]> Git Repo - J-linux.git/blob - drivers/infiniband/hw/hfi1/file_ops.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[J-linux.git] / drivers / infiniband / hw / hfi1 / file_ops.c
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2020 Cornelis Networks, Inc.
4  * Copyright(c) 2015-2020 Intel Corporation.
5  */
6
7 #include <linux/poll.h>
8 #include <linux/cdev.h>
9 #include <linux/vmalloc.h>
10 #include <linux/io.h>
11 #include <linux/sched/mm.h>
12 #include <linux/bitmap.h>
13
14 #include <rdma/ib.h>
15
16 #include "hfi.h"
17 #include "pio.h"
18 #include "device.h"
19 #include "common.h"
20 #include "trace.h"
21 #include "mmu_rb.h"
22 #include "user_sdma.h"
23 #include "user_exp_rcv.h"
24 #include "aspm.h"
25
26 #undef pr_fmt
27 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
28
29 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
30
31 /*
32  * File operation functions
33  */
34 static int hfi1_file_open(struct inode *inode, struct file *fp);
35 static int hfi1_file_close(struct inode *inode, struct file *fp);
36 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
37 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
38 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
39
40 static u64 kvirt_to_phys(void *addr);
41 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
42 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
43                           const struct hfi1_user_info *uinfo);
44 static int init_user_ctxt(struct hfi1_filedata *fd,
45                           struct hfi1_ctxtdata *uctxt);
46 static void user_init(struct hfi1_ctxtdata *uctxt);
47 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
48 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
49 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
50                               u32 len);
51 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
52                               u32 len);
53 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
54                                 u32 len);
55 static int setup_base_ctxt(struct hfi1_filedata *fd,
56                            struct hfi1_ctxtdata *uctxt);
57 static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
58
59 static int find_sub_ctxt(struct hfi1_filedata *fd,
60                          const struct hfi1_user_info *uinfo);
61 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
62                          struct hfi1_user_info *uinfo,
63                          struct hfi1_ctxtdata **cd);
64 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
65 static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
66 static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
67 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
68                           unsigned long arg);
69 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
70 static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
71 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
72                        unsigned long arg);
73 static vm_fault_t vma_fault(struct vm_fault *vmf);
74 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
75                             unsigned long arg);
76
77 static const struct file_operations hfi1_file_ops = {
78         .owner = THIS_MODULE,
79         .write_iter = hfi1_write_iter,
80         .open = hfi1_file_open,
81         .release = hfi1_file_close,
82         .unlocked_ioctl = hfi1_file_ioctl,
83         .poll = hfi1_poll,
84         .mmap = hfi1_file_mmap,
85         .llseek = noop_llseek,
86 };
87
88 static const struct vm_operations_struct vm_ops = {
89         .fault = vma_fault,
90 };
91
92 /*
93  * Types of memories mapped into user processes' space
94  */
95 enum mmap_types {
96         PIO_BUFS = 1,
97         PIO_BUFS_SOP,
98         PIO_CRED,
99         RCV_HDRQ,
100         RCV_EGRBUF,
101         UREGS,
102         EVENTS,
103         STATUS,
104         RTAIL,
105         SUBCTXT_UREGS,
106         SUBCTXT_RCV_HDRQ,
107         SUBCTXT_EGRBUF,
108         SDMA_COMP
109 };
110
111 /*
112  * Masks and offsets defining the mmap tokens
113  */
114 #define HFI1_MMAP_OFFSET_MASK   0xfffULL
115 #define HFI1_MMAP_OFFSET_SHIFT  0
116 #define HFI1_MMAP_SUBCTXT_MASK  0xfULL
117 #define HFI1_MMAP_SUBCTXT_SHIFT 12
118 #define HFI1_MMAP_CTXT_MASK     0xffULL
119 #define HFI1_MMAP_CTXT_SHIFT    16
120 #define HFI1_MMAP_TYPE_MASK     0xfULL
121 #define HFI1_MMAP_TYPE_SHIFT    24
