]> Git Repo - J-linux.git/blob - drivers/infiniband/hw/hfi1/sdma.c
Merge tag 'amd-drm-next-6.5-2023-06-09' of https://gitlab.freedesktop.org/agd5f/linux...
[J-linux.git] / drivers / infiniband / hw / hfi1 / sdma.c
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2015 - 2018 Intel Corporation.
4  */
5
6 #include <linux/spinlock.h>
7 #include <linux/seqlock.h>
8 #include <linux/netdevice.h>
9 #include <linux/moduleparam.h>
10 #include <linux/bitops.h>
11 #include <linux/timer.h>
12 #include <linux/vmalloc.h>
13 #include <linux/highmem.h>
14
15 #include "hfi.h"
16 #include "common.h"
17 #include "qp.h"
18 #include "sdma.h"
19 #include "iowait.h"
20 #include "trace.h"
21
22 /* must be a power of 2 >= 64 <= 32768 */
23 #define SDMA_DESCQ_CNT 2048
24 #define SDMA_DESC_INTR 64
25 #define INVALID_TAIL 0xffff
26 #define SDMA_PAD max_t(size_t, MAX_16B_PADDING, sizeof(u32))
27
28 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
29 module_param(sdma_descq_cnt, uint, S_IRUGO);
30 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
31
32 static uint sdma_idle_cnt = 250;
33 module_param(sdma_idle_cnt, uint, S_IRUGO);
34 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
35
36 uint mod_num_sdma;
37 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
38 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
39
40 static uint sdma_desct_intr = SDMA_DESC_INTR;
41 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
42 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
43
44 #define SDMA_WAIT_BATCH_SIZE 20
45 /* max wait time for a SDMA engine to indicate it has halted */
46 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
47 /* all SDMA engine errors that cause a halt */
48
49 #define SD(name) SEND_DMA_##name
50 #define ALL_SDMA_ENG_HALT_ERRS \
51         (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
52         | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
53         | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
54         | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
55         | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
56         | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
57         | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
58         | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
59         | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
60         | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
61         | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
62         | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
63         | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
64         | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
65         | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
66         | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
67         | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
68         | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
69
70 /* sdma_sendctrl operations */
71 #define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
72 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
73 #define SDMA_SENDCTRL_OP_HALT      BIT(2)
74 #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
75
76 /* handle long defines */
77 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
78 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
79 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
80 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
81
82 static const char * const sdma_state_names[] = {
83         [sdma_state_s00_hw_down]                = "s00_HwDown",
84         [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
85         [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
86         [sdma_state_s20_idle]                   = "s20_Idle",
87         [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
88         [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
89         [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
90         [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
91         [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
92         [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
93         [sdma_state_s99_running]                = "s99_Running",
94 };
95
96 #ifdef CONFIG_SDMA_VERBOSITY
97 static const char * const sdma_event_names[] = {
98         [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
99         [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
100         [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
101         [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
102         [sdma_event_e30_go_running]   = "e30_GoRunning",
103         [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
104         [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
105         [sdma_event_e60_hw_halted]    = "e60_HwHalted",
106         [sdma_event_e70_go_idle]      = "e70_GoIdle",
107         [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
108         [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
109         [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
110         [sdma_event_e85_link_down]    = "e85_LinkDown",
111         [sdma_event_e90_sw_halted]    = "e90_SwHalted",
112 };
113 #endif
114
115 static const struct sdma_set_state_action sdma_action_table[] = {
116         [sdma_state_s00_hw_down] = {
117                 .go_s99_running_tofalse = 1,
118                 .op_enable = 0,
119                 .op_intenable = 0,
120                 .op_halt = 0,
121                 .op_cleanup = 0,
122         },
123         [sdma_state_s10_hw_start_up_halt_wait] = {
124                 .op_enable = 0,
125                 .op_intenable = 0,
126                 .op_halt = 1,
127                 .op_cleanup = 0,
128         },
129         [sdma_state_s15_hw_start_up_clean_wait] = {
130                 .op_enable = 0,
131                 .op_intenable = 1,
132                 .op_halt = 0,
133                 .op_cleanup = 1,
134         },
135         [sdma_state_s20_idle] = {
136                 .op_enable = 0,
137                 .op_intenable = 1,
138                 .op_halt = 0,
139                 .op_cleanup = 0,
140         },
141         [sdma_state_s30_sw_clean_up_wait] = {
142                 .op_enable = 0,
143                 .op_intenable = 0,
144                 .op_halt = 0,
145                 .op_cleanup = 0,
146         },
147         [sdma_state_s40_hw_clean_up_wait] = {
148                 .op_enable = 0,
149                 .op_intenable = 0,
150                 .op_halt = 0,
151                 .op_cleanup = 1,
152         },
153         [sdma_state_s50_hw_halt_wait] = {
154                 .op_enable = 0,
155                 .op_intenable = 0,
156                 .op_halt = 0,
157                 .op_cleanup = 0,
158         },
159         [sdma_state_s60_idle_halt_wait] = {
160                 .go_s99_running_tofalse = 1,
161                 .op_enable = 0,
162                 .op_intenable = 0,
163                 .op_halt = 1,
164                 .op_cleanup = 0,
165         },
166         [sdma_state_s80_hw_freeze] = {
167                 .op_enable = 0,
168                 .op_intenable = 0,
169                 .op_halt = 0,
170                 .op_cleanup = 0,
171         },
172         [sdma_state_s82_freeze_sw_clean] = {
173                 .op_enable = 0,
174                 .op_intenable = 0,
175                 .op_halt = 0,
176                 .op_cleanup = 0,
177         },
178         [sdma_state_s99_running] = {
179                 .op_enable = 1,
180                 .op_intenable = 1,
181                 .op_halt = 0,
182                 .op_cleanup = 0,
183                 .go_s99_running_totrue = 1,
184         },
185 };
186
187 #define SDMA_TAIL_UPDATE_THRESH 0x1F
188
189 /* declare all statics here rather than keep sorting */
190 static void sdma_complete(struct kref *);
191 static void sdma_finalput(struct sdma_state *);
192 static void sdma_get(struct sdma_state *);
193 static void sdma_hw_clean_up_task(struct tasklet_struct *);
194 static void sdma_put(struct sdma_state *);
195 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
196 static void sdma_start_hw_clean_up(struct sdma_engine *);
197 static void sdma_sw_clean_up_task(struct tasklet_struct *);
198 static void sdma_sendctrl(struct sdma_engine *, unsigned);
199 static void init_sdma_regs(struct sdma_engine *, u32, uint);
200 static void sdma_process_event(
201         struct sdma_engine *sde,
202         enum sdma_events event);
203 static void __sdma_process_event(
204         struct sdma_engine *sde,
205         enum sdma_events event);
206 static void dump_sdma_state(struct sdma_engine *sde);
207 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
208 static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
209 static void sdma_flush_descq(struct sdma_engine *sde);
210
211 /**
212  * sdma_state_name() - return state string from enum
213  * @state: state
214  */
215 static const char *sdma_state_name(enum sdma_states state)
216 {
217         return sdma_state_names[state];
218 }
219
220 static void sdma_get(struct sdma_state *ss)
221 {
222         kref_get(&ss->kref);
223 }
224
225 static void sdma_complete(struct kref *kref)
226 {
227         struct sdma_state *ss =
228                 container_of(kref, struct sdma_state, kref);
229
230         complete(&ss->comp);
231 }
232
233 static void sdma_put(struct sdma_state *ss)
234 {
235         kref_put(&ss->kref, sdma_complete);
236 }
237
238 static void sdma_finalput(struct sdma_state *ss)
239 {
240         sdma_put(ss);
241         wait_for_completion(&ss->comp);
242 }
243
244 static inline void write_sde_csr(
245         struct sdma_engine *sde,
246         u32 offset0,
247         u64 value)
248 {
249         write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
250 }
251
252 static inline u64 read_sde_csr(
253         struct sdma_engine *sde,
254         u32 offset0)
255 {
256         return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
257 }
258
259 /*
260  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
261  * sdma engine 'sde' to drop to 0.
262  */
263 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
264                                         int pause)
265 {
266         u64 off = 8 * sde->this_idx;
267         struct hfi1_devdata *dd = sde->dd;
268         int lcnt = 0;
269         u64 reg_prev;
270         u64 reg = 0;
271
272         while (1) {
273                 reg_prev = reg;
274                 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
275
276                 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
277                 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
278                 if (reg == 0)
279                         break;
280                 /* counter is reest if accupancy count changes */
281                 if (reg != reg_prev)
282                         lcnt = 0;
283                 if (lcnt++ > 500) {
284                         /* timed out - bounce the link */
285                         dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
286                                    __func__, sde->this_idx, (u32)reg);
287                         queue_work(dd->pport->link_wq,
288                                    &dd->pport->link_bounce_work);
289                         break;
290                 }
291                 udelay(1);
292         }
293 }
294
295 /*
296  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
297  * and pause for credit return.
298  */
299 void sdma_wait(struct hfi1_devdata *dd)
300 {
301         int i;
302
303         for (i = 0; i < dd->num_sdma; i++) {
304                 struct sdma_engine *sde = &dd->per_sdma[i];
305
306                 sdma_wait_for_packet_egress(sde, 0);
307         }
308 }
309
310 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
311 {
312         u64 reg;
313
314         if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
315                 return;
316         reg = cnt;
317         reg &= SD(DESC_CNT_CNT_MASK);
318         reg <<= SD(DESC_CNT_CNT_SHIFT);
319         write_sde_csr(sde, SD(DESC_CNT), reg);
320 }
321
322 static inline void complete_tx(struct sdma_engine *sde,
323                                struct sdma_txreq *tx,
324                                int res)
325 {
326         /* protect against complete modifying */
327         struct iowait *wait = tx->wait;
328         callback_t complete = tx->complete;
329
330 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
331         trace_hfi1_sdma_out_sn(sde, tx->sn);
332         if (WARN_ON_ONCE(sde->head_sn != tx->sn))
333                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
334                            sde->head_sn, tx->sn);
335         sde->head_sn++;
336 #endif
337         __sdma_txclean(sde->dd, tx);
338         if (complete)
339                 (*complete)(tx, res);
340         if (iowait_sdma_dec(wait))
341                 iowait_drain_wakeup(wait);
342 }
343
344 /*
345  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
346  *
347  * Depending on timing there can be txreqs in two places:
348  * - in the descq ring
349  * - in the flush list
350  *
351  * To avoid ordering issues the descq ring needs to be flushed
352  * first followed by the flush list.
353  *
354  * This routine is called from two places
355  * - From a work queue item
356  * - Directly from the state machine just before setting the
357  *   state to running
358  *
359  * Must be called with head_lock held
360  *
361  */
362 static void sdma_flush(struct sdma_engine *sde)
363 {
364         struct sdma_txreq *txp, *txp_next;
365         LIST_HEAD(flushlist);
366         unsigned long flags;
367         uint seq;
368
369         /* flush from head to tail */
370         sdma_flush_descq(sde);
371         spin_lock_irqsave(&sde->flushlist_lock, flags);
372         /* copy flush list */
373         list_splice_init(&sde->flushlist, &flushlist);
374         spin_unlock_irqrestore(&sde->flushlist_lock, flags);
375         /* flush from flush list */
376         list_for_each_entry_safe(txp, txp_next, &flushlist, list)
377                 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
378         /* wakeup QPs orphaned on the dmawait list */
379         do {
380                 struct iowait *w, *nw;
381
382                 seq = read_seqbegin(&sde->waitlock);
383                 if (!list_empty(&sde->dmawait)) {
384                         write_seqlock(&sde->waitlock);
385                         list_for_each_entry_safe(w, nw, &sde->dmawait, list) {
386                                 if (w->wakeup) {
387                                         w->wakeup(w, SDMA_AVAIL_REASON);
388                                         list_del_init(&w->list);
389                                 }
390                         }
391                         write_sequnlock(&sde->waitlock);
392                 }
393         } while (read_seqretry(&sde->waitlock, seq));
394 }
395
396 /*
397  * Fields a work request for flushing the descq ring
398  * and the flush list
399  *
400  * If the engine has been brought to running during
401  * the scheduling delay, the flush is ignored, assuming
402  * that the process of bringing the engine to running
403  * would have done this flush prior to going to running.
404  *
405  */
406 static void sdma_field_flush(struct work_struct *work)
407 {
408         unsigned long flags;
409         struct sdma_engine *sde =
410                 container_of(work, struct sdma_engine, flush_worker);
411
412         write_seqlock_irqsave(&sde->head_lock, flags);
413         if (!__sdma_running(sde))
414                 sdma_flush(sde);
415         write_sequnlock_irqrestore(&sde->head_lock, flags);
416 }
417
418 static void sdma_err_halt_wait(struct work_struct *work)
419 {
420         struct sdma_engine *sde = container_of(work, struct sdma_engine,
421                                                 err_halt_worker);
422         u64 statuscsr;
423         unsigned long timeout;
424
425         timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
426         while (1) {
427                 statuscsr = read_sde_csr(sde, SD(STATUS));
428                 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
429                 if (statuscsr)
430                         break;
431                 if (time_after(jiffies, timeout)) {
432                         dd_dev_err(sde->dd,
433                                    "SDMA engine %d - timeout waiting for engine to halt\n",
434                                    sde->this_idx);
435                         /*
436                          * Continue anyway.  This could happen if there was
437                          * an uncorrectable error in the wrong spot.
