]> Git Repo - J-linux.git/blob - net/vmw_vsock/af_vsock.c
scsi: zfcp: Trace when request remove fails after qdio send fails
[J-linux.git] / net / vmw_vsock / af_vsock.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/init.h>
93 #include <linux/io.h>
94 #include <linux/kernel.h>
95 #include <linux/sched/signal.h>
96 #include <linux/kmod.h>
97 #include <linux/list.h>
98 #include <linux/miscdevice.h>
99 #include <linux/module.h>
100 #include <linux/mutex.h>
101 #include <linux/net.h>
102 #include <linux/poll.h>
103 #include <linux/random.h>
104 #include <linux/skbuff.h>
105 #include <linux/smp.h>
106 #include <linux/socket.h>
107 #include <linux/stddef.h>
108 #include <linux/unistd.h>
109 #include <linux/wait.h>
110 #include <linux/workqueue.h>
111 #include <net/sock.h>
112 #include <net/af_vsock.h>
113
114 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
115 static void vsock_sk_destruct(struct sock *sk);
116 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
117
118 /* Protocol family. */
119 static struct proto vsock_proto = {
120         .name = "AF_VSOCK",
121         .owner = THIS_MODULE,
122         .obj_size = sizeof(struct vsock_sock),
123 };
124
125 /* The default peer timeout indicates how long we will wait for a peer response
126  * to a control message.
127  */
128 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
129
130 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
132 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
133
134 /* Transport used for host->guest communication */
135 static const struct vsock_transport *transport_h2g;
136 /* Transport used for guest->host communication */
137 static const struct vsock_transport *transport_g2h;
138 /* Transport used for DGRAM communication */
139 static const struct vsock_transport *transport_dgram;
140 /* Transport used for local communication */
141 static const struct vsock_transport *transport_local;
142 static DEFINE_MUTEX(vsock_register_mutex);
143
144 /**** UTILS ****/
145
146 /* Each bound VSocket is stored in the bind hash table and each connected
147  * VSocket is stored in the connected hash table.
148  *
149  * Unbound sockets are all put on the same list attached to the end of the hash
150  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
151  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
152  * represents the list that addr hashes to).
153  *
154  * Specifically, we initialize the vsock_bind_table array to a size of
155  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
156  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
157  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
158  * mods with VSOCK_HASH_SIZE to ensure this.
159  */
160 #define MAX_PORT_RETRIES        24
161
162 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
163 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
164 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
165
166 /* XXX This can probably be implemented in a better way. */
167 #define VSOCK_CONN_HASH(src, dst)                               \
168         (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
169 #define vsock_connected_sockets(src, dst)               \
170         (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
171 #define vsock_connected_sockets_vsk(vsk)                                \
172         vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
173
174 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
175 EXPORT_SYMBOL_GPL(vsock_bind_table);
176 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
177 EXPORT_SYMBOL_GPL(vsock_connected_table);
178 DEFINE_SPINLOCK(vsock_table_lock);
179 EXPORT_SYMBOL_GPL(vsock_table_lock);
180
181 /* Autobind this socket to the local address if necessary. */
182 static int vsock_auto_bind(struct vsock_sock *vsk)
183 {
184         struct sock *sk = sk_vsock(vsk);
185         struct sockaddr_vm local_addr;
186
187         if (vsock_addr_bound(&vsk->local_addr))
188                 return 0;
189         vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
190         return __vsock_bind(sk, &local_addr);
191 }
192
193 static void vsock_init_tables(void)
194 {
195         int i;
196
197         for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
198                 INIT_LIST_HEAD(&vsock_bind_table[i]);
199
200         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
201                 INIT_LIST_HEAD(&vsock_connected_table[i]);
202 }
203
204 static void __vsock_insert_bound(struct list_head *list,
205                                  struct vsock_sock *vsk)
206 {
207         sock_hold(&vsk->sk);
208         list_add(&vsk->bound_table, list);
209 }
210
211 static void __vsock_insert_connected(struct list_head *list,
212                                      struct vsock_sock *vsk)
213 {
214         sock_hold(&vsk->sk);
215         list_add(&vsk->connected_table, list);
216 }
217
218 static void __vsock_remove_bound(struct vsock_sock *vsk)
219 {
220         list_del_init(&vsk->bound_table);
221         sock_put(&vsk->sk);
222 }
223
224 static void __vsock_remove_connected(struct vsock_sock *vsk)
225 {
226         list_del_init(&vsk->connected_table);
227         sock_put(&vsk->sk);
228 }
229
230 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
231 {
232         struct vsock_sock *vsk;
233
234         list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
235                 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
236                         return sk_vsock(vsk);
237
238                 if (addr->svm_port == vsk->local_addr.svm_port &&
239                     (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
240                      addr->svm_cid == VMADDR_CID_ANY))
241                         return sk_vsock(vsk);
242         }
243
244         return NULL;
245 }
246
247 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
248                                                   struct sockaddr_vm *dst)
249 {
250         struct vsock_sock *vsk;
251
252         list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
253                             connected_table) {
254                 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
255                     dst->svm_port == vsk->local_addr.svm_port) {
256                         return sk_vsock(vsk);
257                 }
258         }
259
260         return NULL;
261 }
262
263 static void vsock_insert_unbound(struct vsock_sock *vsk)
264 {
265         spin_lock_bh(&vsock_table_lock);
266         __vsock_insert_bound(vsock_unbound_sockets, vsk);
267         spin_unlock_bh(&vsock_table_lock);
268 }
269
270 void vsock_insert_connected(struct vsock_sock *vsk)
271 {
272         struct list_head *list = vsock_connected_sockets(
273                 &vsk->remote_addr, &vsk->local_addr);
274
275         spin_lock_bh(&vsock_table_lock);
276         __vsock_insert_connected(list, vsk);
277         spin_unlock_bh(&vsock_table_lock);
278 }
279 EXPORT_SYMBOL_GPL(vsock_insert_connected);
280
281 void vsock_remove_bound(struct vsock_sock *vsk)
282 {
283         spin_lock_bh(&vsock_table_lock);
284         if (__vsock_in_bound_table(vsk))
285                 __vsock_remove_bound(vsk);
286         spin_unlock_bh(&vsock_table_lock);
287 }
288 EXPORT_SYMBOL_GPL(vsock_remove_bound);
289
290 void vsock_remove_connected(struct vsock_sock *vsk)
291 {
292         spin_lock_bh(&vsock_table_lock);
293         if (__vsock_in_connected_table(vsk))
294                 __vsock_remove_connected(vsk);
295         spin_unlock_bh(&vsock_table_lock);
296 }
297 EXPORT_SYMBOL_GPL(vsock_remove_connected);
298
299 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
300 {
301         struct sock *sk;
302
303         spin_lock_bh(&vsock_table_lock);
304         sk = __vsock_find_bound_socket(addr);
305         if (sk)
306                 sock_hold(sk);
307
308         spin_unlock_bh(&vsock_table_lock);
309
310         return sk;
311 }
312 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
313
314 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
315                                          struct sockaddr_vm *dst)
316 {
317         struct sock *sk;
318
319         spin_lock_bh(&vsock_table_lock);
320         sk = __vsock_find_connected_socket(src, dst);
321         if (sk)
322                 sock_hold(sk);
323
324         spin_unlock_bh(&vsock_table_lock);
325
326         return sk;
327 }
328 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
329
330 void vsock_remove_sock(struct vsock_sock *vsk)
331 {
332         vsock_remove_bound(vsk);
333         vsock_remove_connected(vsk);
334 }
335 EXPORT_SYMBOL_GPL(vsock_remove_sock);
336
337 void vsock_for_each_connected_socket(struct vsock_transport *transport,
338                                      void (*fn)(struct sock *sk))
339 {
340         int i;
341
342         spin_lock_bh(&vsock_table_lock);
343
344         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
345                 struct vsock_sock *vsk;
346                 list_for_each_entry(vsk, &vsock_connected_table[i],
347                                     connected_table) {
348                         if (vsk->transport != transport)
349                                 continue;
350
351                         fn(sk_vsock(vsk));
352                 }
353         }
354
355         spin_unlock_bh(&vsock_table_lock);
356 }
357 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
358
359 void vsock_add_pending(struct sock *listener, struct sock *pending)
360 {
361         struct vsock_sock *vlistener;
362         struct vsock_sock *vpending;
363
364         vlistener = vsock_sk(listener);
365         vpending = vsock_sk(pending);
366
367         sock_hold(pending);
368         sock_hold(listener);
369         list_add_tail(&vpending->pending_links, &vlistener->pending_links);
370 }
371 EXPORT_SYMBOL_GPL(vsock_add_pending);
372
373 void vsock_remove_pending(struct sock *listener, struct sock *pending)
374 {
375         struct vsock_sock *vpending = vsock_sk(pending);
376
377         list_del_init(&vpending->pending_links);
378         sock_put(listener);
379         sock_put(pending);
380 }
381 EXPORT_SYMBOL_GPL(vsock_remove_pending);
382
383 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
384 {
385         struct vsock_sock *vlistener;
386         struct vsock_sock *vconnected;
387
388         vlistener = vsock_sk(listener);
389         vconnected = vsock_sk(connected);
390
391         sock_hold(connected);
392         sock_hold(listener);
393         list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
394 }
395 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
396
397 static bool vsock_use_local_transport(unsigned int remote_cid)
398 {
399         if (!transport_local)
400                 return false;
401
402         if (remote_cid == VMADDR_CID_LOCAL)
403                 return true;
404
405         if (transport_g2h) {
406                 return remote_cid == transport_g2h->get_local_cid();
407         } else {
408                 return remote_cid == VMADDR_CID_HOST;
409         }
410 }
411
412 static void vsock_deassign_transport(struct vsock_sock *vsk)
413 {
414         if (!vsk->transport)
415                 return;
416
417         vsk->transport->destruct(vsk);
418         module_put(vsk->transport->module);
419         vsk->transport = NULL;
420 }
421
422 /* Assign a transport to a socket and call the .init transport callback.