122 #define HFI1_MMAP_MAGIC_MASK    0xffffffffULL
123 #define HFI1_MMAP_MAGIC_SHIFT   32
124
125 #define HFI1_MMAP_MAGIC         0xdabbad00
126
127 #define HFI1_MMAP_TOKEN_SET(field, val) \
128         (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
129 #define HFI1_MMAP_TOKEN_GET(field, token) \
130         (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
131 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr)   \
132         (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
133         HFI1_MMAP_TOKEN_SET(TYPE, type) | \
134         HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
135         HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
136         HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
137
138 #define dbg(fmt, ...)                           \
139         pr_info(fmt, ##__VA_ARGS__)
140
141 static inline int is_valid_mmap(u64 token)
142 {
143         return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
144 }
145
146 static int hfi1_file_open(struct inode *inode, struct file *fp)
147 {
148         struct hfi1_filedata *fd;
149         struct hfi1_devdata *dd = container_of(inode->i_cdev,
150                                                struct hfi1_devdata,
151                                                user_cdev);
152
153         if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
154                 return -EINVAL;
155
156         if (!refcount_inc_not_zero(&dd->user_refcount))
157                 return -ENXIO;
158
159         /* The real work is performed later in assign_ctxt() */
160
161         fd = kzalloc(sizeof(*fd), GFP_KERNEL);
162
163         if (!fd || init_srcu_struct(&fd->pq_srcu))
164                 goto nomem;
165         spin_lock_init(&fd->pq_rcu_lock);
166         spin_lock_init(&fd->tid_lock);
167         spin_lock_init(&fd->invalid_lock);
168         fd->rec_cpu_num = -1; /* no cpu affinity by default */
169         fd->dd = dd;
170         fp->private_data = fd;
171         return 0;
172 nomem:
173         kfree(fd);
174         fp->private_data = NULL;
175         if (refcount_dec_and_test(&dd->user_refcount))
176                 complete(&dd->user_comp);
177         return -ENOMEM;
178 }
179
180 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
181                             unsigned long arg)
182 {
183         struct hfi1_filedata *fd = fp->private_data;
184         struct hfi1_ctxtdata *uctxt = fd->uctxt;
185         int ret = 0;
186         int uval = 0;
187
188         hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
189         if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
190             cmd != HFI1_IOCTL_GET_VERS &&
191             !uctxt)
192                 return -EINVAL;
193
194         switch (cmd) {
195         case HFI1_IOCTL_ASSIGN_CTXT:
196                 ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
197                 break;
198
199         case HFI1_IOCTL_CTXT_INFO:
200                 ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
201                 break;
202
203         case HFI1_IOCTL_USER_INFO:
204                 ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
205                 break;
206
207         case HFI1_IOCTL_CREDIT_UPD:
208                 if (uctxt)
209                         sc_return_credits(uctxt->sc);
210                 break;
211
212         case HFI1_IOCTL_TID_UPDATE:
213                 ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
214                 break;
215
216         case HFI1_IOCTL_TID_FREE:
217                 ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
218                 break;
219
220         case HFI1_IOCTL_TID_INVAL_READ:
221                 ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
222                 break;
223
224         case HFI1_IOCTL_RECV_CTRL:
225                 ret = manage_rcvq(uctxt, fd->subctxt, arg);
226                 break;
227
228         case HFI1_IOCTL_POLL_TYPE:
229                 if (get_user(uval, (int __user *)arg))
230                         return -EFAULT;
231                 uctxt->poll_type = (typeof(uctxt->poll_type))uval;
232                 break;
233
234         case HFI1_IOCTL_ACK_EVENT:
235                 ret = user_event_ack(uctxt, fd->subctxt, arg);
236                 break;
237
238         case HFI1_IOCTL_SET_PKEY:
239                 ret = set_ctxt_pkey(uctxt, arg);
