can
11 #include <linux/bitfield.h>
12 #include <linux/can/dev.h>
13 #include <linux/ethtool.h>
14 #include <linux/interrupt.h>
16 #include <linux/iopoll.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
21 #include <linux/of_device.h>
22 #include <linux/phy/phy.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
29 /* registers definition */
45 /* TDCR Register only available for version >=3.1.x */
81 /* message ram configuration data length */
82 #define MRAM_CFG_LEN 8
84 /* Core Release Register (CREL) */
85 #define CREL_REL_MASK GENMASK(31, 28)
86 #define CREL_STEP_MASK GENMASK(27, 24)
87 #define CREL_SUBSTEP_MASK GENMASK(23, 20)
89 /* Data Bit Timing & Prescaler Register (DBTP) */
90 #define DBTP_TDC BIT(23)
91 #define DBTP_DBRP_MASK GENMASK(20, 16)
92 #define DBTP_DTSEG1_MASK GENMASK(12, 8)
93 #define DBTP_DTSEG2_MASK GENMASK(7, 4)
94 #define DBTP_DSJW_MASK GENMASK(3, 0)
96 /* Transmitter Delay Compensation Register (TDCR) */
97 #define TDCR_TDCO_MASK GENMASK(14, 8)
98 #define TDCR_TDCF_MASK GENMASK(6, 0)
100 /* Test Register (TEST) */
101 #define TEST_LBCK BIT(4)
103 /* CC Control Register (CCCR) */
104 #define CCCR_TXP BIT(14)
105 #define CCCR_TEST BIT(7)
106 #define CCCR_DAR BIT(6)
107 #define CCCR_MON BIT(5)
108 #define CCCR_CSR BIT(4)
109 #define CCCR_CSA BIT(3)
110 #define CCCR_ASM BIT(2)
111 #define CCCR_CCE BIT(1)
112 #define CCCR_INIT BIT(0)
113 /* for version 3.0.x */
114 #define CCCR_CMR_MASK GENMASK(11, 10)
115 #define CCCR_CMR_CANFD 0x1
116 #define CCCR_CMR_CANFD_BRS 0x2
117 #define CCCR_CMR_CAN 0x3
118 #define CCCR_CME_MASK GENMASK(9, 8)
119 #define CCCR_CME_CAN 0
120 #define CCCR_CME_CANFD 0x1
121 #define CCCR_CME_CANFD_BRS 0x2
122 /* for version >=3.1.x */
123 #define CCCR_EFBI BIT(13)
124 #define CCCR_PXHD BIT(12)
125 #define CCCR_BRSE BIT(9)
126 #define CCCR_FDOE BIT(8)
127 /* for version >=3.2.x */
128 #define CCCR_NISO BIT(15)
129 /* for version >=3.3.x */
130 #define CCCR_WMM BIT(11)
131 #define CCCR_UTSU BIT(10)
133 /* Nominal Bit Timing & Prescaler Register (NBTP) */
134 #define NBTP_NSJW_MASK GENMASK(31, 25)
135 #define NBTP_NBRP_MASK GENMASK(24, 16)
136 #define NBTP_NTSEG1_MASK GENMASK(15, 8)
137 #define NBTP_NTSEG2_MASK GENMASK(6, 0)
139 /* Timestamp Counter Configuration Register (TSCC) */
140 #define TSCC_TCP_MASK GENMASK(19, 16)
141 #define TSCC_TSS_MASK GENMASK(1, 0)
142 #define TSCC_TSS_DISABLE 0x0
143 #define TSCC_TSS_INTERNAL 0x1
144 #define TSCC_TSS_EXTERNAL 0x2
146 /* Timestamp Counter Value Register (TSCV) */
147 #define TSCV_TSC_MASK GENMASK(15, 0)
149 /* Error Counter Register (ECR) */
150 #define ECR_RP BIT(15)
151 #define ECR_REC_MASK GENMASK(14, 8)
152 #define ECR_TEC_MASK GENMASK(7, 0)
154 /* Protocol Status Register (PSR) */
155 #define PSR_BO BIT(7)
156 #define PSR_EW BIT(6)
157 #define PSR_EP BIT(5)
158 #define PSR_LEC_MASK GENMASK(2, 0)
159 #define PSR_DLEC_MASK GENMASK(10, 8)
161 /* Interrupt Register (IR) */
162 #define IR_ALL_INT 0xffffffff
164 /* Renamed bits for versions > 3.1.x */
165 #define IR_ARA BIT(29)
166 #define IR_PED BIT(28)
167 #define IR_PEA BIT(27)
169 /* Bits for version 3.0.x */
170 #define IR_STE BIT(31)
171 #define IR_FOE BIT(30)
172 #define IR_ACKE BIT(29)
173 #define IR_BE BIT(28)
174 #define IR_CRCE BIT(27)
175 #define IR_WDI BIT(26)
176 #define IR_BO BIT(25)
177 #define IR_EW BIT(24)
178 #define IR_EP BIT(23)
179 #define IR_ELO BIT(22)
180 #define IR_BEU BIT(21)
181 #define IR_BEC BIT(20)
182 #define IR_DRX BIT(19)
183 #define IR_TOO BIT(18)
184 #define IR_MRAF BIT(17)
185 #define IR_TSW BIT(16)
186 #define IR_TEFL BIT(15)
187 #define IR_TEFF BIT(14)
188 #define IR_TEFW BIT(13)
189 #define IR_TEFN BIT(12)
190 #define IR_TFE BIT(11)
191 #define IR_TCF BIT(10)
193 #define IR_HPM BIT(8)
194 #define IR_RF1L BIT(7)
195 #define IR_RF1F BIT(6)
196 #define IR_RF1W BIT(5)
197 #define IR_RF1N BIT(4)
198 #define IR_RF0L BIT(3)
199 #define IR_RF0F BIT(2)
200 #define IR_RF0W BIT(1)
201 #define IR_RF0N BIT(0)
202 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
204 /* Interrupts for version 3.0.x */
205 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
206 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
207 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
209 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X)
211 /* Interrupts for version >= 3.1.x */
212 #define IR_ERR_LEC_31X (IR_PED | IR_PEA)
213 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
214 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
216 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X)
218 /* Interrupt Line Select (ILS) */
219 #define ILS_ALL_INT0 0x0
220 #define ILS_ALL_INT1 0xFFFFFFFF
222 /* Interrupt Line Enable (ILE) */
223 #define ILE_EINT1 BIT(1)
224 #define ILE_EINT0 BIT(0)
226 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
227 #define RXFC_FWM_MASK GENMASK(30, 24)
228 #define RXFC_FS_MASK GENMASK(22, 16)
230 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
231 #define RXFS_RFL BIT(25)
232 #define RXFS_FF BIT(24)
233 #define RXFS_FPI_MASK GENMASK(21, 16)
234 #define RXFS_FGI_MASK GENMASK(13, 8)
235 #define RXFS_FFL_MASK GENMASK(6, 0)
