]> Git Repo - J-linux.git/blob - drivers/crypto/stm32/stm32-cryp.c
scsi: zfcp: Trace when request remove fails after qdio send fails
[J-linux.git] / drivers / crypto / stm32 / stm32-cryp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) STMicroelectronics SA 2017
4  * Author: Fabien Dessenne <[email protected]>
5  * Ux500 support taken from snippets in the old Ux500 cryp driver
6  */
7
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/iopoll.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/platform_device.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/reset.h>
17
18 #include <crypto/aes.h>
19 #include <crypto/internal/des.h>
20 #include <crypto/engine.h>
21 #include <crypto/scatterwalk.h>
22 #include <crypto/internal/aead.h>
23 #include <crypto/internal/skcipher.h>
24
25 #define DRIVER_NAME             "stm32-cryp"
26
27 /* Bit [0] encrypt / decrypt */
28 #define FLG_ENCRYPT             BIT(0)
29 /* Bit [8..1] algo & operation mode */
30 #define FLG_AES                 BIT(1)
31 #define FLG_DES                 BIT(2)
32 #define FLG_TDES                BIT(3)
33 #define FLG_ECB                 BIT(4)
34 #define FLG_CBC                 BIT(5)
35 #define FLG_CTR                 BIT(6)
36 #define FLG_GCM                 BIT(7)
37 #define FLG_CCM                 BIT(8)
38 /* Mode mask = bits [15..0] */
39 #define FLG_MODE_MASK           GENMASK(15, 0)
40 /* Bit [31..16] status  */
41
42 /* Registers */
43 #define CRYP_CR                 0x00000000
44 #define CRYP_SR                 0x00000004
45 #define CRYP_DIN                0x00000008
46 #define CRYP_DOUT               0x0000000C
47 #define CRYP_DMACR              0x00000010
48 #define CRYP_IMSCR              0x00000014
49 #define CRYP_RISR               0x00000018
50 #define CRYP_MISR               0x0000001C
51 #define CRYP_K0LR               0x00000020
52 #define CRYP_K0RR               0x00000024
53 #define CRYP_K1LR               0x00000028
54 #define CRYP_K1RR               0x0000002C
55 #define CRYP_K2LR               0x00000030
56 #define CRYP_K2RR               0x00000034
57 #define CRYP_K3LR               0x00000038
58 #define CRYP_K3RR               0x0000003C
59 #define CRYP_IV0LR              0x00000040
60 #define CRYP_IV0RR              0x00000044
61 #define CRYP_IV1LR              0x00000048
62 #define CRYP_IV1RR              0x0000004C
63 #define CRYP_CSGCMCCM0R         0x00000050
64 #define CRYP_CSGCM0R            0x00000070
65
66 #define UX500_CRYP_CR           0x00000000
67 #define UX500_CRYP_SR           0x00000004
68 #define UX500_CRYP_DIN          0x00000008
69 #define UX500_CRYP_DINSIZE      0x0000000C
70 #define UX500_CRYP_DOUT         0x00000010
71 #define UX500_CRYP_DOUSIZE      0x00000014
72 #define UX500_CRYP_DMACR        0x00000018
73 #define UX500_CRYP_IMSC         0x0000001C
74 #define UX500_CRYP_RIS          0x00000020
75 #define UX500_CRYP_MIS          0x00000024
76 #define UX500_CRYP_K1L          0x00000028
77 #define UX500_CRYP_K1R          0x0000002C
78 #define UX500_CRYP_K2L          0x00000030
79 #define UX500_CRYP_K2R          0x00000034
80 #define UX500_CRYP_K3L          0x00000038
81 #define UX500_CRYP_K3R          0x0000003C
82 #define UX500_CRYP_K4L          0x00000040
83 #define UX500_CRYP_K4R          0x00000044
84 #define UX500_CRYP_IV0L         0x00000048
85 #define UX500_CRYP_IV0R         0x0000004C
86 #define UX500_CRYP_IV1L         0x00000050
87 #define UX500_CRYP_IV1R         0x00000054
88
89 /* Registers values */
90 #define CR_DEC_NOT_ENC          0x00000004
91 #define CR_TDES_ECB             0x00000000
92 #define CR_TDES_CBC             0x00000008
93 #define CR_DES_ECB              0x00000010
94 #define CR_DES_CBC              0x00000018
95 #define CR_AES_ECB              0x00000020
96 #define CR_AES_CBC              0x00000028
97 #define CR_AES_CTR              0x00000030
98 #define CR_AES_KP               0x00000038 /* Not on Ux500 */
99 #define CR_AES_XTS              0x00000038 /* Only on Ux500 */
100 #define CR_AES_GCM              0x00080000
101 #define CR_AES_CCM              0x00080008
102 #define CR_AES_UNKNOWN          0xFFFFFFFF
103 #define CR_ALGO_MASK            0x00080038
104 #define CR_DATA32               0x00000000
105 #define CR_DATA16               0x00000040
106 #define CR_DATA8                0x00000080
107 #define CR_DATA1                0x000000C0
108 #define CR_KEY128               0x00000000
109 #define CR_KEY192               0x00000100
110 #define CR_KEY256               0x00000200
111 #define CR_KEYRDEN              0x00000400 /* Only on Ux500 */
112 #define CR_KSE                  0x00000800 /* Only on Ux500 */
113 #define CR_FFLUSH               0x00004000
114 #define CR_CRYPEN               0x00008000
115 #define CR_PH_INIT              0x00000000
116 #define CR_PH_HEADER            0x00010000
117 #define CR_PH_PAYLOAD           0x00020000
118 #define CR_PH_FINAL             0x00030000
119 #define CR_PH_MASK              0x00030000
120 #define CR_NBPBL_SHIFT          20
121
122 #define SR_BUSY                 0x00000010
123 #define SR_OFNE                 0x00000004
124
125 #define IMSCR_IN                BIT(0)
126 #define IMSCR_OUT               BIT(1)
127
128 #define MISR_IN                 BIT(0)
129 #define MISR_OUT                BIT(1)
130
131 /* Misc */
132 #define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
133 #define GCM_CTR_INIT            2
134 #define CRYP_AUTOSUSPEND_DELAY  50
135
136 struct stm32_cryp_caps {
137         bool                    aeads_support;
138         bool                    linear_aes_key;
139         bool                    kp_mode;
140         bool                    iv_protection;
141         bool                    swap_final;
142         bool                    padding_wa;
143         u32                     cr;
144         u32                     sr;
145         u32                     din;
146         u32                     dout;
147         u32                     imsc;
148         u32                     mis;
149         u32                     k1l;
150         u32                     k1r;
151         u32                     k3r;
152         u32                     iv0l;
153         u32                     iv0r;
154         u32                     iv1l;
155         u32                     iv1r;
156 };
157
158 struct stm32_cryp_ctx {
159         struct crypto_engine_ctx enginectx;
160         struct stm32_cryp       *cryp;
161         int                     keylen;
162         __be32                  key[AES_KEYSIZE_256 / sizeof(u32)];
163         unsigned long           flags;
164 };
165
166 struct stm32_cryp_reqctx {
167         unsigned long mode;
168 };
169
170 struct stm32_cryp {
171         struct list_head        list;
172         struct device           *dev;
173         void __iomem            *regs;
174         struct clk              *clk;
175         unsigned long           flags;
176         u32                     irq_status;
177         const struct stm32_cryp_caps *caps;
178         struct stm32_cryp_ctx   *ctx;
179
180         struct crypto_engine    *engine;
181
182         struct skcipher_request *req;
183         struct aead_request     *areq;
184
185         size_t                  authsize;
186         size_t                  hw_blocksize;
187
188         size_t                  payload_in;
189         size_t                  header_in;
190         size_t                  payload_out;
191
192         struct scatterlist      *out_sg;
193
194         struct scatter_walk     in_walk;
195         struct scatter_walk     out_walk;
196
197         __be32                  last_ctr[4];
198         u32                     gcm_ctr;
199 };
200
201 struct stm32_cryp_list {
202         struct list_head        dev_list;
203         spinlock_t              lock; /* protect dev_list */
204 };
205
206 static struct stm32_cryp_list cryp_list = {
207         .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
208         .lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
209 };
210
211 static inline bool is_aes(struct stm32_cryp *cryp)
212 {
213         return cryp->flags & FLG_AES;
214 }
215
216 static inline bool is_des(struct stm32_cryp *cryp)
217 {
218         return cryp->flags & FLG_DES;
219 }
220
221 static inline bool is_tdes(struct stm32_cryp *cryp)