438                          */
439                         break;
440                 }
441                 usleep_range(80, 120);
442         }
443
444         sdma_process_event(sde, sdma_event_e15_hw_halt_done);
445 }
446
447 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
448 {
449         if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
450                 unsigned index;
451                 struct hfi1_devdata *dd = sde->dd;
452
453                 for (index = 0; index < dd->num_sdma; index++) {
454                         struct sdma_engine *curr_sdma = &dd->per_sdma[index];
455
456                         if (curr_sdma != sde)
457                                 curr_sdma->progress_check_head =
458                                                         curr_sdma->descq_head;
459                 }
460                 dd_dev_err(sde->dd,
461                            "SDMA engine %d - check scheduled\n",
462                                 sde->this_idx);
463                 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
464         }
465 }
466
467 static void sdma_err_progress_check(struct timer_list *t)
468 {
469         unsigned index;
470         struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
471
472         dd_dev_err(sde->dd, "SDE progress check event\n");
473         for (index = 0; index < sde->dd->num_sdma; index++) {
474                 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
475                 unsigned long flags;
476
477                 /* check progress on each engine except the current one */
478                 if (curr_sde == sde)
479                         continue;
480                 /*
481                  * We must lock interrupts when acquiring sde->lock,
482                  * to avoid a deadlock if interrupt triggers and spins on
483                  * the same lock on same CPU
484                  */
485                 spin_lock_irqsave(&curr_sde->tail_lock, flags);
486                 write_seqlock(&curr_sde->head_lock);
487
488                 /* skip non-running queues */
489                 if (curr_sde->state.current_state != sdma_state_s99_running) {
490                         write_sequnlock(&curr_sde->head_lock);
491                         spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
492                         continue;
493                 }
494
495                 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
496                     (curr_sde->descq_head ==
497                                 curr_sde->progress_check_head))
498                         __sdma_process_event(curr_sde,
499                                              sdma_event_e90_sw_halted);
500                 write_sequnlock(&curr_sde->head_lock);
501                 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
502         }
503         schedule_work(&sde->err_halt_worker);
504 }
505
506 static void sdma_hw_clean_up_task(struct tasklet_struct *t)
507 {
508         struct sdma_engine *sde = from_tasklet(sde, t,
509                                                sdma_hw_clean_up_task);
510         u64 statuscsr;
511
512         while (1) {
513 #ifdef CONFIG_SDMA_VERBOSITY
514                 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
515                            sde->this_idx, slashstrip(__FILE__), __LINE__,
516                         __func__);
517 #endif
518                 statuscsr = read_sde_csr(sde, SD(STATUS));
519                 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
520                 if (statuscsr)
521                         break;
522                 udelay(10);
523         }
524
525         sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
526 }
527
528 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
529 {
530         return sde->tx_ring[sde->tx_head & sde->sdma_mask];
531 }
532
533 /*
534  * flush ring for recovery
535  */
536 static void sdma_flush_descq(struct sdma_engine *sde)
537 {
538         u16 head, tail;
539         int progress = 0;
540         struct sdma_txreq *txp = get_txhead(sde);
541
542         /* The reason for some of the complexity of this code is that
543          * not all descriptors have corresponding txps.  So, we have to
544          * be able to skip over descs until we wander into the range of
545          * the next txp on the list.
546          */
547         head = sde->descq_head & sde->sdma_mask;
548         tail = sde->descq_tail & sde->sdma_mask;
549         while (head != tail) {
550                 /* advance head, wrap if needed */
551                 head = ++sde->descq_head & sde->sdma_mask;
552                 /* if now past this txp's descs, do the callback */
553                 if (txp && txp->next_descq_idx == head) {
554                         /* remove from list */
555                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
556                         complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
557                         trace_hfi1_sdma_progress(sde, head, tail, txp);
558                         txp = get_txhead(sde);
559                 }
560                 progress++;
561         }
562         if (progress)
563                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
564 }
565
566 static void sdma_sw_clean_up_task(struct tasklet_struct *t)
567 {
568         struct sdma_engine *sde = from_tasklet(sde, t, sdma_sw_clean_up_task);
569         unsigned long flags;
570
571         spin_lock_irqsave(&sde->tail_lock, flags);
572         write_seqlock(&sde->head_lock);
573
574         /*
575          * At this point, the following should always be true:
576          * - We are halted, so no more descriptors are getting retired.
577          * - We are not running, so no one is submitting new work.
578          * - Only we can send the e40_sw_cleaned, so we can't start
579          *   running again until we say so.  So, the active list and
580          *   descq are ours to play with.
581          */
582
583         /*
584          * In the error clean up sequence, software clean must be called
585          * before the hardware clean so we can use the hardware head in
586          * the progress routine.  A hardware clean or SPC unfreeze will
587          * reset the hardware head.
588          *
589          * Process all retired requests. The progress routine will use the
590          * latest physical hardware head - we are not running so speed does
591          * not matter.
592          */
593         sdma_make_progress(sde, 0);
594
595         sdma_flush(sde);
596
597         /*
598          * Reset our notion of head and tail.
599          * Note that the HW registers have been reset via an earlier
600          * clean up.
601          */
602         sde->descq_tail = 0;
603         sde->descq_head = 0;
604         sde->desc_avail = sdma_descq_freecnt(sde);
605         *sde->head_dma = 0;
606
607         __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
608
609         write_sequnlock(&sde->head_lock);
610         spin_unlock_irqrestore(&sde->tail_lock, flags);
611 }
612
613 static void sdma_sw_tear_down(struct sdma_engine *sde)
614 {
615         struct sdma_state *ss = &sde->state;
616
617         /* Releasing this reference means the state machine has stopped. */
618         sdma_put(ss);
619
620         /* stop waiting for all unfreeze events to complete */
621         atomic_set(&sde->dd->sdma_unfreeze_count, -1);
622         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
623 }
624
625 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
626 {
627         tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
628 }
629
630 static void sdma_set_state(struct sdma_engine *sde,
631                            enum sdma_states next_state)
632 {
633         struct sdma_state *ss = &sde->state;
634         const struct sdma_set_state_action *action = sdma_action_table;
635         unsigned op = 0;
636
637         trace_hfi1_sdma_state(
638                 sde,
639                 sdma_state_names[ss->current_state],
640                 sdma_state_names[next_state]);
641
642         /* debugging bookkeeping */
643         ss->previous_state = ss->current_state;
644         ss->previous_op = ss->current_op;
645         ss->current_state = next_state;
646
647         if (ss->previous_state != sdma_state_s99_running &&
648             next_state == sdma_state_s99_running)
649                 sdma_flush(sde);
650
651         if (action[next_state].op_enable)
652                 op |= SDMA_SENDCTRL_OP_ENABLE;
653
654         if (action[next_state].op_intenable)
655                 op |= SDMA_SENDCTRL_OP_INTENABLE;
656
657         if (action[next_state].op_halt)
658                 op |= SDMA_SENDCTRL_OP_HALT;
659
660         if (action[next_state].op_cleanup)
661                 op |= SDMA_SENDCTRL_OP_CLEANUP;
662
663         if (action[next_state].go_s99_running_tofalse)
664                 ss->go_s99_running = 0;
665
666         if (action[next_state].go_s99_running_totrue)
667                 ss->go_s99_running = 1;
668
669         ss->current_op = op;
670         sdma_sendctrl(sde, ss->current_op);
671 }
672
673 /**
674  * sdma_get_descq_cnt() - called when device probed
675  *
676  * Return a validated descq count.
677  *
678  * This is currently only used in the verbs initialization to build the tx
679  * list.
680  *
681  * This will probably be deleted in favor of a more scalable approach to
682  * alloc tx's.
683  *
684  */
685 u16 sdma_get_descq_cnt(void)
686 {
687         u16 count = sdma_descq_cnt;
688
689         if (!count)
690                 return SDMA_DESCQ_CNT;
691         /* count must be a power of 2 greater than 64 and less than
692          * 32768.   Otherwise return default.
693          */
694         if (!is_power_of_2(count))
695                 return SDMA_DESCQ_CNT;
696         if (count < 64 || count > 32768)
697                 return SDMA_DESCQ_CNT;
698         return count;
699 }
700
701 /**
702  * sdma_engine_get_vl() - return vl for a given sdma engine
703  * @sde: sdma engine
704  *
705  * This function returns the vl mapped to a given engine, or an error if
706  * the mapping can't be found. The mapping fields are protected by RCU.
707  */
708 int sdma_engine_get_vl(struct sdma_engine *sde)
709 {
710         struct hfi1_devdata *dd = sde->dd;
711         struct sdma_vl_map *m;
712         u8 vl;
713
714         if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
715                 return -EINVAL;
716
717         rcu_read_lock();
718         m = rcu_dereference(dd->sdma_map);
719         if (unlikely(!m)) {
720                 rcu_read_unlock();
721                 return -EINVAL;
722         }
723         vl = m->engine_to_vl[sde->this_idx];
724         rcu_read_unlock();
725
726         return vl;
727 }
728
729 /**
730  * sdma_select_engine_vl() - select sdma engine
731  * @dd: devdata
732  * @selector: a spreading factor
733  * @vl: this vl
734  *
735  *
736  * This function returns an engine based on the selector and a vl.  The
737  * mapping fields are protected by RCU.
738  */
739 struct sdma_engine *sdma_select_engine_vl(
740         struct hfi1_devdata *dd,
741         u32 selector,
742         u8 vl)
743 {
744         struct sdma_vl_map *m;
745         struct sdma_map_elem *e;
746         struct sdma_engine *rval;
747
748         /* NOTE This should only happen if SC->VL changed after the initial
749          *      checks on the QP/AH
750          *      Default will return engine 0 below
751          */
752         if (vl >= num_vls) {
753                 rval = NULL;
754                 goto done;
755         }
756
757         rcu_read_lock();
758         m = rcu_dereference(dd->sdma_map);
759         if (unlikely(!m)) {
760                 rcu_read_unlock();
761                 return &dd->per_sdma[0];
762         }
763         e = m->map[vl & m->mask];
764         rval = e->sde[selector & e->mask];
765         rcu_read_unlock();
766
767 done:
768         rval =  !rval ? &dd->per_sdma[0] : rval;
769         trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
770         return rval;
771 }
772
773 /**
774  * sdma_select_engine_sc() - select sdma engine
775  * @dd: devdata
776  * @selector: a spreading factor
777  * @sc5: the 5 bit sc
778  *
779  *
780  * This function returns an engine based on the selector and an sc.
781  */
782 struct sdma_engine *sdma_select_engine_sc(
783         struct hfi1_devdata *dd,
784         u32 selector,
785         u8 sc5)
786 {
787         u8 vl = sc_to_vlt(dd, sc5);
788
789         return sdma_select_engine_vl(dd, selector, vl);
790 }
791
792 struct sdma_rht_map_elem {
793         u32 mask;
794         u8 ctr;
795         struct sdma_engine *sde[];
796 };
797
798 struct sdma_rht_node {
799         unsigned long cpu_id;
800         struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
801         struct rhash_head node;
802 };
803
804 #define NR_CPUS_HINT 192
805
806 static const struct rhashtable_params sdma_rht_params = {
807         .nelem_hint = NR_CPUS_HINT,
808         .head_offset = offsetof(struct sdma_rht_node, node),
809         .key_offset = offsetof(struct sdma_rht_node, cpu_id),
810         .key_len = sizeof_field(struct sdma_rht_node, cpu_id),
811         .max_size = NR_CPUS,
812         .min_size = 8,
813         .automatic_shrinking = true,
814 };
815
816 /*
817  * sdma_select_user_engine() - select sdma engine based on user setup
818  * @dd: devdata
819  * @selector: a spreading factor
820  * @vl: this vl
821  *
822  * This function returns an sdma engine for a user sdma request.
823  * User defined sdma engine affinity setting is honored when applicable,
824  * otherwise system default sdma engine mapping is used. To ensure correct
825  * ordering, the mapping from <selector, vl> to sde must remain unchanged.
826  */
827 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
828                                             u32 selector, u8 vl)
829 {
830         struct sdma_rht_node *rht_node;
831         struct sdma_engine *sde = NULL;
832         unsigned long cpu_id;
833
834         /*
835          * To ensure that always the same sdma engine(s) will be
836          * selected make sure the process is pinned to this CPU only.