240                 break;
241
242         case HFI1_IOCTL_CTXT_RESET:
243                 ret = ctxt_reset(uctxt);
244                 break;
245
246         case HFI1_IOCTL_GET_VERS:
247                 uval = HFI1_USER_SWVERSION;
248                 if (put_user(uval, (int __user *)arg))
249                         return -EFAULT;
250                 break;
251
252         default:
253                 return -EINVAL;
254         }
255
256         return ret;
257 }
258
259 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
260 {
261         struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
262         struct hfi1_user_sdma_pkt_q *pq;
263         struct hfi1_user_sdma_comp_q *cq = fd->cq;
264         int done = 0, reqs = 0;
265         unsigned long dim = from->nr_segs;
266         int idx;
267
268         if (!HFI1_CAP_IS_KSET(SDMA))
269                 return -EINVAL;
270         idx = srcu_read_lock(&fd->pq_srcu);
271         pq = srcu_dereference(fd->pq, &fd->pq_srcu);
272         if (!cq || !pq) {
273                 srcu_read_unlock(&fd->pq_srcu, idx);
274                 return -EIO;
275         }
276
277         if (!iter_is_iovec(from) || !dim) {
278                 srcu_read_unlock(&fd->pq_srcu, idx);
279                 return -EINVAL;
280         }
281
282         trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
283
284         if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
285                 srcu_read_unlock(&fd->pq_srcu, idx);
286                 return -ENOSPC;
287         }
288
289         while (dim) {
290                 int ret;
291                 unsigned long count = 0;
292
293                 ret = hfi1_user_sdma_process_request(
294                         fd, (struct iovec *)(from->iov + done),
295                         dim, &count);
296                 if (ret) {
297                         reqs = ret;
298                         break;
299                 }
300                 dim -= count;
301                 done += count;
302                 reqs++;
303         }
304
305         srcu_read_unlock(&fd->pq_srcu, idx);
306         return reqs;
307 }
308
309 static inline void mmap_cdbg(u16 ctxt, u8 subctxt, u8 type, u8 mapio, u8 vmf,
310                              u64 memaddr, void *memvirt, dma_addr_t memdma,
311                              ssize_t memlen, struct vm_area_struct *vma)
312 {
313         hfi1_cdbg(PROC,
314                   "%u:%u type:%u io/vf/dma:%d/%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx",
315                   ctxt, subctxt, type, mapio, vmf, !!memdma,
316                   memaddr ?: (u64)memvirt, memlen,
317                   vma->vm_end - vma->vm_start, vma->vm_flags);
318 }
319
320 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
321 {
322         struct hfi1_filedata *fd = fp->private_data;
323         struct hfi1_ctxtdata *uctxt = fd->uctxt;
324         struct hfi1_devdata *dd;
325         unsigned long flags;
326         u64 token = vma->vm_pgoff << PAGE_SHIFT,
327                 memaddr = 0;
328         void *memvirt = NULL;
329         dma_addr_t memdma = 0;
330         u8 subctxt, mapio = 0, vmf = 0, type;
331         ssize_t memlen = 0;
332         int ret = 0;
333         u16 ctxt;
334
335         if (!is_valid_mmap(token) || !uctxt ||
336             !(vma->vm_flags & VM_SHARED)) {
337                 ret = -EINVAL;
338                 goto done;
339         }
340         dd = uctxt->dd;
341         ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
342         subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
343         type = HFI1_MMAP_TOKEN_GET(TYPE, token);
344         if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
345                 ret = -EINVAL;
346                 goto done;
347         }
348
349         /*
350          * vm_pgoff is used as a buffer selector cookie.  Always mmap from
351          * the beginning.
352          */ 
353         vma->vm_pgoff = 0;
354         flags = vma->vm_flags;
355
356         switch (type) {
357         case PIO_BUFS:
358         case PIO_BUFS_SOP:
359                 memaddr = ((dd->physaddr + TXE_PIO_SEND) +
360                                 /* chip pio base */
361                            (uctxt->sc->hw_context * BIT(16))) +
362                                 /* 64K PIO space / ctxt */
363                         (type == PIO_BUFS_SOP ?