423  *
424  * Note: for connection oriented socket this must be called when vsk->remote_addr
425  * is set (e.g. during the connect() or when a connection request on a listener
426  * socket is received).
427  * The vsk->remote_addr is used to decide which transport to use:
428  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
429  *    g2h is not loaded, will use local transport;
430  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
431  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
432  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
433  */
434 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
435 {
436         const struct vsock_transport *new_transport;
437         struct sock *sk = sk_vsock(vsk);
438         unsigned int remote_cid = vsk->remote_addr.svm_cid;
439         __u8 remote_flags;
440         int ret;
441
442         /* If the packet is coming with the source and destination CIDs higher
443          * than VMADDR_CID_HOST, then a vsock channel where all the packets are
444          * forwarded to the host should be established. Then the host will
445          * need to forward the packets to the guest.
446          *
447          * The flag is set on the (listen) receive path (psk is not NULL). On
448          * the connect path the flag can be set by the user space application.
449          */
450         if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
451             vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
452                 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
453
454         remote_flags = vsk->remote_addr.svm_flags;
455
456         switch (sk->sk_type) {
457         case SOCK_DGRAM:
458                 new_transport = transport_dgram;
459                 break;
460         case SOCK_STREAM:
461         case SOCK_SEQPACKET:
462                 if (vsock_use_local_transport(remote_cid))
463                         new_transport = transport_local;
464                 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
465                          (remote_flags & VMADDR_FLAG_TO_HOST))
466                         new_transport = transport_g2h;
467                 else
468                         new_transport = transport_h2g;
469                 break;
470         default:
471                 return -ESOCKTNOSUPPORT;
472         }
473
474         if (vsk->transport) {
475                 if (vsk->transport == new_transport)
476                         return 0;
477
478                 /* transport->release() must be called with sock lock acquired.
479                  * This path can only be taken during vsock_connect(), where we
480                  * have already held the sock lock. In the other cases, this
481                  * function is called on a new socket which is not assigned to
482                  * any transport.
483                  */
484                 vsk->transport->release(vsk);
485                 vsock_deassign_transport(vsk);
486         }
487
488         /* We increase the module refcnt to prevent the transport unloading
489          * while there are open sockets assigned to it.
490          */
491         if (!new_transport || !try_module_get(new_transport->module))
492                 return -ENODEV;
493
494         if (sk->sk_type == SOCK_SEQPACKET) {
495                 if (!new_transport->seqpacket_allow ||
496                     !new_transport->seqpacket_allow(remote_cid)) {
497                         module_put(new_transport->module);
498                         return -ESOCKTNOSUPPORT;
499                 }
500         }
501
502         ret = new_transport->init(vsk, psk);
503         if (ret) {
504                 module_put(new_transport->module);
505                 return ret;
506         }
507
508         vsk->transport = new_transport;
509
510         return 0;
511 }
512 EXPORT_SYMBOL_GPL(vsock_assign_transport);
513
514 bool vsock_find_cid(unsigned int cid)
515 {
516         if (transport_g2h && cid == transport_g2h->get_local_cid())
517                 return true;
518
519         if (transport_h2g && cid == VMADDR_CID_HOST)
520                 return true;
521
522         if (transport_local && cid == VMADDR_CID_LOCAL)
523                 return true;
524
525         return false;
526 }
527 EXPORT_SYMBOL_GPL(vsock_find_cid);
528
529 static struct sock *vsock_dequeue_accept(struct sock *listener)
530 {
531         struct vsock_sock *vlistener;
532         struct vsock_sock *vconnected;
533
534         vlistener = vsock_sk(listener);
535
536         if (list_empty(&vlistener->accept_queue))
537                 return NULL;
538
539         vconnected = list_entry(vlistener->accept_queue.next,
540                                 struct vsock_sock, accept_queue);
541
542         list_del_init(&vconnected->accept_queue);
543         sock_put(listener);
544         /* The caller will need a reference on the connected socket so we let
545          * it call sock_put().
546          */
547
548         return sk_vsock(vconnected);
549 }
550
551 static bool vsock_is_accept_queue_empty(struct sock *sk)
552 {
553         struct vsock_sock *vsk = vsock_sk(sk);
554         return list_empty(&vsk->accept_queue);
555 }
556
557 static bool vsock_is_pending(struct sock *sk)
558 {
559         struct vsock_sock *vsk = vsock_sk(sk);
560         return !list_empty(&vsk->pending_links);
561 }
562
563 static int vsock_send_shutdown(struct sock *sk, int mode)
564 {
565         struct vsock_sock *vsk = vsock_sk(sk);
566
567         if (!vsk->transport)
568                 return -ENODEV;
569
570         return vsk->transport->shutdown(vsk, mode);
571 }
572
573 static void vsock_pending_work(struct work_struct *work)
574 {
575         struct sock *sk;
576         struct sock *listener;
577         struct vsock_sock *vsk;
578         bool cleanup;
579
580         vsk = container_of(work, struct vsock_sock, pending_work.work);
581         sk = sk_vsock(vsk);
582         listener = vsk->listener;
583         cleanup = true;
584
585         lock_sock(listener);
586         lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
587
588         if (vsock_is_pending(sk)) {
589                 vsock_remove_pending(listener, sk);
590
591                 sk_acceptq_removed(listener);
592         } else if (!vsk->rejected) {
593                 /* We are not on the pending list and accept() did not reject
594                  * us, so we must have been accepted by our user process.  We
595                  * just need to drop our references to the sockets and be on
596                  * our way.
597                  */
598                 cleanup = false;
599                 goto out;
600         }
601
602         /* We need to remove ourself from the global connected sockets list so
603          * incoming packets can't find this socket, and to reduce the reference
604          * count.
605          */
606         vsock_remove_connected(vsk);
607
608         sk->sk_state = TCP_CLOSE;
609
610 out:
611         release_sock(sk);
612         release_sock(listener);
613         if (cleanup)
614                 sock_put(sk);
615
616         sock_put(sk);
617         sock_put(listener);
618 }
619
620 /**** SOCKET OPERATIONS ****/
621
622 static int __vsock_bind_connectible(struct vsock_sock *vsk,
623                                     struct sockaddr_vm *addr)
624 {
625         static u32 port;
626         struct sockaddr_vm new_addr;
627
628         if (!port)
629                 port = get_random_u32_above(LAST_RESERVED_PORT);
630
631         vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
632
633         if (addr->svm_port == VMADDR_PORT_ANY) {
634                 bool found = false;
635                 unsigned int i;
636
637                 for (i = 0; i < MAX_PORT_RETRIES; i++) {
638                         if (port <= LAST_RESERVED_PORT)
639                                 port = LAST_RESERVED_PORT + 1;
640
641                         new_addr.svm_port = port++;
642
643                         if (!__vsock_find_bound_socket(&new_addr)) {
644                                 found = true;
645                                 break;
646                         }
647                 }
648
649                 if (!found)
650                         return -EADDRNOTAVAIL;
651         } else {
652                 /* If port is in reserved range, ensure caller
653                  * has necessary privileges.
654                  */
655                 if (addr->svm_port <= LAST_RESERVED_PORT &&
656                     !capable(CAP_NET_BIND_SERVICE)) {
657                         return -EACCES;
658                 }
659
660                 if (__vsock_find_bound_socket(&new_addr))
661                         return -EADDRINUSE;
662         }
663
664         vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
665
666         /* Remove connection oriented sockets from the unbound list and add them
667          * to the hash table for easy lookup by its address.  The unbound list
668          * is simply an extra entry at the end of the hash table, a trick used
669          * by AF_UNIX.