222 {
223         return cryp->flags & FLG_TDES;
224 }
225
226 static inline bool is_ecb(struct stm32_cryp *cryp)
227 {
228         return cryp->flags & FLG_ECB;
229 }
230
231 static inline bool is_cbc(struct stm32_cryp *cryp)
232 {
233         return cryp->flags & FLG_CBC;
234 }
235
236 static inline bool is_ctr(struct stm32_cryp *cryp)
237 {
238         return cryp->flags & FLG_CTR;
239 }
240
241 static inline bool is_gcm(struct stm32_cryp *cryp)
242 {
243         return cryp->flags & FLG_GCM;
244 }
245
246 static inline bool is_ccm(struct stm32_cryp *cryp)
247 {
248         return cryp->flags & FLG_CCM;
249 }
250
251 static inline bool is_encrypt(struct stm32_cryp *cryp)
252 {
253         return cryp->flags & FLG_ENCRYPT;
254 }
255
256 static inline bool is_decrypt(struct stm32_cryp *cryp)
257 {
258         return !is_encrypt(cryp);
259 }
260
261 static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
262 {
263         return readl_relaxed(cryp->regs + ofst);
264 }
265
266 static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
267 {
268         writel_relaxed(val, cryp->regs + ofst);
269 }
270
271 static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
272 {
273         u32 status;
274
275         return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
276                         !(status & SR_BUSY), 10, 100000);
277 }
278
279 static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
280 {
281         writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN,
282                        cryp->regs + cryp->caps->cr);
283 }
284
285 static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
286 {
287         u32 status;
288
289         return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status,
290                         !(status & CR_CRYPEN), 10, 100000);
291 }
292
293 static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
294 {
295         u32 status;
296
297         return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
298                         status & SR_OFNE, 10, 100000);
299 }
300
301 static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp)
302 {
303         writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN,
304                        cryp->regs + cryp->caps->cr);
305 }
306
307 static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp)
308 {
309         writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN,
310                        cryp->regs + cryp->caps->cr);
311 }
312
313 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
314 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
315
316 static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
317 {
318         struct stm32_cryp *tmp, *cryp = NULL;
319
320         spin_lock_bh(&cryp_list.lock);
321         if (!ctx->cryp) {
322                 list_for_each_entry(tmp, &cryp_list.dev_list, list) {
323                         cryp = tmp;
324                         break;
325                 }
326                 ctx->cryp = cryp;
327         } else {
328                 cryp = ctx->cryp;
329         }
330
331         spin_unlock_bh(&cryp_list.lock);
332
333         return cryp;
334 }
335
336 static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
337 {
338         if (!iv)
339                 return;
340
341         stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++));
342         stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++));
343
344         if (is_aes(cryp)) {
345                 stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++));
346                 stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++));
347         }
348 }
349
350 static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
351 {
352         struct skcipher_request *req = cryp->req;
353         __be32 *tmp = (void *)req->iv;
354
355         if (!tmp)
356                 return;
357
358         if (cryp->caps->iv_protection)
359                 stm32_cryp_key_read_enable(cryp);
360
361         *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
362         *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
363
364         if (is_aes(cryp)) {
365                 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
366                 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
367         }
368
369         if (cryp->caps->iv_protection)
370                 stm32_cryp_key_read_disable(cryp);
371 }
372
373 /**
374  * ux500_swap_bits_in_byte() - mirror the bits in a byte
375  * @b: the byte to be mirrored
376  *
377  * The bits are swapped the following way:
378  *  Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
379  *  nibble 2 (n2) bits 4-7.
380  *
381  *  Nibble 1 (n1):
382  *  (The "old" (moved) bit is replaced with a zero)
383  *  1. Move bit 6 and 7, 4 positions to the left.
384  *  2. Move bit 3 and 5, 2 positions to the left.
385  *  3. Move bit 1-4, 1 position to the left.
386  *
387  *  Nibble 2 (n2):
388  *  1. Move bit 0 and 1, 4 positions to the right.
389  *  2. Move bit 2 and 4, 2 positions to the right.
390  *  3. Move bit 3-6, 1 position to the right.
391  *
392  *  Combine the two nibbles to a complete and swapped byte.
393  */
394 static inline u8 ux500_swap_bits_in_byte(u8 b)
395 {
396 #define R_SHIFT_4_MASK  0xc0 /* Bits 6 and 7, right shift 4 */
397 #define R_SHIFT_2_MASK  0x28 /* (After right shift 4) Bits 3 and 5,
398                                   right shift 2 */
399 #define R_SHIFT_1_MASK  0x1e /* (After right shift 2) Bits 1-4,
400                                   right shift 1 */
401 #define L_SHIFT_4_MASK  0x03 /* Bits 0 and 1, left shift 4 */
402 #define L_SHIFT_2_MASK  0x14 /* (After left shift 4) Bits 2 and 4,
403                                   left shift 2 */
404 #define L_SHIFT_1_MASK  0x78 /* (After left shift 1) Bits 3-6,
405                                   left shift 1 */
406
407         u8 n1;
408         u8 n2;
409
410         /* Swap most significant nibble */
411         /* Right shift 4, bits 6 and 7 */
412         n1 = ((b  & R_SHIFT_4_MASK) >> 4) | (b  & ~(R_SHIFT_4_MASK >> 4));
413         /* Right shift 2, bits 3 and 5 */
414         n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
415         /* Right shift 1, bits 1-4 */
416         n1 = (n1  & R_SHIFT_1_MASK) >> 1;
417
418         /* Swap least significant nibble */
419         /* Left shift 4, bits 0 and 1 */
420         n2 = ((b  & L_SHIFT_4_MASK) << 4) | (b  & ~(L_SHIFT_4_MASK << 4));
421         /* Left shift 2, bits 2 and 4 */
422         n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
423         /* Left shift 1, bits 3-6 */
424         n2 = (n2  & L_SHIFT_1_MASK) << 1;
425
426         return n1 | n2;
427 }
428
429 /**
430  * ux500_swizzle_key() - Shuffle around words and bits in the AES key
431  * @in: key to swizzle
432  * @out: swizzled key
433  * @len: length of key, in bytes
434  *
435  * This "key swizzling procedure" is described in the examples in the
436  * DB8500 design specification. There is no real description of why
437  * the bits have been arranged like this in the hardware.
438  */
439 static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len)
440 {
441         int i = 0;
442         int bpw = sizeof(u32);
443         int j;
444         int index = 0;
445
446         j = len - bpw;
447         while (j >= 0) {
448                 for (i = 0; i < bpw; i++) {
449                         index = len - j - bpw + i;
450                         out[j + i] =
451                                 ux500_swap_bits_in_byte(in[index]);
452                 }
453                 j -= bpw;
454         }
455 }
456
457 static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
458 {
459         unsigned int i;
460         int r_id;
461
462         if (is_des(c)) {
463                 stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0]));
464                 stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1]));
465                 return;
466         }
467
468         /*
469          * On the Ux500 the AES key is considered as a single bit sequence
470          * of 128, 192 or 256 bits length. It is written linearly into the
471          * registers from K1L and down, and need to be processed to become
472          * a proper big-endian bit sequence.