237 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
238 #define RXESC_RBDS_MASK GENMASK(10, 8)
239 #define RXESC_F1DS_MASK GENMASK(6, 4)
240 #define RXESC_F0DS_MASK GENMASK(2, 0)
241 #define RXESC_64B 0x7
243 /* Tx Buffer Configuration (TXBC) */
244 #define TXBC_TFQS_MASK GENMASK(29, 24)
245 #define TXBC_NDTB_MASK GENMASK(21, 16)
247 /* Tx FIFO/Queue Status (TXFQS) */
248 #define TXFQS_TFQF BIT(21)
249 #define TXFQS_TFQPI_MASK GENMASK(20, 16)
250 #define TXFQS_TFGI_MASK GENMASK(12, 8)
251 #define TXFQS_TFFL_MASK GENMASK(5, 0)
253 /* Tx Buffer Element Size Configuration (TXESC) */
254 #define TXESC_TBDS_MASK GENMASK(2, 0)
255 #define TXESC_TBDS_64B 0x7
257 /* Tx Event FIFO Configuration (TXEFC) */
258 #define TXEFC_EFS_MASK GENMASK(21, 16)
260 /* Tx Event FIFO Status (TXEFS) */
261 #define TXEFS_TEFL BIT(25)
262 #define TXEFS_EFF BIT(24)
263 #define TXEFS_EFGI_MASK GENMASK(12, 8)
264 #define TXEFS_EFFL_MASK GENMASK(5, 0)
266 /* Tx Event FIFO Acknowledge (TXEFA) */
267 #define TXEFA_EFAI_MASK GENMASK(4, 0)
269 /* Message RAM Configuration (in bytes) */
270 #define SIDF_ELEMENT_SIZE 4
271 #define XIDF_ELEMENT_SIZE 8
272 #define RXF0_ELEMENT_SIZE 72
273 #define RXF1_ELEMENT_SIZE 72
274 #define RXB_ELEMENT_SIZE 72
275 #define TXE_ELEMENT_SIZE 8
276 #define TXB_ELEMENT_SIZE 72
278 /* Message RAM Elements */
279 #define M_CAN_FIFO_ID 0x0
280 #define M_CAN_FIFO_DLC 0x4
281 #define M_CAN_FIFO_DATA 0x8
283 /* Rx Buffer Element */
285 #define RX_BUF_ESI BIT(31)
286 #define RX_BUF_XTD BIT(30)
287 #define RX_BUF_RTR BIT(29)
289 #define RX_BUF_ANMF BIT(31)
290 #define RX_BUF_FDF BIT(21)
291 #define RX_BUF_BRS BIT(20)
292 #define RX_BUF_RXTS_MASK GENMASK(15, 0)
294 /* Tx Buffer Element */
296 #define TX_BUF_ESI BIT(31)
297 #define TX_BUF_XTD BIT(30)
298 #define TX_BUF_RTR BIT(29)
300 #define TX_BUF_EFC BIT(23)
301 #define TX_BUF_FDF BIT(21)
302 #define TX_BUF_BRS BIT(20)
303 #define TX_BUF_MM_MASK GENMASK(31, 24)
304 #define TX_BUF_DLC_MASK GENMASK(19, 16)
306 /* Tx event FIFO Element */
308 #define TX_EVENT_MM_MASK GENMASK(31, 24)
309 #define TX_EVENT_TXTS_MASK GENMASK(15, 0)
311 /* The ID and DLC registers are adjacent in M_CAN FIFO memory,
312 * and we can save a (potentially slow) bus round trip by combining
313 * reads and writes to them.
320 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
322 return cdev->ops->read_reg(cdev, reg);
325 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
328 cdev->ops->write_reg(cdev, reg, val);
332 m_can_fifo_read(struct m_can_classdev *cdev,
333 u32 fgi, unsigned int offset, void *val, size_t val_count)
335 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
341 return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
345 m_can_fifo_write(struct m_can_classdev *cdev,
346 u32 fpi, unsigned int offset, const void *val, size_t val_count)
348 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
354 return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
357 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
360 return cdev->ops->write_fifo(cdev, fpi, &val, 1);
364 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
366 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
369 return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
372 static inline bool _m_can_tx_fifo_full(u32 txfqs)
374 return !!(txfqs & TXFQS_TFQF);
377 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
379 return _m_can_tx_fifo_full(m_can_read(cdev, M_CAN_TXFQS));
382 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
384 u32 cccr = m_can_read(cdev, M_CAN_CCCR);
388 /* Clear the Clock stop request if it was set */
393 /* enable m_can configuration */
394 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
396 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
397 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
399 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
402 /* there's a delay for module initialization */
404 val = CCCR_INIT | CCCR_CCE;
406 while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
408 netdev_warn(cdev->net, "Failed to init module\n");
416 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
418 /* Only interrupt line 0 is used in this driver */
419 m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
422 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
424 m_can_write(cdev, M_CAN_ILE, 0x0);
427 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
430 static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
435 tscv = m_can_read(cdev, M_CAN_TSCV);
436 tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
441 static void m_can_clean(struct net_device *net)
443 struct m_can_classdev *cdev = netdev_priv(net);
448 net->stats.tx_errors++;
449 if (cdev->version > 30)
450 putidx = FIELD_GET(TXFQS_TFQPI_MASK,
451 m_can_read(cdev, M_CAN_TXFQS));
453 can_free_echo_skb(cdev->net, putidx, NULL);
458 /* For peripherals, pass skb to rx-offload, which will push skb from
459 * napi. For non-peripherals, RX is done in napi already, so push
460 * directly. timestamp is used to ensure good skb ordering in
461 * rx-offload and is ignored for non-peripherals.
