1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
3 * Copyright(c) 2015 - 2018 Intel Corporation.
6 #include <linux/spinlock.h>
7 #include <linux/seqlock.h>
8 #include <linux/netdevice.h>
9 #include <linux/moduleparam.h>
10 #include <linux/bitops.h>
11 #include <linux/timer.h>
12 #include <linux/vmalloc.h>
13 #include <linux/highmem.h>
22 /* must be a power of 2 >= 64 <= 32768 */
23 #define SDMA_DESCQ_CNT 2048
24 #define SDMA_DESC_INTR 64
25 #define INVALID_TAIL 0xffff
26 #define SDMA_PAD max_t(size_t, MAX_16B_PADDING, sizeof(u32))
28 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
29 module_param(sdma_descq_cnt, uint, S_IRUGO);
30 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
32 static uint sdma_idle_cnt = 250;
33 module_param(sdma_idle_cnt, uint, S_IRUGO);
34 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
37 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
38 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
40 static uint sdma_desct_intr = SDMA_DESC_INTR;
41 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
42 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
44 #define SDMA_WAIT_BATCH_SIZE 20
45 /* max wait time for a SDMA engine to indicate it has halted */
46 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
47 /* all SDMA engine errors that cause a halt */
49 #define SD(name) SEND_DMA_##name
50 #define ALL_SDMA_ENG_HALT_ERRS \
51 (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
52 | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
53 | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
54 | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
55 | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
56 | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
57 | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
58 | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
59 | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
60 | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
61 | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
62 | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
63 | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
64 | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
65 | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
66 | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
67 | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
68 | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
70 /* sdma_sendctrl operations */
71 #define SDMA_SENDCTRL_OP_ENABLE BIT(0)
72 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
73 #define SDMA_SENDCTRL_OP_HALT BIT(2)
74 #define SDMA_SENDCTRL_OP_CLEANUP BIT(3)
76 /* handle long defines */
77 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
78 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
79 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
80 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
82 static const char * const sdma_state_names[] = {
83 [sdma_state_s00_hw_down] = "s00_HwDown",
84 [sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait",
85 [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
86 [sdma_state_s20_idle] = "s20_Idle",
87 [sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait",
88 [sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait",
89 [sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait",
90 [sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait",
91 [sdma_state_s80_hw_freeze] = "s80_HwFreeze",
92 [sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean",
93 [sdma_state_s99_running] = "s99_Running",
96 #ifdef CONFIG_SDMA_VERBOSITY
97 static const char * const sdma_event_names[] = {
98 [sdma_event_e00_go_hw_down] = "e00_GoHwDown",
99 [sdma_event_e10_go_hw_start] = "e10_GoHwStart",
100 [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
101 [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
102 [sdma_event_e30_go_running] = "e30_GoRunning",
103 [sdma_event_e40_sw_cleaned] = "e40_SwCleaned",
104 [sdma_event_e50_hw_cleaned] = "e50_HwCleaned",
105 [sdma_event_e60_hw_halted] = "e60_HwHalted",
106 [sdma_event_e70_go_idle] = "e70_GoIdle",
107 [sdma_event_e80_hw_freeze] = "e80_HwFreeze",
108 [sdma_event_e81_hw_frozen] = "e81_HwFrozen",
109 [sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze",
110 [sdma_event_e85_link_down] = "e85_LinkDown",
111 [sdma_event_e90_sw_halted] = "e90_SwHalted",
115 static const struct sdma_set_state_action sdma_action_table[] = {
116 [sdma_state_s00_hw_down] = {
117 .go_s99_running_tofalse = 1,
123 [sdma_state_s10_hw_start_up_halt_wait] = {
129 [sdma_state_s15_hw_start_up_clean_wait] = {
135 [sdma_state_s20_idle] = {
141 [sdma_state_s30_sw_clean_up_wait] = {
147 [sdma_state_s40_hw_clean_up_wait] = {
153 [sdma_state_s50_hw_halt_wait] = {
159 [sdma_state_s60_idle_halt_wait] = {
160 .go_s99_running_tofalse = 1,
166 [sdma_state_s80_hw_freeze] = {
172 [sdma_state_s82_freeze_sw_clean] = {
178 [sdma_state_s99_running] = {
183 .go_s99_running_totrue = 1,
187 #define SDMA_TAIL_UPDATE_THRESH 0x1F
189 /* declare all statics here rather than keep sorting */
190 static void sdma_complete(struct kref *);
191 static void sdma_finalput(struct sdma_state *);
192 static void sdma_get(struct sdma_state *);
193 static void sdma_hw_clean_up_task(struct tasklet_struct *);
194 static void sdma_put(struct sdma_state *);
195 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
196 static void sdma_start_hw_clean_up(struct sdma_engine *);
197 static void sdma_sw_clean_up_task(struct tasklet_struct *);
198 static void sdma_sendctrl(struct sdma_engine *, unsigned);
199 static void init_sdma_regs(struct sdma_engine *, u32, uint);
200 static void sdma_process_event(
201 struct sdma_engine *sde,
202 enum sdma_events event);
203 static void __sdma_process_event(
204 struct sdma_engine *sde,
205 enum sdma_events event);
206 static void dump_sdma_state(struct sdma_engine *sde);
207 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
208 static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
209 static void sdma_flush_descq(struct sdma_engine *sde);
212 * sdma_state_name() - return state string from enum
215 static const char *sdma_state_name(enum sdma_states state)
217 return sdma_state_names[state];
220 static void sdma_get(struct sdma_state *ss)
225 static void sdma_complete(struct kref *kref)
227 struct sdma_state *ss =
228 container_of(kref, struct sdma_state, kref);
233 static void sdma_put(struct sdma_state *ss)
235 kref_put(&ss->kref, sdma_complete);
238 static void sdma_finalput(struct sdma_state *ss)
241 wait_for_completion(&ss->comp);
244 static inline void write_sde_csr(
245 struct sdma_engine *sde,
249 write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
252 static inline u64 read_sde_csr(
253 struct sdma_engine *sde,
256 return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
260 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
261 * sdma engine 'sde' to drop to 0.
263 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
266 u64 off = 8 * sde->this_idx;
267 struct hfi1_devdata *dd = sde->dd;
274 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
276 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
277 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
280 /* counter is reest if accupancy count changes */
284 /* timed out - bounce the link */
285 dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
286 __func__, sde->this_idx, (u32)reg);
287 queue_work(dd->pport->link_wq,
288 &dd->pport->link_bounce_work);
296 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
297 * and pause for credit return.
299 void sdma_wait(struct hfi1_devdata *dd)
303 for (i = 0; i < dd->num_sdma; i++) {
304 struct sdma_engine *sde = &dd->per_sdma[i];
306 sdma_wait_for_packet_egress(sde, 0);
310 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
314 if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
317 reg &= SD(DESC_CNT_CNT_MASK);
318 reg <<= SD(DESC_CNT_CNT_SHIFT);
319 write_sde_csr(sde, SD(DESC_CNT), reg);
322 static inline void complete_tx(struct sdma_engine *sde,
323 struct sdma_txreq *tx,
326 /* protect against complete modifying */
327 struct iowait *wait = tx->wait;
328 callback_t complete = tx->complete;
330 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
331 trace_hfi1_sdma_out_sn(sde, tx->sn);
332 if (WARN_ON_ONCE(sde->head_sn != tx->sn))
333 dd_dev_err(sde->dd, "expected %llu got %llu\n",
334 sde->head_sn, tx->sn);
337 __sdma_txclean(sde->dd, tx);
339 (*complete)(tx, res);
340 if (iowait_sdma_dec(wait))
341 iowait_drain_wakeup(wait);
345 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
347 * Depending on timing there can be txreqs in two places:
348 * - in the descq ring
349 * - in the flush list
351 * To avoid ordering issues the descq ring needs to be flushed
352 * first followed by the flush list.
354 * This routine is called from two places
355 * - From a work queue item
356 * - Directly from the state machine just before setting the
359 * Must be called with head_lock held
362 static void sdma_flush(struct sdma_engine *sde)
364 struct sdma_txreq *txp, *txp_next;
365 LIST_HEAD(flushlist);
369 /* flush from head to tail */
370 sdma_flush_descq(sde);
371 spin_lock_irqsave(&sde->flushlist_lock, flags);
372 /* copy flush list */
373 list_splice_init(&sde->flushlist, &flushlist);
374 spin_unlock_irqrestore(&sde->flushlist_lock, flags);
375 /* flush from flush list */
376 list_for_each_entry_safe(txp, txp_next, &flushlist, list)
377 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
378 /* wakeup QPs orphaned on the dmawait list */
380 struct iowait *w, *nw;
382 seq = read_seqbegin(&sde->waitlock);
383 if (!list_empty(&sde->dmawait)) {
384 write_seqlock(&sde->waitlock);
385 list_for_each_entry_safe(w, nw, &sde->dmawait, list) {
387 w->wakeup(w, SDMA_AVAIL_REASON);
388 list_del_init(&w->list);
391 write_sequnlock(&sde->waitlock);
393 } while (read_seqretry(&sde->waitlock, seq));
397 * Fields a work request for flushing the descq ring
400 * If the engine has been brought to running during
401 * the scheduling delay, the flush is ignored, assuming
402 * that the process of bringing the engine to running
403 * would have done this flush prior to going to running.
406 static void sdma_field_flush(struct work_struct *work)
409 struct sdma_engine *sde =
410 container_of(work, struct sdma_engine, flush_worker);
412 write_seqlock_irqsave(&sde->head_lock, flags);
413 if (!__sdma_running(sde))
415 write_sequnlock_irqrestore(&sde->head_lock, flags);
418 static void sdma_err_halt_wait(struct work_struct *work)
420 struct sdma_engine *sde = container_of(work, struct sdma_engine,
423 unsigned long timeout;
425 timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
427 statuscsr = read_sde_csr(sde, SD(STATUS));
428 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
431 if (time_after(jiffies, timeout)) {
433 "SDMA engine %d - timeout waiting for engine to halt\n",
436 * Continue anyway. This could happen if there was
437 * an uncorrectable error in the wrong spot.