473          */
474         if (is_aes(c) && c->caps->linear_aes_key) {
475                 u32 tmpkey[8];
476
477                 ux500_swizzle_key((u8 *)c->ctx->key,
478                                   (u8 *)tmpkey, c->ctx->keylen);
479
480                 r_id = c->caps->k1l;
481                 for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4)
482                         stm32_cryp_write(c, r_id, tmpkey[i]);
483
484                 return;
485         }
486
487         r_id = c->caps->k3r;
488         for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
489                 stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1]));
490 }
491
492 static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
493 {
494         if (is_aes(cryp) && is_ecb(cryp))
495                 return CR_AES_ECB;
496
497         if (is_aes(cryp) && is_cbc(cryp))
498                 return CR_AES_CBC;
499
500         if (is_aes(cryp) && is_ctr(cryp))
501                 return CR_AES_CTR;
502
503         if (is_aes(cryp) && is_gcm(cryp))
504                 return CR_AES_GCM;
505
506         if (is_aes(cryp) && is_ccm(cryp))
507                 return CR_AES_CCM;
508
509         if (is_des(cryp) && is_ecb(cryp))
510                 return CR_DES_ECB;
511
512         if (is_des(cryp) && is_cbc(cryp))
513                 return CR_DES_CBC;
514
515         if (is_tdes(cryp) && is_ecb(cryp))
516                 return CR_TDES_ECB;
517
518         if (is_tdes(cryp) && is_cbc(cryp))
519                 return CR_TDES_CBC;
520
521         dev_err(cryp->dev, "Unknown mode\n");
522         return CR_AES_UNKNOWN;
523 }
524
525 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
526 {
527         return is_encrypt(cryp) ? cryp->areq->cryptlen :
528                                   cryp->areq->cryptlen - cryp->authsize;
529 }
530
531 static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
532 {
533         int ret;
534         __be32 iv[4];
535
536         /* Phase 1 : init */
537         memcpy(iv, cryp->areq->iv, 12);
538         iv[3] = cpu_to_be32(GCM_CTR_INIT);
539         cryp->gcm_ctr = GCM_CTR_INIT;
540         stm32_cryp_hw_write_iv(cryp, iv);
541
542         stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
543
544         /* Wait for end of processing */
545         ret = stm32_cryp_wait_enable(cryp);
546         if (ret) {
547                 dev_err(cryp->dev, "Timeout (gcm init)\n");
548                 return ret;
549         }
550
551         /* Prepare next phase */
552         if (cryp->areq->assoclen) {
553                 cfg |= CR_PH_HEADER;
554                 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
555         } else if (stm32_cryp_get_input_text_len(cryp)) {
556                 cfg |= CR_PH_PAYLOAD;
557                 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
558         }
559
560         return 0;
561 }
562
563 static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
564 {
565         u32 cfg;
566         int err;
567
568         /* Check if whole header written */
569         if (!cryp->header_in) {
570                 /* Wait for completion */
571                 err = stm32_cryp_wait_busy(cryp);
572                 if (err) {
573                         dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
574                         stm32_cryp_write(cryp, cryp->caps->imsc, 0);
575                         stm32_cryp_finish_req(cryp, err);
576                         return;
577                 }
578
579                 if (stm32_cryp_get_input_text_len(cryp)) {
580                         /* Phase 3 : payload */
581                         cfg = stm32_cryp_read(cryp, cryp->caps->cr);
582                         cfg &= ~CR_CRYPEN;
583                         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
584
585                         cfg &= ~CR_PH_MASK;
586                         cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
587                         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
588                 } else {
589                         /*
590                          * Phase 4 : tag.
591                          * Nothing to read, nothing to write, caller have to
592                          * end request
593                          */
594                 }
595         }
596 }
597
598 static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
599 {
600         unsigned int i;
601         size_t written;
602         size_t len;
603         u32 alen = cryp->areq->assoclen;
604         u32 block[AES_BLOCK_32] = {0};
605         u8 *b8 = (u8 *)block;
606
607         if (alen <= 65280) {
608                 /* Write first u32 of B1 */
609                 b8[0] = (alen >> 8) & 0xFF;
610                 b8[1] = alen & 0xFF;
611                 len = 2;
612         } else {
613                 /* Build the two first u32 of B1 */
614                 b8[0] = 0xFF;
615                 b8[1] = 0xFE;
616                 b8[2] = (alen & 0xFF000000) >> 24;
617                 b8[3] = (alen & 0x00FF0000) >> 16;
618                 b8[4] = (alen & 0x0000FF00) >> 8;
619                 b8[5] = alen & 0x000000FF;
620                 len = 6;
621         }
622
623         written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
624
625         scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
626         for (i = 0; i < AES_BLOCK_32; i++)
627                 stm32_cryp_write(cryp, cryp->caps->din, block[i]);
628
629         cryp->header_in -= written;
630
631         stm32_crypt_gcmccm_end_header(cryp);
632 }
633
634 static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
635 {
636         int ret;
637         u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
638         u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
639         __be32 *bd;
640         u32 *d;
641         unsigned int i, textlen;
642
643         /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
644         memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
645         memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
646         iv[AES_BLOCK_SIZE - 1] = 1;
647         stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
648
649         /* Build B0 */
650         memcpy(b0, iv, AES_BLOCK_SIZE);
651
652         b0[0] |= (8 * ((cryp->authsize - 2) / 2));
653
654         if (cryp->areq->assoclen)
655                 b0[0] |= 0x40;
656
657         textlen = stm32_cryp_get_input_text_len(cryp);
658
659         b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
660         b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
661
662         /* Enable HW */
663         stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
664
665         /* Write B0 */
666         d = (u32 *)b0;
667         bd = (__be32 *)b0;
668
669         for (i = 0; i < AES_BLOCK_32; i++) {
670                 u32 xd = d[i];
671
672                 if (!cryp->caps->padding_wa)
673                         xd = be32_to_cpu(bd[i]);
674                 stm32_cryp_write(cryp, cryp->caps->din, xd);
675         }
676
677         /* Wait for end of processing */
678         ret = stm32_cryp_wait_enable(cryp);
679         if (ret) {
680                 dev_err(cryp->dev, "Timeout (ccm init)\n");
681                 return ret;
682         }
683
684         /* Prepare next phase */
685         if (cryp->areq->assoclen) {
686                 cfg |= CR_PH_HEADER | CR_CRYPEN;
687                 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
688
689                 /* Write first (special) block (may move to next phase [payload]) */
690                 stm32_cryp_write_ccm_first_header(cryp);
691         } else if (stm32_cryp_get_input_text_len(cryp)) {
692                 cfg |= CR_PH_PAYLOAD;
693                 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
694         }
695
696         return 0;
697 }
698
699 static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
700 {
701         int ret;
702         u32 cfg, hw_mode;
703
704         pm_runtime_get_sync(cryp->dev);
705
706         /* Disable interrupt */
707         stm32_cryp_write(cryp, cryp->caps->imsc, 0);
708
709         /* Set configuration */
710         cfg = CR_DATA8 | CR_FFLUSH;
711
712         switch (cryp->ctx->keylen) {
713         case AES_KEYSIZE_128:
714                 cfg |= CR_KEY128;
715                 break;
716
717         case AES_KEYSIZE_192:
718                 cfg |= CR_KEY192;
719                 break;
720
721         default:
722         case AES_KEYSIZE_256:
723                 cfg |= CR_KEY256;
724                 break;
725         }
726
727         hw_mode = stm32_cryp_get_hw_mode(cryp);
728         if (hw_mode == CR_AES_UNKNOWN)
729                 return -EINVAL;
730
731         /* AES ECB/CBC decrypt: run key preparation first */
732         if (is_decrypt(cryp) &&
733             ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
734                 /* Configure in key preparation mode */
735                 if (cryp->caps->kp_mode)
736                         stm32_cryp_write(cryp, cryp->caps->cr,
737                                 cfg | CR_AES_KP);
738                 else
739                         stm32_cryp_write(cryp,
740                                 cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE);
741
742                 /* Set key only after full configuration done */
743                 stm32_cryp_hw_write_key(cryp);
744
745                 /* Start prepare key */
746                 stm32_cryp_enable(cryp);
747                 /* Wait for end of processing */
748                 ret = stm32_cryp_wait_busy(cryp);
749                 if (ret) {
750                         dev_err(cryp->dev, "Timeout (key preparation)\n");
751                         return ret;
752                 }
753
754                 cfg |= hw_mode | CR_DEC_NOT_ENC;
755
756                 /* Apply updated config (Decrypt + algo) and flush */
757                 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
758         } else {
759                 cfg |= hw_mode;
760                 if (is_decrypt(cryp))
761                         cfg |= CR_DEC_NOT_ENC;
762
763                 /* Apply config and flush */
764                 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
765
766                 /* Set key only after configuration done */
767                 stm32_cryp_hw_write_key(cryp);
768         }
769
770         switch (hw_mode) {
771         case CR_AES_GCM:
772         case CR_AES_CCM:
773                 /* Phase 1 : init */
774                 if (hw_mode == CR_AES_CCM)
775                         ret = stm32_cryp_ccm_init(cryp, cfg);
776                 else
777                         ret = stm32_cryp_gcm_init(cryp, cfg);
778
779                 if (ret)
780                         return ret;
781
782                 break;
783
784         case CR_DES_CBC:
785         case CR_TDES_CBC:
786         case CR_AES_CBC:
787         case CR_AES_CTR:
788                 stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
789                 break;
790
791         default:
792                 break;
793         }
794
795         /* Enable now */
796         stm32_cryp_enable(cryp);
797
798         return 0;
799 }
800
801 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
802 {
803         if (!err && (is_gcm(cryp) || is_ccm(cryp)))
804                 /* Phase 4 : output tag */
805                 err = stm32_cryp_read_auth_tag(cryp);
806
807         if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
808                 stm32_cryp_get_iv(cryp);
809
810         pm_runtime_mark_last_busy(cryp->dev);
811         pm_runtime_put_autosuspend(cryp->dev);
812
813         if (is_gcm(cryp) || is_ccm(cryp))
814                 crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
815         else
816                 crypto_finalize_skcipher_request(cryp->engine, cryp->req,
817                                                    err);
818 }
819
820 static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
821 {
822         /* Enable interrupt and let the IRQ handler do everything */
823         stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT);
824
825         return 0;
826 }
827
828 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
829 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
830                                          void *areq);
831
832 static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
833 {
834         struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
835
836         crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
837
838         ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
839         ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
840         ctx->enginectx.op.unprepare_request = NULL;
841         return 0;
842 }
843
844 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
845 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
846                                        void *areq);
847
848 static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
849 {
850         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
851
852         tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
853
854         ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
855         ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
856         ctx->enginectx.op.unprepare_request = NULL;
857
858         return 0;
859 }
860
861 static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
862 {
863         struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
864                         crypto_skcipher_reqtfm(req));
865         struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
866         struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
867
868         if (!cryp)
869                 return -ENODEV;
870
871         rctx->mode = mode;
872
873         return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
874 }
875
876 static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
877 {
878         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
879         struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
880         struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
881
882         if (!cryp)
883                 return -ENODEV;
884
885         rctx->mode = mode;
886
887         return crypto_transfer_aead_request_to_engine(cryp->engine, req);
888 }
889
890 static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
891                              unsigned int keylen)
892 {
893         struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
894
895         memcpy(ctx->key, key, keylen);
896         ctx->keylen = keylen;
897
898         return 0;
899 }
900
901 static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
902                                  unsigned int keylen)
903 {
904         if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
905             keylen != AES_KEYSIZE_256)
906                 return -EINVAL;
907         else
908                 return stm32_cryp_setkey(tfm, key, keylen);
909 }
910
911 static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
912                                  unsigned int keylen)
913 {
914         return verify_skcipher_des_key(tfm, key) ?:
915                stm32_cryp_setkey(tfm, key, keylen);
916 }
917
918 static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
919                                   unsigned int keylen)
920 {
921         return verify_skcipher_des3_key(tfm, key) ?:
922                stm32_cryp_setkey(tfm, key, keylen);
923 }
924
925 static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
926                                       unsigned int keylen)
927 {
928         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
929
930         if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
931             keylen != AES_KEYSIZE_256)
932                 return -EINVAL;
933
934         memcpy(ctx->key, key, keylen);
935         ctx->keylen = keylen;
936
937         return 0;
938 }
939
940 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
941                                           unsigned int authsize)
942 {
943         switch (authsize) {
944         case 4:
945         case 8:
946         case 12:
947         case 13:
948         case 14:
949         case 15:
950         case 16:
951                 break;
952         default:
953                 return -EINVAL;
954         }
955
956         return 0;
957 }
958
959 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
960                                           unsigned int authsize)
961 {
962         switch (authsize) {
963         case 4:
964         case 6:
965         case 8:
966         case 10:
967         case 12:
968         case 14:
969         case 16:
970                 break;
971         default:
972                 return -EINVAL;
973         }
974
975         return 0;
976 }
977
978 static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
979 {
980         if (req->cryptlen % AES_BLOCK_SIZE)
981                 return -EINVAL;
982
983         if (req->cryptlen == 0)
984                 return 0;
985
986         return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
987 }
988
989 static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
990 {
991         if (req->cryptlen % AES_BLOCK_SIZE)
992                 return -EINVAL;
993
994         if (req->cryptlen == 0)
995                 return 0;
996
997         return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
998 }
999
1000 static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
1001 {
1002         if (req->cryptlen % AES_BLOCK_SIZE)
1003                 return -EINVAL;
1004
1005         if (req->cryptlen == 0)
1006                 return 0;
1007
1008         return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
1009 }
1010
1011 static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
1012 {
1013         if (req->cryptlen % AES_BLOCK_SIZE)
1014                 return -EINVAL;
1015
1016         if (req->cryptlen == 0)
1017                 return 0;
1018
1019         return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
1020 }
1021
1022 static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
1023 {
1024         if (req->cryptlen == 0)
1025                 return 0;
1026
1027         return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
1028 }
1029
1030 static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
1031 {
1032         if (req->cryptlen == 0)
1033                 return 0;
1034
1035         return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
1036 }
1037
1038 static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
1039 {
1040         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
1041 }
1042
1043 static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
1044 {
1045         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
1046 }
1047
1048 static inline int crypto_ccm_check_iv(const u8 *iv)
1049 {
1050         /* 2 <= L <= 8, so 1 <= L' <= 7. */
1051         if (iv[0] < 1 || iv[0] > 7)
1052                 return -EINVAL;
1053
1054         return 0;
1055 }
1056
1057 static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
1058 {
1059         int err;
1060
1061         err = crypto_ccm_check_iv(req->iv);
1062         if (err)
1063                 return err;
1064
1065         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
1066 }
1067
1068 static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
1069 {
1070         int err;
1071
1072         err = crypto_ccm_check_iv(req->iv);
1073         if (err)
1074                 return err;
1075
1076         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
1077 }
1078
1079 static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
1080 {
1081         if (req->cryptlen % DES_BLOCK_SIZE)
1082                 return -EINVAL;
1083
1084         if (req->cryptlen == 0)
1085                 return 0;
1086
1087         return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
1088 }
1089
1090 static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
1091 {
1092         if (req->cryptlen % DES_BLOCK_SIZE)
1093                 return -EINVAL;
1094
1095         if (req->cryptlen == 0)
1096                 return 0;
1097
1098         return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
1099 }
1100
1101 static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
1102 {
1103         if (req->cryptlen % DES_BLOCK_SIZE)
1104                 return -EINVAL;
1105
1106         if (req->cryptlen == 0)
1107                 return 0;
1108
1109         return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
1110 }
1111
1112 static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
1113 {
1114         if (req->cryptlen % DES_BLOCK_SIZE)
1115                 return -EINVAL;
1116
1117         if (req->cryptlen == 0)
1118                 return 0;