837          */
838         if (current->nr_cpus_allowed != 1)
839                 goto out;
840
841         rcu_read_lock();
842         cpu_id = smp_processor_id();
843         rht_node = rhashtable_lookup(dd->sdma_rht, &cpu_id,
844                                      sdma_rht_params);
845
846         if (rht_node && rht_node->map[vl]) {
847                 struct sdma_rht_map_elem *map = rht_node->map[vl];
848
849                 sde = map->sde[selector & map->mask];
850         }
851         rcu_read_unlock();
852
853         if (sde)
854                 return sde;
855
856 out:
857         return sdma_select_engine_vl(dd, selector, vl);
858 }
859
860 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
861 {
862         int i;
863
864         for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
865                 map->sde[map->ctr + i] = map->sde[i];
866 }
867
868 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
869                                  struct sdma_engine *sde)
870 {
871         unsigned int i, pow;
872
873         /* only need to check the first ctr entries for a match */
874         for (i = 0; i < map->ctr; i++) {
875                 if (map->sde[i] == sde) {
876                         memmove(&map->sde[i], &map->sde[i + 1],
877                                 (map->ctr - i - 1) * sizeof(map->sde[0]));
878                         map->ctr--;
879                         pow = roundup_pow_of_two(map->ctr ? : 1);
880                         map->mask = pow - 1;
881                         sdma_populate_sde_map(map);
882                         break;
883                 }
884         }
885 }
886
887 /*
888  * Prevents concurrent reads and writes of the sdma engine cpu_mask
889  */
890 static DEFINE_MUTEX(process_to_sde_mutex);
891
892 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
893                                 size_t count)
894 {
895         struct hfi1_devdata *dd = sde->dd;
896         cpumask_var_t mask, new_mask;
897         unsigned long cpu;
898         int ret, vl, sz;
899         struct sdma_rht_node *rht_node;
900
901         vl = sdma_engine_get_vl(sde);
902         if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
903                 return -EINVAL;
904
905         ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
906         if (!ret)
907                 return -ENOMEM;
908
909         ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
910         if (!ret) {
911                 free_cpumask_var(mask);
912                 return -ENOMEM;
913         }
914         ret = cpulist_parse(buf, mask);
915         if (ret)
916                 goto out_free;
917
918         if (!cpumask_subset(mask, cpu_online_mask)) {
919                 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
920                 ret = -EINVAL;
921                 goto out_free;
922         }
923
924         sz = sizeof(struct sdma_rht_map_elem) +
925                         (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
926
927         mutex_lock(&process_to_sde_mutex);
928
929         for_each_cpu(cpu, mask) {
930                 /* Check if we have this already mapped */
931                 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
932                         cpumask_set_cpu(cpu, new_mask);
933                         continue;
934                 }
935
936                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
937                                                   sdma_rht_params);
938                 if (!rht_node) {
939                         rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
940                         if (!rht_node) {
941                                 ret = -ENOMEM;
942                                 goto out;
943                         }
944
945                         rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
946                         if (!rht_node->map[vl]) {
947                                 kfree(rht_node);
948                                 ret = -ENOMEM;
949                                 goto out;
950                         }
951                         rht_node->cpu_id = cpu;
952                         rht_node->map[vl]->mask = 0;
953                         rht_node->map[vl]->ctr = 1;
954                         rht_node->map[vl]->sde[0] = sde;
955
956                         ret = rhashtable_insert_fast(dd->sdma_rht,
957                                                      &rht_node->node,
958                                                      sdma_rht_params);
959                         if (ret) {
960                                 kfree(rht_node->map[vl]);
961                                 kfree(rht_node);
962                                 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
963                                            cpu);
964                                 goto out;
965                         }
966
967                 } else {
968                         int ctr, pow;
969
970                         /* Add new user mappings */
971                         if (!rht_node->map[vl])
972                                 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
973
974                         if (!rht_node->map[vl]) {
975                                 ret = -ENOMEM;
976                                 goto out;
977                         }
978
979                         rht_node->map[vl]->ctr++;
980                         ctr = rht_node->map[vl]->ctr;
981                         rht_node->map[vl]->sde[ctr - 1] = sde;
982                         pow = roundup_pow_of_two(ctr);
983                         rht_node->map[vl]->mask = pow - 1;
984
985                         /* Populate the sde map table */
986                         sdma_populate_sde_map(rht_node->map[vl]);
987                 }
988                 cpumask_set_cpu(cpu, new_mask);
989         }
990
991         /* Clean up old mappings */
992         for_each_cpu(cpu, cpu_online_mask) {
993                 struct sdma_rht_node *rht_node;
994
995                 /* Don't cleanup sdes that are set in the new mask */
996                 if (cpumask_test_cpu(cpu, mask))
997                         continue;
998
999                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1000                                                   sdma_rht_params);
1001                 if (rht_node) {
1002                         bool empty = true;
1003                         int i;
1004
1005                         /* Remove mappings for old sde */
1006                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1007                                 if (rht_node->map[i])
1008                                         sdma_cleanup_sde_map(rht_node->map[i],
1009                                                              sde);
1010
1011                         /* Free empty hash table entries */
1012                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1013                                 if (!rht_node->map[i])
1014                                         continue;
1015
1016                                 if (rht_node->map[i]->ctr) {
1017                                         empty = false;
1018                                         break;
1019                                 }
1020                         }
1021
1022                         if (empty) {
1023                                 ret = rhashtable_remove_fast(dd->sdma_rht,
1024                                                              &rht_node->node,
1025                                                              sdma_rht_params);
1026                                 WARN_ON(ret);
1027
1028                                 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1029                                         kfree(rht_node->map[i]);
1030
1031                                 kfree(rht_node);
1032                         }
1033                 }
1034         }
1035
1036         cpumask_copy(&sde->cpu_mask, new_mask);
1037 out:
1038         mutex_unlock(&process_to_sde_mutex);
1039 out_free:
1040         free_cpumask_var(mask);
1041         free_cpumask_var(new_mask);
1042         return ret ? : strnlen(buf, PAGE_SIZE);
1043 }
1044
1045 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1046 {
1047         mutex_lock(&process_to_sde_mutex);
1048         if (cpumask_empty(&sde->cpu_mask))
1049                 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1050         else
1051                 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1052         mutex_unlock(&process_to_sde_mutex);
1053         return strnlen(buf, PAGE_SIZE);
1054 }
1055
1056 static void sdma_rht_free(void *ptr, void *arg)
1057 {
1058         struct sdma_rht_node *rht_node = ptr;
1059         int i;
1060
1061         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1062                 kfree(rht_node->map[i]);
1063
1064         kfree(rht_node);
1065 }
1066
1067 /**
1068  * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1069  * @s: seq file
1070  * @dd: hfi1_devdata
1071  * @cpuid: cpu id
1072  *
1073  * This routine dumps the process to sde mappings per cpu
1074  */
1075 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1076                                 struct hfi1_devdata *dd,
1077                                 unsigned long cpuid)
1078 {
1079         struct sdma_rht_node *rht_node;
1080         int i, j;
1081
1082         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1083                                           sdma_rht_params);
1084         if (!rht_node)
1085                 return;
1086
1087         seq_printf(s, "cpu%3lu: ", cpuid);
1088         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1089                 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1090                         continue;
1091
1092                 seq_printf(s, " vl%d: [", i);
1093
1094                 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1095                         if (!rht_node->map[i]->sde[j])
1096                                 continue;
1097
1098                         if (j > 0)
1099                                 seq_puts(s, ",");
1100
1101                         seq_printf(s, " sdma%2d",
1102                                    rht_node->map[i]->sde[j]->this_idx);
1103                 }
1104                 seq_puts(s, " ]");
1105         }
1106
1107         seq_puts(s, "\n");
1108 }
1109
1110 /*
1111  * Free the indicated map struct
1112  */
1113 static void sdma_map_free(struct sdma_vl_map *m)
1114 {
1115         int i;
1116
1117         for (i = 0; m && i < m->actual_vls; i++)
1118                 kfree(m->map[i]);
1119         kfree(m);
1120 }
1121
1122 /*
1123  * Handle RCU callback
1124  */
1125 static void sdma_map_rcu_callback(struct rcu_head *list)
1126 {
1127         struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1128
1129         sdma_map_free(m);
1130 }
1131
1132 /**
1133  * sdma_map_init - called when # vls change
1134  * @dd: hfi1_devdata
1135  * @port: port number
1136  * @num_vls: number of vls
1137  * @vl_engines: per vl engine mapping (optional)
1138  *
1139  * This routine changes the mapping based on the number of vls.
1140  *
1141  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1142  * implies auto computing the loading and giving each VLs a uniform
1143  * distribution of engines per VL.
1144  *
1145  * The auto algorithm computes the sde_per_vl and the number of extra
1146  * engines.  Any extra engines are added from the last VL on down.
1147  *
1148  * rcu locking is used here to control access to the mapping fields.
1149  *
1150  * If either the num_vls or num_sdma are non-power of 2, the array sizes
1151  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1152  * up to the next highest power of 2 and the first entry is reused
1153  * in a round robin fashion.
1154  *
1155  * If an error occurs the map change is not done and the mapping is
1156  * not changed.
1157  *
1158  */
1159 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1160 {
1161         int i, j;
1162         int extra, sde_per_vl;
1163         int engine = 0;
1164         u8 lvl_engines[OPA_MAX_VLS];
1165         struct sdma_vl_map *oldmap, *newmap;
1166
1167         if (!(dd->flags & HFI1_HAS_SEND_DMA))
1168                 return 0;
1169
1170         if (!vl_engines) {
1171                 /* truncate divide */
1172                 sde_per_vl = dd->num_sdma / num_vls;
1173                 /* extras */
1174                 extra = dd->num_sdma % num_vls;
1175                 vl_engines = lvl_engines;
1176                 /* add extras from last vl down */
1177                 for (i = num_vls - 1; i >= 0; i--, extra--)
1178                         vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1179         }
1180         /* build new map */
1181         newmap = kzalloc(
1182                 sizeof(struct sdma_vl_map) +
1183                         roundup_pow_of_two(num_vls) *
1184                         sizeof(struct sdma_map_elem *),
1185                 GFP_KERNEL);
1186         if (!newmap)
1187                 goto bail;
1188         newmap->actual_vls = num_vls;
1189         newmap->vls = roundup_pow_of_two(num_vls);
1190         newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1191         /* initialize back-map */
1192         for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1193                 newmap->engine_to_vl[i] = -1;
1194         for (i = 0; i < newmap->vls; i++) {
1195                 /* save for wrap around */
1196                 int first_engine = engine;
1197
1198                 if (i < newmap->actual_vls) {
1199                         int sz = roundup_pow_of_two(vl_engines[i]);
1200
1201                         /* only allocate once */
1202                         newmap->map[i] = kzalloc(
1203                                 sizeof(struct sdma_map_elem) +
1204                                         sz * sizeof(struct sdma_engine *),
1205                                 GFP_KERNEL);
1206                         if (!newmap->map[i])
1207                                 goto bail;
1208                         newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1209                         /* assign engines */
1210                         for (j = 0; j < sz; j++) {
1211                                 newmap->map[i]->sde[j] =
1212                                         &dd->per_sdma[engine];
1213                                 if (++engine >= first_engine + vl_engines[i])
1214                                         /* wrap back to first engine */
1215                                         engine = first_engine;
1216                         }
1217                         /* assign back-map */
1218                         for (j = 0; j < vl_engines[i]; j++)
1219                                 newmap->engine_to_vl[first_engine + j] = i;
1220                 } else {
1221                         /* just re-use entry without allocating */
1222                         newmap->map[i] = newmap->map[i % num_vls];
1223                 }
1224                 engine = first_engine + vl_engines[i];
1225         }
1226         /* newmap in hand, save old map */
1227         spin_lock_irq(&dd->sde_map_lock);
1228         oldmap = rcu_dereference_protected(dd->sdma_map,
1229                                            lockdep_is_held(&dd->sde_map_lock));
1230
1231         /* publish newmap */
1232         rcu_assign_pointer(dd->sdma_map, newmap);
1233
1234         spin_unlock_irq(&dd->sde_map_lock);
1235         /* success, free any old map after grace period */
1236         if (oldmap)
1237                 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1238         return 0;
1239 bail:
1240         /* free any partial allocation */
1241         sdma_map_free(newmap);
1242         return -ENOMEM;
1243 }
1244
1245 /**
1246  * sdma_clean - Clean up allocated memory
1247  * @dd:          struct hfi1_devdata
1248  * @num_engines: num sdma engines
1249  *
1250  * This routine can be called regardless of the success of
1251  * sdma_init()
1252  */
1253 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1254 {
1255         size_t i;
1256         struct sdma_engine *sde;
1257
1258         if (dd->sdma_pad_dma) {
1259                 dma_free_coherent(&dd->pcidev->dev, SDMA_PAD,
1260                                   (void *)dd->sdma_pad_dma,
1261                                   dd->sdma_pad_phys);
1262                 dd->sdma_pad_dma = NULL;
1263                 dd->sdma_pad_phys = 0;
1264         }
1265         if (dd->sdma_heads_dma) {
1266                 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1267                                   (void *)dd->sdma_heads_dma,
1268                                   dd->sdma_heads_phys);
1269                 dd->sdma_heads_dma = NULL;
1270                 dd->sdma_heads_phys = 0;
1271         }
1272         for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1273                 sde = &dd->per_sdma[i];
1274
1275                 sde->head_dma = NULL;
1276                 sde->head_phys = 0;
1277
1278                 if (sde->descq) {
1279                         dma_free_coherent(
1280                                 &dd->pcidev->dev,
1281                                 sde->descq_cnt * sizeof(u64[2]),
1282                                 sde->descq,
1283                                 sde->descq_phys
1284                         );
1285                         sde->descq = NULL;
1286                         sde->descq_phys = 0;
1287                 }
1288                 kvfree(sde->tx_ring);
1289                 sde->tx_ring = NULL;
1290         }
1291         if (rcu_access_pointer(dd->sdma_map)) {
1292                 spin_lock_irq(&dd->sde_map_lock);
1293                 sdma_map_free(rcu_access_pointer(dd->sdma_map));
1294                 RCU_INIT_POINTER(dd->sdma_map, NULL);
1295                 spin_unlock_irq(&dd->sde_map_lock);
1296                 synchronize_rcu();
1297         }
1298         kfree(dd->per_sdma);
1299         dd->per_sdma = NULL;
1300
1301         if (dd->sdma_rht) {
1302                 rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1303                 kfree(dd->sdma_rht);
1304                 dd->sdma_rht = NULL;
1305         }
1306 }
1307
1308 /**
1309  * sdma_init() - called when device probed
1310  * @dd: hfi1_devdata
1311  * @port: port number (currently only zero)
1312  *
1313  * Initializes each sde and its csrs.
1314  * Interrupts are not required to be enabled.