670          */
671         __vsock_remove_bound(vsk);
672         __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
673
674         return 0;
675 }
676
677 static int __vsock_bind_dgram(struct vsock_sock *vsk,
678                               struct sockaddr_vm *addr)
679 {
680         return vsk->transport->dgram_bind(vsk, addr);
681 }
682
683 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
684 {
685         struct vsock_sock *vsk = vsock_sk(sk);
686         int retval;
687
688         /* First ensure this socket isn't already bound. */
689         if (vsock_addr_bound(&vsk->local_addr))
690                 return -EINVAL;
691
692         /* Now bind to the provided address or select appropriate values if
693          * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
694          * like AF_INET prevents binding to a non-local IP address (in most
695          * cases), we only allow binding to a local CID.
696          */
697         if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
698                 return -EADDRNOTAVAIL;
699
700         switch (sk->sk_socket->type) {
701         case SOCK_STREAM:
702         case SOCK_SEQPACKET:
703                 spin_lock_bh(&vsock_table_lock);
704                 retval = __vsock_bind_connectible(vsk, addr);
705                 spin_unlock_bh(&vsock_table_lock);
706                 break;
707
708         case SOCK_DGRAM:
709                 retval = __vsock_bind_dgram(vsk, addr);
710                 break;
711
712         default:
713                 retval = -EINVAL;
714                 break;
715         }
716
717         return retval;
718 }
719
720 static void vsock_connect_timeout(struct work_struct *work);
721
722 static struct sock *__vsock_create(struct net *net,
723                                    struct socket *sock,
724                                    struct sock *parent,
725                                    gfp_t priority,
726                                    unsigned short type,
727                                    int kern)
728 {
729         struct sock *sk;
730         struct vsock_sock *psk;
731         struct vsock_sock *vsk;
732
733         sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
734         if (!sk)
735                 return NULL;
736
737         sock_init_data(sock, sk);
738
739         /* sk->sk_type is normally set in sock_init_data, but only if sock is
740          * non-NULL. We make sure that our sockets always have a type by
741          * setting it here if needed.
742          */
743         if (!sock)
744                 sk->sk_type = type;
745
746         vsk = vsock_sk(sk);
747         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
748         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
749
750         sk->sk_destruct = vsock_sk_destruct;
751         sk->sk_backlog_rcv = vsock_queue_rcv_skb;
752         sock_reset_flag(sk, SOCK_DONE);
753
754         INIT_LIST_HEAD(&vsk->bound_table);
755         INIT_LIST_HEAD(&vsk->connected_table);
756         vsk->listener = NULL;
757         INIT_LIST_HEAD(&vsk->pending_links);
758         INIT_LIST_HEAD(&vsk->accept_queue);
759         vsk->rejected = false;
760         vsk->sent_request = false;
761         vsk->ignore_connecting_rst = false;
762         vsk->peer_shutdown = 0;
763         INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
764         INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
765
766         psk = parent ? vsock_sk(parent) : NULL;
767         if (parent) {
768                 vsk->trusted = psk->trusted;
769                 vsk->owner = get_cred(psk->owner);
770                 vsk->connect_timeout = psk->connect_timeout;
771                 vsk->buffer_size = psk->buffer_size;
772                 vsk->buffer_min_size = psk->buffer_min_size;
773                 vsk->buffer_max_size = psk->buffer_max_size;
774                 security_sk_clone(parent, sk);
775         } else {
776                 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
777                 vsk->owner = get_current_cred();
778                 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
779                 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
780                 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
781                 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
782         }
783
784         return sk;
785 }
786
787 static bool sock_type_connectible(u16 type)
788 {
789         return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
790 }
791
792 static void __vsock_release(struct sock *sk, int level)
793 {
794         if (sk) {
795                 struct sock *pending;
796                 struct vsock_sock *vsk;
797
798                 vsk = vsock_sk(sk);
799                 pending = NULL; /* Compiler warning. */
800
801                 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
802                  * version to avoid the warning "possible recursive locking
803                  * detected". When "level" is 0, lock_sock_nested(sk, level)
804                  * is the same as lock_sock(sk).
805                  */
806                 lock_sock_nested(sk, level);
807
808                 if (vsk->transport)
809                         vsk->transport->release(vsk);
810                 else if (sock_type_connectible(sk->sk_type))
811                         vsock_remove_sock(vsk);
812
813                 sock_orphan(sk);
814                 sk->sk_shutdown = SHUTDOWN_MASK;
815
816                 skb_queue_purge(&sk->sk_receive_queue);
817
818                 /* Clean up any sockets that never were accepted. */
819                 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
820                         __vsock_release(pending, SINGLE_DEPTH_NESTING);
821                         sock_put(pending);
822                 }
823
824                 release_sock(sk);
825                 sock_put(sk);
826         }
827 }
828
829 static void vsock_sk_destruct(struct sock *sk)
830 {
831         struct vsock_sock *vsk = vsock_sk(sk);
832
833         vsock_deassign_transport(vsk);
834
835         /* When clearing these addresses, there's no need to set the family and
836          * possibly register the address family with the kernel.
837          */
838         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
839         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
840
841         put_cred(vsk->owner);
842 }
843
844 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
845 {
846         int err;
847
848         err = sock_queue_rcv_skb(sk, skb);
849         if (err)
850                 kfree_skb(skb);
851
852         return err;
853 }
854
855 struct sock *vsock_create_connected(struct sock *parent)
856 {
857         return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
858                               parent->sk_type, 0);
859 }
860 EXPORT_SYMBOL_GPL(vsock_create_connected);
861
862 s64 vsock_stream_has_data(struct vsock_sock *vsk)
863 {
864         return vsk->transport->stream_has_data(vsk);
865 }
866 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
867
868 static s64 vsock_connectible_has_data(struct vsock_sock *vsk)
869 {
870         struct sock *sk = sk_vsock(vsk);
871
872         if (sk->sk_type == SOCK_SEQPACKET)
873                 return vsk->transport->seqpacket_has_data(vsk);
874         else
875                 return vsock_stream_has_data(vsk);
876 }
877
878 s64 vsock_stream_has_space(struct vsock_sock *vsk)
879 {
880         return vsk->transport->stream_has_space(vsk);
881 }
882 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
883
884 void vsock_data_ready(struct sock *sk)
885 {
886         struct vsock_sock *vsk = vsock_sk(sk);
887
888         if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
889             sock_flag(sk, SOCK_DONE))
890                 sk->sk_data_ready(sk);
891 }
892 EXPORT_SYMBOL_GPL(vsock_data_ready);
893
894 static int vsock_release(struct socket *sock)
895 {
896         __vsock_release(sock->sk, 0);
897         sock->sk = NULL;
898         sock->state = SS_FREE;
899
900         return 0;
901 }
902
903 static int
904 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
905 {
906         int err;
907         struct sock *sk;
908         struct sockaddr_vm *vm_addr;
909
910         sk = sock->sk;
911
912         if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
913                 return -EINVAL;
914
915         lock_sock(sk);
916         err = __vsock_bind(sk, vm_addr);
917         release_sock(sk);
918
919         return err;
920 }
921
922 static int vsock_getname(struct socket *sock,
923                          struct sockaddr *addr, int peer)
924 {
925         int err;
926         struct sock *sk;
927         struct vsock_sock *vsk;
928         struct sockaddr_vm *vm_addr;
929
930         sk = sock->sk;
931         vsk = vsock_sk(sk);
932         err = 0;
933
934         lock_sock(sk);
935
936         if (peer) {
937                 if (sock->state != SS_CONNECTED) {
938                         err = -ENOTCONN;
939                         goto out;
940                 }
941                 vm_addr = &vsk->remote_addr;
942         } else {
943                 vm_addr = &vsk->local_addr;
944         }
945
946         if (!vm_addr) {
947                 err = -EINVAL;
948                 goto out;
949         }
950
951         /* sys_getsockname() and sys_getpeername() pass us a
952          * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
953          * that macro is defined in socket.c instead of .h, so we hardcode its
954          * value here.
955          */
956         BUILD_BUG_ON(sizeof(*vm_addr) > 128);
957         memcpy(addr, vm_addr, sizeof(*vm_addr));
958         err = sizeof(*vm_addr);
959
960 out:
961         release_sock(sk);
962         return err;
963 }
964
965 static int vsock_shutdown(struct socket *sock, int mode)
966 {
967         int err;
968         struct sock *sk;
969
970         /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
971          * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
972          * here like the other address families do.  Note also that the
973          * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
974          * which is what we want.
975          */
976         mode++;
977
978         if ((mode & ~SHUTDOWN_MASK) || !mode)
979                 return -EINVAL;
980
981         /* If this is a connection oriented socket and it is not connected then
982          * bail out immediately.  If it is a DGRAM socket then we must first
983          * kick the socket so that it wakes up from any sleeping calls, for
984          * example recv(), and then afterwards return the error.
