]> Git Repo - J-linux.git/blob - arch/powerpc/mm/book3s64/radix_pgtable.c
scsi: zfcp: Trace when request remove fails after qdio send fails
[J-linux.git] / arch / powerpc / mm / book3s64 / radix_pgtable.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Page table handling routines for radix page table.
4  *
5  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6  */
7
8 #define pr_fmt(fmt) "radix-mmu: " fmt
9
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/sched/mm.h>
13 #include <linux/memblock.h>
14 #include <linux/of.h>
15 #include <linux/of_fdt.h>
16 #include <linux/mm.h>
17 #include <linux/hugetlb.h>
18 #include <linux/string_helpers.h>
19 #include <linux/memory.h>
20
21 #include <asm/pgalloc.h>
22 #include <asm/mmu_context.h>
23 #include <asm/dma.h>
24 #include <asm/machdep.h>
25 #include <asm/mmu.h>
26 #include <asm/firmware.h>
27 #include <asm/powernv.h>
28 #include <asm/sections.h>
29 #include <asm/smp.h>
30 #include <asm/trace.h>
31 #include <asm/uaccess.h>
32 #include <asm/ultravisor.h>
33 #include <asm/set_memory.h>
34
35 #include <trace/events/thp.h>
36
37 #include <mm/mmu_decl.h>
38
39 unsigned int mmu_base_pid;
40 unsigned long radix_mem_block_size __ro_after_init;
41
42 static __ref void *early_alloc_pgtable(unsigned long size, int nid,
43                         unsigned long region_start, unsigned long region_end)
44 {
45         phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
46         phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
47         void *ptr;
48
49         if (region_start)
50                 min_addr = region_start;
51         if (region_end)
52                 max_addr = region_end;
53
54         ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
55
56         if (!ptr)
57                 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
58                       __func__, size, size, nid, &min_addr, &max_addr);
59
60         return ptr;
61 }
62
63 /*
64  * When allocating pud or pmd pointers, we allocate a complete page
65  * of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This
66  * is to ensure that the page obtained from the memblock allocator
67  * can be completely used as page table page and can be freed
68  * correctly when the page table entries are removed.
69  */
70 static int early_map_kernel_page(unsigned long ea, unsigned long pa,
71                           pgprot_t flags,
72                           unsigned int map_page_size,
73                           int nid,
74                           unsigned long region_start, unsigned long region_end)
75 {
76         unsigned long pfn = pa >> PAGE_SHIFT;
77         pgd_t *pgdp;
78         p4d_t *p4dp;
79         pud_t *pudp;
80         pmd_t *pmdp;
81         pte_t *ptep;
82
83         pgdp = pgd_offset_k(ea);
84         p4dp = p4d_offset(pgdp, ea);
85         if (p4d_none(*p4dp)) {
86                 pudp = early_alloc_pgtable(PAGE_SIZE, nid,
87                                            region_start, region_end);
88                 p4d_populate(&init_mm, p4dp, pudp);
89         }
90         pudp = pud_offset(p4dp, ea);
91         if (map_page_size == PUD_SIZE) {
92                 ptep = (pte_t *)pudp;
93                 goto set_the_pte;
94         }
95         if (pud_none(*pudp)) {
96                 pmdp = early_alloc_pgtable(PAGE_SIZE, nid, region_start,
97                                            region_end);
98                 pud_populate(&init_mm, pudp, pmdp);
99         }
100         pmdp = pmd_offset(pudp, ea);
101         if (map_page_size == PMD_SIZE) {
102                 ptep = pmdp_ptep(pmdp);
103                 goto set_the_pte;
104         }
105         if (!pmd_present(*pmdp)) {
106                 ptep = early_alloc_pgtable(PAGE_SIZE, nid,
107                                                 region_start, region_end);
108                 pmd_populate_kernel(&init_mm, pmdp, ptep);
109         }
110         ptep = pte_offset_kernel(pmdp, ea);
111
112 set_the_pte:
113         set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
114         asm volatile("ptesync": : :"memory");
115         return 0;
116 }
117
118 /*
119  * nid, region_start, and region_end are hints to try to place the page
120  * table memory in the same node or region.