441 usleep_range(80, 120);
444 sdma_process_event(sde, sdma_event_e15_hw_halt_done);
447 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
449 if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
451 struct hfi1_devdata *dd = sde->dd;
453 for (index = 0; index < dd->num_sdma; index++) {
454 struct sdma_engine *curr_sdma = &dd->per_sdma[index];
456 if (curr_sdma != sde)
457 curr_sdma->progress_check_head =
458 curr_sdma->descq_head;
461 "SDMA engine %d - check scheduled\n",
463 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
467 static void sdma_err_progress_check(struct timer_list *t)
470 struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
472 dd_dev_err(sde->dd, "SDE progress check event\n");
473 for (index = 0; index < sde->dd->num_sdma; index++) {
474 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
477 /* check progress on each engine except the current one */
481 * We must lock interrupts when acquiring sde->lock,
482 * to avoid a deadlock if interrupt triggers and spins on
483 * the same lock on same CPU
485 spin_lock_irqsave(&curr_sde->tail_lock, flags);
486 write_seqlock(&curr_sde->head_lock);
488 /* skip non-running queues */
489 if (curr_sde->state.current_state != sdma_state_s99_running) {
490 write_sequnlock(&curr_sde->head_lock);
491 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
495 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
496 (curr_sde->descq_head ==
497 curr_sde->progress_check_head))
498 __sdma_process_event(curr_sde,
499 sdma_event_e90_sw_halted);
500 write_sequnlock(&curr_sde->head_lock);
501 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
503 schedule_work(&sde->err_halt_worker);
506 static void sdma_hw_clean_up_task(struct tasklet_struct *t)
508 struct sdma_engine *sde = from_tasklet(sde, t,
509 sdma_hw_clean_up_task);
513 #ifdef CONFIG_SDMA_VERBOSITY
514 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
515 sde->this_idx, slashstrip(__FILE__), __LINE__,
518 statuscsr = read_sde_csr(sde, SD(STATUS));
519 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
525 sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
528 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
530 return sde->tx_ring[sde->tx_head & sde->sdma_mask];
534 * flush ring for recovery
536 static void sdma_flush_descq(struct sdma_engine *sde)
540 struct sdma_txreq *txp = get_txhead(sde);
542 /* The reason for some of the complexity of this code is that
543 * not all descriptors have corresponding txps. So, we have to
544 * be able to skip over descs until we wander into the range of
545 * the next txp on the list.
547 head = sde->descq_head & sde->sdma_mask;
548 tail = sde->descq_tail & sde->sdma_mask;
549 while (head != tail) {
550 /* advance head, wrap if needed */
551 head = ++sde->descq_head & sde->sdma_mask;
552 /* if now past this txp's descs, do the callback */
553 if (txp && txp->next_descq_idx == head) {
554 /* remove from list */
555 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
556 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
557 trace_hfi1_sdma_progress(sde, head, tail, txp);
558 txp = get_txhead(sde);
563 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
566 static void sdma_sw_clean_up_task(struct tasklet_struct *t)
568 struct sdma_engine *sde = from_tasklet(sde, t, sdma_sw_clean_up_task);
571 spin_lock_irqsave(&sde->tail_lock, flags);
572 write_seqlock(&sde->head_lock);
575 * At this point, the following should always be true:
576 * - We are halted, so no more descriptors are getting retired.
577 * - We are not running, so no one is submitting new work.
578 * - Only we can send the e40_sw_cleaned, so we can't start
579 * running again until we say so. So, the active list and
580 * descq are ours to play with.
584 * In the error clean up sequence, software clean must be called
585 * before the hardware clean so we can use the hardware head in
586 * the progress routine. A hardware clean or SPC unfreeze will
587 * reset the hardware head.
589 * Process all retired requests. The progress routine will use the
590 * latest physical hardware head - we are not running so speed does
593 sdma_make_progress(sde, 0);
598 * Reset our notion of head and tail.
599 * Note that the HW registers have been reset via an earlier
604 sde->desc_avail = sdma_descq_freecnt(sde);
607 __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
609 write_sequnlock(&sde->head_lock);
610 spin_unlock_irqrestore(&sde->tail_lock, flags);
613 static void sdma_sw_tear_down(struct sdma_engine *sde)
615 struct sdma_state *ss = &sde->state;
617 /* Releasing this reference means the state machine has stopped. */
620 /* stop waiting for all unfreeze events to complete */
621 atomic_set(&sde->dd->sdma_unfreeze_count, -1);
622 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
625 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
627 tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
630 static void sdma_set_state(struct sdma_engine *sde,
631 enum sdma_states next_state)
633 struct sdma_state *ss = &sde->state;
634 const struct sdma_set_state_action *action = sdma_action_table;
637 trace_hfi1_sdma_state(
639 sdma_state_names[ss->current_state],
640 sdma_state_names[next_state]);
642 /* debugging bookkeeping */
643 ss->previous_state = ss->current_state;
644 ss->previous_op = ss->current_op;
645 ss->current_state = next_state;
647 if (ss->previous_state != sdma_state_s99_running &&
648 next_state == sdma_state_s99_running)
651 if (action[next_state].op_enable)
652 op |= SDMA_SENDCTRL_OP_ENABLE;
654 if (action[next_state].op_intenable)
655 op |= SDMA_SENDCTRL_OP_INTENABLE;
657 if (action[next_state].op_halt)
658 op |= SDMA_SENDCTRL_OP_HALT;
660 if (action[next_state].op_cleanup)
661 op |= SDMA_SENDCTRL_OP_CLEANUP;
663 if (action[next_state].go_s99_running_tofalse)
664 ss->go_s99_running = 0;
666 if (action[next_state].go_s99_running_totrue)
667 ss->go_s99_running = 1;
670 sdma_sendctrl(sde, ss->current_op);
674 * sdma_get_descq_cnt() - called when device probed
676 * Return a validated descq count.
678 * This is currently only used in the verbs initialization to build the tx
681 * This will probably be deleted in favor of a more scalable approach to
685 u16 sdma_get_descq_cnt(void)
687 u16 count = sdma_descq_cnt;
690 return SDMA_DESCQ_CNT;
691 /* count must be a power of 2 greater than 64 and less than
692 * 32768. Otherwise return default.
694 if (!is_power_of_2(count))
695 return SDMA_DESCQ_CNT;
696 if (count < 64 || count > 32768)
697 return SDMA_DESCQ_CNT;
702 * sdma_engine_get_vl() - return vl for a given sdma engine
705 * This function returns the vl mapped to a given engine, or an error if
706 * the mapping can't be found. The mapping fields are protected by RCU.
708 int sdma_engine_get_vl(struct sdma_engine *sde)
710 struct hfi1_devdata *dd = sde->dd;
711 struct sdma_vl_map *m;
714 if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
718 m = rcu_dereference(dd->sdma_map);
723 vl = m->engine_to_vl[sde->this_idx];
730 * sdma_select_engine_vl() - select sdma engine
732 * @selector: a spreading factor
736 * This function returns an engine based on the selector and a vl. The
737 * mapping fields are protected by RCU.
739 struct sdma_engine *sdma_select_engine_vl(
740 struct hfi1_devdata *dd,
744 struct sdma_vl_map *m;
745 struct sdma_map_elem *e;
746 struct sdma_engine *rval;
748 /* NOTE This should only happen if SC->VL changed after the initial
749 * checks on the QP/AH
750 * Default will return engine 0 below
758 m = rcu_dereference(dd->sdma_map);
761 return &dd->per_sdma[0];
763 e = m->map[vl & m->mask];
764 rval = e->sde[selector & e->mask];
768 rval = !rval ? &dd->per_sdma[0] : rval;
769 trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
774 * sdma_select_engine_sc() - select sdma engine
776 * @selector: a spreading factor
780 * This function returns an engine based on the selector and an sc.
782 struct sdma_engine *sdma_select_engine_sc(
783 struct hfi1_devdata *dd,
787 u8 vl = sc_to_vlt(dd, sc5);
789 return sdma_select_engine_vl(dd, selector, vl);
792 struct sdma_rht_map_elem {
795 struct sdma_engine *sde[];
798 struct sdma_rht_node {
799 unsigned long cpu_id;
800 struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
801 struct rhash_head node;
804 #define NR_CPUS_HINT 192
806 static const struct rhashtable_params sdma_rht_params = {
807 .nelem_hint = NR_CPUS_HINT,
808 .head_offset = offsetof(struct sdma_rht_node, node),
809 .key_offset = offsetof(struct sdma_rht_node, cpu_id),
810 .key_len = sizeof_field(struct sdma_rht_node, cpu_id),
813 .automatic_shrinking = true,
817 * sdma_select_user_engine() - select sdma engine based on user setup
819 * @selector: a spreading factor
822 * This function returns an sdma engine for a user sdma request.
823 * User defined sdma engine affinity setting is honored when applicable,
824 * otherwise system default sdma engine mapping is used. To ensure correct
825 * ordering, the mapping from <selector, vl> to sde must remain unchanged.
827 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
830 struct sdma_rht_node *rht_node;
831 struct sdma_engine *sde = NULL;
832 unsigned long cpu_id;
835 * To ensure that always the same sdma engine(s) will be
836 * selected make sure the process is pinned to this CPU only.