364                                 (TXE_PIO_SIZE / 2) : 0); /* sop? */
365                 /*
366                  * Map only the amount allocated to the context, not the
367                  * entire available context's PIO space.
368                  */
369                 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
370                 flags &= ~VM_MAYREAD;
371                 flags |= VM_DONTCOPY | VM_DONTEXPAND;
372                 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
373                 mapio = 1;
374                 break;
375         case PIO_CRED: {
376                 u64 cr_page_offset;
377                 if (flags & VM_WRITE) {
378                         ret = -EPERM;
379                         goto done;
380                 }
381                 /*
382                  * The credit return location for this context could be on the
383                  * second or third page allocated for credit returns (if number
384                  * of enabled contexts > 64 and 128 respectively).
385                  */
386                 cr_page_offset = ((u64)uctxt->sc->hw_free -
387                                      (u64)dd->cr_base[uctxt->numa_id].va) &
388                                    PAGE_MASK;
389                 memvirt = dd->cr_base[uctxt->numa_id].va + cr_page_offset;
390                 memdma = dd->cr_base[uctxt->numa_id].dma + cr_page_offset;
391                 memlen = PAGE_SIZE;
392                 flags &= ~VM_MAYWRITE;
393                 flags |= VM_DONTCOPY | VM_DONTEXPAND;
394                 /*
395                  * The driver has already allocated memory for credit
396                  * returns and programmed it into the chip. Has that
397                  * memory been flagged as non-cached?
398                  */
399                 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
400                 break;
401         }
402         case RCV_HDRQ:
403                 memlen = rcvhdrq_size(uctxt);
404                 memvirt = uctxt->rcvhdrq;
405                 memdma = uctxt->rcvhdrq_dma;
406                 break;
407         case RCV_EGRBUF: {
408                 unsigned long vm_start_save;
409                 unsigned long vm_end_save;
410                 int i;
411                 /*
412                  * The RcvEgr buffer need to be handled differently
413                  * as multiple non-contiguous pages need to be mapped
414                  * into the user process.
415                  */
416                 memlen = uctxt->egrbufs.size;
417                 if ((vma->vm_end - vma->vm_start) != memlen) {
418                         dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
419                                    (vma->vm_end - vma->vm_start), memlen);
420                         ret = -EINVAL;
421                         goto done;
422                 }
423                 if (vma->vm_flags & VM_WRITE) {
424                         ret = -EPERM;
425                         goto done;
426                 }
427                 vm_flags_clear(vma, VM_MAYWRITE);
428                 /*
429                  * Mmap multiple separate allocations into a single vma.  From
430                  * here, dma_mmap_coherent() calls dma_direct_mmap(), which
431                  * requires the mmap to exactly fill the vma starting at
432                  * vma_start.  Adjust the vma start and end for each eager
433                  * buffer segment mapped.  Restore the originals when done.
434                  */
435                 vm_start_save = vma->vm_start;
436                 vm_end_save = vma->vm_end;
437                 vma->vm_end = vma->vm_start;
438                 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
439                         memlen = uctxt->egrbufs.buffers[i].len;
440                         memvirt = uctxt->egrbufs.buffers[i].addr;
441                         memdma = uctxt->egrbufs.buffers[i].dma;
442                         vma->vm_end += memlen;
443                         mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr,
444                                   memvirt, memdma, memlen, vma);
445                         ret = dma_mmap_coherent(&dd->pcidev->dev, vma,
446                                                 memvirt, memdma, memlen);
447                         if (ret < 0) {
448                                 vma->vm_start = vm_start_save;
449                                 vma->vm_end = vm_end_save;
450                                 goto done;
451                         }
452                         vma->vm_start += memlen;
453                 }
454                 vma->vm_start = vm_start_save;
455                 vma->vm_end = vm_end_save;
456                 ret = 0;
457                 goto done;
458         }
459         case UREGS:
460                 /*
461                  * Map only the page that contains this context's user
462                  * registers.