1315  *
1316  * Returns:
1317  * 0 - success, -errno on failure
1318  */
1319 int sdma_init(struct hfi1_devdata *dd, u8 port)
1320 {
1321         unsigned this_idx;
1322         struct sdma_engine *sde;
1323         struct rhashtable *tmp_sdma_rht;
1324         u16 descq_cnt;
1325         void *curr_head;
1326         struct hfi1_pportdata *ppd = dd->pport + port;
1327         u32 per_sdma_credits;
1328         uint idle_cnt = sdma_idle_cnt;
1329         size_t num_engines = chip_sdma_engines(dd);
1330         int ret = -ENOMEM;
1331
1332         if (!HFI1_CAP_IS_KSET(SDMA)) {
1333                 HFI1_CAP_CLEAR(SDMA_AHG);
1334                 return 0;
1335         }
1336         if (mod_num_sdma &&
1337             /* can't exceed chip support */
1338             mod_num_sdma <= chip_sdma_engines(dd) &&
1339             /* count must be >= vls */
1340             mod_num_sdma >= num_vls)
1341                 num_engines = mod_num_sdma;
1342
1343         dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1344         dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1345         dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1346                     chip_sdma_mem_size(dd));
1347
1348         per_sdma_credits =
1349                 chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1350
1351         /* set up freeze waitqueue */
1352         init_waitqueue_head(&dd->sdma_unfreeze_wq);
1353         atomic_set(&dd->sdma_unfreeze_count, 0);
1354
1355         descq_cnt = sdma_get_descq_cnt();
1356         dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1357                     num_engines, descq_cnt);
1358
1359         /* alloc memory for array of send engines */
1360         dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1361                                     GFP_KERNEL, dd->node);
1362         if (!dd->per_sdma)
1363                 return ret;
1364
1365         idle_cnt = ns_to_cclock(dd, idle_cnt);
1366         if (idle_cnt)
1367                 dd->default_desc1 =
1368                         SDMA_DESC1_HEAD_TO_HOST_FLAG;
1369         else
1370                 dd->default_desc1 =
1371                         SDMA_DESC1_INT_REQ_FLAG;
1372
1373         if (!sdma_desct_intr)
1374                 sdma_desct_intr = SDMA_DESC_INTR;
1375
1376         /* Allocate memory for SendDMA descriptor FIFOs */
1377         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1378                 sde = &dd->per_sdma[this_idx];
1379                 sde->dd = dd;
1380                 sde->ppd = ppd;
1381                 sde->this_idx = this_idx;
1382                 sde->descq_cnt = descq_cnt;
1383                 sde->desc_avail = sdma_descq_freecnt(sde);
1384                 sde->sdma_shift = ilog2(descq_cnt);
1385                 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1386
1387                 /* Create a mask specifically for each interrupt source */
1388                 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1389                                            this_idx);
1390                 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1391                                                 this_idx);
1392                 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1393                                             this_idx);
1394                 /* Create a combined mask to cover all 3 interrupt sources */
1395                 sde->imask = sde->int_mask | sde->progress_mask |
1396                              sde->idle_mask;
1397
1398                 spin_lock_init(&sde->tail_lock);
1399                 seqlock_init(&sde->head_lock);
1400                 spin_lock_init(&sde->senddmactrl_lock);
1401                 spin_lock_init(&sde->flushlist_lock);
1402                 seqlock_init(&sde->waitlock);
1403                 /* insure there is always a zero bit */
1404                 sde->ahg_bits = 0xfffffffe00000000ULL;
1405
1406                 sdma_set_state(sde, sdma_state_s00_hw_down);
1407
1408                 /* set up reference counting */
1409                 kref_init(&sde->state.kref);
1410                 init_completion(&sde->state.comp);
1411
1412                 INIT_LIST_HEAD(&sde->flushlist);
1413                 INIT_LIST_HEAD(&sde->dmawait);
1414
1415                 sde->tail_csr =
1416                         get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1417
1418                 tasklet_setup(&sde->sdma_hw_clean_up_task,
1419                               sdma_hw_clean_up_task);
1420                 tasklet_setup(&sde->sdma_sw_clean_up_task,
1421                               sdma_sw_clean_up_task);
1422                 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1423                 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1424
1425                 sde->progress_check_head = 0;
1426
1427                 timer_setup(&sde->err_progress_check_timer,
1428                             sdma_err_progress_check, 0);
1429
1430                 sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
1431                                                 descq_cnt * sizeof(u64[2]),
1432                                                 &sde->descq_phys, GFP_KERNEL);
1433                 if (!sde->descq)
1434                         goto bail;
1435                 sde->tx_ring =
1436                         kvzalloc_node(array_size(descq_cnt,
1437                                                  sizeof(struct sdma_txreq *)),
1438                                       GFP_KERNEL, dd->node);
1439                 if (!sde->tx_ring)
1440                         goto bail;
1441         }
1442
1443         dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1444         /* Allocate memory for DMA of head registers to memory */
1445         dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
1446                                                 dd->sdma_heads_size,
1447                                                 &dd->sdma_heads_phys,
1448                                                 GFP_KERNEL);
1449         if (!dd->sdma_heads_dma) {
1450                 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1451                 goto bail;
1452         }
1453
1454         /* Allocate memory for pad */
1455         dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, SDMA_PAD,
1456                                               &dd->sdma_pad_phys, GFP_KERNEL);
1457         if (!dd->sdma_pad_dma) {
1458                 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1459                 goto bail;
1460         }
1461
1462         /* assign each engine to different cacheline and init registers */
1463         curr_head = (void *)dd->sdma_heads_dma;
1464         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1465                 unsigned long phys_offset;
1466
1467                 sde = &dd->per_sdma[this_idx];
1468
1469                 sde->head_dma = curr_head;
1470                 curr_head += L1_CACHE_BYTES;
1471                 phys_offset = (unsigned long)sde->head_dma -
1472                               (unsigned long)dd->sdma_heads_dma;
1473                 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1474                 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1475         }
1476         dd->flags |= HFI1_HAS_SEND_DMA;
1477         dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1478         dd->num_sdma = num_engines;
1479         ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1480         if (ret < 0)
1481                 goto bail;
1482
1483         tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1484         if (!tmp_sdma_rht) {
1485                 ret = -ENOMEM;
1486                 goto bail;
1487         }
1488
1489         ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1490         if (ret < 0) {
1491                 kfree(tmp_sdma_rht);
1492                 goto bail;
1493         }
1494
1495         dd->sdma_rht = tmp_sdma_rht;
1496
1497         dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1498         return 0;
1499
1500 bail:
1501         sdma_clean(dd, num_engines);
1502         return ret;
1503 }
1504
1505 /**
1506  * sdma_all_running() - called when the link goes up
1507  * @dd: hfi1_devdata
1508  *
1509  * This routine moves all engines to the running state.
1510  */
1511 void sdma_all_running(struct hfi1_devdata *dd)
1512 {
1513         struct sdma_engine *sde;
1514         unsigned int i;
1515
1516         /* move all engines to running */
1517         for (i = 0; i < dd->num_sdma; ++i) {
1518                 sde = &dd->per_sdma[i];
1519                 sdma_process_event(sde, sdma_event_e30_go_running);
1520         }
1521 }
1522
1523 /**
1524  * sdma_all_idle() - called when the link goes down
1525  * @dd: hfi1_devdata
1526  *
1527  * This routine moves all engines to the idle state.
1528  */
1529 void sdma_all_idle(struct hfi1_devdata *dd)
1530 {
1531         struct sdma_engine *sde;
1532         unsigned int i;
1533
1534         /* idle all engines */
1535         for (i = 0; i < dd->num_sdma; ++i) {
1536                 sde = &dd->per_sdma[i];
1537                 sdma_process_event(sde, sdma_event_e70_go_idle);
1538         }
1539 }
1540
1541 /**
1542  * sdma_start() - called to kick off state processing for all engines
1543  * @dd: hfi1_devdata
1544  *
1545  * This routine is for kicking off the state processing for all required
1546  * sdma engines.  Interrupts need to be working at this point.
1547  *
1548  */
1549 void sdma_start(struct hfi1_devdata *dd)
1550 {
1551         unsigned i;
1552         struct sdma_engine *sde;
1553
1554         /* kick off the engines state processing */
1555         for (i = 0; i < dd->num_sdma; ++i) {
1556                 sde = &dd->per_sdma[i];
1557                 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1558         }
1559 }
1560
1561 /**
1562  * sdma_exit() - used when module is removed
1563  * @dd: hfi1_devdata
1564  */
1565 void sdma_exit(struct hfi1_devdata *dd)
1566 {
1567         unsigned this_idx;
1568         struct sdma_engine *sde;
1569
1570         for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1571                         ++this_idx) {
1572                 sde = &dd->per_sdma[this_idx];
1573                 if (!list_empty(&sde->dmawait))
1574                         dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1575                                    sde->this_idx);
1576                 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1577
1578                 del_timer_sync(&sde->err_progress_check_timer);
1579
1580                 /*
1581                  * This waits for the state machine to exit so it is not
1582                  * necessary to kill the sdma_sw_clean_up_task to make sure
1583                  * it is not running.
1584                  */
1585                 sdma_finalput(&sde->state);
1586         }
1587 }
1588
1589 /*
1590  * unmap the indicated descriptor
1591  */
1592 static inline void sdma_unmap_desc(
1593         struct hfi1_devdata *dd,
1594         struct sdma_desc *descp)
1595 {
1596         system_descriptor_complete(dd, descp);
1597 }
1598
1599 /*
1600  * return the mode as indicated by the first
1601  * descriptor in the tx.
1602  */
1603 static inline u8 ahg_mode(struct sdma_txreq *tx)
1604 {
1605         return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1606                 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1607 }
1608
1609 /**
1610  * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1611  * @dd: hfi1_devdata for unmapping
1612  * @tx: tx request to clean
1613  *
1614  * This is used in the progress routine to clean the tx or
1615  * by the ULP to toss an in-process tx build.
1616  *
1617  * The code can be called multiple times without issue.
1618  *
1619  */
1620 void __sdma_txclean(
1621         struct hfi1_devdata *dd,
1622         struct sdma_txreq *tx)
1623 {
1624         u16 i;
1625
1626         if (tx->num_desc) {
1627                 u8 skip = 0, mode = ahg_mode(tx);
1628
1629                 /* unmap first */
1630                 sdma_unmap_desc(dd, &tx->descp[0]);
1631                 /* determine number of AHG descriptors to skip */
1632                 if (mode > SDMA_AHG_APPLY_UPDATE1)
1633                         skip = mode >> 1;
1634                 for (i = 1 + skip; i < tx->num_desc; i++)
1635                         sdma_unmap_desc(dd, &tx->descp[i]);
1636                 tx->num_desc = 0;
1637         }
1638         kfree(tx->coalesce_buf);
1639         tx->coalesce_buf = NULL;
1640         /* kmalloc'ed descp */
1641         if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1642                 tx->desc_limit = ARRAY_SIZE(tx->descs);
1643                 kfree(tx->descp);
1644         }
1645 }
1646
1647 static inline u16 sdma_gethead(struct sdma_engine *sde)
1648 {
1649         struct hfi1_devdata *dd = sde->dd;
1650         int use_dmahead;
1651         u16 hwhead;
1652
1653 #ifdef CONFIG_SDMA_VERBOSITY
1654         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1655                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1656 #endif
1657
1658 retry:
1659         use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1660                                         (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1661         hwhead = use_dmahead ?
1662                 (u16)le64_to_cpu(*sde->head_dma) :
1663                 (u16)read_sde_csr(sde, SD(HEAD));
1664
1665         if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1666                 u16 cnt;
1667                 u16 swtail;
1668                 u16 swhead;
1669                 int sane;
1670
1671                 swhead = sde->descq_head & sde->sdma_mask;
1672                 /* this code is really bad for cache line trading */
1673                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1674                 cnt = sde->descq_cnt;
1675
1676                 if (swhead < swtail)
1677                         /* not wrapped */
1678                         sane = (hwhead >= swhead) & (hwhead <= swtail);
1679                 else if (swhead > swtail)
1680                         /* wrapped around */
1681                         sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1682                                 (hwhead <= swtail);
1683                 else
1684                         /* empty */
1685                         sane = (hwhead == swhead);
1686
1687                 if (unlikely(!sane)) {
1688                         dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%u swhd=%u swtl=%u cnt=%u\n",
1689                                    sde->this_idx,
1690                                    use_dmahead ? "dma" : "kreg",
1691                                    hwhead, swhead, swtail, cnt);
1692                         if (use_dmahead) {
1693                                 /* try one more time, using csr */
1694                                 use_dmahead = 0;
1695                                 goto retry;
1696                         }
1697                         /* proceed as if no progress */
1698                         hwhead = swhead;
1699                 }
1700         }
1701         return hwhead;
1702 }
1703
1704 /*
1705  * This is called when there are send DMA descriptors that might be
1706  * available.
1707  *
1708  * This is called with head_lock held.