121  */
122 static int __map_kernel_page(unsigned long ea, unsigned long pa,
123                           pgprot_t flags,
124                           unsigned int map_page_size,
125                           int nid,
126                           unsigned long region_start, unsigned long region_end)
127 {
128         unsigned long pfn = pa >> PAGE_SHIFT;
129         pgd_t *pgdp;
130         p4d_t *p4dp;
131         pud_t *pudp;
132         pmd_t *pmdp;
133         pte_t *ptep;
134         /*
135          * Make sure task size is correct as per the max adddr
136          */
137         BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
138
139 #ifdef CONFIG_PPC_64K_PAGES
140         BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
141 #endif
142
143         if (unlikely(!slab_is_available()))
144                 return early_map_kernel_page(ea, pa, flags, map_page_size,
145                                                 nid, region_start, region_end);
146
147         /*
148          * Should make page table allocation functions be able to take a
149          * node, so we can place kernel page tables on the right nodes after
150          * boot.
151          */
152         pgdp = pgd_offset_k(ea);
153         p4dp = p4d_offset(pgdp, ea);
154         pudp = pud_alloc(&init_mm, p4dp, ea);
155         if (!pudp)
156                 return -ENOMEM;
157         if (map_page_size == PUD_SIZE) {
158                 ptep = (pte_t *)pudp;
159                 goto set_the_pte;
160         }
161         pmdp = pmd_alloc(&init_mm, pudp, ea);
162         if (!pmdp)
163                 return -ENOMEM;
164         if (map_page_size == PMD_SIZE) {
165                 ptep = pmdp_ptep(pmdp);
166                 goto set_the_pte;
167         }
168         ptep = pte_alloc_kernel(pmdp, ea);
169         if (!ptep)
170                 return -ENOMEM;
171
172 set_the_pte:
173         set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
174         asm volatile("ptesync": : :"memory");
175         return 0;
176 }
177
178 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
179                           pgprot_t flags,
180                           unsigned int map_page_size)
181 {
182         return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
183 }
184
185 #ifdef CONFIG_STRICT_KERNEL_RWX
186 static void radix__change_memory_range(unsigned long start, unsigned long end,
187                                        unsigned long clear)
188 {
189         unsigned long idx;
190         pgd_t *pgdp;
191         p4d_t *p4dp;
192         pud_t *pudp;
193         pmd_t *pmdp;
194         pte_t *ptep;
195
196         start = ALIGN_DOWN(start, PAGE_SIZE);
197         end = PAGE_ALIGN(end); // aligns up
198
199         pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
200                  start, end, clear);
201
202         for (idx = start; idx < end; idx += PAGE_SIZE) {
203                 pgdp = pgd_offset_k(idx);
204                 p4dp = p4d_offset(pgdp, idx);
205                 pudp = pud_alloc(&init_mm, p4dp, idx);
206                 if (!pudp)
207                         continue;
208                 if (pud_is_leaf(*pudp)) {
209                         ptep = (pte_t *)pudp;
210                         goto update_the_pte;
211                 }
212                 pmdp = pmd_alloc(&init_mm, pudp, idx);
213                 if (!pmdp)
214                         continue;
215                 if (pmd_is_leaf(*pmdp)) {
216                         ptep = pmdp_ptep(pmdp);
217                         goto update_the_pte;
218                 }
219                 ptep = pte_alloc_kernel(pmdp, idx);
220                 if (!ptep)
221                         continue;
222 update_the_pte:
223                 radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
224         }
225
226         radix__flush_tlb_kernel_range(start, end);
227 }
228
229 void radix__mark_rodata_ro(void)
230 {
231         unsigned long start, end;
232
233         start = (unsigned long)_stext;
234         end = (unsigned long)__end_rodata;
235
236         radix__change_memory_range(start, end, _PAGE_WRITE);
237 }
238
239 void radix__mark_initmem_nx(void)
240 {
241         unsigned long start = (unsigned long)__init_begin;
242         unsigned long end = (unsigned long)__init_end;
243
244         radix__change_memory_range(start, end, _PAGE_EXEC);
245 }
246 #endif /* CONFIG_STRICT_KERNEL_RWX */
247
248 static inline void __meminit
249 print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
250 {
251         char buf[10];
252
253         if (end <= start)
254                 return;
255
256         string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
257
258         pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
259                 exec ? " (exec)" : "");
260 }
261
262 static unsigned long next_boundary(unsigned long addr, unsigned long end)
263 {
264 #ifdef CONFIG_STRICT_KERNEL_RWX
265         if (addr < __pa_symbol(__srwx_boundary))
266                 return __pa_symbol(__srwx_boundary);
267 #endif
268         return end;
269 }
270
271 static int __meminit create_physical_mapping(unsigned long start,