838 if (current->nr_cpus_allowed != 1)
842 cpu_id = smp_processor_id();
843 rht_node = rhashtable_lookup(dd->sdma_rht, &cpu_id,
846 if (rht_node && rht_node->map[vl]) {
847 struct sdma_rht_map_elem *map = rht_node->map[vl];
849 sde = map->sde[selector & map->mask];
857 return sdma_select_engine_vl(dd, selector, vl);
860 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
864 for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
865 map->sde[map->ctr + i] = map->sde[i];
868 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
869 struct sdma_engine *sde)
873 /* only need to check the first ctr entries for a match */
874 for (i = 0; i < map->ctr; i++) {
875 if (map->sde[i] == sde) {
876 memmove(&map->sde[i], &map->sde[i + 1],
877 (map->ctr - i - 1) * sizeof(map->sde[0]));
879 pow = roundup_pow_of_two(map->ctr ? : 1);
881 sdma_populate_sde_map(map);
888 * Prevents concurrent reads and writes of the sdma engine cpu_mask
890 static DEFINE_MUTEX(process_to_sde_mutex);
892 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
895 struct hfi1_devdata *dd = sde->dd;
896 cpumask_var_t mask, new_mask;
899 struct sdma_rht_node *rht_node;
901 vl = sdma_engine_get_vl(sde);
902 if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
905 ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
909 ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
911 free_cpumask_var(mask);
914 ret = cpulist_parse(buf, mask);
918 if (!cpumask_subset(mask, cpu_online_mask)) {
919 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
924 sz = sizeof(struct sdma_rht_map_elem) +
925 (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
927 mutex_lock(&process_to_sde_mutex);
929 for_each_cpu(cpu, mask) {
930 /* Check if we have this already mapped */
931 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
932 cpumask_set_cpu(cpu, new_mask);
936 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
939 rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
945 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
946 if (!rht_node->map[vl]) {
951 rht_node->cpu_id = cpu;
952 rht_node->map[vl]->mask = 0;
953 rht_node->map[vl]->ctr = 1;
954 rht_node->map[vl]->sde[0] = sde;
956 ret = rhashtable_insert_fast(dd->sdma_rht,
960 kfree(rht_node->map[vl]);
962 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
970 /* Add new user mappings */
971 if (!rht_node->map[vl])
972 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
974 if (!rht_node->map[vl]) {
979 rht_node->map[vl]->ctr++;
980 ctr = rht_node->map[vl]->ctr;
981 rht_node->map[vl]->sde[ctr - 1] = sde;
982 pow = roundup_pow_of_two(ctr);
983 rht_node->map[vl]->mask = pow - 1;
985 /* Populate the sde map table */
986 sdma_populate_sde_map(rht_node->map[vl]);
988 cpumask_set_cpu(cpu, new_mask);
991 /* Clean up old mappings */
992 for_each_cpu(cpu, cpu_online_mask) {
993 struct sdma_rht_node *rht_node;
995 /* Don't cleanup sdes that are set in the new mask */
996 if (cpumask_test_cpu(cpu, mask))
999 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1005 /* Remove mappings for old sde */
1006 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1007 if (rht_node->map[i])
1008 sdma_cleanup_sde_map(rht_node->map[i],
1011 /* Free empty hash table entries */
1012 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1013 if (!rht_node->map[i])
1016 if (rht_node->map[i]->ctr) {
1023 ret = rhashtable_remove_fast(dd->sdma_rht,
1028 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1029 kfree(rht_node->map[i]);
1036 cpumask_copy(&sde->cpu_mask, new_mask);
1038 mutex_unlock(&process_to_sde_mutex);
1040 free_cpumask_var(mask);
1041 free_cpumask_var(new_mask);
1042 return ret ? : strnlen(buf, PAGE_SIZE);
1045 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1047 mutex_lock(&process_to_sde_mutex);
1048 if (cpumask_empty(&sde->cpu_mask))
1049 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1051 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1052 mutex_unlock(&process_to_sde_mutex);
1053 return strnlen(buf, PAGE_SIZE);
1056 static void sdma_rht_free(void *ptr, void *arg)
1058 struct sdma_rht_node *rht_node = ptr;
1061 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1062 kfree(rht_node->map[i]);
1068 * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1073 * This routine dumps the process to sde mappings per cpu
1075 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1076 struct hfi1_devdata *dd,
1077 unsigned long cpuid)
1079 struct sdma_rht_node *rht_node;
1082 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1087 seq_printf(s, "cpu%3lu: ", cpuid);
1088 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1089 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1092 seq_printf(s, " vl%d: [", i);
1094 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1095 if (!rht_node->map[i]->sde[j])
1101 seq_printf(s, " sdma%2d",
1102 rht_node->map[i]->sde[j]->this_idx);
1111 * Free the indicated map struct
1113 static void sdma_map_free(struct sdma_vl_map *m)
1117 for (i = 0; m && i < m->actual_vls; i++)
1123 * Handle RCU callback
1125 static void sdma_map_rcu_callback(struct rcu_head *list)
1127 struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1133 * sdma_map_init - called when # vls change
1135 * @port: port number
1136 * @num_vls: number of vls
1137 * @vl_engines: per vl engine mapping (optional)
1139 * This routine changes the mapping based on the number of vls.
1141 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1142 * implies auto computing the loading and giving each VLs a uniform
1143 * distribution of engines per VL.
1145 * The auto algorithm computes the sde_per_vl and the number of extra
1146 * engines. Any extra engines are added from the last VL on down.
1148 * rcu locking is used here to control access to the mapping fields.
1150 * If either the num_vls or num_sdma are non-power of 2, the array sizes
1151 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1152 * up to the next highest power of 2 and the first entry is reused
1153 * in a round robin fashion.
1155 * If an error occurs the map change is not done and the mapping is
1159 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1162 int extra, sde_per_vl;
1164 u8 lvl_engines[OPA_MAX_VLS];
1165 struct sdma_vl_map *oldmap, *newmap;
1167 if (!(dd->flags & HFI1_HAS_SEND_DMA))
1171 /* truncate divide */
1172 sde_per_vl = dd->num_sdma / num_vls;
1174 extra = dd->num_sdma % num_vls;
1175 vl_engines = lvl_engines;
1176 /* add extras from last vl down */
1177 for (i = num_vls - 1; i >= 0; i--, extra--)
1178 vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1182 sizeof(struct sdma_vl_map) +
1183 roundup_pow_of_two(num_vls) *
1184 sizeof(struct sdma_map_elem *),
1188 newmap->actual_vls = num_vls;
1189 newmap->vls = roundup_pow_of_two(num_vls);
1190 newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1191 /* initialize back-map */
1192 for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1193 newmap->engine_to_vl[i] = -1;
1194 for (i = 0; i < newmap->vls; i++) {
1195 /* save for wrap around */
1196 int first_engine = engine;
1198 if (i < newmap->actual_vls) {
1199 int sz = roundup_pow_of_two(vl_engines[i]);
1201 /* only allocate once */
1202 newmap->map[i] = kzalloc(
1203 sizeof(struct sdma_map_elem) +
1204 sz * sizeof(struct sdma_engine *),
1206 if (!newmap->map[i])
1208 newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1209 /* assign engines */
1210 for (j = 0; j < sz; j++) {
1211 newmap->map[i]->sde[j] =
1212 &dd->per_sdma[engine];
1213 if (++engine >= first_engine + vl_engines[i])
1214 /* wrap back to first engine */
1215 engine = first_engine;
1217 /* assign back-map */
1218 for (j = 0; j < vl_engines[i]; j++)
1219 newmap->engine_to_vl[first_engine + j] = i;
1221 /* just re-use entry without allocating */
1222 newmap->map[i] = newmap->map[i % num_vls];
1224 engine = first_engine + vl_engines[i];
1226 /* newmap in hand, save old map */
1227 spin_lock_irq(&dd->sde_map_lock);
1228 oldmap = rcu_dereference_protected(dd->sdma_map,
1229 lockdep_is_held(&dd->sde_map_lock));
1231 /* publish newmap */
1232 rcu_assign_pointer(dd->sdma_map, newmap);
1234 spin_unlock_irq(&dd->sde_map_lock);
1235 /* success, free any old map after grace period */
1237 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1240 /* free any partial allocation */
1241 sdma_map_free(newmap);
1246 * sdma_clean - Clean up allocated memory
1247 * @dd: struct hfi1_devdata
1248 * @num_engines: num sdma engines
1250 * This routine can be called regardless of the success of
1253 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1256 struct sdma_engine *sde;
1258 if (dd->sdma_pad_dma) {
1259 dma_free_coherent(&dd->pcidev->dev, SDMA_PAD,
1260 (void *)dd->sdma_pad_dma,
1262 dd->sdma_pad_dma = NULL;
1263 dd->sdma_pad_phys = 0;
1265 if (dd->sdma_heads_dma) {
1266 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1267 (void *)dd->sdma_heads_dma,
1268 dd->sdma_heads_phys);
1269 dd->sdma_heads_dma = NULL;
1270 dd->sdma_heads_phys = 0;
1272 for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1273 sde = &dd->per_sdma[i];
1275 sde->head_dma = NULL;
1281 sde->descq_cnt * sizeof(u64[2]),
1286 sde->descq_phys = 0;
1288 kvfree(sde->tx_ring);
1289 sde->tx_ring = NULL;
1291 if (rcu_access_pointer(dd->sdma_map)) {
1292 spin_lock_irq(&dd->sde_map_lock);
1293 sdma_map_free(rcu_access_pointer(dd->sdma_map));
1294 RCU_INIT_POINTER(dd->sdma_map, NULL);
1295 spin_unlock_irq(&dd->sde_map_lock);
1298 kfree(dd->per_sdma);
1299 dd->per_sdma = NULL;
1302 rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1303 kfree(dd->sdma_rht);
1304 dd->sdma_rht = NULL;
1309 * sdma_init() - called when device probed
1311 * @port: port number (currently only zero)
1313 * Initializes each sde and its csrs.
1314 * Interrupts are not required to be enabled.