985          */
986
987         sk = sock->sk;
988
989         lock_sock(sk);
990         if (sock->state == SS_UNCONNECTED) {
991                 err = -ENOTCONN;
992                 if (sock_type_connectible(sk->sk_type))
993                         goto out;
994         } else {
995                 sock->state = SS_DISCONNECTING;
996                 err = 0;
997         }
998
999         /* Receive and send shutdowns are treated alike. */
1000         mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1001         if (mode) {
1002                 sk->sk_shutdown |= mode;
1003                 sk->sk_state_change(sk);
1004
1005                 if (sock_type_connectible(sk->sk_type)) {
1006                         sock_reset_flag(sk, SOCK_DONE);
1007                         vsock_send_shutdown(sk, mode);
1008                 }
1009         }
1010
1011 out:
1012         release_sock(sk);
1013         return err;
1014 }
1015
1016 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1017                                poll_table *wait)
1018 {
1019         struct sock *sk;
1020         __poll_t mask;
1021         struct vsock_sock *vsk;
1022
1023         sk = sock->sk;
1024         vsk = vsock_sk(sk);
1025
1026         poll_wait(file, sk_sleep(sk), wait);
1027         mask = 0;
1028
1029         if (sk->sk_err)
1030                 /* Signify that there has been an error on this socket. */
1031                 mask |= EPOLLERR;
1032
1033         /* INET sockets treat local write shutdown and peer write shutdown as a
1034          * case of EPOLLHUP set.
1035          */
1036         if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1037             ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1038              (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1039                 mask |= EPOLLHUP;
1040         }
1041
1042         if (sk->sk_shutdown & RCV_SHUTDOWN ||
1043             vsk->peer_shutdown & SEND_SHUTDOWN) {
1044                 mask |= EPOLLRDHUP;
1045         }
1046
1047         if (sock->type == SOCK_DGRAM) {
1048                 /* For datagram sockets we can read if there is something in
1049                  * the queue and write as long as the socket isn't shutdown for
1050                  * sending.
1051                  */
1052                 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1053                     (sk->sk_shutdown & RCV_SHUTDOWN)) {
1054                         mask |= EPOLLIN | EPOLLRDNORM;
1055                 }
1056
1057                 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1058                         mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1059
1060         } else if (sock_type_connectible(sk->sk_type)) {
1061                 const struct vsock_transport *transport;
1062
1063                 lock_sock(sk);
1064
1065                 transport = vsk->transport;
1066
1067                 /* Listening sockets that have connections in their accept
1068                  * queue can be read.
1069                  */
1070                 if (sk->sk_state == TCP_LISTEN
1071                     && !vsock_is_accept_queue_empty(sk))
1072                         mask |= EPOLLIN | EPOLLRDNORM;
1073
1074                 /* If there is something in the queue then we can read. */
1075                 if (transport && transport->stream_is_active(vsk) &&
1076                     !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1077                         bool data_ready_now = false;
1078                         int target = sock_rcvlowat(sk, 0, INT_MAX);
1079                         int ret = transport->notify_poll_in(
1080                                         vsk, target, &data_ready_now);
1081                         if (ret < 0) {
1082                                 mask |= EPOLLERR;
1083                         } else {
1084                                 if (data_ready_now)
1085                                         mask |= EPOLLIN | EPOLLRDNORM;
1086
1087                         }
1088                 }
1089
1090                 /* Sockets whose connections have been closed, reset, or
1091                  * terminated should also be considered read, and we check the
1092                  * shutdown flag for that.
1093                  */
1094                 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1095                     vsk->peer_shutdown & SEND_SHUTDOWN) {
1096                         mask |= EPOLLIN | EPOLLRDNORM;
1097                 }
1098
1099                 /* Connected sockets that can produce data can be written. */
1100                 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1101                         if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1102                                 bool space_avail_now = false;
1103                                 int ret = transport->notify_poll_out(
1104                                                 vsk, 1, &space_avail_now);
1105                                 if (ret < 0) {
1106                                         mask |= EPOLLERR;
1107                                 } else {
1108                                         if (space_avail_now)
1109                                                 /* Remove EPOLLWRBAND since INET
1110                                                  * sockets are not setting it.
1111                                                  */
1112                                                 mask |= EPOLLOUT | EPOLLWRNORM;
1113
1114                                 }
1115                         }
1116                 }
1117
1118                 /* Simulate INET socket poll behaviors, which sets
1119                  * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1120                  * but local send is not shutdown.
1121                  */
1122                 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1123                         if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1124                                 mask |= EPOLLOUT | EPOLLWRNORM;
1125
1126                 }
1127
1128                 release_sock(sk);
1129         }
1130
1131         return mask;
1132 }
1133
1134 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1135                                size_t len)
1136 {
1137         int err;
1138         struct sock *sk;
1139         struct vsock_sock *vsk;
1140         struct sockaddr_vm *remote_addr;
1141         const struct vsock_transport *transport;
1142
1143         if (msg->msg_flags & MSG_OOB)
1144                 return -EOPNOTSUPP;
1145
1146         /* For now, MSG_DONTWAIT is always assumed... */
1147         err = 0;
1148         sk = sock->sk;
1149         vsk = vsock_sk(sk);
1150
1151         lock_sock(sk);
1152
1153         transport = vsk->transport;
1154
1155         err = vsock_auto_bind(vsk);
1156         if (err)
1157                 goto out;
1158
1159
1160         /* If the provided message contains an address, use that.  Otherwise
1161          * fall back on the socket's remote handle (if it has been connected).
1162          */
1163         if (msg->msg_name &&
1164             vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1165                             &remote_addr) == 0) {
1166                 /* Ensure this address is of the right type and is a valid
1167                  * destination.
1168                  */
1169
1170                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1171                         remote_addr->svm_cid = transport->get_local_cid();
1172
1173                 if (!vsock_addr_bound(remote_addr)) {
1174                         err = -EINVAL;
1175                         goto out;
1176                 }
1177         } else if (sock->state == SS_CONNECTED) {
1178                 remote_addr = &vsk->remote_addr;
1179
1180                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1181                         remote_addr->svm_cid = transport->get_local_cid();
1182
1183                 /* XXX Should connect() or this function ensure remote_addr is
1184                  * bound?
1185                  */
1186                 if (!vsock_addr_bound(&vsk->remote_addr)) {
1187                         err = -EINVAL;
1188                         goto out;
1189                 }
1190         } else {
1191                 err = -EINVAL;
1192                 goto out;
1193         }
1194
1195         if (!transport->dgram_allow(remote_addr->svm_cid,
1196                                     remote_addr->svm_port)) {
1197                 err = -EINVAL;
1198                 goto out;
1199         }
1200
1201         err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1202
1203 out:
1204         release_sock(sk);
1205         return err;
1206 }
1207
1208 static int vsock_dgram_connect(struct socket *sock,
1209                                struct sockaddr *addr, int addr_len, int flags)
1210 {
1211         int err;
1212         struct sock *sk;
1213         struct vsock_sock *vsk;
1214         struct sockaddr_vm *remote_addr;
1215
1216         sk = sock->sk;
1217         vsk = vsock_sk(sk);
1218
1219         err = vsock_addr_cast(addr, addr_len, &remote_addr);
1220         if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1221                 lock_sock(sk);
1222                 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1223                                 VMADDR_PORT_ANY);
1224                 sock->state = SS_UNCONNECTED;
1225                 release_sock(sk);
1226                 return 0;
1227         } else if (err != 0)
1228                 return -EINVAL;
1229
1230         lock_sock(sk);
1231
1232         err = vsock_auto_bind(vsk);
1233         if (err)
1234                 goto out;
1235
1236         if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1237                                          remote_addr->svm_port)) {
1238                 err = -EINVAL;
1239                 goto out;
1240         }
1241
1242         memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1243         sock->state = SS_CONNECTED;
1244
1245 out:
1246         release_sock(sk);
1247         return err;
1248 }
1249
1250 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1251                                size_t len, int flags)
1252 {
1253         struct vsock_sock *vsk = vsock_sk(sock->sk);
1254
1255         return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1256 }
1257
1258 static const struct proto_ops vsock_dgram_ops = {
1259         .family = PF_VSOCK,
1260         .owner = THIS_MODULE,
1261         .release = vsock_release,
1262         .bind = vsock_bind,
1263         .connect = vsock_dgram_connect,
1264         .socketpair = sock_no_socketpair,
1265         .accept = sock_no_accept,
1266         .getname = vsock_getname,
1267         .poll = vsock_poll,
1268         .ioctl = sock_no_ioctl,
1269         .listen = sock_no_listen,
1270         .shutdown = vsock_shutdown,
1271         .sendmsg = vsock_dgram_sendmsg,
1272         .recvmsg = vsock_dgram_recvmsg,
1273         .mmap = sock_no_mmap,
1274         .sendpage = sock_no_sendpage,
1275 };
1276
1277 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1278 {
1279         const struct vsock_transport *transport = vsk->transport;
1280
1281         if (!transport || !transport->cancel_pkt)
1282                 return -EOPNOTSUPP;
1283
1284         return transport->cancel_pkt(vsk);
1285 }
1286
1287 static void vsock_connect_timeout(struct work_struct *work)
1288 {
1289         struct sock *sk;
1290         struct vsock_sock *vsk;
1291
1292         vsk = container_of(work, struct vsock_sock, connect_work.work);
1293         sk = sk_vsock(vsk);
1294
1295         lock_sock(sk);
1296         if (sk->sk_state == TCP_SYN_SENT &&
1297             (sk->sk_shutdown != SHUTDOWN_MASK)) {
1298                 sk->sk_state = TCP_CLOSE;
1299                 sk->sk_socket->state = SS_UNCONNECTED;
1300                 sk->sk_err = ETIMEDOUT;
1301                 sk_error_report(sk);
1302                 vsock_transport_cancel_pkt(vsk);
1303         }
1304         release_sock(sk);
1305
1306         sock_put(sk);
1307 }
1308
1309 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1310                          int addr_len, int flags)
1311 {
1312         int err;
1313         struct sock *sk;
1314         struct vsock_sock *vsk;
1315         const struct vsock_transport *transport;
1316         struct sockaddr_vm *remote_addr;
1317         long timeout;
1318         DEFINE_WAIT(wait);
1319
1320         err = 0;
1321         sk = sock->sk;
1322         vsk = vsock_sk(sk);
1323
1324         lock_sock(sk);
1325
1326         /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1327         switch (sock->state) {
1328         case SS_CONNECTED:
1329                 err = -EISCONN;
1330                 goto out;
1331         case SS_DISCONNECTING:
1332                 err = -EINVAL;
1333                 goto out;
1334         case SS_CONNECTING:
1335                 /* This continues on so we can move sock into the SS_CONNECTED
1336                  * state once the connection has completed (at which point err
1337                  * will be set to zero also).  Otherwise, we will either wait
1338                  * for the connection or return -EALREADY should this be a
1339                  * non-blocking call.