463 static void m_can_receive_skb(struct m_can_classdev *cdev,
467 if (cdev->is_peripheral) {
468 struct net_device_stats *stats = &cdev->net->stats;
471 err = can_rx_offload_queue_timestamp(&cdev->offload, skb,
474 stats->rx_fifo_errors++;
476 netif_receive_skb(skb);
480 static int m_can_read_fifo(struct net_device *dev, u32 fgi)
482 struct net_device_stats *stats = &dev->stats;
483 struct m_can_classdev *cdev = netdev_priv(dev);
484 struct canfd_frame *cf;
486 struct id_and_dlc fifo_header;
490 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
494 if (fifo_header.dlc & RX_BUF_FDF)
495 skb = alloc_canfd_skb(dev, &cf);
497 skb = alloc_can_skb(dev, (struct can_frame **)&cf);
503 if (fifo_header.dlc & RX_BUF_FDF)
504 cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
506 cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
508 if (fifo_header.id & RX_BUF_XTD)
509 cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
511 cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
513 if (fifo_header.id & RX_BUF_ESI) {
514 cf->flags |= CANFD_ESI;
515 netdev_dbg(dev, "ESI Error\n");
518 if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
519 cf->can_id |= CAN_RTR_FLAG;
521 if (fifo_header.dlc & RX_BUF_BRS)
522 cf->flags |= CANFD_BRS;
524 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
525 cf->data, DIV_ROUND_UP(cf->len, 4));
529 stats->rx_bytes += cf->len;
533 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16;
535 m_can_receive_skb(cdev, skb, timestamp);
542 netdev_err(dev, "FIFO read returned %d\n", err);
546 static int m_can_do_rx_poll(struct net_device *dev, int quota)
548 struct m_can_classdev *cdev = netdev_priv(dev);
557 rxfs = m_can_read(cdev, M_CAN_RXF0S);
558 if (!(rxfs & RXFS_FFL_MASK)) {
559 netdev_dbg(dev, "no messages in fifo0\n");
563 rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs);
564 fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
566 for (i = 0; i < rx_count && quota > 0; ++i) {
567 err = m_can_read_fifo(dev, fgi);
574 fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi);
578 m_can_write(cdev, M_CAN_RXF0A, ack_fgi);
586 static int m_can_handle_lost_msg(struct net_device *dev)
588 struct m_can_classdev *cdev = netdev_priv(dev);
589 struct net_device_stats *stats = &dev->stats;
591 struct can_frame *frame;
594 netdev_err(dev, "msg lost in rxf0\n");
597 stats->rx_over_errors++;
599 skb = alloc_can_err_skb(dev, &frame);
603 frame->can_id |= CAN_ERR_CRTL;
604 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
606 if (cdev->is_peripheral)
607 timestamp = m_can_get_timestamp(cdev);
609 m_can_receive_skb(cdev, skb, timestamp);
614 static int m_can_handle_lec_err(struct net_device *dev,
615 enum m_can_lec_type lec_type)
617 struct m_can_classdev *cdev = netdev_priv(dev);
618 struct net_device_stats *stats = &dev->stats;
619 struct can_frame *cf;
623 cdev->can.can_stats.bus_error++;
626 /* propagate the error condition to the CAN stack */
627 skb = alloc_can_err_skb(dev, &cf);
631 /* check for 'last error code' which tells us the
632 * type of the last error to occur on the CAN bus
634 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
637 case LEC_STUFF_ERROR:
638 netdev_dbg(dev, "stuff error\n");
639 cf->data[2] |= CAN_ERR_PROT_STUFF;
642 netdev_dbg(dev, "form error\n");
643 cf->data[2] |= CAN_ERR_PROT_FORM;
646 netdev_dbg(dev, "ack error\n");
647 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
650 netdev_dbg(dev, "bit1 error\n");
651 cf->data[2] |= CAN_ERR_PROT_BIT1;
654 netdev_dbg(dev, "bit0 error\n");
655 cf->data[2] |= CAN_ERR_PROT_BIT0;
658 netdev_dbg(dev, "CRC error\n");
659 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
665 if (cdev->is_peripheral)
666 timestamp = m_can_get_timestamp(cdev);
668 m_can_receive_skb(cdev, skb, timestamp);
673 static int __m_can_get_berr_counter(const struct net_device *dev,
674 struct can_berr_counter *bec)
676 struct m_can_classdev *cdev = netdev_priv(dev);
679 ecr = m_can_read(cdev, M_CAN_ECR);
680 bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
681 bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
686 static int m_can_clk_start(struct m_can_classdev *cdev)
688 if (cdev->pm_clock_support == 0)
691 return pm_runtime_resume_and_get(cdev->dev);
694 static void m_can_clk_stop(struct m_can_classdev *cdev)
696 if (cdev->pm_clock_support)
697 pm_runtime_put_sync(cdev->dev);
700 static int m_can_get_berr_counter(const struct net_device *dev,
701 struct can_berr_counter *bec)
703 struct m_can_classdev *cdev = netdev_priv(dev);
706 err = m_can_clk_start(cdev);
710 __m_can_get_berr_counter(dev, bec);
712 m_can_clk_stop(cdev);
717 static int m_can_handle_state_change(struct net_device *dev,
718 enum can_state new_state)
720 struct m_can_classdev *cdev = netdev_priv(dev);
721 struct can_frame *cf;
723 struct can_berr_counter bec;
728 case CAN_STATE_ERROR_WARNING:
729 /* error warning state */
730 cdev->can.can_stats.error_warning++;
731 cdev->can.state = CAN_STATE_ERROR_WARNING;
733 case CAN_STATE_ERROR_PASSIVE:
734 /* error passive state */
735 cdev->can.can_stats.error_passive++;
736 cdev->can.state = CAN_STATE_ERROR_PASSIVE;
738 case CAN_STATE_BUS_OFF:
740 cdev->can.state = CAN_STATE_BUS_OFF;
741 m_can_disable_all_interrupts(cdev);
742 cdev->can.can_stats.bus_off++;
749 /* propagate the error condition to the CAN stack */
750 skb = alloc_can_err_skb(dev, &cf);
754 __m_can_get_berr_counter(dev, &bec);
757 case CAN_STATE_ERROR_WARNING:
758 /* error warning state */
759 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
760 cf->data[1] = (bec.txerr > bec.rxerr) ?