1317 * 0 - success, -errno on failure
1319 int sdma_init(struct hfi1_devdata *dd, u8 port)
1322 struct sdma_engine *sde;
1323 struct rhashtable *tmp_sdma_rht;
1326 struct hfi1_pportdata *ppd = dd->pport + port;
1327 u32 per_sdma_credits;
1328 uint idle_cnt = sdma_idle_cnt;
1329 size_t num_engines = chip_sdma_engines(dd);
1332 if (!HFI1_CAP_IS_KSET(SDMA)) {
1333 HFI1_CAP_CLEAR(SDMA_AHG);
1337 /* can't exceed chip support */
1338 mod_num_sdma <= chip_sdma_engines(dd) &&
1339 /* count must be >= vls */
1340 mod_num_sdma >= num_vls)
1341 num_engines = mod_num_sdma;
1343 dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1344 dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1345 dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1346 chip_sdma_mem_size(dd));
1349 chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1351 /* set up freeze waitqueue */
1352 init_waitqueue_head(&dd->sdma_unfreeze_wq);
1353 atomic_set(&dd->sdma_unfreeze_count, 0);
1355 descq_cnt = sdma_get_descq_cnt();
1356 dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1357 num_engines, descq_cnt);
1359 /* alloc memory for array of send engines */
1360 dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1361 GFP_KERNEL, dd->node);
1365 idle_cnt = ns_to_cclock(dd, idle_cnt);
1368 SDMA_DESC1_HEAD_TO_HOST_FLAG;
1371 SDMA_DESC1_INT_REQ_FLAG;
1373 if (!sdma_desct_intr)
1374 sdma_desct_intr = SDMA_DESC_INTR;
1376 /* Allocate memory for SendDMA descriptor FIFOs */
1377 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1378 sde = &dd->per_sdma[this_idx];
1381 sde->this_idx = this_idx;
1382 sde->descq_cnt = descq_cnt;
1383 sde->desc_avail = sdma_descq_freecnt(sde);
1384 sde->sdma_shift = ilog2(descq_cnt);
1385 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1387 /* Create a mask specifically for each interrupt source */
1388 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1390 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1392 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1394 /* Create a combined mask to cover all 3 interrupt sources */
1395 sde->imask = sde->int_mask | sde->progress_mask |
1398 spin_lock_init(&sde->tail_lock);
1399 seqlock_init(&sde->head_lock);
1400 spin_lock_init(&sde->senddmactrl_lock);
1401 spin_lock_init(&sde->flushlist_lock);
1402 seqlock_init(&sde->waitlock);
1403 /* insure there is always a zero bit */
1404 sde->ahg_bits = 0xfffffffe00000000ULL;
1406 sdma_set_state(sde, sdma_state_s00_hw_down);
1408 /* set up reference counting */
1409 kref_init(&sde->state.kref);
1410 init_completion(&sde->state.comp);
1412 INIT_LIST_HEAD(&sde->flushlist);
1413 INIT_LIST_HEAD(&sde->dmawait);
1416 get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1418 tasklet_setup(&sde->sdma_hw_clean_up_task,
1419 sdma_hw_clean_up_task);
1420 tasklet_setup(&sde->sdma_sw_clean_up_task,
1421 sdma_sw_clean_up_task);
1422 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1423 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1425 sde->progress_check_head = 0;
1427 timer_setup(&sde->err_progress_check_timer,
1428 sdma_err_progress_check, 0);
1430 sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
1431 descq_cnt * sizeof(u64[2]),
1432 &sde->descq_phys, GFP_KERNEL);
1436 kvzalloc_node(array_size(descq_cnt,
1437 sizeof(struct sdma_txreq *)),
1438 GFP_KERNEL, dd->node);
1443 dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1444 /* Allocate memory for DMA of head registers to memory */
1445 dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
1446 dd->sdma_heads_size,
1447 &dd->sdma_heads_phys,
1449 if (!dd->sdma_heads_dma) {
1450 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1454 /* Allocate memory for pad */
1455 dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, SDMA_PAD,
1456 &dd->sdma_pad_phys, GFP_KERNEL);
1457 if (!dd->sdma_pad_dma) {
1458 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1462 /* assign each engine to different cacheline and init registers */
1463 curr_head = (void *)dd->sdma_heads_dma;
1464 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1465 unsigned long phys_offset;
1467 sde = &dd->per_sdma[this_idx];
1469 sde->head_dma = curr_head;
1470 curr_head += L1_CACHE_BYTES;
1471 phys_offset = (unsigned long)sde->head_dma -
1472 (unsigned long)dd->sdma_heads_dma;
1473 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1474 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1476 dd->flags |= HFI1_HAS_SEND_DMA;
1477 dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1478 dd->num_sdma = num_engines;
1479 ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1483 tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1484 if (!tmp_sdma_rht) {
1489 ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1491 kfree(tmp_sdma_rht);
1495 dd->sdma_rht = tmp_sdma_rht;
1497 dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1501 sdma_clean(dd, num_engines);
1506 * sdma_all_running() - called when the link goes up
1509 * This routine moves all engines to the running state.
1511 void sdma_all_running(struct hfi1_devdata *dd)
1513 struct sdma_engine *sde;
1516 /* move all engines to running */
1517 for (i = 0; i < dd->num_sdma; ++i) {
1518 sde = &dd->per_sdma[i];
1519 sdma_process_event(sde, sdma_event_e30_go_running);
1524 * sdma_all_idle() - called when the link goes down
1527 * This routine moves all engines to the idle state.
1529 void sdma_all_idle(struct hfi1_devdata *dd)
1531 struct sdma_engine *sde;
1534 /* idle all engines */
1535 for (i = 0; i < dd->num_sdma; ++i) {
1536 sde = &dd->per_sdma[i];
1537 sdma_process_event(sde, sdma_event_e70_go_idle);
1542 * sdma_start() - called to kick off state processing for all engines
1545 * This routine is for kicking off the state processing for all required
1546 * sdma engines. Interrupts need to be working at this point.
1549 void sdma_start(struct hfi1_devdata *dd)
1552 struct sdma_engine *sde;
1554 /* kick off the engines state processing */
1555 for (i = 0; i < dd->num_sdma; ++i) {
1556 sde = &dd->per_sdma[i];
1557 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1562 * sdma_exit() - used when module is removed
1565 void sdma_exit(struct hfi1_devdata *dd)
1568 struct sdma_engine *sde;
1570 for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1572 sde = &dd->per_sdma[this_idx];
1573 if (!list_empty(&sde->dmawait))
1574 dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1576 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1578 del_timer_sync(&sde->err_progress_check_timer);
1581 * This waits for the state machine to exit so it is not
1582 * necessary to kill the sdma_sw_clean_up_task to make sure
1583 * it is not running.
1585 sdma_finalput(&sde->state);
1590 * unmap the indicated descriptor
1592 static inline void sdma_unmap_desc(
1593 struct hfi1_devdata *dd,
1594 struct sdma_desc *descp)
1596 system_descriptor_complete(dd, descp);
1600 * return the mode as indicated by the first
1601 * descriptor in the tx.
1603 static inline u8 ahg_mode(struct sdma_txreq *tx)
1605 return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1606 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1610 * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1611 * @dd: hfi1_devdata for unmapping
1612 * @tx: tx request to clean
1614 * This is used in the progress routine to clean the tx or
1615 * by the ULP to toss an in-process tx build.
1617 * The code can be called multiple times without issue.
1620 void __sdma_txclean(
1621 struct hfi1_devdata *dd,
1622 struct sdma_txreq *tx)
1627 u8 skip = 0, mode = ahg_mode(tx);
1630 sdma_unmap_desc(dd, &tx->descp[0]);
1631 /* determine number of AHG descriptors to skip */
1632 if (mode > SDMA_AHG_APPLY_UPDATE1)
1634 for (i = 1 + skip; i < tx->num_desc; i++)
1635 sdma_unmap_desc(dd, &tx->descp[i]);
1638 kfree(tx->coalesce_buf);
1639 tx->coalesce_buf = NULL;
1640 /* kmalloc'ed descp */
1641 if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1642 tx->desc_limit = ARRAY_SIZE(tx->descs);
1647 static inline u16 sdma_gethead(struct sdma_engine *sde)
1649 struct hfi1_devdata *dd = sde->dd;
1653 #ifdef CONFIG_SDMA_VERBOSITY
1654 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1655 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1659 use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1660 (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1661 hwhead = use_dmahead ?
1662 (u16)le64_to_cpu(*sde->head_dma) :
1663 (u16)read_sde_csr(sde, SD(HEAD));
1665 if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1671 swhead = sde->descq_head & sde->sdma_mask;
1672 /* this code is really bad for cache line trading */
1673 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1674 cnt = sde->descq_cnt;
1676 if (swhead < swtail)
1678 sane = (hwhead >= swhead) & (hwhead <= swtail);
1679 else if (swhead > swtail)
1680 /* wrapped around */
1681 sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1685 sane = (hwhead == swhead);
1687 if (unlikely(!sane)) {
1688 dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%u swhd=%u swtl=%u cnt=%u\n",
1690 use_dmahead ? "dma" : "kreg",
1691 hwhead, swhead, swtail, cnt);
1693 /* try one more time, using csr */
1697 /* proceed as if no progress */
1705 * This is called when there are send DMA descriptors that might be
1708 * This is called with head_lock held.
1710 static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1712 struct iowait *wait, *nw, *twait;
1713 struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1714 uint i, n = 0, seq, tidx = 0;
1716 #ifdef CONFIG_SDMA_VERBOSITY
1717 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1718 slashstrip(__FILE__), __LINE__, __func__);
1719 dd_dev_err(sde->dd, "avail: %u\n", avail);
1723 seq = read_seqbegin(&sde->waitlock);
1724 if (!list_empty(&sde->dmawait)) {
1725 /* at least one item */
1726 write_seqlock(&sde->waitlock);
1727 /* Harvest waiters wanting DMA descriptors */
1728 list_for_each_entry_safe(
1737 if (n == ARRAY_SIZE(waits))
1739 iowait_init_priority(wait);
1740 num_desc = iowait_get_all_desc(wait);
1741 if (num_desc > avail)
1744 /* Find the top-priority wait memeber */
1746 twait = waits[tidx];
1748 iowait_priority_update_top(wait,
1753 list_del_init(&wait->list);
1756 write_sequnlock(&sde->waitlock);
1759 } while (read_seqretry(&sde->waitlock, seq));
1761 /* Schedule the top-priority entry first */
1763 waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON);
1765 for (i = 0; i < n; i++)
1767 waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1770 /* head_lock must be held */
1771 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1773 struct sdma_txreq *txp = NULL;
1776 int idle_check_done = 0;
1778 hwhead = sdma_gethead(sde);
1780 /* The reason for some of the complexity of this code is that
1781 * not all descriptors have corresponding txps. So, we have to
1782 * be able to skip over descs until we wander into the range of
1783 * the next txp on the list.
