]> Git Repo - J-linux.git/blob - arch/csky/kernel/probes/kprobes.c
scsi: zfcp: Trace when request remove fails after qdio send fails
[J-linux.git] / arch / csky / kernel / probes / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2
3 #define pr_fmt(fmt) "kprobes: " fmt
4
5 #include <linux/kprobes.h>
6 #include <linux/extable.h>
7 #include <linux/slab.h>
8 #include <linux/stop_machine.h>
9 #include <asm/ptrace.h>
10 #include <linux/uaccess.h>
11 #include <asm/sections.h>
12 #include <asm/cacheflush.h>
13
14 #include "decode-insn.h"
15
16 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
17 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
18
19 static void __kprobes
20 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
21
22 struct csky_insn_patch {
23         kprobe_opcode_t *addr;
24         u32             opcode;
25         atomic_t        cpu_count;
26 };
27
28 static int __kprobes patch_text_cb(void *priv)
29 {
30         struct csky_insn_patch *param = priv;
31         unsigned int addr = (unsigned int)param->addr;
32
33         if (atomic_inc_return(&param->cpu_count) == num_online_cpus()) {
34                 *(u16 *) addr = cpu_to_le16(param->opcode);
35                 dcache_wb_range(addr, addr + 2);
36                 atomic_inc(&param->cpu_count);
37         } else {
38                 while (atomic_read(&param->cpu_count) <= num_online_cpus())
39                         cpu_relax();
40         }
41
42         icache_inv_range(addr, addr + 2);
43
44         return 0;
45 }
46
47 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
48 {
49         struct csky_insn_patch param = { addr, opcode, ATOMIC_INIT(0) };
50
51         return stop_machine_cpuslocked(patch_text_cb, &param, cpu_online_mask);
52 }
53
54 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
55 {
56         unsigned long offset = is_insn32(p->opcode) ? 4 : 2;
57
58         p->ainsn.api.restore = (unsigned long)p->addr + offset;
59
60         patch_text(p->ainsn.api.insn, p->opcode);
61 }
62
63 static void __kprobes arch_prepare_simulate(struct kprobe *p)
64 {
65         p->ainsn.api.restore = 0;
66 }
67
68 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
69 {
70         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
71
72         if (p->ainsn.api.handler)
73                 p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
74
75         post_kprobe_handler(kcb, regs);
76 }
77
78 int __kprobes arch_prepare_kprobe(struct kprobe *p)
79 {
80         unsigned long probe_addr = (unsigned long)p->addr;
81
82         if (probe_addr & 0x1)
83                 return -EILSEQ;
84
85         /* copy instruction */
86         p->opcode = le32_to_cpu(*p->addr);
87
88         /* decode instruction */
89         switch (csky_probe_decode_insn(p->addr, &p->ainsn.api)) {
90         case INSN_REJECTED:     /* insn not supported */
91                 return -EINVAL;
92
93         case INSN_GOOD_NO_SLOT: /* insn need simulation */
94                 p->ainsn.api.insn = NULL;
95                 break;
96
97         case INSN_GOOD: /* instruction uses slot */
98                 p->ainsn.api.insn = get_insn_slot();
99                 if (!p->ainsn.api.insn)
100                         return -ENOMEM;
101                 break;
102         }
103
104         /* prepare the instruction */
105         if (p->ainsn.api.insn)
106                 arch_prepare_ss_slot(p);
107         else
108                 arch_prepare_simulate(p);
109
110         return 0;
111 }
112
113 /* install breakpoint in text */
114 void __kprobes arch_arm_kprobe(struct kprobe *p)
115 {
116         patch_text(p->addr, USR_BKPT);
117 }
118
119 /* remove breakpoint from text */
120 void __kprobes arch_disarm_kprobe(struct kprobe *p)
121 {
122         patch_text(p->addr, p->opcode);
123 }
124
125 void __kprobes arch_remove_kprobe(struct kprobe *p)
126 {
127         if (p->ainsn.api.insn) {
128                 free_insn_slot(p->ainsn.api.insn, 0);
129                 p->ainsn.api.insn = NULL;
130         }
131 }
132
133 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
134 {
135         kcb->prev_kprobe.kp = kprobe_running();
136         kcb->prev_kprobe.status = kcb->kprobe_status;
137 }
138
139 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
140 {
141         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
142         kcb->kprobe_status = kcb->prev_kprobe.status;
143 }
144
145 static void __kprobes set_current_kprobe(struct kprobe *p)
146 {
147         __this_cpu_write(current_kprobe, p);
148 }
149
150 /*
151  * Interrupts need to be disabled before single-step mode is set, and not
152  * reenabled until after single-step mode ends.