1340                  */
1341                 err = -EALREADY;
1342                 if (flags & O_NONBLOCK)
1343                         goto out;
1344                 break;
1345         default:
1346                 if ((sk->sk_state == TCP_LISTEN) ||
1347                     vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1348                         err = -EINVAL;
1349                         goto out;
1350                 }
1351
1352                 /* Set the remote address that we are connecting to. */
1353                 memcpy(&vsk->remote_addr, remote_addr,
1354                        sizeof(vsk->remote_addr));
1355
1356                 err = vsock_assign_transport(vsk, NULL);
1357                 if (err)
1358                         goto out;
1359
1360                 transport = vsk->transport;
1361
1362                 /* The hypervisor and well-known contexts do not have socket
1363                  * endpoints.
1364                  */
1365                 if (!transport ||
1366                     !transport->stream_allow(remote_addr->svm_cid,
1367                                              remote_addr->svm_port)) {
1368                         err = -ENETUNREACH;
1369                         goto out;
1370                 }
1371
1372                 err = vsock_auto_bind(vsk);
1373                 if (err)
1374                         goto out;
1375
1376                 sk->sk_state = TCP_SYN_SENT;
1377
1378                 err = transport->connect(vsk);
1379                 if (err < 0)
1380                         goto out;
1381
1382                 /* Mark sock as connecting and set the error code to in
1383                  * progress in case this is a non-blocking connect.
1384                  */
1385                 sock->state = SS_CONNECTING;
1386                 err = -EINPROGRESS;
1387         }
1388
1389         /* The receive path will handle all communication until we are able to
1390          * enter the connected state.  Here we wait for the connection to be
1391          * completed or a notification of an error.
1392          */
1393         timeout = vsk->connect_timeout;
1394         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1395
1396         while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1397                 if (flags & O_NONBLOCK) {
1398                         /* If we're not going to block, we schedule a timeout
1399                          * function to generate a timeout on the connection
1400                          * attempt, in case the peer doesn't respond in a
1401                          * timely manner. We hold on to the socket until the
1402                          * timeout fires.
1403                          */
1404                         sock_hold(sk);
1405
1406                         /* If the timeout function is already scheduled,
1407                          * reschedule it, then ungrab the socket refcount to
1408                          * keep it balanced.
1409                          */
1410                         if (mod_delayed_work(system_wq, &vsk->connect_work,
1411                                              timeout))
1412                                 sock_put(sk);
1413
1414                         /* Skip ahead to preserve error code set above. */
1415                         goto out_wait;
1416                 }
1417
1418                 release_sock(sk);
1419                 timeout = schedule_timeout(timeout);
1420                 lock_sock(sk);
1421
1422                 if (signal_pending(current)) {
1423                         err = sock_intr_errno(timeout);
1424                         sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1425                         sock->state = SS_UNCONNECTED;
1426                         vsock_transport_cancel_pkt(vsk);
1427                         vsock_remove_connected(vsk);
1428                         goto out_wait;
1429                 } else if (timeout == 0) {
1430                         err = -ETIMEDOUT;
1431                         sk->sk_state = TCP_CLOSE;
1432                         sock->state = SS_UNCONNECTED;
1433                         vsock_transport_cancel_pkt(vsk);
1434                         goto out_wait;
1435                 }
1436
1437                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1438         }
1439
1440         if (sk->sk_err) {
1441                 err = -sk->sk_err;
1442                 sk->sk_state = TCP_CLOSE;
1443                 sock->state = SS_UNCONNECTED;
1444         } else {
1445                 err = 0;
1446         }
1447
1448 out_wait:
1449         finish_wait(sk_sleep(sk), &wait);
1450 out:
1451         release_sock(sk);
1452         return err;
1453 }
1454
1455 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1456                         bool kern)
1457 {
1458         struct sock *listener;
1459         int err;
1460         struct sock *connected;
1461         struct vsock_sock *vconnected;
1462         long timeout;
1463         DEFINE_WAIT(wait);
1464
1465         err = 0;
1466         listener = sock->sk;
1467
1468         lock_sock(listener);
1469
1470         if (!sock_type_connectible(sock->type)) {
1471                 err = -EOPNOTSUPP;
1472                 goto out;
1473         }
1474
1475         if (listener->sk_state != TCP_LISTEN) {
1476                 err = -EINVAL;
1477                 goto out;
1478         }
1479
1480         /* Wait for children sockets to appear; these are the new sockets
1481          * created upon connection establishment.
1482          */
1483         timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1484         prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1485
1486         while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1487                listener->sk_err == 0) {
1488                 release_sock(listener);
1489                 timeout = schedule_timeout(timeout);
1490                 finish_wait(sk_sleep(listener), &wait);
1491                 lock_sock(listener);
1492
1493                 if (signal_pending(current)) {
1494                         err = sock_intr_errno(timeout);
1495                         goto out;
1496                 } else if (timeout == 0) {
1497                         err = -EAGAIN;
1498                         goto out;
1499                 }
1500
1501                 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1502         }
1503         finish_wait(sk_sleep(listener), &wait);
1504
1505         if (listener->sk_err)
1506                 err = -listener->sk_err;
1507
1508         if (connected) {
1509                 sk_acceptq_removed(listener);
1510
1511                 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1512                 vconnected = vsock_sk(connected);
1513
1514                 /* If the listener socket has received an error, then we should
1515                  * reject this socket and return.  Note that we simply mark the
1516                  * socket rejected, drop our reference, and let the cleanup
1517                  * function handle the cleanup; the fact that we found it in
1518                  * the listener's accept queue guarantees that the cleanup
1519                  * function hasn't run yet.