761 CAN_ERR_CRTL_TX_WARNING :
762 CAN_ERR_CRTL_RX_WARNING;
763 cf->data[6] = bec.txerr;
764 cf->data[7] = bec.rxerr;
766 case CAN_STATE_ERROR_PASSIVE:
767 /* error passive state */
768 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
769 ecr = m_can_read(cdev, M_CAN_ECR);
771 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
773 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
774 cf->data[6] = bec.txerr;
775 cf->data[7] = bec.rxerr;
777 case CAN_STATE_BUS_OFF:
779 cf->can_id |= CAN_ERR_BUSOFF;
785 if (cdev->is_peripheral)
786 timestamp = m_can_get_timestamp(cdev);
788 m_can_receive_skb(cdev, skb, timestamp);
793 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
795 struct m_can_classdev *cdev = netdev_priv(dev);
798 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
799 netdev_dbg(dev, "entered error warning state\n");
800 work_done += m_can_handle_state_change(dev,
801 CAN_STATE_ERROR_WARNING);
804 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
805 netdev_dbg(dev, "entered error passive state\n");
806 work_done += m_can_handle_state_change(dev,
807 CAN_STATE_ERROR_PASSIVE);
810 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
811 netdev_dbg(dev, "entered error bus off state\n");
812 work_done += m_can_handle_state_change(dev,
819 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
821 if (irqstatus & IR_WDI)
822 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
823 if (irqstatus & IR_BEU)
824 netdev_err(dev, "Bit Error Uncorrected\n");
825 if (irqstatus & IR_BEC)
826 netdev_err(dev, "Bit Error Corrected\n");
827 if (irqstatus & IR_TOO)
828 netdev_err(dev, "Timeout reached\n");
829 if (irqstatus & IR_MRAF)
830 netdev_err(dev, "Message RAM access failure occurred\n");
833 static inline bool is_lec_err(u8 lec)
835 return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE;
838 static inline bool m_can_is_protocol_err(u32 irqstatus)
840 return irqstatus & IR_ERR_LEC_31X;
843 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
845 struct net_device_stats *stats = &dev->stats;
846 struct m_can_classdev *cdev = netdev_priv(dev);
847 struct can_frame *cf;
851 /* propagate the error condition to the CAN stack */
852 skb = alloc_can_err_skb(dev, &cf);
854 /* update tx error stats since there is protocol error */
857 /* update arbitration lost status */
858 if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
859 netdev_dbg(dev, "Protocol error in Arbitration fail\n");
860 cdev->can.can_stats.arbitration_lost++;
862 cf->can_id |= CAN_ERR_LOSTARB;
863 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
867 if (unlikely(!skb)) {
868 netdev_dbg(dev, "allocation of skb failed\n");
872 if (cdev->is_peripheral)
873 timestamp = m_can_get_timestamp(cdev);
875 m_can_receive_skb(cdev, skb, timestamp);
880 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
883 struct m_can_classdev *cdev = netdev_priv(dev);
886 if (irqstatus & IR_RF0L)
887 work_done += m_can_handle_lost_msg(dev);
889 /* handle lec errors on the bus */
890 if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
891 u8 lec = FIELD_GET(PSR_LEC_MASK, psr);
892 u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr);
894 if (is_lec_err(lec)) {
895 netdev_dbg(dev, "Arbitration phase error detected\n");
896 work_done += m_can_handle_lec_err(dev, lec);
899 if (is_lec_err(dlec)) {
900 netdev_dbg(dev, "Data phase error detected\n");
901 work_done += m_can_handle_lec_err(dev, dlec);
905 /* handle protocol errors in arbitration phase */
906 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
907 m_can_is_protocol_err(irqstatus))
908 work_done += m_can_handle_protocol_error(dev, irqstatus);
910 /* other unproccessed error interrupts */
911 m_can_handle_other_err(dev, irqstatus);
916 static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus)
918 struct m_can_classdev *cdev = netdev_priv(dev);
925 /* Errata workaround for issue "Needless activation of MRAF irq"
926 * During frame reception while the MCAN is in Error Passive state
927 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
928 * it may happen that MCAN_IR.MRAF is set although there was no
929 * Message RAM access failure.
930 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
931 * The Message RAM Access Failure interrupt routine needs to check
932 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
933 * In this case, reset MCAN_IR.MRAF. No further action is required.
935 if (cdev->version <= 31 && irqstatus & IR_MRAF &&
936 m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
937 struct can_berr_counter bec;
939 __m_can_get_berr_counter(dev, &bec);
940 if (bec.rxerr == 127) {
941 m_can_write(cdev, M_CAN_IR, IR_MRAF);
942 irqstatus &= ~IR_MRAF;
946 if (irqstatus & IR_ERR_STATE)
947 work_done += m_can_handle_state_errors(dev,
948 m_can_read(cdev, M_CAN_PSR));
950 if (irqstatus & IR_ERR_BUS_30X)
951 work_done += m_can_handle_bus_errors(dev, irqstatus,
952 m_can_read(cdev, M_CAN_PSR));
954 if (irqstatus & IR_RF0N) {
955 rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
956 if (rx_work_or_err < 0)
957 return rx_work_or_err;
959 work_done += rx_work_or_err;
965 static int m_can_rx_peripheral(struct net_device *dev, u32 irqstatus)
967 struct m_can_classdev *cdev = netdev_priv(dev);
970 work_done = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, irqstatus);
972 /* Don't re-enable interrupts if the driver had a fatal error
973 * (e.g., FIFO read failure).
976 m_can_disable_all_interrupts(cdev);
981 static int m_can_poll(struct napi_struct *napi, int quota)
983 struct net_device *dev = napi->dev;
984 struct m_can_classdev *cdev = netdev_priv(dev);
988 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
990 work_done = m_can_rx_handler(dev, quota, irqstatus);
992 /* Don't re-enable interrupts if the driver had a fatal error
993 * (e.g., FIFO read failure).