463                  */
464                 memaddr = (unsigned long)
465                         (dd->physaddr + RXE_PER_CONTEXT_USER)
466                         + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
467                 /*
468                  * TidFlow table is on the same page as the rest of the
469                  * user registers.
470                  */
471                 memlen = PAGE_SIZE;
472                 flags |= VM_DONTCOPY | VM_DONTEXPAND;
473                 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
474                 mapio = 1;
475                 break;
476         case EVENTS:
477                 /*
478                  * Use the page where this context's flags are. User level
479                  * knows where it's own bitmap is within the page.
480                  */
481                 memaddr = (unsigned long)
482                         (dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
483                 memlen = PAGE_SIZE;
484                 /*
485                  * v3.7 removes VM_RESERVED but the effect is kept by
486                  * using VM_IO.
487                  */
488                 flags |= VM_IO | VM_DONTEXPAND;
489                 vmf = 1;
490                 break;
491         case STATUS:
492                 if (flags & VM_WRITE) {
493                         ret = -EPERM;
494                         goto done;
495                 }
496                 memaddr = kvirt_to_phys((void *)dd->status);
497                 memlen = PAGE_SIZE;
498                 flags |= VM_IO | VM_DONTEXPAND;
499                 break;
500         case RTAIL:
501                 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
502                         /*
503                          * If the memory allocation failed, the context alloc
504                          * also would have failed, so we would never get here
505                          */
506                         ret = -EINVAL;
507                         goto done;
508                 }
509                 if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
510                         ret = -EPERM;
511                         goto done;
512                 }
513                 memlen = PAGE_SIZE;
514                 memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
515                 memdma = uctxt->rcvhdrqtailaddr_dma;
516                 flags &= ~VM_MAYWRITE;
517                 break;
518         case SUBCTXT_UREGS:
519                 memaddr = (u64)uctxt->subctxt_uregbase;
520                 memlen = PAGE_SIZE;
521                 flags |= VM_IO | VM_DONTEXPAND;
522                 vmf = 1;
523                 break;
524         case SUBCTXT_RCV_HDRQ:
525                 memaddr = (u64)uctxt->subctxt_rcvhdr_base;
526                 memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
527                 flags |= VM_IO | VM_DONTEXPAND;
528                 vmf = 1;
529                 break;
530         case SUBCTXT_EGRBUF:
531                 memaddr = (u64)uctxt->subctxt_rcvegrbuf;
532                 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
533                 flags |= VM_IO | VM_DONTEXPAND;
534                 flags &= ~VM_MAYWRITE;
535                 vmf = 1;
536                 break;
537         case SDMA_COMP: {
538                 struct hfi1_user_sdma_comp_q *cq = fd->cq;
539
540                 if (!cq) {
541                         ret = -EFAULT;
542                         goto done;
543                 }
544                 memaddr = (u64)cq->comps;
545                 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
546                 flags |= VM_IO | VM_DONTEXPAND;
547                 vmf = 1;
548                 break;
549         }
550         default:
551                 ret = -EINVAL;
552                 break;
553         }
554
555         if ((vma->vm_end - vma->vm_start) != memlen) {
556                 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
557                           uctxt->ctxt, fd->subctxt,
558                           (vma->vm_end - vma->vm_start), memlen);
559                 ret = -EINVAL;
560                 goto done;
561         }
562
563         vm_flags_reset(vma, flags);
564         mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr, memvirt, memdma, 
565                   memlen, vma);
566         if (vmf) {
567                 vma->vm_pgoff = PFN_DOWN(memaddr);
568                 vma->vm_ops = &vm_ops;
569                 ret = 0;
570         } else if (memdma) {
571                 ret = dma_mmap_coherent(&dd->pcidev->dev, vma,
572                                         memvirt, memdma, memlen);
573         } else if (mapio) {
574                 ret = io_remap_pfn_range(vma, vma->vm_start,
575                                          PFN_DOWN(memaddr),
576                                          memlen,
577                                          vma->vm_page_prot);
578         } else if (memvirt) {
579                 ret = remap_pfn_range(vma, vma->vm_start,
580                                       PFN_DOWN(__pa(memvirt)),
581                                       memlen,
582                                       vma->vm_page_prot);
583         } else {
584                 ret = remap_pfn_range(vma, vma->vm_start,
585                                       PFN_DOWN(memaddr),
586                                       memlen,
587                                       vma->vm_page_prot);
588         }
589 done:
590         return ret;
591 }
592
593 /*
594  * Local (non-chip) user memory is not mapped right away but as it is
595  * accessed by the user-level code.