1119
1120         return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
1121 }
1122
1123 static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
1124 {
1125         if (req->cryptlen % DES_BLOCK_SIZE)
1126                 return -EINVAL;
1127
1128         if (req->cryptlen == 0)
1129                 return 0;
1130
1131         return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
1132 }
1133
1134 static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
1135 {
1136         if (req->cryptlen % DES_BLOCK_SIZE)
1137                 return -EINVAL;
1138
1139         if (req->cryptlen == 0)
1140                 return 0;
1141
1142         return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
1143 }
1144
1145 static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
1146 {
1147         if (req->cryptlen % DES_BLOCK_SIZE)
1148                 return -EINVAL;
1149
1150         if (req->cryptlen == 0)
1151                 return 0;
1152
1153         return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
1154 }
1155
1156 static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
1157 {
1158         if (req->cryptlen % DES_BLOCK_SIZE)
1159                 return -EINVAL;
1160
1161         if (req->cryptlen == 0)
1162                 return 0;
1163
1164         return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
1165 }
1166
1167 static int stm32_cryp_prepare_req(struct skcipher_request *req,
1168                                   struct aead_request *areq)
1169 {
1170         struct stm32_cryp_ctx *ctx;
1171         struct stm32_cryp *cryp;
1172         struct stm32_cryp_reqctx *rctx;
1173         struct scatterlist *in_sg;
1174         int ret;
1175
1176         if (!req && !areq)
1177                 return -EINVAL;
1178
1179         ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
1180                     crypto_aead_ctx(crypto_aead_reqtfm(areq));
1181
1182         cryp = ctx->cryp;
1183
1184         if (!cryp)
1185                 return -ENODEV;
1186
1187         rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
1188         rctx->mode &= FLG_MODE_MASK;
1189
1190         ctx->cryp = cryp;
1191
1192         cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
1193         cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
1194         cryp->ctx = ctx;
1195
1196         if (req) {
1197                 cryp->req = req;
1198                 cryp->areq = NULL;
1199                 cryp->header_in = 0;
1200                 cryp->payload_in = req->cryptlen;
1201                 cryp->payload_out = req->cryptlen;
1202                 cryp->authsize = 0;
1203         } else {
1204                 /*
1205                  * Length of input and output data:
1206                  * Encryption case:
1207                  *  INPUT  = AssocData   ||     PlainText
1208                  *          <- assoclen ->  <- cryptlen ->
1209                  *
1210                  *  OUTPUT = AssocData    ||   CipherText   ||      AuthTag
1211                  *          <- assoclen ->  <-- cryptlen -->  <- authsize ->
1212                  *
1213                  * Decryption case:
1214                  *  INPUT  =  AssocData     ||    CipherTex   ||       AuthTag
1215                  *          <- assoclen --->  <---------- cryptlen ---------->
1216                  *
1217                  *  OUTPUT = AssocData    ||               PlainText
1218                  *          <- assoclen ->  <- cryptlen - authsize ->
1219                  */
1220                 cryp->areq = areq;
1221                 cryp->req = NULL;
1222                 cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
1223                 if (is_encrypt(cryp)) {
1224                         cryp->payload_in = areq->cryptlen;
1225                         cryp->header_in = areq->assoclen;
1226                         cryp->payload_out = areq->cryptlen;
1227                 } else {
1228                         cryp->payload_in = areq->cryptlen - cryp->authsize;
1229                         cryp->header_in = areq->assoclen;
1230                         cryp->payload_out = cryp->payload_in;
1231                 }
1232         }
1233
1234         in_sg = req ? req->src : areq->src;
1235         scatterwalk_start(&cryp->in_walk, in_sg);
1236
1237         cryp->out_sg = req ? req->dst : areq->dst;
1238         scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1239
1240         if (is_gcm(cryp) || is_ccm(cryp)) {
1241                 /* In output, jump after assoc data */
1242                 scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
1243         }
1244
1245         if (is_ctr(cryp))
1246                 memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
1247
1248         ret = stm32_cryp_hw_init(cryp);
1249         return ret;
1250 }
1251
1252 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1253                                          void *areq)
1254 {
1255         struct skcipher_request *req = container_of(areq,
1256                                                       struct skcipher_request,
1257                                                       base);
1258
1259         return stm32_cryp_prepare_req(req, NULL);
1260 }
1261
1262 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1263 {
1264         struct skcipher_request *req = container_of(areq,
1265                                                       struct skcipher_request,
1266                                                       base);
1267         struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1268                         crypto_skcipher_reqtfm(req));
1269         struct stm32_cryp *cryp = ctx->cryp;
1270
1271         if (!cryp)
1272                 return -ENODEV;
1273
1274         return stm32_cryp_cpu_start(cryp);
1275 }
1276
1277 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1278 {
1279         struct aead_request *req = container_of(areq, struct aead_request,
1280                                                 base);
1281
1282         return stm32_cryp_prepare_req(NULL, req);
1283 }
1284
1285 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1286 {
1287         struct aead_request *req = container_of(areq, struct aead_request,
1288                                                 base);
1289         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1290         struct stm32_cryp *cryp = ctx->cryp;
1291
1292         if (!cryp)
1293                 return -ENODEV;
1294
1295         if (unlikely(!cryp->payload_in && !cryp->header_in)) {
1296                 /* No input data to process: get tag and finish */
1297                 stm32_cryp_finish_req(cryp, 0);
1298                 return 0;
1299         }
1300
1301         return stm32_cryp_cpu_start(cryp);
1302 }
1303
1304 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1305 {
1306         u32 cfg, size_bit;
1307         unsigned int i;
1308         int ret = 0;
1309
1310         /* Update Config */
1311         cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1312
1313         cfg &= ~CR_PH_MASK;
1314         cfg |= CR_PH_FINAL;
1315         cfg &= ~CR_DEC_NOT_ENC;
1316         cfg |= CR_CRYPEN;
1317
1318         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1319
1320         if (is_gcm(cryp)) {
1321                 /* GCM: write aad and payload size (in bits) */
1322                 size_bit = cryp->areq->assoclen * 8;
1323                 if (cryp->caps->swap_final)
1324                         size_bit = (__force u32)cpu_to_be32(size_bit);
1325
1326                 stm32_cryp_write(cryp, cryp->caps->din, 0);
1327                 stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1328
1329                 size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1330                                 cryp->areq->cryptlen - cryp->authsize;
1331                 size_bit *= 8;
1332                 if (cryp->caps->swap_final)
1333                         size_bit = (__force u32)cpu_to_be32(size_bit);
1334
1335                 stm32_cryp_write(cryp, cryp->caps->din, 0);
1336                 stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1337         } else {
1338                 /* CCM: write CTR0 */
1339                 u32 iv32[AES_BLOCK_32];
1340                 u8 *iv = (u8 *)iv32;
1341                 __be32 *biv = (__be32 *)iv32;
1342
1343                 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1344                 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1345
1346                 for (i = 0; i < AES_BLOCK_32; i++) {
1347                         u32 xiv = iv32[i];
1348
1349                         if (!cryp->caps->padding_wa)
1350                                 xiv = be32_to_cpu(biv[i]);
1351                         stm32_cryp_write(cryp, cryp->caps->din, xiv);
1352                 }
1353         }
1354
1355         /* Wait for output data */
1356         ret = stm32_cryp_wait_output(cryp);
1357         if (ret) {
1358                 dev_err(cryp->dev, "Timeout (read tag)\n");
1359                 return ret;
1360         }
1361
1362         if (is_encrypt(cryp)) {
1363                 u32 out_tag[AES_BLOCK_32];
1364
1365                 /* Get and write tag */
1366                 for (i = 0; i < AES_BLOCK_32; i++)
1367                         out_tag[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1368
1369                 scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
1370         } else {
1371                 /* Get and check tag */
1372                 u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1373
1374                 scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
1375
1376                 for (i = 0; i < AES_BLOCK_32; i++)
1377                         out_tag[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1378
1379                 if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1380                         ret = -EBADMSG;
1381         }
1382
1383         /* Disable cryp */
1384         cfg &= ~CR_CRYPEN;
1385         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1386
1387         return ret;
1388 }
1389
1390 static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1391 {
1392         u32 cr;
1393
1394         if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
1395                 /*
1396                  * In this case, we need to increment manually the ctr counter,
1397                  * as HW doesn't handle the U32 carry.