995 if (work_done >= 0 && work_done < quota) {
996 napi_complete_done(napi, work_done);
997 m_can_enable_all_interrupts(cdev);
1003 /* Echo tx skb and update net stats. Peripherals use rx-offload for
1004 * echo. timestamp is used for peripherals to ensure correct ordering
1005 * by rx-offload, and is ignored for non-peripherals.
1007 static void m_can_tx_update_stats(struct m_can_classdev *cdev,
1008 unsigned int msg_mark,
1011 struct net_device *dev = cdev->net;
1012 struct net_device_stats *stats = &dev->stats;
1014 if (cdev->is_peripheral)
1016 can_rx_offload_get_echo_skb(&cdev->offload,
1021 stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL);
1023 stats->tx_packets++;
1026 static int m_can_echo_tx_event(struct net_device *dev)
1034 unsigned int msg_mark;
1036 struct m_can_classdev *cdev = netdev_priv(dev);
1038 /* read tx event fifo status */
1039 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1041 /* Get Tx Event fifo element count */
1042 txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1043 fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs);
1045 /* Get and process all sent elements */
1046 for (i = 0; i < txe_count; i++) {
1047 u32 txe, timestamp = 0;
1049 /* get message marker, timestamp */
1050 err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1052 netdev_err(dev, "TXE FIFO read returned %d\n", err);
1056 msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1057 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16;
1060 fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi);
1063 m_can_tx_update_stats(cdev, msg_mark, timestamp);
1067 m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1073 static irqreturn_t m_can_isr(int irq, void *dev_id)
1075 struct net_device *dev = (struct net_device *)dev_id;
1076 struct m_can_classdev *cdev = netdev_priv(dev);
1079 if (pm_runtime_suspended(cdev->dev))
1081 ir = m_can_read(cdev, M_CAN_IR);
1086 m_can_write(cdev, M_CAN_IR, ir);
1088 if (cdev->ops->clear_interrupts)
1089 cdev->ops->clear_interrupts(cdev);
1091 /* schedule NAPI in case of
1093 * - state change IRQ
1094 * - bus error IRQ and bus error reporting
1096 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
1097 cdev->irqstatus = ir;
1098 if (!cdev->is_peripheral) {
1099 m_can_disable_all_interrupts(cdev);
1100 napi_schedule(&cdev->napi);
1101 } else if (m_can_rx_peripheral(dev, ir) < 0) {
1106 if (cdev->version == 30) {
1108 /* Transmission Complete Interrupt*/
1111 if (cdev->is_peripheral)
1112 timestamp = m_can_get_timestamp(cdev);
1113 m_can_tx_update_stats(cdev, 0, timestamp);
1114 netif_wake_queue(dev);
1118 /* New TX FIFO Element arrived */
1119 if (m_can_echo_tx_event(dev) != 0)
1122 if (netif_queue_stopped(dev) &&
1123 !m_can_tx_fifo_full(cdev))
1124 netif_wake_queue(dev);
1128 if (cdev->is_peripheral)
1129 can_rx_offload_threaded_irq_finish(&cdev->offload);
1134 m_can_disable_all_interrupts(cdev);
1138 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1139 .name = KBUILD_MODNAME,
1140 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1142 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1150 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1151 .name = KBUILD_MODNAME,
1152 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1154 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1162 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1163 .name = KBUILD_MODNAME,
1164 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1166 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */
1174 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1175 .name = KBUILD_MODNAME,
1176 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */
1178 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1186 static int m_can_set_bittiming(struct net_device *dev)
1188 struct m_can_classdev *cdev = netdev_priv(dev);
1189 const struct can_bittiming *bt = &cdev->can.bittiming;
1190 const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1191 u16 brp, sjw, tseg1, tseg2;
1196 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1197 tseg2 = bt->phase_seg2 - 1;
1198 reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1199 FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1200 FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1201 FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1202 m_can_write(cdev, M_CAN_NBTP, reg_btp);
1204 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1208 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1209 tseg2 = dbt->phase_seg2 - 1;
1211 /* TDC is only needed for bitrates beyond 2.5 MBit/s.
1212 * This is mentioned in the "Bit Time Requirements for CAN FD"
1213 * paper presented at the International CAN Conference 2013
1215 if (dbt->bitrate > 2500000) {
1218 /* Use the same value of secondary sampling point
1219 * as the data sampling point
1221 ssp = dbt->sample_point;
1223 /* Equation based on Bosch's M_CAN User Manual's
1224 * Transmitter Delay Compensation Section
1226 tdco = (cdev->can.clock.freq / 1000) *
1229 /* Max valid TDCO value is 127 */
1231 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1236 reg_btp |= DBTP_TDC;
1237 m_can_write(cdev, M_CAN_TDCR,
1238 FIELD_PREP(TDCR_TDCO_MASK, tdco));
1241 reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1242 FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1243 FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1244 FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1246 m_can_write(cdev, M_CAN_DBTP, reg_btp);
1252 /* Configure M_CAN chip:
1253 * - set rx buffer/fifo element size
1254 * - configure rx fifo
1255 * - accept non-matching frame into fifo 0
1256 * - configure tx buffer
1257 * - >= v3.1.x: TX FIFO is used
1260 * - configure timestamp generation
1262 static int m_can_chip_config(struct net_device *dev)
1264 struct m_can_classdev *cdev = netdev_priv(dev);
1265 u32 interrupts = IR_ALL_INT;
1269 err = m_can_init_ram(cdev);
1271 dev_err(cdev->dev, "Message RAM configuration failed\n");
1275 /* Disable unused interrupts */
1276 interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TEFW | IR_TFE |
1277 IR_TCF | IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N |
1280 m_can_config_endisable(cdev, true);
1282 /* RX Buffer/FIFO Element Size 64 bytes data field */
1283 m_can_write(cdev, M_CAN_RXESC,
1284 FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1285 FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1286 FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1288 /* Accept Non-matching Frames Into FIFO 0 */