153  * Without disabling interrupt on local CPU, there is a chance of
154  * interrupt occurrence in the period of exception return and  start of
155  * out-of-line single-step, that result in wrongly single stepping
156  * into the interrupt handler.
157  */
158 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
159                                                 struct pt_regs *regs)
160 {
161         kcb->saved_sr = regs->sr;
162         regs->sr &= ~BIT(6);
163 }
164
165 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
166                                                 struct pt_regs *regs)
167 {
168         regs->sr = kcb->saved_sr;
169 }
170
171 static void __kprobes
172 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr, struct kprobe *p)
173 {
174         unsigned long offset = is_insn32(p->opcode) ? 4 : 2;
175
176         kcb->ss_ctx.ss_pending = true;
177         kcb->ss_ctx.match_addr = addr + offset;
178 }
179
180 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
181 {
182         kcb->ss_ctx.ss_pending = false;
183         kcb->ss_ctx.match_addr = 0;
184 }
185
186 #define TRACE_MODE_SI           BIT(14)
187 #define TRACE_MODE_MASK         ~(0x3 << 14)
188 #define TRACE_MODE_RUN          0
189
190 static void __kprobes setup_singlestep(struct kprobe *p,
191                                        struct pt_regs *regs,
192                                        struct kprobe_ctlblk *kcb, int reenter)
193 {
194         unsigned long slot;
195
196         if (reenter) {
197                 save_previous_kprobe(kcb);
198                 set_current_kprobe(p);
199                 kcb->kprobe_status = KPROBE_REENTER;
200         } else {
201                 kcb->kprobe_status = KPROBE_HIT_SS;
202         }
203
204         if (p->ainsn.api.insn) {
205                 /* prepare for single stepping */
206                 slot = (unsigned long)p->ainsn.api.insn;
207
208                 set_ss_context(kcb, slot, p);   /* mark pending ss */
209
210                 /* IRQs and single stepping do not mix well. */
211                 kprobes_save_local_irqflag(kcb, regs);
212                 regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_SI;
213                 instruction_pointer_set(regs, slot);
214         } else {
215                 /* insn simulation */
216                 arch_simulate_insn(p, regs);
217         }
218 }
219
220 static int __kprobes reenter_kprobe(struct kprobe *p,
221                                     struct pt_regs *regs,
222                                     struct kprobe_ctlblk *kcb)
223 {
224         switch (kcb->kprobe_status) {
225         case KPROBE_HIT_SSDONE:
226         case KPROBE_HIT_ACTIVE:
227                 kprobes_inc_nmissed_count(p);
228                 setup_singlestep(p, regs, kcb, 1);
229                 break;
230         case KPROBE_HIT_SS:
231         case KPROBE_REENTER:
232                 pr_warn("Failed to recover from reentered kprobes.\n");
233                 dump_kprobe(p);
234                 BUG();
235                 break;
236         default:
237                 WARN_ON(1);
238                 return 0;
239         }
240
241         return 1;
242 }
243
244 static void __kprobes
245 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
246 {
247         struct kprobe *cur = kprobe_running();
248
249         if (!cur)
250                 return;
251
252         /* return addr restore if non-branching insn */
253         if (cur->ainsn.api.restore != 0)
254                 regs->pc = cur->ainsn.api.restore;
255
256         /* restore back original saved kprobe variables and continue */
257         if (kcb->kprobe_status == KPROBE_REENTER) {
258                 restore_previous_kprobe(kcb);
259                 return;
260         }
261
262         /* call post handler */
263         kcb->kprobe_status = KPROBE_HIT_SSDONE;
264         if (cur->post_handler)  {
265                 /* post_handler can hit breakpoint and single step
266                  * again, so we enable D-flag for recursive exception.