1398                  */
1399                 crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
1400
1401                 cr = stm32_cryp_read(cryp, cryp->caps->cr);
1402                 stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN);
1403
1404                 stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
1405
1406                 stm32_cryp_write(cryp, cryp->caps->cr, cr);
1407         }
1408
1409         /* The IV registers are BE  */
1410         cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
1411         cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
1412         cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
1413         cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
1414 }
1415
1416 static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1417 {
1418         unsigned int i;
1419         u32 block[AES_BLOCK_32];
1420
1421         for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1422                 block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1423
1424         scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1425                                                              cryp->payload_out), 1);
1426         cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1427                                    cryp->payload_out);
1428 }
1429
1430 static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1431 {
1432         unsigned int i;
1433         u32 block[AES_BLOCK_32] = {0};
1434
1435         scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
1436                                                             cryp->payload_in), 0);
1437         for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1438                 stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1439
1440         cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
1441 }
1442
1443 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1444 {
1445         int err;
1446         u32 cfg, block[AES_BLOCK_32] = {0};
1447         unsigned int i;
1448
1449         /* 'Special workaround' procedure described in the datasheet */
1450
1451         /* a) disable ip */
1452         stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1453         cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1454         cfg &= ~CR_CRYPEN;
1455         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1456
1457         /* b) Update IV1R */
1458         stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2);
1459
1460         /* c) change mode to CTR */
1461         cfg &= ~CR_ALGO_MASK;
1462         cfg |= CR_AES_CTR;
1463         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1464
1465         /* a) enable IP */
1466         cfg |= CR_CRYPEN;
1467         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1468
1469         /* b) pad and write the last block */
1470         stm32_cryp_irq_write_block(cryp);
1471         /* wait end of process */
1472         err = stm32_cryp_wait_output(cryp);
1473         if (err) {
1474                 dev_err(cryp->dev, "Timeout (write gcm last data)\n");
1475                 return stm32_cryp_finish_req(cryp, err);
1476         }
1477
1478         /* c) get and store encrypted data */
1479         /*
1480          * Same code as stm32_cryp_irq_read_data(), but we want to store
1481          * block value
1482          */
1483         for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1484                 block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1485
1486         scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1487                                                              cryp->payload_out), 1);
1488         cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1489                                    cryp->payload_out);
1490
1491         /* d) change mode back to AES GCM */
1492         cfg &= ~CR_ALGO_MASK;
1493         cfg |= CR_AES_GCM;
1494         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1495
1496         /* e) change phase to Final */
1497         cfg &= ~CR_PH_MASK;
1498         cfg |= CR_PH_FINAL;
1499         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1500
1501         /* f) write padded data */
1502         for (i = 0; i < AES_BLOCK_32; i++)
1503                 stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1504
1505         /* g) Empty fifo out */
1506         err = stm32_cryp_wait_output(cryp);
1507         if (err) {
1508                 dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
1509                 return stm32_cryp_finish_req(cryp, err);
1510         }
1511
1512         for (i = 0; i < AES_BLOCK_32; i++)
1513                 stm32_cryp_read(cryp, cryp->caps->dout);
1514
1515         /* h) run the he normal Final phase */
1516         stm32_cryp_finish_req(cryp, 0);
1517 }
1518
1519 static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1520 {
1521         u32 cfg;
1522
1523         /* disable ip, set NPBLB and reneable ip */
1524         cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1525         cfg &= ~CR_CRYPEN;
1526         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1527
1528         cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
1529         cfg |= CR_CRYPEN;
1530         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1531 }
1532
1533 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1534 {
1535         int err = 0;
1536         u32 cfg, iv1tmp;
1537         u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
1538         u32 block[AES_BLOCK_32] = {0};
1539         unsigned int i;
1540
1541         /* 'Special workaround' procedure described in the datasheet */
1542
1543         /* a) disable ip */
1544         stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1545
1546         cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1547         cfg &= ~CR_CRYPEN;
1548         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1549
1550         /* b) get IV1 from CRYP_CSGCMCCM7 */
1551         iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1552
1553         /* c) Load CRYP_CSGCMCCMxR */
1554         for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1555                 cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1556
1557         /* d) Write IV1R */
1558         stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp);
1559
1560         /* e) change mode to CTR */
1561         cfg &= ~CR_ALGO_MASK;
1562         cfg |= CR_AES_CTR;
1563         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1564
1565         /* a) enable IP */
1566         cfg |= CR_CRYPEN;
1567         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1568
1569         /* b) pad and write the last block */
1570         stm32_cryp_irq_write_block(cryp);
1571         /* wait end of process */
1572         err = stm32_cryp_wait_output(cryp);
1573         if (err) {
1574                 dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1575                 return stm32_cryp_finish_req(cryp, err);
1576         }
1577
1578         /* c) get and store decrypted data */
1579         /*
1580          * Same code as stm32_cryp_irq_read_data(), but we want to store
1581          * block value
1582          */
1583         for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1584                 block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1585
1586         scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1587                                                              cryp->payload_out), 1);
1588         cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
1589
1590         /* d) Load again CRYP_CSGCMCCMxR */
1591         for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1592                 cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1593
1594         /* e) change mode back to AES CCM */
1595         cfg &= ~CR_ALGO_MASK;
1596         cfg |= CR_AES_CCM;
1597         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1598
1599         /* f) change phase to header */
1600         cfg &= ~CR_PH_MASK;
1601         cfg |= CR_PH_HEADER;
1602         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1603
1604         /* g) XOR and write padded data */
1605         for (i = 0; i < ARRAY_SIZE(block); i++) {
1606                 block[i] ^= cstmp1[i];
1607                 block[i] ^= cstmp2[i];
1608                 stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1609         }
1610
1611         /* h) wait for completion */
1612         err = stm32_cryp_wait_busy(cryp);
1613         if (err)
1614                 dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1615
1616         /* i) run the he normal Final phase */
1617         stm32_cryp_finish_req(cryp, err);
1618 }
1619
1620 static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1621 {
1622         if (unlikely(!cryp->payload_in)) {
1623                 dev_warn(cryp->dev, "No more data to process\n");
1624                 return;
1625         }
1626
1627         if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
1628                      (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1629                      is_encrypt(cryp))) {
1630                 /* Padding for AES GCM encryption */
1631                 if (cryp->caps->padding_wa) {
1632                         /* Special case 1 */
1633                         stm32_cryp_irq_write_gcm_padded_data(cryp);
1634                         return;
1635                 }
1636
1637                 /* Setting padding bytes (NBBLB) */
1638                 stm32_cryp_irq_set_npblb(cryp);
1639         }
1640
1641         if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
1642                      (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1643                      is_decrypt(cryp))) {
1644                 /* Padding for AES CCM decryption */