272                                              unsigned long end,
273                                              int nid, pgprot_t _prot)
274 {
275         unsigned long vaddr, addr, mapping_size = 0;
276         bool prev_exec, exec = false;
277         pgprot_t prot;
278         int psize;
279         unsigned long max_mapping_size = radix_mem_block_size;
280
281         if (debug_pagealloc_enabled_or_kfence())
282                 max_mapping_size = PAGE_SIZE;
283
284         start = ALIGN(start, PAGE_SIZE);
285         end   = ALIGN_DOWN(end, PAGE_SIZE);
286         for (addr = start; addr < end; addr += mapping_size) {
287                 unsigned long gap, previous_size;
288                 int rc;
289
290                 gap = next_boundary(addr, end) - addr;
291                 if (gap > max_mapping_size)
292                         gap = max_mapping_size;
293                 previous_size = mapping_size;
294                 prev_exec = exec;
295
296                 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
297                     mmu_psize_defs[MMU_PAGE_1G].shift) {
298                         mapping_size = PUD_SIZE;
299                         psize = MMU_PAGE_1G;
300                 } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
301                            mmu_psize_defs[MMU_PAGE_2M].shift) {
302                         mapping_size = PMD_SIZE;
303                         psize = MMU_PAGE_2M;
304                 } else {
305                         mapping_size = PAGE_SIZE;
306                         psize = mmu_virtual_psize;
307                 }
308
309                 vaddr = (unsigned long)__va(addr);
310
311                 if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
312                     overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
313                         prot = PAGE_KERNEL_X;
314                         exec = true;
315                 } else {
316                         prot = _prot;
317                         exec = false;
318                 }
319
320                 if (mapping_size != previous_size || exec != prev_exec) {
321                         print_mapping(start, addr, previous_size, prev_exec);
322                         start = addr;
323                 }
324
325                 rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
326                 if (rc)
327                         return rc;
328
329                 update_page_count(psize, 1);
330         }
331
332         print_mapping(start, addr, mapping_size, exec);
333         return 0;
334 }
335
336 static void __init radix_init_pgtable(void)
337 {
338         unsigned long rts_field;
339         phys_addr_t start, end;
340         u64 i;
341
342         /* We don't support slb for radix */
343         slb_set_size(0);
344
345         /*
346          * Create the linear mapping
347          */
348         for_each_mem_range(i, &start, &end) {
349                 /*
350                  * The memblock allocator  is up at this point, so the
351                  * page tables will be allocated within the range. No
352                  * need or a node (which we don't have yet).
353                  */
354
355                 if (end >= RADIX_VMALLOC_START) {
356                         pr_warn("Outside the supported range\n");
357                         continue;
358                 }
359
360                 WARN_ON(create_physical_mapping(start, end,
361                                                 -1, PAGE_KERNEL));
362         }
363
364         if (!cpu_has_feature(CPU_FTR_HVMODE) &&
365                         cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
366                 /*
367                  * Older versions of KVM on these machines prefer if the
368                  * guest only uses the low 19 PID bits.
369                  */
370                 mmu_pid_bits = 19;
371         }
372         mmu_base_pid = 1;
373
374         /*
375          * Allocate Partition table and process table for the
376          * host.
377          */
378         BUG_ON(PRTB_SIZE_SHIFT > 36);
379         process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
380         /*
381          * Fill in the process table.
382          */
383         rts_field = radix__get_tree_size();
384         process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
385
386         /*
387          * The init_mm context is given the first available (non-zero) PID,
388          * which is the "guard PID" and contains no page table. PIDR should
389          * never be set to zero because that duplicates the kernel address
390          * space at the 0x0... offset (quadrant 0)!
391          *
392          * An arbitrary PID that may later be allocated by the PID allocator
393          * for userspace processes must not be used either, because that
394          * would cause stale user mappings for that PID on CPUs outside of
395          * the TLB invalidation scheme (because it won't be in mm_cpumask).
396          *
397          * So permanently carve out one PID for the purpose of a guard PID.