1787 txp = get_txhead(sde);
1788 swhead = sde->descq_head & sde->sdma_mask;
1789 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1790 while (swhead != hwhead) {
1791 /* advance head, wrap if needed */
1792 swhead = ++sde->descq_head & sde->sdma_mask;
1794 /* if now past this txp's descs, do the callback */
1795 if (txp && txp->next_descq_idx == swhead) {
1796 /* remove from list */
1797 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1798 complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1799 /* see if there is another txp */
1800 txp = get_txhead(sde);
1802 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1807 * The SDMA idle interrupt is not guaranteed to be ordered with respect
1808 * to updates to the dma_head location in host memory. The head
1809 * value read might not be fully up to date. If there are pending
1810 * descriptors and the SDMA idle interrupt fired then read from the
1811 * CSR SDMA head instead to get the latest value from the hardware.
1812 * The hardware SDMA head should be read at most once in this invocation
1813 * of sdma_make_progress(..) which is ensured by idle_check_done flag
1815 if ((status & sde->idle_mask) && !idle_check_done) {
1818 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1819 if (swtail != hwhead) {
1820 hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1821 idle_check_done = 1;
1826 sde->last_status = status;
1828 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1832 * sdma_engine_interrupt() - interrupt handler for engine
1834 * @status: sdma interrupt reason
1836 * Status is a mask of the 3 possible interrupts for this engine. It will
1837 * contain bits _only_ for this SDMA engine. It will contain at least one
1838 * bit, it may contain more.
1840 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1842 trace_hfi1_sdma_engine_interrupt(sde, status);
1843 write_seqlock(&sde->head_lock);
1844 sdma_set_desc_cnt(sde, sdma_desct_intr);
1845 if (status & sde->idle_mask)
1846 sde->idle_int_cnt++;
1847 else if (status & sde->progress_mask)
1848 sde->progress_int_cnt++;
1849 else if (status & sde->int_mask)
1850 sde->sdma_int_cnt++;
1851 sdma_make_progress(sde, status);
1852 write_sequnlock(&sde->head_lock);
1856 * sdma_engine_error() - error handler for engine
1858 * @status: sdma interrupt reason
1860 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1862 unsigned long flags;
1864 #ifdef CONFIG_SDMA_VERBOSITY
1865 dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1867 (unsigned long long)status,
1868 sdma_state_names[sde->state.current_state]);
1870 spin_lock_irqsave(&sde->tail_lock, flags);
1871 write_seqlock(&sde->head_lock);
1872 if (status & ALL_SDMA_ENG_HALT_ERRS)
1873 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1874 if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1876 "SDMA (%u) engine error: 0x%llx state %s\n",
1878 (unsigned long long)status,
1879 sdma_state_names[sde->state.current_state]);
1880 dump_sdma_state(sde);
1882 write_sequnlock(&sde->head_lock);
1883 spin_unlock_irqrestore(&sde->tail_lock, flags);
1886 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1888 u64 set_senddmactrl = 0;
1889 u64 clr_senddmactrl = 0;
1890 unsigned long flags;
1892 #ifdef CONFIG_SDMA_VERBOSITY
1893 dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1895 (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1896 (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1897 (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1898 (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1901 if (op & SDMA_SENDCTRL_OP_ENABLE)
1902 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1904 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1906 if (op & SDMA_SENDCTRL_OP_INTENABLE)
1907 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1909 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1911 if (op & SDMA_SENDCTRL_OP_HALT)
1912 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1914 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1916 spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1918 sde->p_senddmactrl |= set_senddmactrl;
1919 sde->p_senddmactrl &= ~clr_senddmactrl;
1921 if (op & SDMA_SENDCTRL_OP_CLEANUP)
1922 write_sde_csr(sde, SD(CTRL),
1923 sde->p_senddmactrl |
1924 SD(CTRL_SDMA_CLEANUP_SMASK));
1926 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1928 spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1930 #ifdef CONFIG_SDMA_VERBOSITY
1931 sdma_dumpstate(sde);
1935 static void sdma_setlengen(struct sdma_engine *sde)
1937 #ifdef CONFIG_SDMA_VERBOSITY
1938 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1939 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1943 * Set SendDmaLenGen and clear-then-set the MSB of the generation
1944 * count to enable generation checking and load the internal
1945 * generation counter.
1947 write_sde_csr(sde, SD(LEN_GEN),
1948 (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
1949 write_sde_csr(sde, SD(LEN_GEN),
1950 ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1951 (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
1954 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1956 /* Commit writes to memory and advance the tail on the chip */
1957 smp_wmb(); /* see get_txhead() */
1958 writeq(tail, sde->tail_csr);
1962 * This is called when changing to state s10_hw_start_up_halt_wait as
1963 * a result of send buffer errors or send DMA descriptor errors.
1965 static void sdma_hw_start_up(struct sdma_engine *sde)
1969 #ifdef CONFIG_SDMA_VERBOSITY
1970 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1971 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1974 sdma_setlengen(sde);
1975 sdma_update_tail(sde, 0); /* Set SendDmaTail */
1978 reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
1979 SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
1980 write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
1984 * set_sdma_integrity
1986 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
1988 static void set_sdma_integrity(struct sdma_engine *sde)
1990 struct hfi1_devdata *dd = sde->dd;
1992 write_sde_csr(sde, SD(CHECK_ENABLE),
1993 hfi1_pkt_base_sdma_integrity(dd));
1996 static void init_sdma_regs(
1997 struct sdma_engine *sde,
2002 #ifdef CONFIG_SDMA_VERBOSITY
2003 struct hfi1_devdata *dd = sde->dd;
2005 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2006 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2009 write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2010 sdma_setlengen(sde);
2011 sdma_update_tail(sde, 0); /* Set SendDmaTail */
2012 write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2013 write_sde_csr(sde, SD(DESC_CNT), 0);
2014 write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2015 write_sde_csr(sde, SD(MEMORY),
2016 ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2017 ((u64)(credits * sde->this_idx) <<
2018 SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2019 write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2020 set_sdma_integrity(sde);
2021 opmask = OPCODE_CHECK_MASK_DISABLED;
2022 opval = OPCODE_CHECK_VAL_DISABLED;
2023 write_sde_csr(sde, SD(CHECK_OPCODE),
2024 (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2025 (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2028 #ifdef CONFIG_SDMA_VERBOSITY
2030 #define sdma_dumpstate_helper0(reg) do { \
2031 csr = read_csr(sde->dd, reg); \
2032 dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
2035 #define sdma_dumpstate_helper(reg) do { \
2036 csr = read_sde_csr(sde, reg); \
2037 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2038 #reg, sde->this_idx, csr); \
2041 #define sdma_dumpstate_helper2(reg) do { \
2042 csr = read_csr(sde->dd, reg + (8 * i)); \
2043 dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
2047 void sdma_dumpstate(struct sdma_engine *sde)
2052 sdma_dumpstate_helper(SD(CTRL));
2053 sdma_dumpstate_helper(SD(STATUS));
2054 sdma_dumpstate_helper0(SD(ERR_STATUS));
2055 sdma_dumpstate_helper0(SD(ERR_MASK));
2056 sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2057 sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2059 for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2060 sdma_dumpstate_helper2(CCE_INT_STATUS);
2061 sdma_dumpstate_helper2(CCE_INT_MASK);
2062 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2065 sdma_dumpstate_helper(SD(TAIL));
2066 sdma_dumpstate_helper(SD(HEAD));
2067 sdma_dumpstate_helper(SD(PRIORITY_THLD));
2068 sdma_dumpstate_helper(SD(IDLE_CNT));
2069 sdma_dumpstate_helper(SD(RELOAD_CNT));
2070 sdma_dumpstate_helper(SD(DESC_CNT));
2071 sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2072 sdma_dumpstate_helper(SD(MEMORY));
2073 sdma_dumpstate_helper0(SD(ENGINES));
2074 sdma_dumpstate_helper0(SD(MEM_SIZE));
2075 /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
2076 sdma_dumpstate_helper(SD(BASE_ADDR));
2077 sdma_dumpstate_helper(SD(LEN_GEN));
2078 sdma_dumpstate_helper(SD(HEAD_ADDR));
2079 sdma_dumpstate_helper(SD(CHECK_ENABLE));
2080 sdma_dumpstate_helper(SD(CHECK_VL));
2081 sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2082 sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2083 sdma_dumpstate_helper(SD(CHECK_SLID));
2084 sdma_dumpstate_helper(SD(CHECK_OPCODE));
2088 static void dump_sdma_state(struct sdma_engine *sde)
2090 struct hw_sdma_desc *descqp;
2095 u16 head, tail, cnt;
2097 head = sde->descq_head & sde->sdma_mask;
2098 tail = sde->descq_tail & sde->sdma_mask;
2099 cnt = sdma_descq_freecnt(sde);
2102 "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2103 sde->this_idx, head, tail, cnt,
2104 !list_empty(&sde->flushlist));
2106 /* print info for each entry in the descriptor queue */
2107 while (head != tail) {
2108 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2110 descqp = &sde->descq[head];
2111 desc[0] = le64_to_cpu(descqp->qw[0]);
2112 desc[1] = le64_to_cpu(descqp->qw[1]);
2113 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2114 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2116 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2117 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2118 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2119 & SDMA_DESC0_PHY_ADDR_MASK;
2120 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2121 & SDMA_DESC1_GENERATION_MASK;
2122 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2123 & SDMA_DESC0_BYTE_COUNT_MASK;
2125 "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2126 head, flags, addr, gen, len);
2128 "\tdesc0:0x%016llx desc1 0x%016llx\n",
2130 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2132 "\taidx: %u amode: %u alen: %u\n",
2134 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2135 SDMA_DESC1_HEADER_INDEX_SHIFT),
2137 SDMA_DESC1_HEADER_MODE_SMASK) >>
2138 SDMA_DESC1_HEADER_MODE_SHIFT),
2140 SDMA_DESC1_HEADER_DWS_SMASK) >>
2141 SDMA_DESC1_HEADER_DWS_SHIFT));
2143 head &= sde->sdma_mask;
2148 "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2150 * sdma_seqfile_dump_sde() - debugfs dump of sde
2152 * @sde: send dma engine to dump
2154 * This routine dumps the sde to the indicated seq file.