1709  */
1710 static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1711 {
1712         struct iowait *wait, *nw, *twait;
1713         struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1714         uint i, n = 0, seq, tidx = 0;
1715
1716 #ifdef CONFIG_SDMA_VERBOSITY
1717         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1718                    slashstrip(__FILE__), __LINE__, __func__);
1719         dd_dev_err(sde->dd, "avail: %u\n", avail);
1720 #endif
1721
1722         do {
1723                 seq = read_seqbegin(&sde->waitlock);
1724                 if (!list_empty(&sde->dmawait)) {
1725                         /* at least one item */
1726                         write_seqlock(&sde->waitlock);
1727                         /* Harvest waiters wanting DMA descriptors */
1728                         list_for_each_entry_safe(
1729                                         wait,
1730                                         nw,
1731                                         &sde->dmawait,
1732                                         list) {
1733                                 u32 num_desc;
1734
1735                                 if (!wait->wakeup)
1736                                         continue;
1737                                 if (n == ARRAY_SIZE(waits))
1738                                         break;
1739                                 iowait_init_priority(wait);
1740                                 num_desc = iowait_get_all_desc(wait);
1741                                 if (num_desc > avail)
1742                                         break;
1743                                 avail -= num_desc;
1744                                 /* Find the top-priority wait memeber */
1745                                 if (n) {
1746                                         twait = waits[tidx];
1747                                         tidx =
1748                                             iowait_priority_update_top(wait,
1749                                                                        twait,
1750                                                                        n,
1751                                                                        tidx);
1752                                 }
1753                                 list_del_init(&wait->list);
1754                                 waits[n++] = wait;
1755                         }
1756                         write_sequnlock(&sde->waitlock);
1757                         break;
1758                 }
1759         } while (read_seqretry(&sde->waitlock, seq));
1760
1761         /* Schedule the top-priority entry first */
1762         if (n)
1763                 waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON);
1764
1765         for (i = 0; i < n; i++)
1766                 if (i != tidx)
1767                         waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1768 }
1769
1770 /* head_lock must be held */
1771 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1772 {
1773         struct sdma_txreq *txp = NULL;
1774         int progress = 0;
1775         u16 hwhead, swhead;
1776         int idle_check_done = 0;
1777
1778         hwhead = sdma_gethead(sde);
1779
1780         /* The reason for some of the complexity of this code is that
1781          * not all descriptors have corresponding txps.  So, we have to
1782          * be able to skip over descs until we wander into the range of
1783          * the next txp on the list.
1784          */
1785
1786 retry:
1787         txp = get_txhead(sde);
1788         swhead = sde->descq_head & sde->sdma_mask;
1789         trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1790         while (swhead != hwhead) {
1791                 /* advance head, wrap if needed */
1792                 swhead = ++sde->descq_head & sde->sdma_mask;
1793
1794                 /* if now past this txp's descs, do the callback */
1795                 if (txp && txp->next_descq_idx == swhead) {
1796                         /* remove from list */
1797                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1798                         complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1799                         /* see if there is another txp */
1800                         txp = get_txhead(sde);
1801                 }
1802                 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1803                 progress++;
1804         }
1805
1806         /*
1807          * The SDMA idle interrupt is not guaranteed to be ordered with respect
1808          * to updates to the dma_head location in host memory. The head
1809          * value read might not be fully up to date. If there are pending
1810          * descriptors and the SDMA idle interrupt fired then read from the
1811          * CSR SDMA head instead to get the latest value from the hardware.
1812          * The hardware SDMA head should be read at most once in this invocation
1813          * of sdma_make_progress(..) which is ensured by idle_check_done flag
1814          */
1815         if ((status & sde->idle_mask) && !idle_check_done) {
1816                 u16 swtail;
1817
1818                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1819                 if (swtail != hwhead) {
1820                         hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1821                         idle_check_done = 1;
1822                         goto retry;
1823                 }
1824         }
1825
1826         sde->last_status = status;
1827         if (progress)
1828                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1829 }
1830
1831 /*
1832  * sdma_engine_interrupt() - interrupt handler for engine
1833  * @sde: sdma engine
1834  * @status: sdma interrupt reason
1835  *
1836  * Status is a mask of the 3 possible interrupts for this engine.  It will
1837  * contain bits _only_ for this SDMA engine.  It will contain at least one
1838  * bit, it may contain more.
1839  */
1840 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1841 {
1842         trace_hfi1_sdma_engine_interrupt(sde, status);
1843         write_seqlock(&sde->head_lock);
1844         sdma_set_desc_cnt(sde, sdma_desct_intr);
1845         if (status & sde->idle_mask)
1846                 sde->idle_int_cnt++;
1847         else if (status & sde->progress_mask)
1848                 sde->progress_int_cnt++;
1849         else if (status & sde->int_mask)
1850                 sde->sdma_int_cnt++;
1851         sdma_make_progress(sde, status);
1852         write_sequnlock(&sde->head_lock);
1853 }
1854
1855 /**
1856  * sdma_engine_error() - error handler for engine
1857  * @sde: sdma engine
1858  * @status: sdma interrupt reason
1859  */
1860 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1861 {
1862         unsigned long flags;
1863
1864 #ifdef CONFIG_SDMA_VERBOSITY
1865         dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1866                    sde->this_idx,
1867                    (unsigned long long)status,
1868                    sdma_state_names[sde->state.current_state]);
1869 #endif
1870         spin_lock_irqsave(&sde->tail_lock, flags);
1871         write_seqlock(&sde->head_lock);
1872         if (status & ALL_SDMA_ENG_HALT_ERRS)
1873                 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1874         if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1875                 dd_dev_err(sde->dd,
1876                            "SDMA (%u) engine error: 0x%llx state %s\n",
1877                            sde->this_idx,
1878                            (unsigned long long)status,
1879                            sdma_state_names[sde->state.current_state]);
1880                 dump_sdma_state(sde);
1881         }
1882         write_sequnlock(&sde->head_lock);
1883         spin_unlock_irqrestore(&sde->tail_lock, flags);
1884 }
1885
1886 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1887 {
1888         u64 set_senddmactrl = 0;
1889         u64 clr_senddmactrl = 0;
1890         unsigned long flags;
1891
1892 #ifdef CONFIG_SDMA_VERBOSITY
1893         dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1894                    sde->this_idx,
1895                    (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1896                    (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1897                    (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1898                    (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1899 #endif
1900
1901         if (op & SDMA_SENDCTRL_OP_ENABLE)
1902                 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1903         else
1904                 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1905
1906         if (op & SDMA_SENDCTRL_OP_INTENABLE)
1907                 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1908         else
1909                 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1910
1911         if (op & SDMA_SENDCTRL_OP_HALT)
1912                 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1913         else
1914                 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1915
1916         spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1917
1918         sde->p_senddmactrl |= set_senddmactrl;
1919         sde->p_senddmactrl &= ~clr_senddmactrl;
1920
1921         if (op & SDMA_SENDCTRL_OP_CLEANUP)
1922                 write_sde_csr(sde, SD(CTRL),
1923                               sde->p_senddmactrl |
1924                               SD(CTRL_SDMA_CLEANUP_SMASK));
1925         else
1926                 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1927
1928         spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1929
1930 #ifdef CONFIG_SDMA_VERBOSITY
1931         sdma_dumpstate(sde);
1932 #endif
1933 }
1934
1935 static void sdma_setlengen(struct sdma_engine *sde)
1936 {
1937 #ifdef CONFIG_SDMA_VERBOSITY
1938         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1939                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1940 #endif
1941
1942         /*
1943          * Set SendDmaLenGen and clear-then-set the MSB of the generation
1944          * count to enable generation checking and load the internal
1945          * generation counter.
1946          */
1947         write_sde_csr(sde, SD(LEN_GEN),
1948                       (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
1949         write_sde_csr(sde, SD(LEN_GEN),
1950                       ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1951                       (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
1952 }
1953
1954 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1955 {
1956         /* Commit writes to memory and advance the tail on the chip */
1957         smp_wmb(); /* see get_txhead() */
1958         writeq(tail, sde->tail_csr);
1959 }
1960
1961 /*
1962  * This is called when changing to state s10_hw_start_up_halt_wait as
1963  * a result of send buffer errors or send DMA descriptor errors.
1964  */
1965 static void sdma_hw_start_up(struct sdma_engine *sde)
1966 {
1967         u64 reg;
1968
1969 #ifdef CONFIG_SDMA_VERBOSITY
1970         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1971                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1972 #endif
1973
1974         sdma_setlengen(sde);
1975         sdma_update_tail(sde, 0); /* Set SendDmaTail */
1976         *sde->head_dma = 0;
1977
1978         reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
1979               SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
1980         write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
1981 }
1982
1983 /*
1984  * set_sdma_integrity
1985  *
1986  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
1987  */
1988 static void set_sdma_integrity(struct sdma_engine *sde)
1989 {
1990         struct hfi1_devdata *dd = sde->dd;
1991
1992         write_sde_csr(sde, SD(CHECK_ENABLE),
1993                       hfi1_pkt_base_sdma_integrity(dd));
1994 }
1995
1996 static void init_sdma_regs(
1997         struct sdma_engine *sde,
1998         u32 credits,
1999         uint idle_cnt)
2000 {
2001         u8 opval, opmask;
2002 #ifdef CONFIG_SDMA_VERBOSITY
2003         struct hfi1_devdata *dd = sde->dd;
2004
2005         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2006                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2007 #endif
2008
2009         write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2010         sdma_setlengen(sde);
2011         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2012         write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2013         write_sde_csr(sde, SD(DESC_CNT), 0);
2014         write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2015         write_sde_csr(sde, SD(MEMORY),
2016                       ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2017                       ((u64)(credits * sde->this_idx) <<
2018                        SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2019         write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2020         set_sdma_integrity(sde);
2021         opmask = OPCODE_CHECK_MASK_DISABLED;
2022         opval = OPCODE_CHECK_VAL_DISABLED;
2023         write_sde_csr(sde, SD(CHECK_OPCODE),
2024                       (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2025                       (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2026 }
2027
2028 #ifdef CONFIG_SDMA_VERBOSITY
2029
2030 #define sdma_dumpstate_helper0(reg) do { \
2031                 csr = read_csr(sde->dd, reg); \
2032                 dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2033         } while (0)
2034
2035 #define sdma_dumpstate_helper(reg) do { \
2036                 csr = read_sde_csr(sde, reg); \
2037                 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2038                         #reg, sde->this_idx, csr); \
2039         } while (0)
2040
2041 #define sdma_dumpstate_helper2(reg) do { \
2042                 csr = read_csr(sde->dd, reg + (8 * i)); \
2043                 dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2044                                 #reg, i, csr); \
2045         } while (0)
2046
2047 void sdma_dumpstate(struct sdma_engine *sde)
2048 {
2049         u64 csr;
2050         unsigned i;
2051
2052         sdma_dumpstate_helper(SD(CTRL));
2053         sdma_dumpstate_helper(SD(STATUS));
2054         sdma_dumpstate_helper0(SD(ERR_STATUS));
2055         sdma_dumpstate_helper0(SD(ERR_MASK));
2056         sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2057         sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2058
2059         for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2060                 sdma_dumpstate_helper2(CCE_INT_STATUS);
2061                 sdma_dumpstate_helper2(CCE_INT_MASK);
2062                 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2063         }
2064
2065         sdma_dumpstate_helper(SD(TAIL));
2066         sdma_dumpstate_helper(SD(HEAD));
2067         sdma_dumpstate_helper(SD(PRIORITY_THLD));
2068         sdma_dumpstate_helper(SD(IDLE_CNT));
2069         sdma_dumpstate_helper(SD(RELOAD_CNT));
2070         sdma_dumpstate_helper(SD(DESC_CNT));
2071         sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2072         sdma_dumpstate_helper(SD(MEMORY));
2073         sdma_dumpstate_helper0(SD(ENGINES));
2074         sdma_dumpstate_helper0(SD(MEM_SIZE));
2075         /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2076         sdma_dumpstate_helper(SD(BASE_ADDR));
2077         sdma_dumpstate_helper(SD(LEN_GEN));
2078         sdma_dumpstate_helper(SD(HEAD_ADDR));
2079         sdma_dumpstate_helper(SD(CHECK_ENABLE));
2080         sdma_dumpstate_helper(SD(CHECK_VL));
2081         sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2082         sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2083         sdma_dumpstate_helper(SD(CHECK_SLID));
2084         sdma_dumpstate_helper(SD(CHECK_OPCODE));
2085 }
2086 #endif
2087
2088 static void dump_sdma_state(struct sdma_engine *sde)
2089 {
2090         struct hw_sdma_desc *descqp;
2091         u64 desc[2];
2092         u64 addr;
2093         u8 gen;
2094         u16 len;
2095         u16 head, tail, cnt;
2096
2097         head = sde->descq_head & sde->sdma_mask;
2098         tail = sde->descq_tail & sde->sdma_mask;
2099         cnt = sdma_descq_freecnt(sde);
2100
2101         dd_dev_err(sde->dd,
2102                    "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2103                    sde->this_idx, head, tail, cnt,
2104                    !list_empty(&sde->flushlist));
2105
2106         /* print info for each entry in the descriptor queue */
2107         while (head != tail) {
2108                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2109
2110                 descqp = &sde->descq[head];
2111                 desc[0] = le64_to_cpu(descqp->qw[0]);
2112                 desc[1] = le64_to_cpu(descqp->qw[1]);
2113                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2114                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2115                                 'H' : '-';
2116                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2117                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2118                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2119                         & SDMA_DESC0_PHY_ADDR_MASK;
2120                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2121                         & SDMA_DESC1_GENERATION_MASK;
2122                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2123                         & SDMA_DESC0_BYTE_COUNT_MASK;
2124                 dd_dev_err(sde->dd,
2125                            "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2126                            head, flags, addr, gen, len);
2127                 dd_dev_err(sde->dd,
2128                            "\tdesc0:0x%016llx desc1 0x%016llx\n",
2129                            desc[0], desc[1]);
2130                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2131                         dd_dev_err(sde->dd,
2132                                    "\taidx: %u amode: %u alen: %u\n",
2133                                    (u8)((desc[1] &
2134                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2135                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2136                                    (u8)((desc[1] &
2137                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2138                                         SDMA_DESC1_HEADER_MODE_SHIFT),
2139                                    (u8)((desc[1] &
2140                                          SDMA_DESC1_HEADER_DWS_SMASK) >>
2141                                         SDMA_DESC1_HEADER_DWS_SHIFT));
2142                 head++;
2143                 head &= sde->sdma_mask;
2144         }
2145 }
2146
2147 #define SDE_FMT \
2148         "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2149 /**
2150  * sdma_seqfile_dump_sde() - debugfs dump of sde
2151  * @s: seq file
2152  * @sde: send dma engine to dump
2153  *
2154  * This routine dumps the sde to the indicated seq file.