1520                  */
1521                 if (err) {
1522                         vconnected->rejected = true;
1523                 } else {
1524                         newsock->state = SS_CONNECTED;
1525                         sock_graft(connected, newsock);
1526                 }
1527
1528                 release_sock(connected);
1529                 sock_put(connected);
1530         }
1531
1532 out:
1533         release_sock(listener);
1534         return err;
1535 }
1536
1537 static int vsock_listen(struct socket *sock, int backlog)
1538 {
1539         int err;
1540         struct sock *sk;
1541         struct vsock_sock *vsk;
1542
1543         sk = sock->sk;
1544
1545         lock_sock(sk);
1546
1547         if (!sock_type_connectible(sk->sk_type)) {
1548                 err = -EOPNOTSUPP;
1549                 goto out;
1550         }
1551
1552         if (sock->state != SS_UNCONNECTED) {
1553                 err = -EINVAL;
1554                 goto out;
1555         }
1556
1557         vsk = vsock_sk(sk);
1558
1559         if (!vsock_addr_bound(&vsk->local_addr)) {
1560                 err = -EINVAL;
1561                 goto out;
1562         }
1563
1564         sk->sk_max_ack_backlog = backlog;
1565         sk->sk_state = TCP_LISTEN;
1566
1567         err = 0;
1568
1569 out:
1570         release_sock(sk);
1571         return err;
1572 }
1573
1574 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1575                                      const struct vsock_transport *transport,
1576                                      u64 val)
1577 {
1578         if (val > vsk->buffer_max_size)
1579                 val = vsk->buffer_max_size;
1580
1581         if (val < vsk->buffer_min_size)
1582                 val = vsk->buffer_min_size;
1583
1584         if (val != vsk->buffer_size &&
1585             transport && transport->notify_buffer_size)
1586                 transport->notify_buffer_size(vsk, &val);
1587
1588         vsk->buffer_size = val;
1589 }
1590
1591 static int vsock_connectible_setsockopt(struct socket *sock,
1592                                         int level,
1593                                         int optname,
1594                                         sockptr_t optval,
1595                                         unsigned int optlen)
1596 {
1597         int err;
1598         struct sock *sk;
1599         struct vsock_sock *vsk;
1600         const struct vsock_transport *transport;
1601         u64 val;
1602
1603         if (level != AF_VSOCK)
1604                 return -ENOPROTOOPT;
1605
1606 #define COPY_IN(_v)                                       \
1607         do {                                              \
1608                 if (optlen < sizeof(_v)) {                \
1609                         err = -EINVAL;                    \
1610                         goto exit;                        \
1611                 }                                         \
1612                 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {  \
1613                         err = -EFAULT;                                  \
1614                         goto exit;                                      \
1615                 }                                                       \
1616         } while (0)
1617
1618         err = 0;
1619         sk = sock->sk;
1620         vsk = vsock_sk(sk);
1621
1622         lock_sock(sk);
1623
1624         transport = vsk->transport;
1625
1626         switch (optname) {
1627         case SO_VM_SOCKETS_BUFFER_SIZE:
1628                 COPY_IN(val);
1629                 vsock_update_buffer_size(vsk, transport, val);
1630                 break;
1631
1632         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1633                 COPY_IN(val);
1634                 vsk->buffer_max_size = val;
1635                 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1636                 break;
1637
1638         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1639                 COPY_IN(val);
1640                 vsk->buffer_min_size = val;
1641                 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1642                 break;
1643
1644         case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1645         case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1646                 struct __kernel_sock_timeval tv;
1647
1648                 err = sock_copy_user_timeval(&tv, optval, optlen,
1649                                              optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1650                 if (err)
1651                         break;
1652                 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1653                     tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1654                         vsk->connect_timeout = tv.tv_sec * HZ +
1655                                 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1656                         if (vsk->connect_timeout == 0)
1657                                 vsk->connect_timeout =
1658                                     VSOCK_DEFAULT_CONNECT_TIMEOUT;
1659
1660                 } else {
1661                         err = -ERANGE;
1662                 }
1663                 break;
1664         }
1665
1666         default:
1667                 err = -ENOPROTOOPT;
1668                 break;
1669         }
1670
1671 #undef COPY_IN
1672
1673 exit:
1674         release_sock(sk);
1675         return err;
1676 }
1677
1678 static int vsock_connectible_getsockopt(struct socket *sock,
1679                                         int level, int optname,
1680                                         char __user *optval,
1681                                         int __user *optlen)
1682 {
1683         struct sock *sk = sock->sk;
1684         struct vsock_sock *vsk = vsock_sk(sk);
1685
1686         union {
1687                 u64 val64;
1688                 struct old_timeval32 tm32;
1689                 struct __kernel_old_timeval tm;
1690                 struct  __kernel_sock_timeval stm;
1691         } v;
1692
1693         int lv = sizeof(v.val64);
1694         int len;
1695
1696         if (level != AF_VSOCK)
1697                 return -ENOPROTOOPT;
1698
1699         if (get_user(len, optlen))
1700                 return -EFAULT;
1701
1702         memset(&v, 0, sizeof(v));
1703
1704         switch (optname) {
1705         case SO_VM_SOCKETS_BUFFER_SIZE:
1706                 v.val64 = vsk->buffer_size;
1707                 break;
1708
1709         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1710                 v.val64 = vsk->buffer_max_size;
1711                 break;
1712
1713         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1714                 v.val64 = vsk->buffer_min_size;
1715                 break;
1716
1717         case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1718         case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1719                 lv = sock_get_timeout(vsk->connect_timeout, &v,
1720                                       optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1721                 break;
1722
1723         default:
1724                 return -ENOPROTOOPT;
1725         }
1726
1727         if (len < lv)
1728                 return -EINVAL;
1729         if (len > lv)
1730                 len = lv;
1731         if (copy_to_user(optval, &v, len))
1732                 return -EFAULT;
1733
1734         if (put_user(len, optlen))
1735                 return -EFAULT;
1736
1737         return 0;
1738 }
1739
1740 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1741                                      size_t len)
1742 {
1743         struct sock *sk;
1744         struct vsock_sock *vsk;
1745         const struct vsock_transport *transport;
1746         ssize_t total_written;
1747         long timeout;
1748         int err;
1749         struct vsock_transport_send_notify_data send_data;
1750         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1751
1752         sk = sock->sk;
1753         vsk = vsock_sk(sk);
1754         total_written = 0;
1755         err = 0;
1756
1757         if (msg->msg_flags & MSG_OOB)
1758                 return -EOPNOTSUPP;
1759
1760         lock_sock(sk);
1761
1762         transport = vsk->transport;
1763
1764         /* Callers should not provide a destination with connection oriented
1765          * sockets.
1766          */
1767         if (msg->msg_namelen) {
1768                 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1769                 goto out;
1770         }
1771
1772         /* Send data only if both sides are not shutdown in the direction. */
1773         if (sk->sk_shutdown & SEND_SHUTDOWN ||
1774             vsk->peer_shutdown & RCV_SHUTDOWN) {
1775                 err = -EPIPE;
1776                 goto out;
1777         }
1778
1779         if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1780             !vsock_addr_bound(&vsk->local_addr)) {
1781                 err = -ENOTCONN;
1782                 goto out;
1783         }
1784
1785         if (!vsock_addr_bound(&vsk->remote_addr)) {
1786                 err = -EDESTADDRREQ;
1787                 goto out;
1788         }
1789
1790         /* Wait for room in the produce queue to enqueue our user's data. */
1791         timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1792
1793         err = transport->notify_send_init(vsk, &send_data);
1794         if (err < 0)
1795                 goto out;
1796
1797         while (total_written < len) {
1798                 ssize_t written;
1799
1800                 add_wait_queue(sk_sleep(sk), &wait);
1801                 while (vsock_stream_has_space(vsk) == 0 &&
1802                        sk->sk_err == 0 &&
1803                        !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1804                        !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1805
1806                         /* Don't wait for non-blocking sockets. */
1807                         if (timeout == 0) {
1808                                 err = -EAGAIN;
1809                                 remove_wait_queue(sk_sleep(sk), &wait);
1810                                 goto out_err;
1811                         }
1812
1813                         err = transport->notify_send_pre_block(vsk, &send_data);
1814                         if (err < 0) {
1815                                 remove_wait_queue(sk_sleep(sk), &wait);
1816                                 goto out_err;
1817                         }
1818
1819                         release_sock(sk);
1820                         timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1821                         lock_sock(sk);
1822                         if (signal_pending(current)) {
1823                                 err = sock_intr_errno(timeout);
1824                                 remove_wait_queue(sk_sleep(sk), &wait);
1825                                 goto out_err;
1826                         } else if (timeout == 0) {
1827                                 err = -EAGAIN;
1828                                 remove_wait_queue(sk_sleep(sk), &wait);
1829                                 goto out_err;
1830                         }
1831                 }
1832                 remove_wait_queue(sk_sleep(sk), &wait);
1833
1834                 /* These checks occur both as part of and after the loop
1835                  * conditional since we need to check before and after
1836                  * sleeping.
1837                  */
1838                 if (sk->sk_err) {
1839                         err = -sk->sk_err;
1840                         goto out_err;
1841                 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1842                            (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1843                         err = -EPIPE;
1844                         goto out_err;
1845                 }
1846
1847                 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1848                 if (err < 0)
1849                         goto out_err;
1850
1851                 /* Note that enqueue will only write as many bytes as are free
1852                  * in the produce queue, so we don't need to ensure len is
1853                  * smaller than the queue size.  It is the caller's
1854                  * responsibility to check how many bytes we were able to send.