398          */
399         init_mm.context.id = mmu_base_pid;
400         mmu_base_pid++;
401 }
402
403 static void __init radix_init_partition_table(void)
404 {
405         unsigned long rts_field, dw0, dw1;
406
407         mmu_partition_table_init();
408         rts_field = radix__get_tree_size();
409         dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
410         dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR;
411         mmu_partition_table_set_entry(0, dw0, dw1, false);
412
413         pr_info("Initializing Radix MMU\n");
414 }
415
416 static int __init get_idx_from_shift(unsigned int shift)
417 {
418         int idx = -1;
419
420         switch (shift) {
421         case 0xc:
422                 idx = MMU_PAGE_4K;
423                 break;
424         case 0x10:
425                 idx = MMU_PAGE_64K;
426                 break;
427         case 0x15:
428                 idx = MMU_PAGE_2M;
429                 break;
430         case 0x1e:
431                 idx = MMU_PAGE_1G;
432                 break;
433         }
434         return idx;
435 }
436
437 static int __init radix_dt_scan_page_sizes(unsigned long node,
438                                            const char *uname, int depth,
439                                            void *data)
440 {
441         int size = 0;
442         int shift, idx;
443         unsigned int ap;
444         const __be32 *prop;
445         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
446
447         /* We are scanning "cpu" nodes only */
448         if (type == NULL || strcmp(type, "cpu") != 0)
449                 return 0;
450
451         /* Grab page size encodings */
452         prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
453         if (!prop)
454                 return 0;
455
456         pr_info("Page sizes from device-tree:\n");
457         for (; size >= 4; size -= 4, ++prop) {
458
459                 struct mmu_psize_def *def;
460
461                 /* top 3 bit is AP encoding */
462                 shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
463                 ap = be32_to_cpu(prop[0]) >> 29;
464                 pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
465
466                 idx = get_idx_from_shift(shift);
467                 if (idx < 0)
468                         continue;
469
470                 def = &mmu_psize_defs[idx];
471                 def->shift = shift;
472                 def->ap  = ap;
473                 def->h_rpt_pgsize = psize_to_rpti_pgsize(idx);
474         }
475
476         /* needed ? */
477         cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
478         return 1;
479 }
480
481 #ifdef CONFIG_MEMORY_HOTPLUG
482 static int __init probe_memory_block_size(unsigned long node, const char *uname, int
483                                           depth, void *data)
484 {
485         unsigned long *mem_block_size = (unsigned long *)data;
486         const __be32 *prop;
487         int len;
488
489         if (depth != 1)
490                 return 0;
491
492         if (strcmp(uname, "ibm,dynamic-reconfiguration-memory"))
493                 return 0;
494
495         prop = of_get_flat_dt_prop(node, "ibm,lmb-size", &len);
496
497         if (!prop || len < dt_root_size_cells * sizeof(__be32))
498                 /*
499                  * Nothing in the device tree
500                  */
501                 *mem_block_size = MIN_MEMORY_BLOCK_SIZE;
502         else
503                 *mem_block_size = of_read_number(prop, dt_root_size_cells);
504         return 1;
505 }
506
507 static unsigned long __init radix_memory_block_size(void)
508 {
509         unsigned long mem_block_size = MIN_MEMORY_BLOCK_SIZE;
510
511         /*
512          * OPAL firmware feature is set by now. Hence we are ok
513          * to test OPAL feature.
514          */
515         if (firmware_has_feature(FW_FEATURE_OPAL))
516                 mem_block_size = 1UL * 1024 * 1024 * 1024;
517         else
518                 of_scan_flat_dt(probe_memory_block_size, &mem_block_size);
519
520         return mem_block_size;
521 }
522
523 #else   /* CONFIG_MEMORY_HOTPLUG */
524
525 static unsigned long __init radix_memory_block_size(void)
526 {
527         return 1UL * 1024 * 1024 * 1024;
528 }
529
530 #endif /* CONFIG_MEMORY_HOTPLUG */
531
532
533 void __init radix__early_init_devtree(void)
534 {
535         int rc;
536
537         /*
538          * Try to find the available page sizes in the device-tree
539          */
540         rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
541         if (!rc) {
542                 /*
543                  * No page size details found in device tree.
544                  * Let's assume we have page 4k and 64k support
545                  */
546                 mmu_psize_defs[MMU_PAGE_4K].shift = 12;
547                 mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
548                 mmu_psize_defs[MMU_PAGE_4K].h_rpt_pgsize =
549                         psize_to_rpti_pgsize(MMU_PAGE_4K);
550
551                 mmu_psize_defs[MMU_PAGE_64K].shift = 16;
552                 mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
553                 mmu_psize_defs[MMU_PAGE_64K].h_rpt_pgsize =
554                         psize_to_rpti_pgsize(MMU_PAGE_64K);
555         }
556
557         /*
558          * Max mapping size used when mapping pages. We don't use
559          * ppc_md.memory_block_size() here because this get called
560          * early and we don't have machine probe called yet. Also
561          * the pseries implementation only check for ibm,lmb-size.
562          * All hypervisor supporting radix do expose that device
563          * tree node.