2155  */
2156 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2157 {
2158         u16 head, tail;
2159         struct hw_sdma_desc *descqp;
2160         u64 desc[2];
2161         u64 addr;
2162         u8 gen;
2163         u16 len;
2164
2165         head = sde->descq_head & sde->sdma_mask;
2166         tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2167         seq_printf(s, SDE_FMT, sde->this_idx,
2168                    sde->cpu,
2169                    sdma_state_name(sde->state.current_state),
2170                    (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2171                    (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2172                    (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2173                    (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2174                    (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2175                    (unsigned long long)le64_to_cpu(*sde->head_dma),
2176                    (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2177                    (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2178                    (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2179                    (unsigned long long)sde->last_status,
2180                    (unsigned long long)sde->ahg_bits,
2181                    sde->tx_tail,
2182                    sde->tx_head,
2183                    sde->descq_tail,
2184                    sde->descq_head,
2185                    !list_empty(&sde->flushlist),
2186                    sde->descq_full_count,
2187                    (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2188
2189         /* print info for each entry in the descriptor queue */
2190         while (head != tail) {
2191                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2192
2193                 descqp = &sde->descq[head];
2194                 desc[0] = le64_to_cpu(descqp->qw[0]);
2195                 desc[1] = le64_to_cpu(descqp->qw[1]);
2196                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2197                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2198                                 'H' : '-';
2199                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2200                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2201                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2202                         & SDMA_DESC0_PHY_ADDR_MASK;
2203                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2204                         & SDMA_DESC1_GENERATION_MASK;
2205                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2206                         & SDMA_DESC0_BYTE_COUNT_MASK;
2207                 seq_printf(s,
2208                            "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2209                            head, flags, addr, gen, len);
2210                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2211                         seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2212                                    (u8)((desc[1] &
2213                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2214                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2215                                    (u8)((desc[1] &
2216                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2217                                         SDMA_DESC1_HEADER_MODE_SHIFT));
2218                 head = (head + 1) & sde->sdma_mask;
2219         }
2220 }
2221
2222 /*
2223  * add the generation number into
2224  * the qw1 and return
2225  */
2226 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2227 {
2228         u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2229
2230         qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2231         qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2232                         << SDMA_DESC1_GENERATION_SHIFT;
2233         return qw1;
2234 }
2235
2236 /*
2237  * This routine submits the indicated tx
2238  *
2239  * Space has already been guaranteed and
2240  * tail side of ring is locked.
2241  *
2242  * The hardware tail update is done
2243  * in the caller and that is facilitated
2244  * by returning the new tail.
2245  *
2246  * There is special case logic for ahg
2247  * to not add the generation number for
2248  * up to 2 descriptors that follow the
2249  * first descriptor.
2250  *
2251  */
2252 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2253 {
2254         int i;
2255         u16 tail;
2256         struct sdma_desc *descp = tx->descp;
2257         u8 skip = 0, mode = ahg_mode(tx);
2258
2259         tail = sde->descq_tail & sde->sdma_mask;
2260         sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2261         sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2262         trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2263                                    tail, &sde->descq[tail]);
2264         tail = ++sde->descq_tail & sde->sdma_mask;
2265         descp++;
2266         if (mode > SDMA_AHG_APPLY_UPDATE1)
2267                 skip = mode >> 1;
2268         for (i = 1; i < tx->num_desc; i++, descp++) {
2269                 u64 qw1;
2270
2271                 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2272                 if (skip) {
2273                         /* edits don't have generation */
2274                         qw1 = descp->qw[1];
2275                         skip--;
2276                 } else {
2277                         /* replace generation with real one for non-edits */
2278                         qw1 = add_gen(sde, descp->qw[1]);
2279                 }
2280                 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2281                 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2282                                            tail, &sde->descq[tail]);
2283                 tail = ++sde->descq_tail & sde->sdma_mask;
2284         }
2285         tx->next_descq_idx = tail;
2286 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2287         tx->sn = sde->tail_sn++;
2288         trace_hfi1_sdma_in_sn(sde, tx->sn);
2289         WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2290 #endif
2291         sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2292         sde->desc_avail -= tx->num_desc;
2293         return tail;
2294 }
2295
2296 /*
2297  * Check for progress
2298  */
2299 static int sdma_check_progress(
2300         struct sdma_engine *sde,
2301         struct iowait_work *wait,
2302         struct sdma_txreq *tx,
2303         bool pkts_sent)
2304 {
2305         int ret;
2306
2307         sde->desc_avail = sdma_descq_freecnt(sde);
2308         if (tx->num_desc <= sde->desc_avail)
2309                 return -EAGAIN;
2310         /* pulse the head_lock */
2311         if (wait && iowait_ioww_to_iow(wait)->sleep) {
2312                 unsigned seq;
2313
2314                 seq = raw_seqcount_begin(
2315                         (const seqcount_t *)&sde->head_lock.seqcount);
2316                 ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
2317                 if (ret == -EAGAIN)
2318                         sde->desc_avail = sdma_descq_freecnt(sde);
2319         } else {
2320                 ret = -EBUSY;
2321         }
2322         return ret;
2323 }
2324
2325 /**
2326  * sdma_send_txreq() - submit a tx req to ring
2327  * @sde: sdma engine to use
2328  * @wait: SE wait structure to use when full (may be NULL)
2329  * @tx: sdma_txreq to submit
2330  * @pkts_sent: has any packet been sent yet?
2331  *
2332  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2333  * the packet will be queued to the list in wait.
2334  *
2335  * Return:
2336  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2337  * ring (wait == NULL)
2338  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2339  */
2340 int sdma_send_txreq(struct sdma_engine *sde,
2341                     struct iowait_work *wait,
2342                     struct sdma_txreq *tx,
2343                     bool pkts_sent)
2344 {
2345         int ret = 0;
2346         u16 tail;
2347         unsigned long flags;
2348
2349         /* user should have supplied entire packet */
2350         if (unlikely(tx->tlen))
2351                 return -EINVAL;
2352         tx->wait = iowait_ioww_to_iow(wait);
2353         spin_lock_irqsave(&sde->tail_lock, flags);
2354 retry:
2355         if (unlikely(!__sdma_running(sde)))
2356                 goto unlock_noconn;
2357         if (unlikely(tx->num_desc > sde->desc_avail))
2358                 goto nodesc;
2359         tail = submit_tx(sde, tx);
2360         if (wait)
2361                 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2362         sdma_update_tail(sde, tail);
2363 unlock:
2364         spin_unlock_irqrestore(&sde->tail_lock, flags);
2365         return ret;
2366 unlock_noconn:
2367         if (wait)
2368                 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2369         tx->next_descq_idx = 0;
2370 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2371         tx->sn = sde->tail_sn++;
2372         trace_hfi1_sdma_in_sn(sde, tx->sn);
2373 #endif
2374         spin_lock(&sde->flushlist_lock);
2375         list_add_tail(&tx->list, &sde->flushlist);
2376         spin_unlock(&sde->flushlist_lock);
2377         iowait_inc_wait_count(wait, tx->num_desc);
2378         queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2379         ret = -ECOMM;
2380         goto unlock;
2381 nodesc:
2382         ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2383         if (ret == -EAGAIN) {
2384                 ret = 0;
2385                 goto retry;
2386         }
2387         sde->descq_full_count++;
2388         goto unlock;
2389 }
2390
2391 /**
2392  * sdma_send_txlist() - submit a list of tx req to ring
2393  * @sde: sdma engine to use
2394  * @wait: SE wait structure to use when full (may be NULL)
2395  * @tx_list: list of sdma_txreqs to submit
2396  * @count_out: pointer to a u16 which, after return will contain the total number of
2397  *             sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2398  *             whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2399  *             which are added to SDMA engine flush list if the SDMA engine state is
2400  *             not running.
2401  *
2402  * The call submits the list into the ring.
2403  *
2404  * If the iowait structure is non-NULL and not equal to the iowait list
2405  * the unprocessed part of the list  will be appended to the list in wait.
2406  *
2407  * In all cases, the tx_list will be updated so the head of the tx_list is
2408  * the list of descriptors that have yet to be transmitted.
2409  *
2410  * The intent of this call is to provide a more efficient
2411  * way of submitting multiple packets to SDMA while holding the tail
2412  * side locking.
2413  *
2414  * Return:
2415  * 0 - Success,
2416  * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2417  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2418  */
2419 int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
2420                      struct list_head *tx_list, u16 *count_out)
2421 {
2422         struct sdma_txreq *tx, *tx_next;
2423         int ret = 0;
2424         unsigned long flags;
2425         u16 tail = INVALID_TAIL;
2426         u32 submit_count = 0, flush_count = 0, total_count;
2427
2428         spin_lock_irqsave(&sde->tail_lock, flags);
2429 retry:
2430         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2431                 tx->wait = iowait_ioww_to_iow(wait);
2432                 if (unlikely(!__sdma_running(sde)))
2433                         goto unlock_noconn;
2434                 if (unlikely(tx->num_desc > sde->desc_avail))
2435                         goto nodesc;
2436                 if (unlikely(tx->tlen)) {
2437                         ret = -EINVAL;
2438                         goto update_tail;
2439                 }
2440                 list_del_init(&tx->list);
2441                 tail = submit_tx(sde, tx);
2442                 submit_count++;
2443                 if (tail != INVALID_TAIL &&
2444                     (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2445                         sdma_update_tail(sde, tail);
2446                         tail = INVALID_TAIL;
2447                 }
2448         }
2449 update_tail:
2450         total_count = submit_count + flush_count;
2451         if (wait) {
2452                 iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
2453                 iowait_starve_clear(submit_count > 0,
2454                                     iowait_ioww_to_iow(wait));
2455         }
2456         if (tail != INVALID_TAIL)
2457                 sdma_update_tail(sde, tail);
2458         spin_unlock_irqrestore(&sde->tail_lock, flags);
2459         *count_out = total_count;
2460         return ret;
2461 unlock_noconn:
2462         spin_lock(&sde->flushlist_lock);
2463         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2464                 tx->wait = iowait_ioww_to_iow(wait);
2465                 list_del_init(&tx->list);
2466                 tx->next_descq_idx = 0;
2467 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2468                 tx->sn = sde->tail_sn++;
2469                 trace_hfi1_sdma_in_sn(sde, tx->sn);
2470 #endif
2471                 list_add_tail(&tx->list, &sde->flushlist);
2472                 flush_count++;
2473                 iowait_inc_wait_count(wait, tx->num_desc);
2474         }
2475         spin_unlock(&sde->flushlist_lock);
2476         queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2477         ret = -ECOMM;
2478         goto update_tail;
2479 nodesc:
2480         ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2481         if (ret == -EAGAIN) {
2482                 ret = 0;
2483                 goto retry;
2484         }
2485         sde->descq_full_count++;
2486         goto update_tail;
2487 }
2488
2489 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2490 {
2491         unsigned long flags;
2492
2493         spin_lock_irqsave(&sde->tail_lock, flags);
2494         write_seqlock(&sde->head_lock);
2495
2496         __sdma_process_event(sde, event);
2497
2498         if (sde->state.current_state == sdma_state_s99_running)
2499                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2500
2501         write_sequnlock(&sde->head_lock);
2502         spin_unlock_irqrestore(&sde->tail_lock, flags);
2503 }
2504
2505 static void __sdma_process_event(struct sdma_engine *sde,
2506                                  enum sdma_events event)
2507 {
2508         struct sdma_state *ss = &sde->state;
2509         int need_progress = 0;
2510
2511         /* CONFIG SDMA temporary */
2512 #ifdef CONFIG_SDMA_VERBOSITY
2513         dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2514                    sdma_state_names[ss->current_state],
2515                    sdma_event_names[event]);
2516 #endif
2517
2518         switch (ss->current_state) {
2519         case sdma_state_s00_hw_down:
2520                 switch (event) {
2521                 case sdma_event_e00_go_hw_down:
2522                         break;
2523                 case sdma_event_e30_go_running:
2524                         /*
2525                          * If down, but running requested (usually result
2526                          * of link up, then we need to start up.
2527                          * This can happen when hw down is requested while
2528                          * bringing the link up with traffic active on
2529                          * 7220, e.g.