1855                  */
1856
1857                 if (sk->sk_type == SOCK_SEQPACKET) {
1858                         written = transport->seqpacket_enqueue(vsk,
1859                                                 msg, len - total_written);
1860                 } else {
1861                         written = transport->stream_enqueue(vsk,
1862                                         msg, len - total_written);
1863                 }
1864                 if (written < 0) {
1865                         err = -ENOMEM;
1866                         goto out_err;
1867                 }
1868
1869                 total_written += written;
1870
1871                 err = transport->notify_send_post_enqueue(
1872                                 vsk, written, &send_data);
1873                 if (err < 0)
1874                         goto out_err;
1875
1876         }
1877
1878 out_err:
1879         if (total_written > 0) {
1880                 /* Return number of written bytes only if:
1881                  * 1) SOCK_STREAM socket.
1882                  * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1883                  */
1884                 if (sk->sk_type == SOCK_STREAM || total_written == len)
1885                         err = total_written;
1886         }
1887 out:
1888         release_sock(sk);
1889         return err;
1890 }
1891
1892 static int vsock_connectible_wait_data(struct sock *sk,
1893                                        struct wait_queue_entry *wait,
1894                                        long timeout,
1895                                        struct vsock_transport_recv_notify_data *recv_data,
1896                                        size_t target)
1897 {
1898         const struct vsock_transport *transport;
1899         struct vsock_sock *vsk;
1900         s64 data;
1901         int err;
1902
1903         vsk = vsock_sk(sk);
1904         err = 0;
1905         transport = vsk->transport;
1906
1907         while (1) {
1908                 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1909                 data = vsock_connectible_has_data(vsk);
1910                 if (data != 0)
1911                         break;
1912
1913                 if (sk->sk_err != 0 ||
1914                     (sk->sk_shutdown & RCV_SHUTDOWN) ||
1915                     (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1916                         break;
1917                 }
1918
1919                 /* Don't wait for non-blocking sockets. */
1920                 if (timeout == 0) {
1921                         err = -EAGAIN;
1922                         break;
1923                 }
1924
1925                 if (recv_data) {
1926                         err = transport->notify_recv_pre_block(vsk, target, recv_data);
1927                         if (err < 0)
1928                                 break;
1929                 }
1930
1931                 release_sock(sk);
1932                 timeout = schedule_timeout(timeout);
1933                 lock_sock(sk);
1934
1935                 if (signal_pending(current)) {
1936                         err = sock_intr_errno(timeout);
1937                         break;
1938                 } else if (timeout == 0) {
1939                         err = -EAGAIN;
1940                         break;
1941                 }
1942         }
1943
1944         finish_wait(sk_sleep(sk), wait);
1945
1946         if (err)
1947                 return err;
1948
1949         /* Internal transport error when checking for available
1950          * data. XXX This should be changed to a connection
1951          * reset in a later change.
1952          */
1953         if (data < 0)
1954                 return -ENOMEM;
1955
1956         return data;
1957 }
1958
1959 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
1960                                   size_t len, int flags)
1961 {
1962         struct vsock_transport_recv_notify_data recv_data;
1963         const struct vsock_transport *transport;
1964         struct vsock_sock *vsk;
1965         ssize_t copied;
1966         size_t target;
1967         long timeout;
1968         int err;
1969
1970         DEFINE_WAIT(wait);
1971
1972         vsk = vsock_sk(sk);
1973         transport = vsk->transport;
1974
1975         /* We must not copy less than target bytes into the user's buffer
1976          * before returning successfully, so we wait for the consume queue to
1977          * have that much data to consume before dequeueing.  Note that this
1978          * makes it impossible to handle cases where target is greater than the
1979          * queue size.
1980          */
1981         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1982         if (target >= transport->stream_rcvhiwat(vsk)) {
1983                 err = -ENOMEM;
1984                 goto out;
1985         }
1986         timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1987         copied = 0;
1988
1989         err = transport->notify_recv_init(vsk, target, &recv_data);
1990         if (err < 0)
1991                 goto out;
1992
1993
1994         while (1) {
1995                 ssize_t read;
1996
1997                 err = vsock_connectible_wait_data(sk, &wait, timeout,
1998                                                   &recv_data, target);
1999                 if (err <= 0)
2000                         break;
2001
2002                 err = transport->notify_recv_pre_dequeue(vsk, target,
2003                                                          &recv_data);
2004                 if (err < 0)
2005                         break;
2006
2007                 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2008                 if (read < 0) {
2009                         err = -ENOMEM;
2010                         break;
2011                 }
2012
2013                 copied += read;
2014
2015                 err = transport->notify_recv_post_dequeue(vsk, target, read,
2016                                                 !(flags & MSG_PEEK), &recv_data);
2017                 if (err < 0)
2018                         goto out;
2019
2020                 if (read >= target || flags & MSG_PEEK)
2021                         break;
2022
2023                 target -= read;
2024         }
2025
2026         if (sk->sk_err)
2027                 err = -sk->sk_err;
2028         else if (sk->sk_shutdown & RCV_SHUTDOWN)
2029                 err = 0;
2030
2031         if (copied > 0)
2032                 err = copied;
2033
2034 out:
2035         return err;
2036 }
2037
2038 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2039                                      size_t len, int flags)
2040 {
2041         const struct vsock_transport *transport;
2042         struct vsock_sock *vsk;
2043         ssize_t msg_len;
2044         long timeout;
2045         int err = 0;
2046         DEFINE_WAIT(wait);
2047
2048         vsk = vsock_sk(sk);
2049         transport = vsk->transport;
2050
2051         timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2052
2053         err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2054         if (err <= 0)
2055                 goto out;
2056
2057         msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2058
2059         if (msg_len < 0) {
2060                 err = -ENOMEM;
2061                 goto out;
2062         }
2063
2064         if (sk->sk_err) {
2065                 err = -sk->sk_err;
2066         } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2067                 err = 0;
2068         } else {
2069                 /* User sets MSG_TRUNC, so return real length of
2070                  * packet.
2071                  */
2072                 if (flags & MSG_TRUNC)
2073                         err = msg_len;
2074                 else
2075                         err = len - msg_data_left(msg);
2076
2077                 /* Always set MSG_TRUNC if real length of packet is
2078                  * bigger than user's buffer.
2079                  */
2080                 if (msg_len > len)
2081                         msg->msg_flags |= MSG_TRUNC;
2082         }
2083
2084 out:
2085         return err;
2086 }
2087
2088 static int
2089 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2090                           int flags)
2091 {
2092         struct sock *sk;
2093         struct vsock_sock *vsk;
2094         const struct vsock_transport *transport;
2095         int err;
2096
2097         sk = sock->sk;
2098         vsk = vsock_sk(sk);
2099         err = 0;
2100
2101         lock_sock(sk);
2102
2103         transport = vsk->transport;
2104
2105         if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2106                 /* Recvmsg is supposed to return 0 if a peer performs an
2107                  * orderly shutdown. Differentiate between that case and when a
2108                  * peer has not connected or a local shutdown occurred with the
2109                  * SOCK_DONE flag.
2110                  */
2111                 if (sock_flag(sk, SOCK_DONE))
2112                         err = 0;
2113                 else
2114                         err = -ENOTCONN;
2115
2116                 goto out;
2117         }
2118
2119         if (flags & MSG_OOB) {
2120                 err = -EOPNOTSUPP;
2121                 goto out;
2122         }
2123
2124         /* We don't check peer_shutdown flag here since peer may actually shut
2125          * down, but there can be data in the queue that a local socket can
2126          * receive.
2127          */
2128         if (sk->sk_shutdown & RCV_SHUTDOWN) {
2129                 err = 0;
2130                 goto out;
2131         }
2132
2133         /* It is valid on Linux to pass in a zero-length receive buffer.  This
2134          * is not an error.  We may as well bail out now.