564          */
565         radix_mem_block_size = radix_memory_block_size();
566         return;
567 }
568
569 void __init radix__early_init_mmu(void)
570 {
571         unsigned long lpcr;
572
573 #ifdef CONFIG_PPC_64S_HASH_MMU
574 #ifdef CONFIG_PPC_64K_PAGES
575         /* PAGE_SIZE mappings */
576         mmu_virtual_psize = MMU_PAGE_64K;
577 #else
578         mmu_virtual_psize = MMU_PAGE_4K;
579 #endif
580
581 #ifdef CONFIG_SPARSEMEM_VMEMMAP
582         /* vmemmap mapping */
583         if (mmu_psize_defs[MMU_PAGE_2M].shift) {
584                 /*
585                  * map vmemmap using 2M if available
586                  */
587                 mmu_vmemmap_psize = MMU_PAGE_2M;
588         } else
589                 mmu_vmemmap_psize = mmu_virtual_psize;
590 #endif
591 #endif
592         /*
593          * initialize page table size
594          */
595         __pte_index_size = RADIX_PTE_INDEX_SIZE;
596         __pmd_index_size = RADIX_PMD_INDEX_SIZE;
597         __pud_index_size = RADIX_PUD_INDEX_SIZE;
598         __pgd_index_size = RADIX_PGD_INDEX_SIZE;
599         __pud_cache_index = RADIX_PUD_INDEX_SIZE;
600         __pte_table_size = RADIX_PTE_TABLE_SIZE;
601         __pmd_table_size = RADIX_PMD_TABLE_SIZE;
602         __pud_table_size = RADIX_PUD_TABLE_SIZE;
603         __pgd_table_size = RADIX_PGD_TABLE_SIZE;
604
605         __pmd_val_bits = RADIX_PMD_VAL_BITS;
606         __pud_val_bits = RADIX_PUD_VAL_BITS;
607         __pgd_val_bits = RADIX_PGD_VAL_BITS;
608
609         __kernel_virt_start = RADIX_KERN_VIRT_START;
610         __vmalloc_start = RADIX_VMALLOC_START;
611         __vmalloc_end = RADIX_VMALLOC_END;
612         __kernel_io_start = RADIX_KERN_IO_START;
613         __kernel_io_end = RADIX_KERN_IO_END;
614         vmemmap = (struct page *)RADIX_VMEMMAP_START;
615         ioremap_bot = IOREMAP_BASE;
616
617 #ifdef CONFIG_PCI
618         pci_io_base = ISA_IO_BASE;
619 #endif
620         __pte_frag_nr = RADIX_PTE_FRAG_NR;
621         __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
622         __pmd_frag_nr = RADIX_PMD_FRAG_NR;
623         __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
624
625         radix_init_pgtable();
626
627         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
628                 lpcr = mfspr(SPRN_LPCR);
629                 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
630                 radix_init_partition_table();
631         } else {
632                 radix_init_pseries();
633         }
634
635         memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
636
637         /* Switch to the guard PID before turning on MMU */
638         radix__switch_mmu_context(NULL, &init_mm);
639         tlbiel_all();
640 }
641
642 void radix__early_init_mmu_secondary(void)
643 {
644         unsigned long lpcr;
645         /*
646          * update partition table control register and UPRT
647          */
648         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
649                 lpcr = mfspr(SPRN_LPCR);
650                 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
651
652                 set_ptcr_when_no_uv(__pa(partition_tb) |
653                                     (PATB_SIZE_SHIFT - 12));
654         }
655
656         radix__switch_mmu_context(NULL, &init_mm);
657         tlbiel_all();
658
659         /* Make sure userspace can't change the AMR */
660         mtspr(SPRN_UAMOR, 0);
661 }
662
663 /* Called during kexec sequence with MMU off */
664 notrace void radix__mmu_cleanup_all(void)
665 {
666         unsigned long lpcr;
667
668         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
669                 lpcr = mfspr(SPRN_LPCR);
670                 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
671                 set_ptcr_when_no_uv(0);
672                 powernv_set_nmmu_ptcr(0);
673                 radix__flush_tlb_all();
674         }
675 }
676
677 #ifdef CONFIG_MEMORY_HOTPLUG
678 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
679 {
680         pte_t *pte;
681         int i;
682
683         for (i = 0; i < PTRS_PER_PTE; i++) {
684                 pte = pte_start + i;
685                 if (!pte_none(*pte))
686                         return;
687         }
688
689         pte_free_kernel(&init_mm, pte_start);
690         pmd_clear(pmd);
691 }
692
693 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
694 {
695         pmd_t *pmd;
696         int i;
697
698         for (i = 0; i < PTRS_PER_PMD; i++) {
699                 pmd = pmd_start + i;
700                 if (!pmd_none(*pmd))
701                         return;
702         }
703
704         pmd_free(&init_mm, pmd_start);
705         pud_clear(pud);
706 }
707
708 static void free_pud_table(pud_t *pud_start, p4d_t *p4d)
709 {
710         pud_t *pud;
711         int i;
712
713         for (i = 0; i < PTRS_PER_PUD; i++) {
714                 pud = pud_start + i;
715                 if (!pud_none(*pud))
716                         return;
717         }
718
719         pud_free(&init_mm, pud_start);
720         p4d_clear(p4d);
721 }
722
723 static void remove_pte_table(pte_t *pte_start, unsigned long addr,
724                              unsigned long end)
725 {
726         unsigned long next;
727         pte_t *pte;
728
729         pte = pte_start + pte_index(addr);
730         for (; addr < end; addr = next, pte++) {
731                 next = (addr + PAGE_SIZE) & PAGE_MASK;
732                 if (next > end)
733                         next = end;
734
735                 if (!pte_present(*pte))
736                         continue;
737
738                 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
739                         /*
740                          * The vmemmap_free() and remove_section_mapping()
741                          * codepaths call us with aligned addresses.