2530                          */
2531                         ss->go_s99_running = 1;
2532                         fallthrough;    /* and start dma engine */
2533                 case sdma_event_e10_go_hw_start:
2534                         /* This reference means the state machine is started */
2535                         sdma_get(&sde->state);
2536                         sdma_set_state(sde,
2537                                        sdma_state_s10_hw_start_up_halt_wait);
2538                         break;
2539                 case sdma_event_e15_hw_halt_done:
2540                         break;
2541                 case sdma_event_e25_hw_clean_up_done:
2542                         break;
2543                 case sdma_event_e40_sw_cleaned:
2544                         sdma_sw_tear_down(sde);
2545                         break;
2546                 case sdma_event_e50_hw_cleaned:
2547                         break;
2548                 case sdma_event_e60_hw_halted:
2549                         break;
2550                 case sdma_event_e70_go_idle:
2551                         break;
2552                 case sdma_event_e80_hw_freeze:
2553                         break;
2554                 case sdma_event_e81_hw_frozen:
2555                         break;
2556                 case sdma_event_e82_hw_unfreeze:
2557                         break;
2558                 case sdma_event_e85_link_down:
2559                         break;
2560                 case sdma_event_e90_sw_halted:
2561                         break;
2562                 }
2563                 break;
2564
2565         case sdma_state_s10_hw_start_up_halt_wait:
2566                 switch (event) {
2567                 case sdma_event_e00_go_hw_down:
2568                         sdma_set_state(sde, sdma_state_s00_hw_down);
2569                         sdma_sw_tear_down(sde);
2570                         break;
2571                 case sdma_event_e10_go_hw_start:
2572                         break;
2573                 case sdma_event_e15_hw_halt_done:
2574                         sdma_set_state(sde,
2575                                        sdma_state_s15_hw_start_up_clean_wait);
2576                         sdma_start_hw_clean_up(sde);
2577                         break;
2578                 case sdma_event_e25_hw_clean_up_done:
2579                         break;
2580                 case sdma_event_e30_go_running:
2581                         ss->go_s99_running = 1;
2582                         break;
2583                 case sdma_event_e40_sw_cleaned:
2584                         break;
2585                 case sdma_event_e50_hw_cleaned:
2586                         break;
2587                 case sdma_event_e60_hw_halted:
2588                         schedule_work(&sde->err_halt_worker);
2589                         break;
2590                 case sdma_event_e70_go_idle:
2591                         ss->go_s99_running = 0;
2592                         break;
2593                 case sdma_event_e80_hw_freeze:
2594                         break;
2595                 case sdma_event_e81_hw_frozen:
2596                         break;
2597                 case sdma_event_e82_hw_unfreeze:
2598                         break;
2599                 case sdma_event_e85_link_down:
2600                         break;
2601                 case sdma_event_e90_sw_halted:
2602                         break;
2603                 }
2604                 break;
2605
2606         case sdma_state_s15_hw_start_up_clean_wait:
2607                 switch (event) {
2608                 case sdma_event_e00_go_hw_down:
2609                         sdma_set_state(sde, sdma_state_s00_hw_down);
2610                         sdma_sw_tear_down(sde);
2611                         break;
2612                 case sdma_event_e10_go_hw_start:
2613                         break;
2614                 case sdma_event_e15_hw_halt_done:
2615                         break;
2616                 case sdma_event_e25_hw_clean_up_done:
2617                         sdma_hw_start_up(sde);
2618                         sdma_set_state(sde, ss->go_s99_running ?
2619                                        sdma_state_s99_running :
2620                                        sdma_state_s20_idle);
2621                         break;
2622                 case sdma_event_e30_go_running:
2623                         ss->go_s99_running = 1;
2624                         break;
2625                 case sdma_event_e40_sw_cleaned:
2626                         break;
2627                 case sdma_event_e50_hw_cleaned:
2628                         break;
2629                 case sdma_event_e60_hw_halted:
2630                         break;
2631                 case sdma_event_e70_go_idle:
2632                         ss->go_s99_running = 0;
2633                         break;
2634                 case sdma_event_e80_hw_freeze:
2635                         break;
2636                 case sdma_event_e81_hw_frozen:
2637                         break;
2638                 case sdma_event_e82_hw_unfreeze:
2639                         break;
2640                 case sdma_event_e85_link_down:
2641                         break;
2642                 case sdma_event_e90_sw_halted:
2643                         break;
2644                 }
2645                 break;
2646
2647         case sdma_state_s20_idle:
2648                 switch (event) {
2649                 case sdma_event_e00_go_hw_down:
2650                         sdma_set_state(sde, sdma_state_s00_hw_down);
2651                         sdma_sw_tear_down(sde);
2652                         break;
2653                 case sdma_event_e10_go_hw_start:
2654                         break;
2655                 case sdma_event_e15_hw_halt_done:
2656                         break;
2657                 case sdma_event_e25_hw_clean_up_done:
2658                         break;
2659                 case sdma_event_e30_go_running:
2660                         sdma_set_state(sde, sdma_state_s99_running);
2661                         ss->go_s99_running = 1;
2662                         break;
2663                 case sdma_event_e40_sw_cleaned:
2664                         break;
2665                 case sdma_event_e50_hw_cleaned:
2666                         break;
2667                 case sdma_event_e60_hw_halted:
2668                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2669                         schedule_work(&sde->err_halt_worker);
2670                         break;
2671                 case sdma_event_e70_go_idle:
2672                         break;
2673                 case sdma_event_e85_link_down:
2674                 case sdma_event_e80_hw_freeze:
2675                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2676                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2677                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2678                         break;
2679                 case sdma_event_e81_hw_frozen:
2680                         break;
2681                 case sdma_event_e82_hw_unfreeze:
2682                         break;
2683                 case sdma_event_e90_sw_halted:
2684                         break;
2685                 }
2686                 break;
2687
2688         case sdma_state_s30_sw_clean_up_wait:
2689                 switch (event) {
2690                 case sdma_event_e00_go_hw_down:
2691                         sdma_set_state(sde, sdma_state_s00_hw_down);
2692                         break;
2693                 case sdma_event_e10_go_hw_start:
2694                         break;
2695                 case sdma_event_e15_hw_halt_done:
2696                         break;
2697                 case sdma_event_e25_hw_clean_up_done:
2698                         break;
2699                 case sdma_event_e30_go_running:
2700                         ss->go_s99_running = 1;
2701                         break;
2702                 case sdma_event_e40_sw_cleaned:
2703                         sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2704                         sdma_start_hw_clean_up(sde);
2705                         break;
2706                 case sdma_event_e50_hw_cleaned:
2707                         break;
2708                 case sdma_event_e60_hw_halted:
2709                         break;
2710                 case sdma_event_e70_go_idle:
2711                         ss->go_s99_running = 0;
2712                         break;
2713                 case sdma_event_e80_hw_freeze:
2714                         break;
2715                 case sdma_event_e81_hw_frozen:
2716                         break;
2717                 case sdma_event_e82_hw_unfreeze:
2718                         break;
2719                 case sdma_event_e85_link_down:
2720                         ss->go_s99_running = 0;
2721                         break;
2722                 case sdma_event_e90_sw_halted:
2723                         break;
2724                 }
2725                 break;
2726
2727         case sdma_state_s40_hw_clean_up_wait:
2728                 switch (event) {
2729                 case sdma_event_e00_go_hw_down:
2730                         sdma_set_state(sde, sdma_state_s00_hw_down);
2731                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2732                         break;
2733                 case sdma_event_e10_go_hw_start:
2734                         break;
2735                 case sdma_event_e15_hw_halt_done:
2736                         break;
2737                 case sdma_event_e25_hw_clean_up_done:
2738                         sdma_hw_start_up(sde);
2739                         sdma_set_state(sde, ss->go_s99_running ?
2740                                        sdma_state_s99_running :
2741                                        sdma_state_s20_idle);
2742                         break;
2743                 case sdma_event_e30_go_running:
2744                         ss->go_s99_running = 1;
2745                         break;
2746                 case sdma_event_e40_sw_cleaned:
2747                         break;
2748                 case sdma_event_e50_hw_cleaned:
2749                         break;
2750                 case sdma_event_e60_hw_halted:
2751                         break;
2752                 case sdma_event_e70_go_idle:
2753                         ss->go_s99_running = 0;
2754                         break;
2755                 case sdma_event_e80_hw_freeze:
2756                         break;
2757                 case sdma_event_e81_hw_frozen:
2758                         break;
2759                 case sdma_event_e82_hw_unfreeze:
2760                         break;
2761                 case sdma_event_e85_link_down:
2762                         ss->go_s99_running = 0;
2763                         break;
2764                 case sdma_event_e90_sw_halted:
2765                         break;
2766                 }
2767                 break;
2768
2769         case sdma_state_s50_hw_halt_wait:
2770                 switch (event) {
2771                 case sdma_event_e00_go_hw_down:
2772                         sdma_set_state(sde, sdma_state_s00_hw_down);
2773                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2774                         break;
2775                 case sdma_event_e10_go_hw_start:
2776                         break;
2777                 case sdma_event_e15_hw_halt_done:
2778                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2779                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2780                         break;
2781                 case sdma_event_e25_hw_clean_up_done:
2782                         break;
2783                 case sdma_event_e30_go_running:
2784                         ss->go_s99_running = 1;
2785                         break;
2786                 case sdma_event_e40_sw_cleaned:
2787                         break;
2788                 case sdma_event_e50_hw_cleaned:
2789                         break;
2790                 case sdma_event_e60_hw_halted:
2791                         schedule_work(&sde->err_halt_worker);
2792                         break;
2793                 case sdma_event_e70_go_idle:
2794                         ss->go_s99_running = 0;
2795                         break;
2796                 case sdma_event_e80_hw_freeze:
2797                         break;
2798                 case sdma_event_e81_hw_frozen:
2799                         break;
2800                 case sdma_event_e82_hw_unfreeze:
2801                         break;
2802                 case sdma_event_e85_link_down:
2803                         ss->go_s99_running = 0;
2804                         break;
2805                 case sdma_event_e90_sw_halted:
2806                         break;
2807                 }
2808                 break;
2809
2810         case sdma_state_s60_idle_halt_wait:
2811                 switch (event) {
2812                 case sdma_event_e00_go_hw_down:
2813                         sdma_set_state(sde, sdma_state_s00_hw_down);
2814                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2815                         break;
2816                 case sdma_event_e10_go_hw_start:
2817                         break;
2818                 case sdma_event_e15_hw_halt_done:
2819                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2820                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2821                         break;
2822                 case sdma_event_e25_hw_clean_up_done:
2823                         break;
2824                 case sdma_event_e30_go_running:
2825                         ss->go_s99_running = 1;
2826                         break;
2827                 case sdma_event_e40_sw_cleaned:
2828                         break;
2829                 case sdma_event_e50_hw_cleaned:
2830                         break;
2831                 case sdma_event_e60_hw_halted:
2832                         schedule_work(&sde->err_halt_worker);
2833                         break;
2834                 case sdma_event_e70_go_idle:
2835                         ss->go_s99_running = 0;
2836                         break;
2837                 case sdma_event_e80_hw_freeze:
2838                         break;
2839                 case sdma_event_e81_hw_frozen:
2840                         break;
2841                 case sdma_event_e82_hw_unfreeze:
2842                         break;
2843                 case sdma_event_e85_link_down:
2844                         break;
2845                 case sdma_event_e90_sw_halted:
2846                         break;
2847                 }
2848                 break;
2849
2850         case sdma_state_s80_hw_freeze:
2851                 switch (event) {
2852                 case sdma_event_e00_go_hw_down:
2853                         sdma_set_state(sde, sdma_state_s00_hw_down);
2854                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2855                         break;
2856                 case sdma_event_e10_go_hw_start:
2857                         break;
2858                 case sdma_event_e15_hw_halt_done:
2859                         break;
2860                 case sdma_event_e25_hw_clean_up_done:
2861                         break;
2862                 case sdma_event_e30_go_running:
2863                         ss->go_s99_running = 1;
2864                         break;
2865                 case sdma_event_e40_sw_cleaned:
2866                         break;
2867                 case sdma_event_e50_hw_cleaned:
2868                         break;
2869                 case sdma_event_e60_hw_halted:
2870                         break;
2871                 case sdma_event_e70_go_idle:
2872                         ss->go_s99_running = 0;
2873                         break;
2874                 case sdma_event_e80_hw_freeze:
2875                         break;
2876                 case sdma_event_e81_hw_frozen:
2877                         sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2878                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2879                         break;
2880                 case sdma_event_e82_hw_unfreeze:
2881                         break;
2882                 case sdma_event_e85_link_down:
2883                         break;
2884                 case sdma_event_e90_sw_halted:
2885                         break;
2886                 }
2887                 break;
2888
2889         case sdma_state_s82_freeze_sw_clean:
2890                 switch (event) {
2891                 case sdma_event_e00_go_hw_down:
2892                         sdma_set_state(sde, sdma_state_s00_hw_down);
2893                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2894                         break;
2895                 case sdma_event_e10_go_hw_start:
2896                         break;
2897                 case sdma_event_e15_hw_halt_done:
2898                         break;
2899                 case sdma_event_e25_hw_clean_up_done:
2900                         break;
2901                 case sdma_event_e30_go_running:
2902                         ss->go_s99_running = 1;
2903                         break;
2904                 case sdma_event_e40_sw_cleaned:
2905                         /* notify caller this engine is done cleaning */
2906                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2907                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2908                         break;
2909                 case sdma_event_e50_hw_cleaned:
2910                         break;
2911                 case sdma_event_e60_hw_halted:
2912                         break;
2913                 case sdma_event_e70_go_idle:
2914                         ss->go_s99_running = 0;
2915                         break;
2916                 case sdma_event_e80_hw_freeze:
2917                         break;
2918                 case sdma_event_e81_hw_frozen:
2919                         break;
2920                 case sdma_event_e82_hw_unfreeze:
2921                         sdma_hw_start_up(sde);
2922                         sdma_set_state(sde, ss->go_s99_running ?