2135          */
2136         if (!len) {
2137                 err = 0;
2138                 goto out;
2139         }
2140
2141         if (sk->sk_type == SOCK_STREAM)
2142                 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2143         else
2144                 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2145
2146 out:
2147         release_sock(sk);
2148         return err;
2149 }
2150
2151 static int vsock_set_rcvlowat(struct sock *sk, int val)
2152 {
2153         const struct vsock_transport *transport;
2154         struct vsock_sock *vsk;
2155
2156         vsk = vsock_sk(sk);
2157
2158         if (val > vsk->buffer_size)
2159                 return -EINVAL;
2160
2161         transport = vsk->transport;
2162
2163         if (transport && transport->set_rcvlowat)
2164                 return transport->set_rcvlowat(vsk, val);
2165
2166         WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2167         return 0;
2168 }
2169
2170 static const struct proto_ops vsock_stream_ops = {
2171         .family = PF_VSOCK,
2172         .owner = THIS_MODULE,
2173         .release = vsock_release,
2174         .bind = vsock_bind,
2175         .connect = vsock_connect,
2176         .socketpair = sock_no_socketpair,
2177         .accept = vsock_accept,
2178         .getname = vsock_getname,
2179         .poll = vsock_poll,
2180         .ioctl = sock_no_ioctl,
2181         .listen = vsock_listen,
2182         .shutdown = vsock_shutdown,
2183         .setsockopt = vsock_connectible_setsockopt,
2184         .getsockopt = vsock_connectible_getsockopt,
2185         .sendmsg = vsock_connectible_sendmsg,
2186         .recvmsg = vsock_connectible_recvmsg,
2187         .mmap = sock_no_mmap,
2188         .sendpage = sock_no_sendpage,
2189         .set_rcvlowat = vsock_set_rcvlowat,
2190 };
2191
2192 static const struct proto_ops vsock_seqpacket_ops = {
2193         .family = PF_VSOCK,
2194         .owner = THIS_MODULE,
2195         .release = vsock_release,
2196         .bind = vsock_bind,
2197         .connect = vsock_connect,
2198         .socketpair = sock_no_socketpair,
2199         .accept = vsock_accept,
2200         .getname = vsock_getname,
2201         .poll = vsock_poll,
2202         .ioctl = sock_no_ioctl,
2203         .listen = vsock_listen,
2204         .shutdown = vsock_shutdown,
2205         .setsockopt = vsock_connectible_setsockopt,
2206         .getsockopt = vsock_connectible_getsockopt,
2207         .sendmsg = vsock_connectible_sendmsg,
2208         .recvmsg = vsock_connectible_recvmsg,
2209         .mmap = sock_no_mmap,
2210         .sendpage = sock_no_sendpage,
2211 };
2212
2213 static int vsock_create(struct net *net, struct socket *sock,
2214                         int protocol, int kern)
2215 {
2216         struct vsock_sock *vsk;
2217         struct sock *sk;
2218         int ret;
2219
2220         if (!sock)
2221                 return -EINVAL;
2222
2223         if (protocol && protocol != PF_VSOCK)
2224                 return -EPROTONOSUPPORT;
2225
2226         switch (sock->type) {
2227         case SOCK_DGRAM:
2228                 sock->ops = &vsock_dgram_ops;
2229                 break;
2230         case SOCK_STREAM:
2231                 sock->ops = &vsock_stream_ops;
2232                 break;
2233         case SOCK_SEQPACKET:
2234                 sock->ops = &vsock_seqpacket_ops;
2235                 break;
2236         default:
2237                 return -ESOCKTNOSUPPORT;
2238         }
2239
2240         sock->state = SS_UNCONNECTED;
2241
2242         sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2243         if (!sk)
2244                 return -ENOMEM;
2245
2246         vsk = vsock_sk(sk);
2247
2248         if (sock->type == SOCK_DGRAM) {
2249                 ret = vsock_assign_transport(vsk, NULL);
2250                 if (ret < 0) {
2251                         sock_put(sk);
2252                         return ret;
2253                 }
2254         }
2255
2256         vsock_insert_unbound(vsk);
2257
2258         return 0;
2259 }
2260
2261 static const struct net_proto_family vsock_family_ops = {
2262         .family = AF_VSOCK,
2263         .create = vsock_create,
2264         .owner = THIS_MODULE,
2265 };
2266
2267 static long vsock_dev_do_ioctl(struct file *filp,
2268                                unsigned int cmd, void __user *ptr)
2269 {
2270         u32 __user *p = ptr;
2271         u32 cid = VMADDR_CID_ANY;
2272         int retval = 0;
2273
2274         switch (cmd) {
2275         case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2276                 /* To be compatible with the VMCI behavior, we prioritize the
2277                  * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2278                  */
2279                 if (transport_g2h)
2280                         cid = transport_g2h->get_local_cid();
2281                 else if (transport_h2g)
2282                         cid = transport_h2g->get_local_cid();
2283
2284                 if (put_user(cid, p) != 0)
2285                         retval = -EFAULT;
2286                 break;
2287
2288         default:
2289                 retval = -ENOIOCTLCMD;
2290         }
2291
2292         return retval;
2293 }
2294
2295 static long vsock_dev_ioctl(struct file *filp,
2296                             unsigned int cmd, unsigned long arg)
2297 {
2298         return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2299 }
2300
2301 #ifdef CONFIG_COMPAT
2302 static long vsock_dev_compat_ioctl(struct file *filp,
2303                                    unsigned int cmd, unsigned long arg)
2304 {
2305         return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2306 }
2307 #endif
2308
2309 static const struct file_operations vsock_device_ops = {
2310         .owner          = THIS_MODULE,
2311         .unlocked_ioctl = vsock_dev_ioctl,
2312 #ifdef CONFIG_COMPAT
2313         .compat_ioctl   = vsock_dev_compat_ioctl,
2314 #endif
2315         .open           = nonseekable_open,
2316 };
2317
2318 static struct miscdevice vsock_device = {
2319         .name           = "vsock",
2320         .fops           = &vsock_device_ops,
2321 };
2322
2323 static int __init vsock_init(void)
2324 {
2325         int err = 0;
2326
2327         vsock_init_tables();
2328
2329         vsock_proto.owner = THIS_MODULE;
2330         vsock_device.minor = MISC_DYNAMIC_MINOR;
2331         err = misc_register(&vsock_device);
2332         if (err) {
2333                 pr_err("Failed to register misc device\n");
2334                 goto err_reset_transport;
2335         }
2336
2337         err = proto_register(&vsock_proto, 1);  /* we want our slab */
2338         if (err) {
2339                 pr_err("Cannot register vsock protocol\n");
2340                 goto err_deregister_misc;
2341         }
2342
2343         err = sock_register(&vsock_family_ops);
2344         if (err) {
2345                 pr_err("could not register af_vsock (%d) address family: %d\n",
2346                        AF_VSOCK, err);
2347                 goto err_unregister_proto;
2348         }
2349
2350         return 0;
2351
2352 err_unregister_proto:
2353         proto_unregister(&vsock_proto);
2354 err_deregister_misc:
2355         misc_deregister(&vsock_device);
2356 err_reset_transport:
2357         return err;
2358 }
2359
2360 static void __exit vsock_exit(void)
2361 {
2362         misc_deregister(&vsock_device);
2363         sock_unregister(AF_VSOCK);
2364         proto_unregister(&vsock_proto);
2365 }
2366
2367 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2368 {
2369         return vsk->transport;
2370 }
2371 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2372
2373 int vsock_core_register(const struct vsock_transport *t, int features)
2374 {
2375         const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2376         int err = mutex_lock_interruptible(&vsock_register_mutex);
2377
2378         if (err)
2379                 return err;
2380
2381         t_h2g = transport_h2g;
2382         t_g2h = transport_g2h;
2383         t_dgram = transport_dgram;
2384         t_local = transport_local;
2385
2386         if (features & VSOCK_TRANSPORT_F_H2G) {
2387                 if (t_h2g) {
2388                         err = -EBUSY;
2389                         goto err_busy;
2390                 }
2391                 t_h2g = t;
2392         }
2393
2394         if (features & VSOCK_TRANSPORT_F_G2H) {
2395                 if (t_g2h) {
2396                         err = -EBUSY;
2397                         goto err_busy;
2398                 }
2399                 t_g2h = t;
2400         }
2401
2402         if (features & VSOCK_TRANSPORT_F_DGRAM) {
2403                 if (t_dgram) {
2404                         err = -EBUSY;
2405                         goto err_busy;
2406                 }
2407                 t_dgram = t;
2408         }
2409
2410         if (features & VSOCK_TRANSPORT_F_LOCAL) {
2411                 if (t_local) {
2412                         err = -EBUSY;
2413                         goto err_busy;
2414                 }
2415                 t_local = t;
2416         }
2417
2418         transport_h2g = t_h2g;
2419         transport_g2h = t_g2h;
2420         transport_dgram = t_dgram;
2421         transport_local = t_local;
2422
2423 err_busy:
2424         mutex_unlock(&vsock_register_mutex);
2425         return err;
2426 }
2427 EXPORT_SYMBOL_GPL(vsock_core_register);
2428
2429 void vsock_core_unregister(const struct vsock_transport *t)
2430 {
2431         mutex_lock(&vsock_register_mutex);
2432
2433         if (transport_h2g == t)
2434                 transport_h2g = NULL;
2435
2436         if (transport_g2h == t)
2437                 transport_g2h = NULL;
2438
2439         if (transport_dgram == t)
2440                 transport_dgram = NULL;
2441
2442         if (transport_local == t)
2443                 transport_local = NULL;
2444
2445         mutex_unlock(&vsock_register_mutex);
2446 }
2447 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2448
2449 module_init(vsock_init);
2450 module_exit(vsock_exit);
2451
2452 MODULE_AUTHOR("VMware, Inc.");
2453 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2454 MODULE_VERSION("1.0.2.0-k");
2455 MODULE_LICENSE("GPL v2");
This page took 0.169223 seconds and 4 git commands to generate.