1289 m_can_write(cdev, M_CAN_GFC, 0x0);
1291 if (cdev->version == 30) {
1292 /* only support one Tx Buffer currently */
1293 m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1294 cdev->mcfg[MRAM_TXB].off);
1296 /* TX FIFO is used for newer IP Core versions */
1297 m_can_write(cdev, M_CAN_TXBC,
1298 FIELD_PREP(TXBC_TFQS_MASK,
1299 cdev->mcfg[MRAM_TXB].num) |
1300 cdev->mcfg[MRAM_TXB].off);
1303 /* support 64 bytes payload */
1304 m_can_write(cdev, M_CAN_TXESC,
1305 FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1308 if (cdev->version == 30) {
1309 m_can_write(cdev, M_CAN_TXEFC,
1310 FIELD_PREP(TXEFC_EFS_MASK, 1) |
1311 cdev->mcfg[MRAM_TXE].off);
1313 /* Full TX Event FIFO is used */
1314 m_can_write(cdev, M_CAN_TXEFC,
1315 FIELD_PREP(TXEFC_EFS_MASK,
1316 cdev->mcfg[MRAM_TXE].num) |
1317 cdev->mcfg[MRAM_TXE].off);
1320 /* rx fifo configuration, blocking mode, fifo size 1 */
1321 m_can_write(cdev, M_CAN_RXF0C,
1322 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1323 cdev->mcfg[MRAM_RXF0].off);
1325 m_can_write(cdev, M_CAN_RXF1C,
1326 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1327 cdev->mcfg[MRAM_RXF1].off);
1329 cccr = m_can_read(cdev, M_CAN_CCCR);
1330 test = m_can_read(cdev, M_CAN_TEST);
1332 if (cdev->version == 30) {
1335 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1336 FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1337 FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1339 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1340 cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1343 /* Version 3.1.x or 3.2.x */
1344 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1345 CCCR_NISO | CCCR_DAR);
1347 /* Only 3.2.x has NISO Bit implemented */
1348 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1351 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1352 cccr |= (CCCR_BRSE | CCCR_FDOE);
1356 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1357 cccr |= CCCR_TEST | CCCR_MON;
1361 /* Enable Monitoring (all versions) */
1362 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1365 /* Disable Auto Retransmission (all versions) */
1366 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1370 m_can_write(cdev, M_CAN_CCCR, cccr);
1371 m_can_write(cdev, M_CAN_TEST, test);
1373 /* Enable interrupts */
1374 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
1375 if (cdev->version == 30)
1376 interrupts &= ~(IR_ERR_LEC_30X);
1378 interrupts &= ~(IR_ERR_LEC_31X);
1380 m_can_write(cdev, M_CAN_IE, interrupts);
1382 /* route all interrupts to INT0 */
1383 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1385 /* set bittiming params */
1386 m_can_set_bittiming(dev);
1388 /* enable internal timestamp generation, with a prescaler of 16. The
1389 * prescaler is applied to the nominal bit timing
1391 m_can_write(cdev, M_CAN_TSCC,
1392 FIELD_PREP(TSCC_TCP_MASK, 0xf) |
1393 FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL));
1395 m_can_config_endisable(cdev, false);
1397 if (cdev->ops->init)
1398 cdev->ops->init(cdev);
1403 static int m_can_start(struct net_device *dev)
1405 struct m_can_classdev *cdev = netdev_priv(dev);
1408 /* basic m_can configuration */
1409 ret = m_can_chip_config(dev);
1413 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1415 m_can_enable_all_interrupts(cdev);
1420 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1423 case CAN_MODE_START:
1426 netif_wake_queue(dev);
1435 /* Checks core release number of M_CAN
1436 * returns 0 if an unsupported device is detected
1437 * else it returns the release and step coded as:
1438 * return value = 10 * <release> + 1 * <step>
1440 static int m_can_check_core_release(struct m_can_classdev *cdev)
1447 /* Read Core Release Version and split into version number
1448 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1450 crel_reg = m_can_read(cdev, M_CAN_CREL);
1451 rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1452 step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1455 /* M_CAN v3.x.y: create return value */
1458 /* Unsupported M_CAN version */
1465 /* Selectable Non ISO support only in version 3.2.x
1466 * This function checks if the bit is writable.
1468 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1470 u32 cccr_reg, cccr_poll = 0;
1471 int niso_timeout = -ETIMEDOUT;
1474 m_can_config_endisable(cdev, true);
1475 cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1476 cccr_reg |= CCCR_NISO;
1477 m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1479 for (i = 0; i <= 10; i++) {
1480 cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1481 if (cccr_poll == cccr_reg) {
1490 cccr_reg &= ~(CCCR_NISO);
1491 m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1493 m_can_config_endisable(cdev, false);
1495 /* return false if time out (-ETIMEDOUT), else return true */
1496 return !niso_timeout;
1499 static int m_can_dev_setup(struct m_can_classdev *cdev)
1501 struct net_device *dev = cdev->net;
1502 int m_can_version, err;
1504 m_can_version = m_can_check_core_release(cdev);
1505 /* return if unsupported version */
1506 if (!m_can_version) {
1507 dev_err(cdev->dev, "Unsupported version number: %2d",
1512 if (!cdev->is_peripheral)
1513 netif_napi_add(dev, &cdev->napi, m_can_poll);
1515 /* Shared properties of all M_CAN versions */
1516 cdev->version = m_can_version;
1517 cdev->can.do_set_mode = m_can_set_mode;
1518 cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1520 /* Set M_CAN supported operations */
1521 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1522 CAN_CTRLMODE_LISTENONLY |
1523 CAN_CTRLMODE_BERR_REPORTING |
1525 CAN_CTRLMODE_ONE_SHOT;
1527 /* Set properties depending on M_CAN version */
1528 switch (cdev->version) {
1530 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1531 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1534 cdev->can.bittiming_const = &m_can_bittiming_const_30X;
1535 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X;
1538 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1539 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1542 cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1543 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1547 /* Support both MCAN version v3.2.x and v3.3.0 */
1548 cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1549 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1551 cdev->can.ctrlmode_supported |=
1552 (m_can_niso_supported(cdev) ?