1645                 if (cryp->caps->padding_wa) {
1646                         /* Special case 2 */
1647                         stm32_cryp_irq_write_ccm_padded_data(cryp);
1648                         return;
1649                 }
1650
1651                 /* Setting padding bytes (NBBLB) */
1652                 stm32_cryp_irq_set_npblb(cryp);
1653         }
1654
1655         if (is_aes(cryp) && is_ctr(cryp))
1656                 stm32_cryp_check_ctr_counter(cryp);
1657
1658         stm32_cryp_irq_write_block(cryp);
1659 }
1660
1661 static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
1662 {
1663         unsigned int i;
1664         u32 block[AES_BLOCK_32] = {0};
1665         size_t written;
1666
1667         written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
1668
1669         scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
1670         for (i = 0; i < AES_BLOCK_32; i++)
1671                 stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1672
1673         cryp->header_in -= written;
1674
1675         stm32_crypt_gcmccm_end_header(cryp);
1676 }
1677
1678 static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1679 {
1680         struct stm32_cryp *cryp = arg;
1681         u32 ph;
1682         u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc);
1683
1684         if (cryp->irq_status & MISR_OUT)
1685                 /* Output FIFO IRQ: read data */
1686                 stm32_cryp_irq_read_data(cryp);
1687
1688         if (cryp->irq_status & MISR_IN) {
1689                 if (is_gcm(cryp) || is_ccm(cryp)) {
1690                         ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK;
1691                         if (unlikely(ph == CR_PH_HEADER))
1692                                 /* Write Header */
1693                                 stm32_cryp_irq_write_gcmccm_header(cryp);
1694                         else
1695                                 /* Input FIFO IRQ: write data */
1696                                 stm32_cryp_irq_write_data(cryp);
1697                         if (is_gcm(cryp))
1698                                 cryp->gcm_ctr++;
1699                 } else {
1700                         /* Input FIFO IRQ: write data */
1701                         stm32_cryp_irq_write_data(cryp);
1702                 }
1703         }
1704
1705         /* Mask useless interrupts */
1706         if (!cryp->payload_in && !cryp->header_in)
1707                 it_mask &= ~IMSCR_IN;
1708         if (!cryp->payload_out)
1709                 it_mask &= ~IMSCR_OUT;
1710         stm32_cryp_write(cryp, cryp->caps->imsc, it_mask);
1711
1712         if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out)
1713                 stm32_cryp_finish_req(cryp, 0);
1714
1715         return IRQ_HANDLED;
1716 }
1717
1718 static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1719 {
1720         struct stm32_cryp *cryp = arg;
1721
1722         cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis);
1723
1724         return IRQ_WAKE_THREAD;
1725 }
1726
1727 static struct skcipher_alg crypto_algs[] = {
1728 {
1729         .base.cra_name          = "ecb(aes)",
1730         .base.cra_driver_name   = "stm32-ecb-aes",
1731         .base.cra_priority      = 200,
1732         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1733         .base.cra_blocksize     = AES_BLOCK_SIZE,
1734         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1735         .base.cra_alignmask     = 0,
1736         .base.cra_module        = THIS_MODULE,
1737
1738         .init                   = stm32_cryp_init_tfm,
1739         .min_keysize            = AES_MIN_KEY_SIZE,
1740         .max_keysize            = AES_MAX_KEY_SIZE,
1741         .setkey                 = stm32_cryp_aes_setkey,
1742         .encrypt                = stm32_cryp_aes_ecb_encrypt,
1743         .decrypt                = stm32_cryp_aes_ecb_decrypt,
1744 },
1745 {
1746         .base.cra_name          = "cbc(aes)",
1747         .base.cra_driver_name   = "stm32-cbc-aes",
1748         .base.cra_priority      = 200,
1749         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1750         .base.cra_blocksize     = AES_BLOCK_SIZE,
1751         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1752         .base.cra_alignmask     = 0,
1753         .base.cra_module        = THIS_MODULE,
1754
1755         .init                   = stm32_cryp_init_tfm,
1756         .min_keysize            = AES_MIN_KEY_SIZE,
1757         .max_keysize            = AES_MAX_KEY_SIZE,
1758         .ivsize                 = AES_BLOCK_SIZE,
1759         .setkey                 = stm32_cryp_aes_setkey,
1760         .encrypt                = stm32_cryp_aes_cbc_encrypt,
1761         .decrypt                = stm32_cryp_aes_cbc_decrypt,
1762 },
1763 {
1764         .base.cra_name          = "ctr(aes)",
1765         .base.cra_driver_name   = "stm32-ctr-aes",
1766         .base.cra_priority      = 200,
1767         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1768         .base.cra_blocksize     = 1,
1769         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1770         .base.cra_alignmask     = 0,
1771         .base.cra_module        = THIS_MODULE,
1772
1773         .init                   = stm32_cryp_init_tfm,
1774         .min_keysize            = AES_MIN_KEY_SIZE,
1775         .max_keysize            = AES_MAX_KEY_SIZE,
1776         .ivsize                 = AES_BLOCK_SIZE,
1777         .setkey                 = stm32_cryp_aes_setkey,
1778         .encrypt                = stm32_cryp_aes_ctr_encrypt,
1779         .decrypt                = stm32_cryp_aes_ctr_decrypt,
1780 },
1781 {
1782         .base.cra_name          = "ecb(des)",
1783         .base.cra_driver_name   = "stm32-ecb-des",
1784         .base.cra_priority      = 200,
1785         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1786         .base.cra_blocksize     = DES_BLOCK_SIZE,
1787         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1788         .base.cra_alignmask     = 0,
1789         .base.cra_module        = THIS_MODULE,
1790
1791         .init                   = stm32_cryp_init_tfm,
1792         .min_keysize            = DES_BLOCK_SIZE,
1793         .max_keysize            = DES_BLOCK_SIZE,
1794         .setkey                 = stm32_cryp_des_setkey,
1795         .encrypt                = stm32_cryp_des_ecb_encrypt,
1796         .decrypt                = stm32_cryp_des_ecb_decrypt,
1797 },
1798 {
1799         .base.cra_name          = "cbc(des)",
1800         .base.cra_driver_name   = "stm32-cbc-des",
1801         .base.cra_priority      = 200,
1802         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1803         .base.cra_blocksize     = DES_BLOCK_SIZE,
1804         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1805         .base.cra_alignmask     = 0,
1806         .base.cra_module        = THIS_MODULE,
1807
1808         .init                   = stm32_cryp_init_tfm,
1809         .min_keysize            = DES_BLOCK_SIZE,
1810         .max_keysize            = DES_BLOCK_SIZE,
1811         .ivsize                 = DES_BLOCK_SIZE,
1812         .setkey                 = stm32_cryp_des_setkey,
1813         .encrypt                = stm32_cryp_des_cbc_encrypt,
1814         .decrypt                = stm32_cryp_des_cbc_decrypt,
1815 },
1816 {
1817         .base.cra_name          = "ecb(des3_ede)",
1818         .base.cra_driver_name   = "stm32-ecb-des3",
1819         .base.cra_priority      = 200,
1820         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1821         .base.cra_blocksize     = DES_BLOCK_SIZE,
1822         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1823         .base.cra_alignmask     = 0,
1824         .base.cra_module        = THIS_MODULE,
1825
1826         .init                   = stm32_cryp_init_tfm,
1827         .min_keysize            = 3 * DES_BLOCK_SIZE,
1828         .max_keysize            = 3 * DES_BLOCK_SIZE,
1829         .setkey                 = stm32_cryp_tdes_setkey,
1830         .encrypt                = stm32_cryp_tdes_ecb_encrypt,
1831         .decrypt                = stm32_cryp_tdes_ecb_decrypt,
1832 },
1833 {
1834         .base.cra_name          = "cbc(des3_ede)",
1835         .base.cra_driver_name   = "stm32-cbc-des3",
1836         .base.cra_priority      = 200,
1837         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1838         .base.cra_blocksize     = DES_BLOCK_SIZE,
1839         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1840         .base.cra_alignmask     = 0,
1841         .base.cra_module        = THIS_MODULE,
1842
1843         .init                   = stm32_cryp_init_tfm,
1844         .min_keysize            = 3 * DES_BLOCK_SIZE,
1845         .max_keysize            = 3 * DES_BLOCK_SIZE,
1846         .ivsize                 = DES_BLOCK_SIZE,
1847         .setkey                 = stm32_cryp_tdes_setkey,
1848         .encrypt                = stm32_cryp_tdes_cbc_encrypt,
1849         .decrypt                = stm32_cryp_tdes_cbc_decrypt,
1850 },
1851 };
1852
1853 static struct aead_alg aead_algs[] = {
1854 {
1855         .setkey         = stm32_cryp_aes_aead_setkey,
1856         .setauthsize    = stm32_cryp_aes_gcm_setauthsize,
1857         .encrypt        = stm32_cryp_aes_gcm_encrypt,
1858         .decrypt        = stm32_cryp_aes_gcm_decrypt,
1859         .init           = stm32_cryp_aes_aead_init,
1860         .ivsize         = 12,
1861         .maxauthsize    = AES_BLOCK_SIZE,
1862
1863         .base = {
1864                 .cra_name               = "gcm(aes)",
1865                 .cra_driver_name        = "stm32-gcm-aes",
1866                 .cra_priority           = 200,
1867                 .cra_flags              = CRYPTO_ALG_ASYNC,
1868                 .cra_blocksize          = 1,
1869                 .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1870                 .cra_alignmask          = 0,
