1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_NOHASH_PGTABLE_H
3 #define _ASM_POWERPC_NOHASH_PGTABLE_H
5 #if defined(CONFIG_PPC64)
6 #include <asm/nohash/64/pgtable.h>
8 #include <asm/nohash/32/pgtable.h>
11 /* Permission masks used for kernel mappings */
12 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
13 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)
14 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE | _PAGE_GUARDED)
15 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
16 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
17 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
21 /* Generic accessors to PTE bits */
23 static inline int pte_write(pte_t pte)
25 return pte_val(pte) & _PAGE_RW;
28 static inline int pte_read(pte_t pte) { return 1; }
29 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
30 static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; }
31 static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
32 static inline bool pte_hashpte(pte_t pte) { return false; }
33 static inline bool pte_ci(pte_t pte) { return pte_val(pte) & _PAGE_NO_CACHE; }
34 static inline bool pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
36 #ifdef CONFIG_NUMA_BALANCING
38 * These work without NUMA balancing but the kernel does not care. See the
39 * comment in include/linux/pgtable.h . On powerpc, this will only
40 * work for user pages and always return true for kernel pages.
42 static inline int pte_protnone(pte_t pte)
44 return pte_present(pte) && !pte_user(pte);
47 static inline int pmd_protnone(pmd_t pmd)
49 return pte_protnone(pmd_pte(pmd));
51 #endif /* CONFIG_NUMA_BALANCING */
53 static inline int pte_present(pte_t pte)
55 return pte_val(pte) & _PAGE_PRESENT;
58 static inline bool pte_hw_valid(pte_t pte)
60 return pte_val(pte) & _PAGE_PRESENT;
64 * Don't just check for any non zero bits in __PAGE_USER, since for book3e
65 * and PTE_64BIT, PAGE_KERNEL_X contains _PAGE_BAP_SR which is also in
66 * _PAGE_USER. Need to explicitly match _PAGE_BAP_UR bit in that case too.
69 static inline bool pte_user(pte_t pte)
71 return (pte_val(pte) & _PAGE_USER) == _PAGE_USER;
76 * We only find page table entry in the last level
77 * Hence no need for other accessors
79 #define pte_access_permitted pte_access_permitted
80 static inline bool pte_access_permitted(pte_t pte, bool write)
83 * A read-only access is controlled by _PAGE_USER bit.
84 * We have _PAGE_READ set for WRITE and EXECUTE
86 if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
89 if (write && !pte_write(pte))
95 /* Conversion functions: convert a page and protection to a page entry,
96 * and a page entry and page directory to the page they refer to.
98 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
101 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
102 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
103 pgprot_val(pgprot)); }
104 static inline unsigned long pte_pfn(pte_t pte) {
105 return pte_val(pte) >> PTE_RPN_SHIFT; }
107 /* Generic modifiers for PTE bits */
108 static inline pte_t pte_exprotect(pte_t pte)
110 return __pte(pte_val(pte) & ~_PAGE_EXEC);
113 static inline pte_t pte_mkclean(pte_t pte)
115 return __pte(pte_val(pte) & ~_PAGE_DIRTY);
118 static inline pte_t pte_mkold(pte_t pte)
120 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
123 static inline pte_t pte_mkspecial(pte_t pte)
125 return __pte(pte_val(pte) | _PAGE_SPECIAL);
129 static inline pte_t pte_mkhuge(pte_t pte)
131 return __pte(pte_val(pte));
135 #ifndef pte_mkprivileged
136 static inline pte_t pte_mkprivileged(pte_t pte)
138 return __pte(pte_val(pte) & ~_PAGE_USER);
143 static inline pte_t pte_mkuser(pte_t pte)
145 return __pte(pte_val(pte) | _PAGE_USER);
149 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
151 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
154 /* Insert a PTE, top-level function is out of line. It uses an inline
155 * low level function in the respective pgtable-* files
157 extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
160 /* This low level function performs the actual PTE insertion
161 * Setting the PTE depends on the MMU type and other factors. It's
162 * an horrible mess that I'm not going to try to clean up now but
163 * I'm keeping it in one place rather than spread around
165 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
166 pte_t *ptep, pte_t pte, int percpu)
168 /* Second case is 32-bit with 64-bit PTE. In this case, we
169 * can just store as long as we do the two halves in the right order
170 * with a barrier in between.
171 * In the percpu case, we also fallback to the simple update
173 if (IS_ENABLED(CONFIG_PPC32) && IS_ENABLED(CONFIG_PTE_64BIT) && !percpu) {
174 __asm__ __volatile__("\
178 : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
179 : "r" (pte) : "memory");
182 /* Anything else just stores the PTE normally. That covers all 64-bit
183 * cases, and 32-bit non-hash with 32-bit PTEs.
185 #if defined(CONFIG_PPC_8xx) && defined(CONFIG_PPC_16K_PAGES)
186 ptep->pte3 = ptep->pte2 = ptep->pte1 = ptep->pte = pte_val(pte);
192 * With hardware tablewalk, a sync is needed to ensure that
193 * subsequent accesses see the PTE we just wrote. Unlike userspace
194 * mappings, we can't tolerate spurious faults, so make sure
195 * the new PTE will be seen the first time.
197 if (IS_ENABLED(CONFIG_PPC_BOOK3E_64) && is_kernel_addr(addr))
202 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
203 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
204 pte_t *ptep, pte_t entry, int dirty);
207 * Macro to mark a page protection value as "uncacheable".
210 #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
213 #define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
214 _PAGE_NO_CACHE | _PAGE_GUARDED))
216 #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
219 #define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
222 #if _PAGE_WRITETHRU != 0
223 #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
224 _PAGE_COHERENT | _PAGE_WRITETHRU))
226 #define pgprot_cached_wthru(prot) pgprot_noncached(prot)
229 #define pgprot_cached_noncoherent(prot) \
230 (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
232 #define pgprot_writecombine pgprot_noncached_wc
235 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
236 unsigned long size, pgprot_t vma_prot);
237 #define __HAVE_PHYS_MEM_ACCESS_PROT
239 #ifdef CONFIG_HUGETLB_PAGE
240 static inline int hugepd_ok(hugepd_t hpd)
242 #ifdef CONFIG_PPC_8xx
243 return ((hpd_val(hpd) & _PMD_PAGE_MASK) == _PMD_PAGE_8M);
245 /* We clear the top bit to indicate hugepd */
246 return (hpd_val(hpd) && (hpd_val(hpd) & PD_HUGE) == 0);
250 static inline int pmd_huge(pmd_t pmd)
255 static inline int pud_huge(pud_t pud)
260 #define is_hugepd(hpd) (hugepd_ok(hpd))
264 * This gets called at the end of handling a page fault, when
265 * the kernel has put a new PTE into the page table for the process.
266 * We use it to ensure coherency between the i-cache and d-cache
267 * for the page which has just been mapped in.
269 #if defined(CONFIG_PPC_E500) && defined(CONFIG_HUGETLB_PAGE)
270 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep);
273 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) {}
276 #endif /* __ASSEMBLY__ */