742                          */
743                         WARN_ONCE(1, "%s: unaligned range\n", __func__);
744                         continue;
745                 }
746
747                 pte_clear(&init_mm, addr, pte);
748         }
749 }
750
751 static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
752                              unsigned long end)
753 {
754         unsigned long next;
755         pte_t *pte_base;
756         pmd_t *pmd;
757
758         pmd = pmd_start + pmd_index(addr);
759         for (; addr < end; addr = next, pmd++) {
760                 next = pmd_addr_end(addr, end);
761
762                 if (!pmd_present(*pmd))
763                         continue;
764
765                 if (pmd_is_leaf(*pmd)) {
766                         if (!IS_ALIGNED(addr, PMD_SIZE) ||
767                             !IS_ALIGNED(next, PMD_SIZE)) {
768                                 WARN_ONCE(1, "%s: unaligned range\n", __func__);
769                                 continue;
770                         }
771                         pte_clear(&init_mm, addr, (pte_t *)pmd);
772                         continue;
773                 }
774
775                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
776                 remove_pte_table(pte_base, addr, next);
777                 free_pte_table(pte_base, pmd);
778         }
779 }
780
781 static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr,
782                              unsigned long end)
783 {
784         unsigned long next;
785         pmd_t *pmd_base;
786         pud_t *pud;
787
788         pud = pud_start + pud_index(addr);
789         for (; addr < end; addr = next, pud++) {
790                 next = pud_addr_end(addr, end);
791
792                 if (!pud_present(*pud))
793                         continue;
794
795                 if (pud_is_leaf(*pud)) {
796                         if (!IS_ALIGNED(addr, PUD_SIZE) ||
797                             !IS_ALIGNED(next, PUD_SIZE)) {
798                                 WARN_ONCE(1, "%s: unaligned range\n", __func__);
799                                 continue;
800                         }
801                         pte_clear(&init_mm, addr, (pte_t *)pud);
802                         continue;
803                 }
804
805                 pmd_base = pud_pgtable(*pud);
806                 remove_pmd_table(pmd_base, addr, next);
807                 free_pmd_table(pmd_base, pud);
808         }
809 }
810
811 static void __meminit remove_pagetable(unsigned long start, unsigned long end)
812 {
813         unsigned long addr, next;
814         pud_t *pud_base;
815         pgd_t *pgd;
816         p4d_t *p4d;
817
818         spin_lock(&init_mm.page_table_lock);
819
820         for (addr = start; addr < end; addr = next) {
821                 next = pgd_addr_end(addr, end);
822
823                 pgd = pgd_offset_k(addr);
824                 p4d = p4d_offset(pgd, addr);
825                 if (!p4d_present(*p4d))
826                         continue;
827
828                 if (p4d_is_leaf(*p4d)) {
829                         if (!IS_ALIGNED(addr, P4D_SIZE) ||
830                             !IS_ALIGNED(next, P4D_SIZE)) {
831                                 WARN_ONCE(1, "%s: unaligned range\n", __func__);
832                                 continue;
833                         }
834
835                         pte_clear(&init_mm, addr, (pte_t *)pgd);
836                         continue;
837                 }
838
839                 pud_base = p4d_pgtable(*p4d);
840                 remove_pud_table(pud_base, addr, next);
841                 free_pud_table(pud_base, p4d);
842         }
843
844         spin_unlock(&init_mm.page_table_lock);
845         radix__flush_tlb_kernel_range(start, end);
846 }
847
848 int __meminit radix__create_section_mapping(unsigned long start,
849                                             unsigned long end, int nid,
850                                             pgprot_t prot)
851 {
852         if (end >= RADIX_VMALLOC_START) {
853                 pr_warn("Outside the supported range\n");
854                 return -1;
855         }
856
857         return create_physical_mapping(__pa(start), __pa(end),
858                                        nid, prot);
859 }
860
861 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
862 {
863         remove_pagetable(start, end);
864         return 0;
865 }
866 #endif /* CONFIG_MEMORY_HOTPLUG */
867
868 #ifdef CONFIG_SPARSEMEM_VMEMMAP
869 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
870                                  pgprot_t flags, unsigned int map_page_size,
871                                  int nid)
872 {
873         return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
874 }
875
876 int __meminit radix__vmemmap_create_mapping(unsigned long start,