1871                 .cra_module             = THIS_MODULE,
1872         },
1873 },
1874 {
1875         .setkey         = stm32_cryp_aes_aead_setkey,
1876         .setauthsize    = stm32_cryp_aes_ccm_setauthsize,
1877         .encrypt        = stm32_cryp_aes_ccm_encrypt,
1878         .decrypt        = stm32_cryp_aes_ccm_decrypt,
1879         .init           = stm32_cryp_aes_aead_init,
1880         .ivsize         = AES_BLOCK_SIZE,
1881         .maxauthsize    = AES_BLOCK_SIZE,
1882
1883         .base = {
1884                 .cra_name               = "ccm(aes)",
1885                 .cra_driver_name        = "stm32-ccm-aes",
1886                 .cra_priority           = 200,
1887                 .cra_flags              = CRYPTO_ALG_ASYNC,
1888                 .cra_blocksize          = 1,
1889                 .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1890                 .cra_alignmask          = 0,
1891                 .cra_module             = THIS_MODULE,
1892         },
1893 },
1894 };
1895
1896 static const struct stm32_cryp_caps ux500_data = {
1897         .aeads_support = false,
1898         .linear_aes_key = true,
1899         .kp_mode = false,
1900         .iv_protection = true,
1901         .swap_final = true,
1902         .padding_wa = true,
1903         .cr = UX500_CRYP_CR,
1904         .sr = UX500_CRYP_SR,
1905         .din = UX500_CRYP_DIN,
1906         .dout = UX500_CRYP_DOUT,
1907         .imsc = UX500_CRYP_IMSC,
1908         .mis = UX500_CRYP_MIS,
1909         .k1l = UX500_CRYP_K1L,
1910         .k1r = UX500_CRYP_K1R,
1911         .k3r = UX500_CRYP_K3R,
1912         .iv0l = UX500_CRYP_IV0L,
1913         .iv0r = UX500_CRYP_IV0R,
1914         .iv1l = UX500_CRYP_IV1L,
1915         .iv1r = UX500_CRYP_IV1R,
1916 };
1917
1918 static const struct stm32_cryp_caps f7_data = {
1919         .aeads_support = true,
1920         .linear_aes_key = false,
1921         .kp_mode = true,
1922         .iv_protection = false,
1923         .swap_final = true,
1924         .padding_wa = true,
1925         .cr = CRYP_CR,
1926         .sr = CRYP_SR,
1927         .din = CRYP_DIN,
1928         .dout = CRYP_DOUT,
1929         .imsc = CRYP_IMSCR,
1930         .mis = CRYP_MISR,
1931         .k1l = CRYP_K1LR,
1932         .k1r = CRYP_K1RR,
1933         .k3r = CRYP_K3RR,
1934         .iv0l = CRYP_IV0LR,
1935         .iv0r = CRYP_IV0RR,
1936         .iv1l = CRYP_IV1LR,
1937         .iv1r = CRYP_IV1RR,
1938 };
1939
1940 static const struct stm32_cryp_caps mp1_data = {
1941         .aeads_support = true,
1942         .linear_aes_key = false,
1943         .kp_mode = true,
1944         .iv_protection = false,
1945         .swap_final = false,
1946         .padding_wa = false,
1947         .cr = CRYP_CR,
1948         .sr = CRYP_SR,
1949         .din = CRYP_DIN,
1950         .dout = CRYP_DOUT,
1951         .imsc = CRYP_IMSCR,
1952         .mis = CRYP_MISR,
1953         .k1l = CRYP_K1LR,
1954         .k1r = CRYP_K1RR,
1955         .k3r = CRYP_K3RR,
1956         .iv0l = CRYP_IV0LR,
1957         .iv0r = CRYP_IV0RR,
1958         .iv1l = CRYP_IV1LR,
1959         .iv1r = CRYP_IV1RR,
1960 };
1961
1962 static const struct of_device_id stm32_dt_ids[] = {
1963         { .compatible = "stericsson,ux500-cryp", .data = &ux500_data},
1964         { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1965         { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1966         {},
1967 };
1968 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1969
1970 static int stm32_cryp_probe(struct platform_device *pdev)
1971 {
1972         struct device *dev = &pdev->dev;
1973         struct stm32_cryp *cryp;
1974         struct reset_control *rst;
1975         int irq, ret;
1976
1977         cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1978         if (!cryp)
1979                 return -ENOMEM;
1980
1981         cryp->caps = of_device_get_match_data(dev);
1982         if (!cryp->caps)
1983                 return -ENODEV;
1984
1985         cryp->dev = dev;
1986
1987         cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1988         if (IS_ERR(cryp->regs))
1989                 return PTR_ERR(cryp->regs);
1990
1991         irq = platform_get_irq(pdev, 0);
1992         if (irq < 0)
1993                 return irq;
1994
1995         ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1996                                         stm32_cryp_irq_thread, IRQF_ONESHOT,
1997                                         dev_name(dev), cryp);
1998         if (ret) {
1999                 dev_err(dev, "Cannot grab IRQ\n");
2000                 return ret;
2001         }
2002
2003         cryp->clk = devm_clk_get(dev, NULL);
2004         if (IS_ERR(cryp->clk)) {
2005                 dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
2006
2007                 return PTR_ERR(cryp->clk);
2008         }
2009
2010         ret = clk_prepare_enable(cryp->clk);
2011         if (ret) {
2012                 dev_err(cryp->dev, "Failed to enable clock\n");
2013                 return ret;
2014         }
2015
2016         pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
2017         pm_runtime_use_autosuspend(dev);
2018
2019         pm_runtime_get_noresume(dev);
2020         pm_runtime_set_active(dev);
2021         pm_runtime_enable(dev);
2022
2023         rst = devm_reset_control_get(dev, NULL);
2024         if (IS_ERR(rst)) {
2025                 ret = PTR_ERR(rst);
2026                 if (ret == -EPROBE_DEFER)
2027                         goto err_rst;
2028         } else {
2029                 reset_control_assert(rst);
2030                 udelay(2);
2031                 reset_control_deassert(rst);
2032         }
2033
2034         platform_set_drvdata(pdev, cryp);
2035
2036         spin_lock(&cryp_list.lock);
2037         list_add(&cryp->list, &cryp_list.dev_list);
2038         spin_unlock(&cryp_list.lock);
2039
2040         /* Initialize crypto engine */
2041         cryp->engine = crypto_engine_alloc_init(dev, 1);
2042         if (!cryp->engine) {
2043                 dev_err(dev, "Could not init crypto engine\n");
2044                 ret = -ENOMEM;
2045                 goto err_engine1;
2046         }
2047
2048         ret = crypto_engine_start(cryp->engine);
2049         if (ret) {
2050                 dev_err(dev, "Could not start crypto engine\n");
2051                 goto err_engine2;
2052         }
2053
2054         ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2055         if (ret) {
2056                 dev_err(dev, "Could not register algs\n");
2057                 goto err_algs;
2058         }
2059
2060         if (cryp->caps->aeads_support) {
2061                 ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2062                 if (ret)
2063                         goto err_aead_algs;
2064         }
2065
2066         dev_info(dev, "Initialized\n");
2067
2068         pm_runtime_put_sync(dev);
2069
2070         return 0;
2071
2072 err_aead_algs:
2073         crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2074 err_algs:
2075 err_engine2:
2076         crypto_engine_exit(cryp->engine);
2077 err_engine1:
2078         spin_lock(&cryp_list.lock);
2079         list_del(&cryp->list);
2080         spin_unlock(&cryp_list.lock);
2081 err_rst:
2082         pm_runtime_disable(dev);
2083         pm_runtime_put_noidle(dev);
2084
2085         clk_disable_unprepare(cryp->clk);
2086
2087         return ret;
2088 }
2089
2090 static int stm32_cryp_remove(struct platform_device *pdev)
2091 {
2092         struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2093         int ret;
2094
2095         if (!cryp)
2096                 return -ENODEV;
2097
2098         ret = pm_runtime_resume_and_get(cryp->dev);
2099         if (ret < 0)
2100                 return ret;
2101
2102         if (cryp->caps->aeads_support)
2103                 crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2104         crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2105
2106         crypto_engine_exit(cryp->engine);
2107
2108         spin_lock(&cryp_list.lock);
2109         list_del(&cryp->list);
2110         spin_unlock(&cryp_list.lock);
2111
2112         pm_runtime_disable(cryp->dev);
2113         pm_runtime_put_noidle(cryp->dev);
2114
2115         clk_disable_unprepare(cryp->clk);
2116
2117         return 0;
2118 }
2119
2120 #ifdef CONFIG_PM
2121 static int stm32_cryp_runtime_suspend(struct device *dev)
2122 {
2123         struct stm32_cryp *cryp = dev_get_drvdata(dev);
2124
2125         clk_disable_unprepare(cryp->clk);
2126
2127         return 0;
2128 }
2129
2130 static int stm32_cryp_runtime_resume(struct device *dev)
2131 {
2132         struct stm32_cryp *cryp = dev_get_drvdata(dev);
2133         int ret;
2134
2135         ret = clk_prepare_enable(cryp->clk);
2136         if (ret) {
2137                 dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2138                 return ret;
2139         }
2140
2141         return 0;
2142 }
2143 #endif
2144
2145 static const struct dev_pm_ops stm32_cryp_pm_ops = {
2146         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2147                                 pm_runtime_force_resume)
2148         SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2149                            stm32_cryp_runtime_resume, NULL)
2150 };
2151
2152 static struct platform_driver stm32_cryp_driver = {
2153         .probe  = stm32_cryp_probe,
2154         .remove = stm32_cryp_remove,
2155         .driver = {
2156                 .name           = DRIVER_NAME,
2157                 .pm             = &stm32_cryp_pm_ops,
2158                 .of_match_table = stm32_dt_ids,
2159         },
2160 };
2161
2162 module_platform_driver(stm32_cryp_driver);
2163
2164 MODULE_AUTHOR("Fabien Dessenne <[email protected]>");
2165 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2166 MODULE_LICENSE("GPL");
This page took 0.160373 seconds and 4 git commands to generate.