1553 CAN_CTRLMODE_FD_NON_ISO : 0);
1556 dev_err(cdev->dev, "Unsupported version number: %2d",
1561 if (cdev->ops->init)
1562 cdev->ops->init(cdev);
1567 static void m_can_stop(struct net_device *dev)
1569 struct m_can_classdev *cdev = netdev_priv(dev);
1571 /* disable all interrupts */
1572 m_can_disable_all_interrupts(cdev);
1574 /* Set init mode to disengage from the network */
1575 m_can_config_endisable(cdev, true);
1577 /* set the state as STOPPED */
1578 cdev->can.state = CAN_STATE_STOPPED;
1581 static int m_can_close(struct net_device *dev)
1583 struct m_can_classdev *cdev = netdev_priv(dev);
1585 netif_stop_queue(dev);
1587 if (!cdev->is_peripheral)
1588 napi_disable(&cdev->napi);
1591 m_can_clk_stop(cdev);
1592 free_irq(dev->irq, dev);
1594 if (cdev->is_peripheral) {
1595 cdev->tx_skb = NULL;
1596 destroy_workqueue(cdev->tx_wq);
1598 can_rx_offload_disable(&cdev->offload);
1603 phy_power_off(cdev->transceiver);
1608 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1610 struct m_can_classdev *cdev = netdev_priv(dev);
1611 /*get wrap around for loopback skb index */
1612 unsigned int wrap = cdev->can.echo_skb_max;
1615 /* calculate next index */
1616 next_idx = (++putidx >= wrap ? 0 : putidx);
1618 /* check if occupied */
1619 return !!cdev->can.echo_skb[next_idx];
1622 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1624 struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1625 struct net_device *dev = cdev->net;
1626 struct sk_buff *skb = cdev->tx_skb;
1627 struct id_and_dlc fifo_header;
1633 cdev->tx_skb = NULL;
1635 /* Generate ID field for TX buffer Element */
1636 /* Common to all supported M_CAN versions */
1637 if (cf->can_id & CAN_EFF_FLAG) {
1638 fifo_header.id = cf->can_id & CAN_EFF_MASK;
1639 fifo_header.id |= TX_BUF_XTD;
1641 fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1644 if (cf->can_id & CAN_RTR_FLAG)
1645 fifo_header.id |= TX_BUF_RTR;
1647 if (cdev->version == 30) {
1648 netif_stop_queue(dev);
1650 fifo_header.dlc = can_fd_len2dlc(cf->len) << 16;
1652 /* Write the frame ID, DLC, and payload to the FIFO element. */
1653 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2);
1657 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1658 cf->data, DIV_ROUND_UP(cf->len, 4));
1662 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1663 cccr = m_can_read(cdev, M_CAN_CCCR);
1664 cccr &= ~CCCR_CMR_MASK;
1665 if (can_is_canfd_skb(skb)) {
1666 if (cf->flags & CANFD_BRS)
1667 cccr |= FIELD_PREP(CCCR_CMR_MASK,
1668 CCCR_CMR_CANFD_BRS);
1670 cccr |= FIELD_PREP(CCCR_CMR_MASK,
1673 cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1675 m_can_write(cdev, M_CAN_CCCR, cccr);
1677 m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1679 can_put_echo_skb(skb, dev, 0, 0);
1681 m_can_write(cdev, M_CAN_TXBAR, 0x1);
1682 /* End of xmit function for version 3.0.x */
1684 /* Transmit routine for version >= v3.1.x */
1686 txfqs = m_can_read(cdev, M_CAN_TXFQS);
1688 /* Check if FIFO full */
1689 if (_m_can_tx_fifo_full(txfqs)) {
1690 /* This shouldn't happen */
1691 netif_stop_queue(dev);
1693 "TX queue active although FIFO is full.");
1695 if (cdev->is_peripheral) {
1697 dev->stats.tx_dropped++;
1698 return NETDEV_TX_OK;
1700 return NETDEV_TX_BUSY;
1704 /* get put index for frame */
1705 putidx = FIELD_GET(TXFQS_TFQPI_MASK, txfqs);
1707 /* Construct DLC Field, with CAN-FD configuration.
1708 * Use the put index of the fifo as the message marker,
1709 * used in the TX interrupt for sending the correct echo frame.
1712 /* get CAN FD configuration of frame */
1714 if (can_is_canfd_skb(skb)) {
1715 fdflags |= TX_BUF_FDF;
1716 if (cf->flags & CANFD_BRS)
1717 fdflags |= TX_BUF_BRS;
1720 fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1721 FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1722 fdflags | TX_BUF_EFC;
1723 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2);
1727 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA,
1728 cf->data, DIV_ROUND_UP(cf->len, 4));
1732 /* Push loopback echo.
1733 * Will be looped back on TX interrupt based on message marker
1735 can_put_echo_skb(skb, dev, putidx, 0);
1737 /* Enable TX FIFO element to start transfer */
1738 m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1740 /* stop network queue if fifo full */
1741 if (m_can_tx_fifo_full(cdev) ||
1742 m_can_next_echo_skb_occupied(dev, putidx))
1743 netif_stop_queue(dev);
1746 return NETDEV_TX_OK;
1749 netdev_err(dev, "FIFO write returned %d\n", err);
1750 m_can_disable_all_interrupts(cdev);
1751 return NETDEV_TX_BUSY;
1754 static void m_can_tx_work_queue(struct work_struct *ws)
1756 struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1759 m_can_tx_handler(cdev);
1762 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1763 struct net_device *dev)
1765 struct m_can_classdev *cdev = netdev_priv(dev);
1767 if (can_dev_dropped_skb(dev, skb))
1768 return NETDEV_TX_OK;
1770 if (cdev->is_peripheral) {
1772 netdev_err(dev, "hard_xmit called while tx busy\n");
1773 return NETDEV_TX_BUSY;
1776 if (cdev->can.state == CAN_STATE_BUS_OFF) {
1779 /* Need to stop the queue to avoid numerous requests
1780 * from being sent. Suggested improvement is to create
1781 * a queueing mechanism that will queue the skbs and
1782 * process them in order.