877                                       unsigned long page_size,
878                                       unsigned long phys)
879 {
880         /* Create a PTE encoding */
881         unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
882         int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
883         int ret;
884
885         if ((start + page_size) >= RADIX_VMEMMAP_END) {
886                 pr_warn("Outside the supported range\n");
887                 return -1;
888         }
889
890         ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
891         BUG_ON(ret);
892
893         return 0;
894 }
895
896 #ifdef CONFIG_MEMORY_HOTPLUG
897 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
898 {
899         remove_pagetable(start, start + page_size);
900 }
901 #endif
902 #endif
903
904 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
905 void radix__kernel_map_pages(struct page *page, int numpages, int enable)
906 {
907         unsigned long addr;
908
909         addr = (unsigned long)page_address(page);
910
911         if (enable)
912                 set_memory_p(addr, numpages);
913         else
914                 set_memory_np(addr, numpages);
915 }
916 #endif
917
918 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
919
920 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
921                                   pmd_t *pmdp, unsigned long clr,
922                                   unsigned long set)
923 {
924         unsigned long old;
925
926 #ifdef CONFIG_DEBUG_VM
927         WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
928         assert_spin_locked(pmd_lockptr(mm, pmdp));
929 #endif
930
931         old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
932         trace_hugepage_update(addr, old, clr, set);
933
934         return old;
935 }
936
937 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
938                         pmd_t *pmdp)
939
940 {
941         pmd_t pmd;
942
943         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
944         VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
945         VM_BUG_ON(pmd_devmap(*pmdp));
946         /*
947          * khugepaged calls this for normal pmd
948          */
949         pmd = *pmdp;
950         pmd_clear(pmdp);
951
952         radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
953
954         return pmd;
955 }
956
957 /*
958  * For us pgtable_t is pte_t *. Inorder to save the deposisted
959  * page table, we consider the allocated page table as a list
960  * head. On withdraw we need to make sure we zero out the used
961  * list_head memory area.
962  */
963 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
964                                  pgtable_t pgtable)
965 {
966         struct list_head *lh = (struct list_head *) pgtable;
967
968         assert_spin_locked(pmd_lockptr(mm, pmdp));
969
970         /* FIFO */
971         if (!pmd_huge_pte(mm, pmdp))
972                 INIT_LIST_HEAD(lh);
973         else
974                 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
975         pmd_huge_pte(mm, pmdp) = pgtable;
976 }
977
978 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
979 {
980         pte_t *ptep;
981         pgtable_t pgtable;
982         struct list_head *lh;
983
984         assert_spin_locked(pmd_lockptr(mm, pmdp));
985
986         /* FIFO */
987         pgtable = pmd_huge_pte(mm, pmdp);
988         lh = (struct list_head *) pgtable;
989         if (list_empty(lh))
990                 pmd_huge_pte(mm, pmdp) = NULL;
991         else {
992                 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
993                 list_del(lh);
994         }
995         ptep = (pte_t *) pgtable;
996         *ptep = __pte(0);
997         ptep++;
998         *ptep = __pte(0);
999         return pgtable;
1000 }
1001
1002 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1003                                      unsigned long addr, pmd_t *pmdp)
1004 {
1005         pmd_t old_pmd;
1006         unsigned long old;
1007
1008         old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1009         old_pmd = __pmd(old);
1010         return old_pmd;
1011 }
1012
1013 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1014
1015 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1016                                   pte_t entry, unsigned long address, int psize)
1017 {
1018         struct mm_struct *mm = vma->vm_mm;
1019         unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
1020                                               _PAGE_RW | _PAGE_EXEC);
1021
1022         unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1023         /*
1024          * On POWER9, the NMMU is not able to relax PTE access permissions
1025          * for a translation with a TLB. The PTE must be invalidated, TLB
1026          * flushed before the new PTE is installed.