2156 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2159 struct hw_sdma_desc *descqp;
2165 head = sde->descq_head & sde->sdma_mask;
2166 tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2167 seq_printf(s, SDE_FMT, sde->this_idx,
2169 sdma_state_name(sde->state.current_state),
2170 (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2171 (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2172 (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2173 (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2174 (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2175 (unsigned long long)le64_to_cpu(*sde->head_dma),
2176 (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2177 (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2178 (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2179 (unsigned long long)sde->last_status,
2180 (unsigned long long)sde->ahg_bits,
2185 !list_empty(&sde->flushlist),
2186 sde->descq_full_count,
2187 (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2189 /* print info for each entry in the descriptor queue */
2190 while (head != tail) {
2191 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2193 descqp = &sde->descq[head];
2194 desc[0] = le64_to_cpu(descqp->qw[0]);
2195 desc[1] = le64_to_cpu(descqp->qw[1]);
2196 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2197 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2199 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2200 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2201 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2202 & SDMA_DESC0_PHY_ADDR_MASK;
2203 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2204 & SDMA_DESC1_GENERATION_MASK;
2205 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2206 & SDMA_DESC0_BYTE_COUNT_MASK;
2208 "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2209 head, flags, addr, gen, len);
2210 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2211 seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2213 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2214 SDMA_DESC1_HEADER_INDEX_SHIFT),
2216 SDMA_DESC1_HEADER_MODE_SMASK) >>
2217 SDMA_DESC1_HEADER_MODE_SHIFT));
2218 head = (head + 1) & sde->sdma_mask;
2223 * add the generation number into
2224 * the qw1 and return
2226 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2228 u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2230 qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2231 qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2232 << SDMA_DESC1_GENERATION_SHIFT;
2237 * This routine submits the indicated tx
2239 * Space has already been guaranteed and
2240 * tail side of ring is locked.
2242 * The hardware tail update is done
2243 * in the caller and that is facilitated
2244 * by returning the new tail.
2246 * There is special case logic for ahg
2247 * to not add the generation number for
2248 * up to 2 descriptors that follow the
2252 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2256 struct sdma_desc *descp = tx->descp;
2257 u8 skip = 0, mode = ahg_mode(tx);
2259 tail = sde->descq_tail & sde->sdma_mask;
2260 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2261 sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2262 trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2263 tail, &sde->descq[tail]);
2264 tail = ++sde->descq_tail & sde->sdma_mask;
2266 if (mode > SDMA_AHG_APPLY_UPDATE1)
2268 for (i = 1; i < tx->num_desc; i++, descp++) {
2271 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2273 /* edits don't have generation */
2277 /* replace generation with real one for non-edits */
2278 qw1 = add_gen(sde, descp->qw[1]);
2280 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2281 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2282 tail, &sde->descq[tail]);
2283 tail = ++sde->descq_tail & sde->sdma_mask;
2285 tx->next_descq_idx = tail;
2286 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2287 tx->sn = sde->tail_sn++;
2288 trace_hfi1_sdma_in_sn(sde, tx->sn);
2289 WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2291 sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2292 sde->desc_avail -= tx->num_desc;
2297 * Check for progress
2299 static int sdma_check_progress(
2300 struct sdma_engine *sde,
2301 struct iowait_work *wait,
2302 struct sdma_txreq *tx,
2307 sde->desc_avail = sdma_descq_freecnt(sde);
2308 if (tx->num_desc <= sde->desc_avail)
2310 /* pulse the head_lock */
2311 if (wait && iowait_ioww_to_iow(wait)->sleep) {
2314 seq = raw_seqcount_begin(
2315 (const seqcount_t *)&sde->head_lock.seqcount);
2316 ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
2318 sde->desc_avail = sdma_descq_freecnt(sde);
2326 * sdma_send_txreq() - submit a tx req to ring
2327 * @sde: sdma engine to use
2328 * @wait: SE wait structure to use when full (may be NULL)
2329 * @tx: sdma_txreq to submit
2330 * @pkts_sent: has any packet been sent yet?
2332 * The call submits the tx into the ring. If a iowait structure is non-NULL
2333 * the packet will be queued to the list in wait.
2336 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2337 * ring (wait == NULL)
2338 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2340 int sdma_send_txreq(struct sdma_engine *sde,
2341 struct iowait_work *wait,
2342 struct sdma_txreq *tx,
2347 unsigned long flags;
2349 /* user should have supplied entire packet */
2350 if (unlikely(tx->tlen))
2352 tx->wait = iowait_ioww_to_iow(wait);
2353 spin_lock_irqsave(&sde->tail_lock, flags);
2355 if (unlikely(!__sdma_running(sde)))
2357 if (unlikely(tx->num_desc > sde->desc_avail))
2359 tail = submit_tx(sde, tx);
2361 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2362 sdma_update_tail(sde, tail);
2364 spin_unlock_irqrestore(&sde->tail_lock, flags);
2368 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2369 tx->next_descq_idx = 0;
2370 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2371 tx->sn = sde->tail_sn++;
2372 trace_hfi1_sdma_in_sn(sde, tx->sn);
2374 spin_lock(&sde->flushlist_lock);
2375 list_add_tail(&tx->list, &sde->flushlist);
2376 spin_unlock(&sde->flushlist_lock);
2377 iowait_inc_wait_count(wait, tx->num_desc);
2378 queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2382 ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2383 if (ret == -EAGAIN) {
2387 sde->descq_full_count++;
2392 * sdma_send_txlist() - submit a list of tx req to ring
2393 * @sde: sdma engine to use
2394 * @wait: SE wait structure to use when full (may be NULL)
2395 * @tx_list: list of sdma_txreqs to submit
2396 * @count_out: pointer to a u16 which, after return will contain the total number of
2397 * sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2398 * whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2399 * which are added to SDMA engine flush list if the SDMA engine state is
2402 * The call submits the list into the ring.
2404 * If the iowait structure is non-NULL and not equal to the iowait list
2405 * the unprocessed part of the list will be appended to the list in wait.
2407 * In all cases, the tx_list will be updated so the head of the tx_list is
2408 * the list of descriptors that have yet to be transmitted.
2410 * The intent of this call is to provide a more efficient
2411 * way of submitting multiple packets to SDMA while holding the tail
2416 * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2417 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2419 int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
2420 struct list_head *tx_list, u16 *count_out)
2422 struct sdma_txreq *tx, *tx_next;
2424 unsigned long flags;
2425 u16 tail = INVALID_TAIL;
2426 u32 submit_count = 0, flush_count = 0, total_count;
2428 spin_lock_irqsave(&sde->tail_lock, flags);
2430 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2431 tx->wait = iowait_ioww_to_iow(wait);
2432 if (unlikely(!__sdma_running(sde)))
2434 if (unlikely(tx->num_desc > sde->desc_avail))
2436 if (unlikely(tx->tlen)) {
2440 list_del_init(&tx->list);
2441 tail = submit_tx(sde, tx);
2443 if (tail != INVALID_TAIL &&
2444 (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2445 sdma_update_tail(sde, tail);
2446 tail = INVALID_TAIL;
2450 total_count = submit_count + flush_count;
2452 iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
2453 iowait_starve_clear(submit_count > 0,
2454 iowait_ioww_to_iow(wait));
2456 if (tail != INVALID_TAIL)
2457 sdma_update_tail(sde, tail);
2458 spin_unlock_irqrestore(&sde->tail_lock, flags);
2459 *count_out = total_count;
2462 spin_lock(&sde->flushlist_lock);
2463 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2464 tx->wait = iowait_ioww_to_iow(wait);
2465 list_del_init(&tx->list);
2466 tx->next_descq_idx = 0;
2467 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2468 tx->sn = sde->tail_sn++;
2469 trace_hfi1_sdma_in_sn(sde, tx->sn);
2471 list_add_tail(&tx->list, &sde->flushlist);
2473 iowait_inc_wait_count(wait, tx->num_desc);
2475 spin_unlock(&sde->flushlist_lock);
2476 queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2480 ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2481 if (ret == -EAGAIN) {
2485 sde->descq_full_count++;
2489 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2491 unsigned long flags;
2493 spin_lock_irqsave(&sde->tail_lock, flags);
2494 write_seqlock(&sde->head_lock);
2496 __sdma_process_event(sde, event);
2498 if (sde->state.current_state == sdma_state_s99_running)
2499 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2501 write_sequnlock(&sde->head_lock);
2502 spin_unlock_irqrestore(&sde->tail_lock, flags);
2505 static void __sdma_process_event(struct sdma_engine *sde,
2506 enum sdma_events event)
2508 struct sdma_state *ss = &sde->state;
2509 int need_progress = 0;
2511 /* CONFIG SDMA temporary */
2512 #ifdef CONFIG_SDMA_VERBOSITY
2513 dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2514 sdma_state_names[ss->current_state],
2515 sdma_event_names[event]);
2518 switch (ss->current_state) {
2519 case sdma_state_s00_hw_down:
2521 case sdma_event_e00_go_hw_down:
2523 case sdma_event_e30_go_running:
2525 * If down, but running requested (usually result
2526 * of link up, then we need to start up.