267                  */
268                 cur->post_handler(cur, regs, 0);
269         }
270
271         reset_current_kprobe();
272 }
273
274 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int trapnr)
275 {
276         struct kprobe *cur = kprobe_running();
277         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
278
279         switch (kcb->kprobe_status) {
280         case KPROBE_HIT_SS:
281         case KPROBE_REENTER:
282                 /*
283                  * We are here because the instruction being single
284                  * stepped caused a page fault. We reset the current
285                  * kprobe and the ip points back to the probe address
286                  * and allow the page fault handler to continue as a
287                  * normal page fault.
288                  */
289                 regs->pc = (unsigned long) cur->addr;
290                 BUG_ON(!instruction_pointer(regs));
291
292                 if (kcb->kprobe_status == KPROBE_REENTER)
293                         restore_previous_kprobe(kcb);
294                 else
295                         reset_current_kprobe();
296
297                 break;
298         case KPROBE_HIT_ACTIVE:
299         case KPROBE_HIT_SSDONE:
300                 /*
301                  * In case the user-specified fault handler returned
302                  * zero, try to fix up.
303                  */
304                 if (fixup_exception(regs))
305                         return 1;
306         }
307         return 0;
308 }
309
310 int __kprobes
311 kprobe_breakpoint_handler(struct pt_regs *regs)
312 {
313         struct kprobe *p, *cur_kprobe;
314         struct kprobe_ctlblk *kcb;
315         unsigned long addr = instruction_pointer(regs);
316
317         kcb = get_kprobe_ctlblk();
318         cur_kprobe = kprobe_running();
319
320         p = get_kprobe((kprobe_opcode_t *) addr);
321
322         if (p) {
323                 if (cur_kprobe) {
324                         if (reenter_kprobe(p, regs, kcb))
325                                 return 1;
326                 } else {
327                         /* Probe hit */
328                         set_current_kprobe(p);
329                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
330
331                         /*
332                          * If we have no pre-handler or it returned 0, we
333                          * continue with normal processing.  If we have a
334                          * pre-handler and it returned non-zero, it will
335                          * modify the execution path and no need to single
336                          * stepping. Let's just reset current kprobe and exit.
337                          *
338                          * pre_handler can hit a breakpoint and can step thru
339                          * before return.
340                          */
341                         if (!p->pre_handler || !p->pre_handler(p, regs))
342                                 setup_singlestep(p, regs, kcb, 0);
343                         else
344                                 reset_current_kprobe();
345                 }
346                 return 1;
347         }
348
349         /*
350          * The breakpoint instruction was removed right
351          * after we hit it.  Another cpu has removed
352          * either a probepoint or a debugger breakpoint
353          * at this address.  In either case, no further
354          * handling of this interrupt is appropriate.
355          * Return back to original instruction, and continue.
356          */
357         return 0;
358 }
359
360 int __kprobes
361 kprobe_single_step_handler(struct pt_regs *regs)
362 {
363         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
364
365         if ((kcb->ss_ctx.ss_pending)
366             && (kcb->ss_ctx.match_addr == instruction_pointer(regs))) {
367                 clear_ss_context(kcb);  /* clear pending ss */
368
369                 kprobes_restore_local_irqflag(kcb, regs);
370                 regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_RUN;
371
372                 post_kprobe_handler(kcb, regs);
373                 return 1;
374         }
375         return 0;
376 }
377
378 /*
379  * Provide a blacklist of symbols identifying ranges which cannot be kprobed.
380  * This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
381  */
382 int __init arch_populate_kprobe_blacklist(void)
383 {
384         int ret;
385
386         ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
387                                         (unsigned long)__irqentry_text_end);
388         return ret;
389 }
390
391 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
392 {
393         return (void *)kretprobe_trampoline_handler(regs, NULL);
394 }
395
396 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
397                                       struct pt_regs *regs)
398 {
399         ri->ret_addr = (kprobe_opcode_t *)regs->lr;
400         ri->fp = NULL;
401         regs->lr = (unsigned long) &__kretprobe_trampoline;
402 }
403
404 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
405 {
406         return 0;
407 }
408
409 int __init arch_init_kprobes(void)
410 {
411         return 0;
412 }
This page took 0.050899 seconds and 4 git commands to generate.