2923                                        sdma_state_s99_running :
2924                                        sdma_state_s20_idle);
2925                         break;
2926                 case sdma_event_e85_link_down:
2927                         break;
2928                 case sdma_event_e90_sw_halted:
2929                         break;
2930                 }
2931                 break;
2932
2933         case sdma_state_s99_running:
2934                 switch (event) {
2935                 case sdma_event_e00_go_hw_down:
2936                         sdma_set_state(sde, sdma_state_s00_hw_down);
2937                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2938                         break;
2939                 case sdma_event_e10_go_hw_start:
2940                         break;
2941                 case sdma_event_e15_hw_halt_done:
2942                         break;
2943                 case sdma_event_e25_hw_clean_up_done:
2944                         break;
2945                 case sdma_event_e30_go_running:
2946                         break;
2947                 case sdma_event_e40_sw_cleaned:
2948                         break;
2949                 case sdma_event_e50_hw_cleaned:
2950                         break;
2951                 case sdma_event_e60_hw_halted:
2952                         need_progress = 1;
2953                         sdma_err_progress_check_schedule(sde);
2954                         fallthrough;
2955                 case sdma_event_e90_sw_halted:
2956                         /*
2957                         * SW initiated halt does not perform engines
2958                         * progress check
2959                         */
2960                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2961                         schedule_work(&sde->err_halt_worker);
2962                         break;
2963                 case sdma_event_e70_go_idle:
2964                         sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
2965                         break;
2966                 case sdma_event_e85_link_down:
2967                         ss->go_s99_running = 0;
2968                         fallthrough;
2969                 case sdma_event_e80_hw_freeze:
2970                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2971                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2972                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2973                         break;
2974                 case sdma_event_e81_hw_frozen:
2975                         break;
2976                 case sdma_event_e82_hw_unfreeze:
2977                         break;
2978                 }
2979                 break;
2980         }
2981
2982         ss->last_event = event;
2983         if (need_progress)
2984                 sdma_make_progress(sde, 0);
2985 }
2986
2987 /*
2988  * _extend_sdma_tx_descs() - helper to extend txreq
2989  *
2990  * This is called once the initial nominal allocation
2991  * of descriptors in the sdma_txreq is exhausted.
2992  *
2993  * The code will bump the allocation up to the max
2994  * of MAX_DESC (64) descriptors. There doesn't seem
2995  * much point in an interim step. The last descriptor
2996  * is reserved for coalesce buffer in order to support
2997  * cases where input packet has >MAX_DESC iovecs.
2998  *
2999  */
3000 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3001 {
3002         int i;
3003         struct sdma_desc *descp;
3004
3005         /* Handle last descriptor */
3006         if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3007                 /* if tlen is 0, it is for padding, release last descriptor */
3008                 if (!tx->tlen) {
3009                         tx->desc_limit = MAX_DESC;
3010                 } else if (!tx->coalesce_buf) {
3011                         /* allocate coalesce buffer with space for padding */
3012                         tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3013                                                    GFP_ATOMIC);
3014                         if (!tx->coalesce_buf)
3015                                 goto enomem;
3016                         tx->coalesce_idx = 0;
3017                 }
3018                 return 0;
3019         }
3020
3021         if (unlikely(tx->num_desc == MAX_DESC))
3022                 goto enomem;
3023
3024         descp = kmalloc_array(MAX_DESC, sizeof(struct sdma_desc), GFP_ATOMIC);
3025         if (!descp)
3026                 goto enomem;
3027         tx->descp = descp;
3028
3029         /* reserve last descriptor for coalescing */
3030         tx->desc_limit = MAX_DESC - 1;
3031         /* copy ones already built */
3032         for (i = 0; i < tx->num_desc; i++)
3033                 tx->descp[i] = tx->descs[i];
3034         return 0;
3035 enomem:
3036         __sdma_txclean(dd, tx);
3037         return -ENOMEM;
3038 }
3039
3040 /*
3041  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3042  *
3043  * This is called once the initial nominal allocation of descriptors
3044  * in the sdma_txreq is exhausted.
3045  *
3046  * This function calls _extend_sdma_tx_descs to extend or allocate
3047  * coalesce buffer. If there is a allocated coalesce buffer, it will
3048  * copy the input packet data into the coalesce buffer. It also adds
3049  * coalesce buffer descriptor once when whole packet is received.
3050  *
3051  * Return:
3052  * <0 - error
3053  * 0 - coalescing, don't populate descriptor
3054  * 1 - continue with populating descriptor
3055  */
3056 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3057                            int type, void *kvaddr, struct page *page,
3058                            unsigned long offset, u16 len)
3059 {
3060         int pad_len, rval;
3061         dma_addr_t addr;
3062
3063         rval = _extend_sdma_tx_descs(dd, tx);
3064         if (rval) {
3065                 __sdma_txclean(dd, tx);
3066                 return rval;
3067         }
3068
3069         /* If coalesce buffer is allocated, copy data into it */
3070         if (tx->coalesce_buf) {
3071                 if (type == SDMA_MAP_NONE) {
3072                         __sdma_txclean(dd, tx);
3073                         return -EINVAL;
3074                 }
3075
3076                 if (type == SDMA_MAP_PAGE) {
3077                         kvaddr = kmap_local_page(page);
3078                         kvaddr += offset;
3079                 } else if (WARN_ON(!kvaddr)) {
3080                         __sdma_txclean(dd, tx);
3081                         return -EINVAL;
3082                 }
3083
3084                 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3085                 tx->coalesce_idx += len;
3086                 if (type == SDMA_MAP_PAGE)
3087                         kunmap_local(kvaddr);
3088
3089                 /* If there is more data, return */
3090                 if (tx->tlen - tx->coalesce_idx)
3091                         return 0;
3092
3093                 /* Whole packet is received; add any padding */
3094                 pad_len = tx->packet_len & (sizeof(u32) - 1);
3095                 if (pad_len) {
3096                         pad_len = sizeof(u32) - pad_len;
3097                         memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3098                         /* padding is taken care of for coalescing case */
3099                         tx->packet_len += pad_len;
3100                         tx->tlen += pad_len;
3101                 }
3102
3103                 /* dma map the coalesce buffer */
3104                 addr = dma_map_single(&dd->pcidev->dev,
3105                                       tx->coalesce_buf,
3106                                       tx->tlen,
3107                                       DMA_TO_DEVICE);
3108
3109                 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3110                         __sdma_txclean(dd, tx);
3111                         return -ENOSPC;
3112                 }
3113
3114                 /* Add descriptor for coalesce buffer */
3115                 tx->desc_limit = MAX_DESC;
3116                 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, NULL, tx,
3117                                          addr, tx->tlen);
3118         }
3119
3120         return 1;
3121 }
3122
3123 /* Update sdes when the lmc changes */
3124 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3125 {
3126         struct sdma_engine *sde;
3127         int i;
3128         u64 sreg;
3129
3130         sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3131                 SD(CHECK_SLID_MASK_SHIFT)) |
3132                 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3133                 SD(CHECK_SLID_VALUE_SHIFT));
3134
3135         for (i = 0; i < dd->num_sdma; i++) {
3136                 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3137                           i, (u32)sreg);
3138                 sde = &dd->per_sdma[i];
3139                 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3140         }
3141 }
3142
3143 /* tx not dword sized - pad */
3144 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3145 {
3146         int rval = 0;
3147
3148         if ((unlikely(tx->num_desc + 1 == tx->desc_limit))) {
3149                 rval = _extend_sdma_tx_descs(dd, tx);
3150                 if (rval) {
3151                         __sdma_txclean(dd, tx);
3152                         return rval;
3153                 }
3154         }
3155
3156         /* finish the one just added */
3157         make_tx_sdma_desc(
3158                 tx,
3159                 SDMA_MAP_NONE,
3160                 NULL,
3161                 dd->sdma_pad_phys,
3162                 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3163         tx->num_desc++;
3164         _sdma_close_tx(dd, tx);
3165         return rval;
3166 }
3167
3168 /*
3169  * Add ahg to the sdma_txreq
3170  *
3171  * The logic will consume up to 3
3172  * descriptors at the beginning of
3173  * sdma_txreq.
3174  */
3175 void _sdma_txreq_ahgadd(
3176         struct sdma_txreq *tx,
3177         u8 num_ahg,
3178         u8 ahg_entry,
3179         u32 *ahg,
3180         u8 ahg_hlen)
3181 {
3182         u32 i, shift = 0, desc = 0;
3183         u8 mode;
3184
3185         WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3186         /* compute mode */
3187         if (num_ahg == 1)
3188                 mode = SDMA_AHG_APPLY_UPDATE1;
3189         else if (num_ahg <= 5)
3190                 mode = SDMA_AHG_APPLY_UPDATE2;
3191         else
3192                 mode = SDMA_AHG_APPLY_UPDATE3;
3193         tx->num_desc++;
3194         /* initialize to consumed descriptors to zero */
3195         switch (mode) {
3196         case SDMA_AHG_APPLY_UPDATE3:
3197                 tx->num_desc++;
3198                 tx->descs[2].qw[0] = 0;
3199                 tx->descs[2].qw[1] = 0;
3200                 fallthrough;
3201         case SDMA_AHG_APPLY_UPDATE2:
3202                 tx->num_desc++;
3203                 tx->descs[1].qw[0] = 0;
3204                 tx->descs[1].qw[1] = 0;
3205                 break;
3206         }
3207         ahg_hlen >>= 2;
3208         tx->descs[0].qw[1] |=
3209                 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3210                         << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3211                 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3212                         << SDMA_DESC1_HEADER_DWS_SHIFT) |
3213                 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3214                         << SDMA_DESC1_HEADER_MODE_SHIFT) |
3215                 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3216                         << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3217         for (i = 0; i < (num_ahg - 1); i++) {
3218                 if (!shift && !(i & 2))
3219                         desc++;
3220                 tx->descs[desc].qw[!!(i & 2)] |=
3221                         (((u64)ahg[i + 1])
3222                                 << shift);
3223                 shift = (shift + 32) & 63;
3224         }
3225 }
3226
3227 /**
3228  * sdma_ahg_alloc - allocate an AHG entry
3229  * @sde: engine to allocate from
3230  *
3231  * Return:
3232  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3233  * -ENOSPC if an entry is not available
3234  */
3235 int sdma_ahg_alloc(struct sdma_engine *sde)
3236 {
3237         int nr;
3238         int oldbit;
3239
3240         if (!sde) {
3241                 trace_hfi1_ahg_allocate(sde, -EINVAL);
3242                 return -EINVAL;
3243         }
3244         while (1) {
3245                 nr = ffz(READ_ONCE(sde->ahg_bits));
3246                 if (nr > 31) {
3247                         trace_hfi1_ahg_allocate(sde, -ENOSPC);
3248                         return -ENOSPC;
3249                 }
3250                 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3251                 if (!oldbit)
3252                         break;
3253                 cpu_relax();
3254         }
3255         trace_hfi1_ahg_allocate(sde, nr);
3256         return nr;
3257 }
3258
3259 /**
3260  * sdma_ahg_free - free an AHG entry
3261  * @sde: engine to return AHG entry
3262  * @ahg_index: index to free
3263  *
3264  * This routine frees the indicate AHG entry.
3265  */
3266 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3267 {
3268         if (!sde)
3269                 return;
3270         trace_hfi1_ahg_deallocate(sde, ahg_index);
3271         if (ahg_index < 0 || ahg_index > 31)
3272                 return;
3273         clear_bit(ahg_index, &sde->ahg_bits);
3274 }
3275
3276 /*
3277  * SPC freeze handling for SDMA engines.  Called when the driver knows
3278  * the SPC is going into a freeze but before the freeze is fully
3279  * settled.  Generally an error interrupt.
3280  *
3281  * This event will pull the engine out of running so no more entries can be
3282  * added to the engine's queue.
3283  */
3284 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3285 {
3286         int i;
3287         enum sdma_events event = link_down ? sdma_event_e85_link_down :
3288                                              sdma_event_e80_hw_freeze;
3289
3290         /* set up the wait but do not wait here */
3291         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3292
3293         /* tell all engines to stop running and wait */
3294         for (i = 0; i < dd->num_sdma; i++)
3295                 sdma_process_event(&dd->per_sdma[i], event);
3296
3297         /* sdma_freeze() will wait for all engines to have stopped */
3298 }
3299
3300 /*
3301  * SPC freeze handling for SDMA engines.  Called when the driver knows
3302  * the SPC is fully frozen.
3303  */
3304 void sdma_freeze(struct hfi1_devdata *dd)
3305 {
3306         int i;
3307         int ret;
3308
3309         /*
3310          * Make sure all engines have moved out of the running state before
3311          * continuing.
3312          */
3313         ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3314                                        atomic_read(&dd->sdma_unfreeze_count) <=
3315                                        0);
3316         /* interrupted or count is negative, then unloading - just exit */
3317         if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3318                 return;
3319
3320         /* set up the count for the next wait */
3321         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3322
3323         /* tell all engines that the SPC is frozen, they can start cleaning */
3324         for (i = 0; i < dd->num_sdma; i++)
3325                 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3326
3327         /*
3328          * Wait for everyone to finish software clean before exiting.  The
3329          * software clean will read engine CSRs, so must be completed before
3330          * the next step, which will clear the engine CSRs.
3331          */
3332         (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3333                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3334         /* no need to check results - done no matter what */
3335 }
3336
3337 /*
3338  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3339  *
3340  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3341  * that is left is a software clean.  We could do it after the SPC is fully
3342  * frozen, but then we'd have to add another state to wait for the unfreeze.
3343  * Instead, just defer the software clean until the unfreeze step.
3344  */
3345 void sdma_unfreeze(struct hfi1_devdata *dd)
3346 {
3347         int i;
3348
3349         /* tell all engines start freeze clean up */
3350         for (i = 0; i < dd->num_sdma; i++)
3351                 sdma_process_event(&dd->per_sdma[i],
3352                                    sdma_event_e82_hw_unfreeze);
3353 }
3354
3355 /**
3356  * _sdma_engine_progress_schedule() - schedule progress on engine
3357  * @sde: sdma_engine to schedule progress
3358  *
3359  */
3360 void _sdma_engine_progress_schedule(
3361         struct sdma_engine *sde)
3362 {
3363         trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3364         /* assume we have selected a good cpu */
3365         write_csr(sde->dd,
3366                   CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3367                   sde->progress_mask);
3368 }
This page took 0.227262 seconds and 4 git commands to generate.