2527 * This can happen when hw down is requested while
2528 * bringing the link up with traffic active on
2531 ss->go_s99_running = 1;
2532 fallthrough; /* and start dma engine */
2533 case sdma_event_e10_go_hw_start:
2534 /* This reference means the state machine is started */
2535 sdma_get(&sde->state);
2537 sdma_state_s10_hw_start_up_halt_wait);
2539 case sdma_event_e15_hw_halt_done:
2541 case sdma_event_e25_hw_clean_up_done:
2543 case sdma_event_e40_sw_cleaned:
2544 sdma_sw_tear_down(sde);
2546 case sdma_event_e50_hw_cleaned:
2548 case sdma_event_e60_hw_halted:
2550 case sdma_event_e70_go_idle:
2552 case sdma_event_e80_hw_freeze:
2554 case sdma_event_e81_hw_frozen:
2556 case sdma_event_e82_hw_unfreeze:
2558 case sdma_event_e85_link_down:
2560 case sdma_event_e90_sw_halted:
2565 case sdma_state_s10_hw_start_up_halt_wait:
2567 case sdma_event_e00_go_hw_down:
2568 sdma_set_state(sde, sdma_state_s00_hw_down);
2569 sdma_sw_tear_down(sde);
2571 case sdma_event_e10_go_hw_start:
2573 case sdma_event_e15_hw_halt_done:
2575 sdma_state_s15_hw_start_up_clean_wait);
2576 sdma_start_hw_clean_up(sde);
2578 case sdma_event_e25_hw_clean_up_done:
2580 case sdma_event_e30_go_running:
2581 ss->go_s99_running = 1;
2583 case sdma_event_e40_sw_cleaned:
2585 case sdma_event_e50_hw_cleaned:
2587 case sdma_event_e60_hw_halted:
2588 schedule_work(&sde->err_halt_worker);
2590 case sdma_event_e70_go_idle:
2591 ss->go_s99_running = 0;
2593 case sdma_event_e80_hw_freeze:
2595 case sdma_event_e81_hw_frozen:
2597 case sdma_event_e82_hw_unfreeze:
2599 case sdma_event_e85_link_down:
2601 case sdma_event_e90_sw_halted:
2606 case sdma_state_s15_hw_start_up_clean_wait:
2608 case sdma_event_e00_go_hw_down:
2609 sdma_set_state(sde, sdma_state_s00_hw_down);
2610 sdma_sw_tear_down(sde);
2612 case sdma_event_e10_go_hw_start:
2614 case sdma_event_e15_hw_halt_done:
2616 case sdma_event_e25_hw_clean_up_done:
2617 sdma_hw_start_up(sde);
2618 sdma_set_state(sde, ss->go_s99_running ?
2619 sdma_state_s99_running :
2620 sdma_state_s20_idle);
2622 case sdma_event_e30_go_running:
2623 ss->go_s99_running = 1;
2625 case sdma_event_e40_sw_cleaned:
2627 case sdma_event_e50_hw_cleaned:
2629 case sdma_event_e60_hw_halted:
2631 case sdma_event_e70_go_idle:
2632 ss->go_s99_running = 0;
2634 case sdma_event_e80_hw_freeze:
2636 case sdma_event_e81_hw_frozen:
2638 case sdma_event_e82_hw_unfreeze:
2640 case sdma_event_e85_link_down:
2642 case sdma_event_e90_sw_halted:
2647 case sdma_state_s20_idle:
2649 case sdma_event_e00_go_hw_down:
2650 sdma_set_state(sde, sdma_state_s00_hw_down);
2651 sdma_sw_tear_down(sde);
2653 case sdma_event_e10_go_hw_start:
2655 case sdma_event_e15_hw_halt_done:
2657 case sdma_event_e25_hw_clean_up_done:
2659 case sdma_event_e30_go_running:
2660 sdma_set_state(sde, sdma_state_s99_running);
2661 ss->go_s99_running = 1;
2663 case sdma_event_e40_sw_cleaned:
2665 case sdma_event_e50_hw_cleaned:
2667 case sdma_event_e60_hw_halted:
2668 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2669 schedule_work(&sde->err_halt_worker);
2671 case sdma_event_e70_go_idle:
2673 case sdma_event_e85_link_down:
2674 case sdma_event_e80_hw_freeze:
2675 sdma_set_state(sde, sdma_state_s80_hw_freeze);
2676 atomic_dec(&sde->dd->sdma_unfreeze_count);
2677 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2679 case sdma_event_e81_hw_frozen:
2681 case sdma_event_e82_hw_unfreeze:
2683 case sdma_event_e90_sw_halted:
2688 case sdma_state_s30_sw_clean_up_wait:
2690 case sdma_event_e00_go_hw_down:
2691 sdma_set_state(sde, sdma_state_s00_hw_down);
2693 case sdma_event_e10_go_hw_start:
2695 case sdma_event_e15_hw_halt_done:
2697 case sdma_event_e25_hw_clean_up_done:
2699 case sdma_event_e30_go_running:
2700 ss->go_s99_running = 1;
2702 case sdma_event_e40_sw_cleaned:
2703 sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2704 sdma_start_hw_clean_up(sde);
2706 case sdma_event_e50_hw_cleaned:
2708 case sdma_event_e60_hw_halted:
2710 case sdma_event_e70_go_idle:
2711 ss->go_s99_running = 0;
2713 case sdma_event_e80_hw_freeze:
2715 case sdma_event_e81_hw_frozen:
2717 case sdma_event_e82_hw_unfreeze:
2719 case sdma_event_e85_link_down:
2720 ss->go_s99_running = 0;
2722 case sdma_event_e90_sw_halted:
2727 case sdma_state_s40_hw_clean_up_wait:
2729 case sdma_event_e00_go_hw_down:
2730 sdma_set_state(sde, sdma_state_s00_hw_down);
2731 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2733 case sdma_event_e10_go_hw_start:
2735 case sdma_event_e15_hw_halt_done:
2737 case sdma_event_e25_hw_clean_up_done:
2738 sdma_hw_start_up(sde);
2739 sdma_set_state(sde, ss->go_s99_running ?
2740 sdma_state_s99_running :
2741 sdma_state_s20_idle);
2743 case sdma_event_e30_go_running:
2744 ss->go_s99_running = 1;
2746 case sdma_event_e40_sw_cleaned:
2748 case sdma_event_e50_hw_cleaned:
2750 case sdma_event_e60_hw_halted:
2752 case sdma_event_e70_go_idle:
2753 ss->go_s99_running = 0;
2755 case sdma_event_e80_hw_freeze:
2757 case sdma_event_e81_hw_frozen:
2759 case sdma_event_e82_hw_unfreeze:
2761 case sdma_event_e85_link_down:
2762 ss->go_s99_running = 0;
2764 case sdma_event_e90_sw_halted:
2769 case sdma_state_s50_hw_halt_wait:
2771 case sdma_event_e00_go_hw_down:
2772 sdma_set_state(sde, sdma_state_s00_hw_down);
2773 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2775 case sdma_event_e10_go_hw_start:
2777 case sdma_event_e15_hw_halt_done:
2778 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2779 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2781 case sdma_event_e25_hw_clean_up_done:
2783 case sdma_event_e30_go_running:
2784 ss->go_s99_running = 1;
2786 case sdma_event_e40_sw_cleaned:
2788 case sdma_event_e50_hw_cleaned:
2790 case sdma_event_e60_hw_halted:
2791 schedule_work(&sde->err_halt_worker);
2793 case sdma_event_e70_go_idle:
2794 ss->go_s99_running = 0;
2796 case sdma_event_e80_hw_freeze:
2798 case sdma_event_e81_hw_frozen:
2800 case sdma_event_e82_hw_unfreeze:
2802 case sdma_event_e85_link_down:
2803 ss->go_s99_running = 0;
2805 case sdma_event_e90_sw_halted:
2810 case sdma_state_s60_idle_halt_wait:
2812 case sdma_event_e00_go_hw_down:
2813 sdma_set_state(sde, sdma_state_s00_hw_down);
2814 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2816 case sdma_event_e10_go_hw_start:
2818 case sdma_event_e15_hw_halt_done:
2819 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2820 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2822 case sdma_event_e25_hw_clean_up_done:
2824 case sdma_event_e30_go_running:
2825 ss->go_s99_running = 1;
2827 case sdma_event_e40_sw_cleaned:
2829 case sdma_event_e50_hw_cleaned:
2831 case sdma_event_e60_hw_halted:
2832 schedule_work(&sde->err_halt_worker);
2834 case sdma_event_e70_go_idle:
2835 ss->go_s99_running = 0;
2837 case sdma_event_e80_hw_freeze:
2839 case sdma_event_e81_hw_frozen:
2841 case sdma_event_e82_hw_unfreeze:
2843 case sdma_event_e85_link_down:
2845 case sdma_event_e90_sw_halted:
2850 case sdma_state_s80_hw_freeze:
2852 case sdma_event_e00_go_hw_down:
2853 sdma_set_state(sde, sdma_state_s00_hw_down);
2854 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2856 case sdma_event_e10_go_hw_start:
2858 case sdma_event_e15_hw_halt_done:
2860 case sdma_event_e25_hw_clean_up_done:
2862 case sdma_event_e30_go_running:
2863 ss->go_s99_running = 1;
2865 case sdma_event_e40_sw_cleaned:
2867 case sdma_event_e50_hw_cleaned:
2869 case sdma_event_e60_hw_halted:
2871 case sdma_event_e70_go_idle:
2872 ss->go_s99_running = 0;
2874 case sdma_event_e80_hw_freeze:
2876 case sdma_event_e81_hw_frozen:
2877 sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2878 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2880 case sdma_event_e82_hw_unfreeze:
2882 case sdma_event_e85_link_down:
2884 case sdma_event_e90_sw_halted:
2889 case sdma_state_s82_freeze_sw_clean:
2891 case sdma_event_e00_go_hw_down:
2892 sdma_set_state(sde, sdma_state_s00_hw_down);
2893 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2895 case sdma_event_e10_go_hw_start:
2897 case sdma_event_e15_hw_halt_done:
2899 case sdma_event_e25_hw_clean_up_done:
2901 case sdma_event_e30_go_running:
2902 ss->go_s99_running = 1;
2904 case sdma_event_e40_sw_cleaned:
2905 /* notify caller this engine is done cleaning */
2906 atomic_dec(&sde->dd->sdma_unfreeze_count);
2907 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2909 case sdma_event_e50_hw_cleaned:
2911 case sdma_event_e60_hw_halted:
2913 case sdma_event_e70_go_idle:
2914 ss->go_s99_running = 0;
2916 case sdma_event_e80_hw_freeze:
2918 case sdma_event_e81_hw_frozen:
2920 case sdma_event_e82_hw_unfreeze:
2921 sdma_hw_start_up(sde);
2922 sdma_set_state(sde, ss->go_s99_running ?