1027          *
1028          * This only needs to be done for radix, because hash translation does
1029          * flush when updating the linux pte (and we don't support NMMU
1030          * accelerators on HPT on POWER9 anyway XXX: do we?).
1031          *
1032          * POWER10 (and P9P) NMMU does behave as per ISA.
1033          */
1034         if (!cpu_has_feature(CPU_FTR_ARCH_31) && (change & _PAGE_RW) &&
1035             atomic_read(&mm->context.copros) > 0) {
1036                 unsigned long old_pte, new_pte;
1037
1038                 old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1039                 new_pte = old_pte | set;
1040                 radix__flush_tlb_page_psize(mm, address, psize);
1041                 __radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1042         } else {
1043                 __radix_pte_update(ptep, 0, set);
1044                 /*
1045                  * Book3S does not require a TLB flush when relaxing access
1046                  * restrictions when the address space (modulo the POWER9 nest
1047                  * MMU issue above) because the MMU will reload the PTE after
1048                  * taking an access fault, as defined by the architecture. See
1049                  * "Setting a Reference or Change Bit or Upgrading Access
1050                  *  Authority (PTE Subject to Atomic Hardware Updates)" in
1051                  *  Power ISA Version 3.1B.
1052                  */
1053         }
1054         /* See ptesync comment in radix__set_pte_at */
1055 }
1056
1057 void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
1058                                     unsigned long addr, pte_t *ptep,
1059                                     pte_t old_pte, pte_t pte)
1060 {
1061         struct mm_struct *mm = vma->vm_mm;
1062
1063         /*
1064          * POWER9 NMMU must flush the TLB after clearing the PTE before
1065          * installing a PTE with more relaxed access permissions, see
1066          * radix__ptep_set_access_flags.
1067          */
1068         if (!cpu_has_feature(CPU_FTR_ARCH_31) &&
1069             is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
1070             (atomic_read(&mm->context.copros) > 0))
1071                 radix__flush_tlb_page(vma, addr);
1072
1073         set_pte_at(mm, addr, ptep, pte);
1074 }
1075
1076 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1077 {
1078         pte_t *ptep = (pte_t *)pud;
1079         pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
1080
1081         if (!radix_enabled())
1082                 return 0;
1083
1084         set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
1085
1086         return 1;
1087 }
1088
1089 int pud_clear_huge(pud_t *pud)
1090 {
1091         if (pud_is_leaf(*pud)) {
1092                 pud_clear(pud);
1093                 return 1;
1094         }
1095
1096         return 0;
1097 }
1098
1099 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1100 {
1101         pmd_t *pmd;
1102         int i;
1103
1104         pmd = pud_pgtable(*pud);
1105         pud_clear(pud);
1106
1107         flush_tlb_kernel_range(addr, addr + PUD_SIZE);
1108
1109         for (i = 0; i < PTRS_PER_PMD; i++) {
1110                 if (!pmd_none(pmd[i])) {
1111                         pte_t *pte;
1112                         pte = (pte_t *)pmd_page_vaddr(pmd[i]);
1113
1114                         pte_free_kernel(&init_mm, pte);
1115                 }
1116         }
1117
1118         pmd_free(&init_mm, pmd);
1119
1120         return 1;
1121 }
1122
1123 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1124 {
1125         pte_t *ptep = (pte_t *)pmd;
1126         pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
1127
1128         if (!radix_enabled())
1129                 return 0;
1130
1131         set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
1132
1133         return 1;
1134 }
1135
1136 int pmd_clear_huge(pmd_t *pmd)
1137 {
1138         if (pmd_is_leaf(*pmd)) {
1139                 pmd_clear(pmd);
1140                 return 1;
1141         }
1142
1143         return 0;
1144 }
1145
1146 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1147 {
1148         pte_t *pte;
1149
1150         pte = (pte_t *)pmd_page_vaddr(*pmd);
1151         pmd_clear(pmd);
1152
1153         flush_tlb_kernel_range(addr, addr + PMD_SIZE);
1154
1155         pte_free_kernel(&init_mm, pte);
1156
1157         return 1;
1158 }
This page took 0.098221 seconds and 4 git commands to generate.