1785 netif_stop_queue(cdev->net);
1786 queue_work(cdev->tx_wq, &cdev->tx_work);
1790 return m_can_tx_handler(cdev);
1793 return NETDEV_TX_OK;
1796 static int m_can_open(struct net_device *dev)
1798 struct m_can_classdev *cdev = netdev_priv(dev);
1801 err = phy_power_on(cdev->transceiver);
1805 err = m_can_clk_start(cdev);
1807 goto out_phy_power_off;
1809 /* open the can device */
1810 err = open_candev(dev);
1812 netdev_err(dev, "failed to open can device\n");
1813 goto exit_disable_clks;
1816 if (cdev->is_peripheral)
1817 can_rx_offload_enable(&cdev->offload);
1819 /* register interrupt handler */
1820 if (cdev->is_peripheral) {
1821 cdev->tx_skb = NULL;
1822 cdev->tx_wq = alloc_workqueue("mcan_wq",
1823 WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1829 INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1831 err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1835 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1840 netdev_err(dev, "failed to request interrupt\n");
1844 /* start the m_can controller */
1845 err = m_can_start(dev);
1849 if (!cdev->is_peripheral)
1850 napi_enable(&cdev->napi);
1852 netif_start_queue(dev);
1857 if (cdev->is_peripheral)
1858 destroy_workqueue(cdev->tx_wq);
1860 if (cdev->is_peripheral)
1861 can_rx_offload_disable(&cdev->offload);
1864 m_can_clk_stop(cdev);
1866 phy_power_off(cdev->transceiver);
1870 static const struct net_device_ops m_can_netdev_ops = {
1871 .ndo_open = m_can_open,
1872 .ndo_stop = m_can_close,
1873 .ndo_start_xmit = m_can_start_xmit,
1874 .ndo_change_mtu = can_change_mtu,
1877 static const struct ethtool_ops m_can_ethtool_ops = {
1878 .get_ts_info = ethtool_op_get_ts_info,
1881 static int register_m_can_dev(struct net_device *dev)
1883 dev->flags |= IFF_ECHO; /* we support local echo */
1884 dev->netdev_ops = &m_can_netdev_ops;
1885 dev->ethtool_ops = &m_can_ethtool_ops;
1887 return register_candev(dev);
1890 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1891 const u32 *mram_config_vals)
1893 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1894 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1895 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1896 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1897 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1898 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1899 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1900 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1901 FIELD_MAX(RXFC_FS_MASK);
1902 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1903 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1904 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1905 FIELD_MAX(RXFC_FS_MASK);
1906 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1907 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1908 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1909 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1910 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1911 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1912 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1913 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1914 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1915 FIELD_MAX(TXBC_NDTB_MASK);
1918 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1919 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1920 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1921 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1922 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1923 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1924 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1925 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1928 int m_can_init_ram(struct m_can_classdev *cdev)
1933 /* initialize the entire Message RAM in use to avoid possible
1934 * ECC/parity checksum errors when reading an uninitialized buffer
1936 start = cdev->mcfg[MRAM_SIDF].off;
1937 end = cdev->mcfg[MRAM_TXB].off +
1938 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1940 for (i = start; i < end; i += 4) {
1941 err = m_can_fifo_write_no_off(cdev, i, 0x0);
1948 EXPORT_SYMBOL_GPL(m_can_init_ram);
1950 int m_can_class_get_clocks(struct m_can_classdev *cdev)
1954 cdev->hclk = devm_clk_get(cdev->dev, "hclk");
1955 cdev->cclk = devm_clk_get(cdev->dev, "cclk");
1957 if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) {
1958 dev_err(cdev->dev, "no clock found\n");
1964 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1966 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
1969 struct m_can_classdev *class_dev = NULL;
1970 u32 mram_config_vals[MRAM_CFG_LEN];
1971 struct net_device *net_dev;
1975 ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1978 sizeof(mram_config_vals) / 4);
1980 dev_err(dev, "Could not get Message RAM configuration.");
1985 * Defines the total amount of echo buffers for loopback
1987 tx_fifo_size = mram_config_vals[7];
1989 /* allocate the m_can device */
1990 net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
1992 dev_err(dev, "Failed to allocate CAN device");
1996 class_dev = netdev_priv(net_dev);
1997 class_dev->net = net_dev;
1998 class_dev->dev = dev;
1999 SET_NETDEV_DEV(net_dev, dev);
2001 m_can_of_parse_mram(class_dev, mram_config_vals);
2005 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
2007 void m_can_class_free_dev(struct net_device *net)
2011 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
2013 int m_can_class_register(struct m_can_classdev *cdev)
2017 if (cdev->pm_clock_support) {
2018 ret = m_can_clk_start(cdev);
2023 if (cdev->is_peripheral) {
2024 ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
2030 ret = m_can_dev_setup(cdev);
2032 goto rx_offload_del;
2034 ret = register_m_can_dev(cdev->net);
2036 dev_err(cdev->dev, "registering %s failed (err=%d)\n",
2037 cdev->net->name, ret);
2038 goto rx_offload_del;
2041 of_can_transceiver(cdev->net);
2043 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2044 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2047 * Stop clocks. They will be reactivated once the M_CAN device is opened
2049 m_can_clk_stop(cdev);
2054 if (cdev->is_peripheral)
2055 can_rx_offload_del(&cdev->offload);
2057 m_can_clk_stop(cdev);
2061 EXPORT_SYMBOL_GPL(m_can_class_register);
2063 void m_can_class_unregister(struct m_can_classdev *cdev)
2065 if (cdev->is_peripheral)
2066 can_rx_offload_del(&cdev->offload);
2067 unregister_candev(cdev->net);
2069 EXPORT_SYMBOL_GPL(m_can_class_unregister);
2071 int m_can_class_suspend(struct device *dev)
2073 struct m_can_classdev *cdev = dev_get_drvdata(dev);
2074 struct net_device *ndev = cdev->net;
2076 if (netif_running(ndev)) {
2077 netif_stop_queue(ndev);
2078 netif_device_detach(ndev);
2080 m_can_clk_stop(cdev);
2083 pinctrl_pm_select_sleep_state(dev);
2085 cdev->can.state = CAN_STATE_SLEEPING;
2089 EXPORT_SYMBOL_GPL(m_can_class_suspend);
2091 int m_can_class_resume(struct device *dev)
2093 struct m_can_classdev *cdev = dev_get_drvdata(dev);
2094 struct net_device *ndev = cdev->net;
2096 pinctrl_pm_select_default_state(dev);
2098 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2100 if (netif_running(ndev)) {
2103 ret = m_can_clk_start(cdev);
2106 ret = m_can_start(ndev);
2108 m_can_clk_stop(cdev);
2113 netif_device_attach(ndev);
2114 netif_start_queue(ndev);
2119 EXPORT_SYMBOL_GPL(m_can_class_resume);
2123 MODULE_LICENSE("GPL v2");
2124 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");