2923 sdma_state_s99_running :
2924 sdma_state_s20_idle);
2926 case sdma_event_e85_link_down:
2928 case sdma_event_e90_sw_halted:
2933 case sdma_state_s99_running:
2935 case sdma_event_e00_go_hw_down:
2936 sdma_set_state(sde, sdma_state_s00_hw_down);
2937 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2939 case sdma_event_e10_go_hw_start:
2941 case sdma_event_e15_hw_halt_done:
2943 case sdma_event_e25_hw_clean_up_done:
2945 case sdma_event_e30_go_running:
2947 case sdma_event_e40_sw_cleaned:
2949 case sdma_event_e50_hw_cleaned:
2951 case sdma_event_e60_hw_halted:
2953 sdma_err_progress_check_schedule(sde);
2955 case sdma_event_e90_sw_halted:
2957 * SW initiated halt does not perform engines
2960 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2961 schedule_work(&sde->err_halt_worker);
2963 case sdma_event_e70_go_idle:
2964 sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
2966 case sdma_event_e85_link_down:
2967 ss->go_s99_running = 0;
2969 case sdma_event_e80_hw_freeze:
2970 sdma_set_state(sde, sdma_state_s80_hw_freeze);
2971 atomic_dec(&sde->dd->sdma_unfreeze_count);
2972 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2974 case sdma_event_e81_hw_frozen:
2976 case sdma_event_e82_hw_unfreeze:
2982 ss->last_event = event;
2984 sdma_make_progress(sde, 0);
2988 * _extend_sdma_tx_descs() - helper to extend txreq
2990 * This is called once the initial nominal allocation
2991 * of descriptors in the sdma_txreq is exhausted.
2993 * The code will bump the allocation up to the max
2994 * of MAX_DESC (64) descriptors. There doesn't seem
2995 * much point in an interim step. The last descriptor
2996 * is reserved for coalesce buffer in order to support
2997 * cases where input packet has >MAX_DESC iovecs.
3000 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3003 struct sdma_desc *descp;
3005 /* Handle last descriptor */
3006 if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3007 /* if tlen is 0, it is for padding, release last descriptor */
3009 tx->desc_limit = MAX_DESC;
3010 } else if (!tx->coalesce_buf) {
3011 /* allocate coalesce buffer with space for padding */
3012 tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3014 if (!tx->coalesce_buf)
3016 tx->coalesce_idx = 0;
3021 if (unlikely(tx->num_desc == MAX_DESC))
3024 descp = kmalloc_array(MAX_DESC, sizeof(struct sdma_desc), GFP_ATOMIC);
3029 /* reserve last descriptor for coalescing */
3030 tx->desc_limit = MAX_DESC - 1;
3031 /* copy ones already built */
3032 for (i = 0; i < tx->num_desc; i++)
3033 tx->descp[i] = tx->descs[i];
3036 __sdma_txclean(dd, tx);
3041 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3043 * This is called once the initial nominal allocation of descriptors
3044 * in the sdma_txreq is exhausted.
3046 * This function calls _extend_sdma_tx_descs to extend or allocate
3047 * coalesce buffer. If there is a allocated coalesce buffer, it will
3048 * copy the input packet data into the coalesce buffer. It also adds
3049 * coalesce buffer descriptor once when whole packet is received.
3053 * 0 - coalescing, don't populate descriptor
3054 * 1 - continue with populating descriptor
3056 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3057 int type, void *kvaddr, struct page *page,
3058 unsigned long offset, u16 len)
3063 rval = _extend_sdma_tx_descs(dd, tx);
3065 __sdma_txclean(dd, tx);
3069 /* If coalesce buffer is allocated, copy data into it */
3070 if (tx->coalesce_buf) {
3071 if (type == SDMA_MAP_NONE) {
3072 __sdma_txclean(dd, tx);
3076 if (type == SDMA_MAP_PAGE) {
3077 kvaddr = kmap_local_page(page);
3079 } else if (WARN_ON(!kvaddr)) {
3080 __sdma_txclean(dd, tx);
3084 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3085 tx->coalesce_idx += len;
3086 if (type == SDMA_MAP_PAGE)
3087 kunmap_local(kvaddr);
3089 /* If there is more data, return */
3090 if (tx->tlen - tx->coalesce_idx)
3093 /* Whole packet is received; add any padding */
3094 pad_len = tx->packet_len & (sizeof(u32) - 1);
3096 pad_len = sizeof(u32) - pad_len;
3097 memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3098 /* padding is taken care of for coalescing case */
3099 tx->packet_len += pad_len;
3100 tx->tlen += pad_len;
3103 /* dma map the coalesce buffer */
3104 addr = dma_map_single(&dd->pcidev->dev,
3109 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3110 __sdma_txclean(dd, tx);
3114 /* Add descriptor for coalesce buffer */
3115 tx->desc_limit = MAX_DESC;
3116 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, NULL, tx,
3123 /* Update sdes when the lmc changes */
3124 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3126 struct sdma_engine *sde;
3130 sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3131 SD(CHECK_SLID_MASK_SHIFT)) |
3132 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3133 SD(CHECK_SLID_VALUE_SHIFT));
3135 for (i = 0; i < dd->num_sdma; i++) {
3136 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3138 sde = &dd->per_sdma[i];
3139 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3143 /* tx not dword sized - pad */
3144 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3148 if ((unlikely(tx->num_desc + 1 == tx->desc_limit))) {
3149 rval = _extend_sdma_tx_descs(dd, tx);
3151 __sdma_txclean(dd, tx);
3156 /* finish the one just added */
3162 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3164 _sdma_close_tx(dd, tx);
3169 * Add ahg to the sdma_txreq
3171 * The logic will consume up to 3
3172 * descriptors at the beginning of
3175 void _sdma_txreq_ahgadd(
3176 struct sdma_txreq *tx,
3182 u32 i, shift = 0, desc = 0;
3185 WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3188 mode = SDMA_AHG_APPLY_UPDATE1;
3189 else if (num_ahg <= 5)
3190 mode = SDMA_AHG_APPLY_UPDATE2;
3192 mode = SDMA_AHG_APPLY_UPDATE3;
3194 /* initialize to consumed descriptors to zero */
3196 case SDMA_AHG_APPLY_UPDATE3:
3198 tx->descs[2].qw[0] = 0;
3199 tx->descs[2].qw[1] = 0;
3201 case SDMA_AHG_APPLY_UPDATE2:
3203 tx->descs[1].qw[0] = 0;
3204 tx->descs[1].qw[1] = 0;
3208 tx->descs[0].qw[1] |=
3209 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3210 << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3211 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3212 << SDMA_DESC1_HEADER_DWS_SHIFT) |
3213 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3214 << SDMA_DESC1_HEADER_MODE_SHIFT) |
3215 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3216 << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3217 for (i = 0; i < (num_ahg - 1); i++) {
3218 if (!shift && !(i & 2))
3220 tx->descs[desc].qw[!!(i & 2)] |=
3223 shift = (shift + 32) & 63;
3228 * sdma_ahg_alloc - allocate an AHG entry
3229 * @sde: engine to allocate from
3232 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3233 * -ENOSPC if an entry is not available
3235 int sdma_ahg_alloc(struct sdma_engine *sde)
3241 trace_hfi1_ahg_allocate(sde, -EINVAL);
3245 nr = ffz(READ_ONCE(sde->ahg_bits));
3247 trace_hfi1_ahg_allocate(sde, -ENOSPC);
3250 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3255 trace_hfi1_ahg_allocate(sde, nr);
3260 * sdma_ahg_free - free an AHG entry
3261 * @sde: engine to return AHG entry
3262 * @ahg_index: index to free
3264 * This routine frees the indicate AHG entry.
3266 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3270 trace_hfi1_ahg_deallocate(sde, ahg_index);
3271 if (ahg_index < 0 || ahg_index > 31)
3273 clear_bit(ahg_index, &sde->ahg_bits);
3277 * SPC freeze handling for SDMA engines. Called when the driver knows
3278 * the SPC is going into a freeze but before the freeze is fully
3279 * settled. Generally an error interrupt.
3281 * This event will pull the engine out of running so no more entries can be
3282 * added to the engine's queue.
3284 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3287 enum sdma_events event = link_down ? sdma_event_e85_link_down :
3288 sdma_event_e80_hw_freeze;
3290 /* set up the wait but do not wait here */
3291 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3293 /* tell all engines to stop running and wait */
3294 for (i = 0; i < dd->num_sdma; i++)
3295 sdma_process_event(&dd->per_sdma[i], event);
3297 /* sdma_freeze() will wait for all engines to have stopped */
3301 * SPC freeze handling for SDMA engines. Called when the driver knows
3302 * the SPC is fully frozen.
3304 void sdma_freeze(struct hfi1_devdata *dd)
3310 * Make sure all engines have moved out of the running state before
3313 ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3314 atomic_read(&dd->sdma_unfreeze_count) <=
3316 /* interrupted or count is negative, then unloading - just exit */
3317 if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3320 /* set up the count for the next wait */
3321 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3323 /* tell all engines that the SPC is frozen, they can start cleaning */
3324 for (i = 0; i < dd->num_sdma; i++)
3325 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3328 * Wait for everyone to finish software clean before exiting. The
3329 * software clean will read engine CSRs, so must be completed before
3330 * the next step, which will clear the engine CSRs.
3332 (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3333 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3334 /* no need to check results - done no matter what */
3338 * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
3340 * The SPC freeze acts like a SDMA halt and a hardware clean combined. All
3341 * that is left is a software clean. We could do it after the SPC is fully
3342 * frozen, but then we'd have to add another state to wait for the unfreeze.
3343 * Instead, just defer the software clean until the unfreeze step.
3345 void sdma_unfreeze(struct hfi1_devdata *dd)
3349 /* tell all engines start freeze clean up */
3350 for (i = 0; i < dd->num_sdma; i++)
3351 sdma_process_event(&dd->per_sdma[i],
3352 sdma_event_e82_hw_unfreeze);
3356 * _sdma_engine_progress_schedule() - schedule progress on engine
3357 * @sde: sdma_engine to schedule progress
3360 void _sdma_engine_progress_schedule(
3361 struct sdma_engine *sde)
3363 trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3364 /* assume we have selected a good cpu */
3366 CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3367 sde->progress_mask);