596  */
597 static vm_fault_t vma_fault(struct vm_fault *vmf)
598 {
599         struct page *page;
600
601         page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
602         if (!page)
603                 return VM_FAULT_SIGBUS;
604
605         get_page(page);
606         vmf->page = page;
607
608         return 0;
609 }
610
611 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
612 {
613         struct hfi1_ctxtdata *uctxt;
614         __poll_t pollflag;
615
616         uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
617         if (!uctxt)
618                 pollflag = EPOLLERR;
619         else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
620                 pollflag = poll_urgent(fp, pt);
621         else  if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
622                 pollflag = poll_next(fp, pt);
623         else /* invalid */
624                 pollflag = EPOLLERR;
625
626         return pollflag;
627 }
628
629 static int hfi1_file_close(struct inode *inode, struct file *fp)
630 {
631         struct hfi1_filedata *fdata = fp->private_data;
632         struct hfi1_ctxtdata *uctxt = fdata->uctxt;
633         struct hfi1_devdata *dd = container_of(inode->i_cdev,
634                                                struct hfi1_devdata,
635                                                user_cdev);
636         unsigned long flags, *ev;
637
638         fp->private_data = NULL;
639
640         if (!uctxt)
641                 goto done;
642
643         hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
644
645         flush_wc();
646         /* drain user sdma queue */
647         hfi1_user_sdma_free_queues(fdata, uctxt);
648
649         /* release the cpu */
650         hfi1_put_proc_affinity(fdata->rec_cpu_num);
651
652         /* clean up rcv side */
653         hfi1_user_exp_rcv_free(fdata);
654
655         /*
656          * fdata->uctxt is used in the above cleanup.  It is not ready to be
657          * removed until here.
658          */
659         fdata->uctxt = NULL;
660         hfi1_rcd_put(uctxt);
661
662         /*
663          * Clear any left over, unhandled events so the next process that
664          * gets this context doesn't get confused.
665          */
666         ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
667         *ev = 0;
668
669         spin_lock_irqsave(&dd->uctxt_lock, flags);
670         __clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
671         if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
672                 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
673                 goto done;
674         }
675         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
676
677         /*
678          * Disable receive context and interrupt available, reset all
679          * RcvCtxtCtrl bits to default values.
680          */
681         hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
682                      HFI1_RCVCTRL_TIDFLOW_DIS |
683                      HFI1_RCVCTRL_INTRAVAIL_DIS |
684                      HFI1_RCVCTRL_TAILUPD_DIS |
685                      HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
686                      HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
687                      HFI1_RCVCTRL_NO_EGR_DROP_DIS |
688                      HFI1_RCVCTRL_URGENT_DIS, uctxt);
689         /* Clear the context's J_KEY */
690         hfi1_clear_ctxt_jkey(dd, uctxt);
691         /*
692          * If a send context is allocated, reset context integrity
693          * checks to default and disable the send context.
694          */
695         if (uctxt->sc) {
696                 sc_disable(uctxt->sc);
697                 set_pio_integrity(uctxt->sc);
698         }
699
700         hfi1_free_ctxt_rcv_groups(uctxt);
701         hfi1_clear_ctxt_pkey(dd, uctxt);
702
703         uctxt->event_flags = 0;
704
705         deallocate_ctxt(uctxt);
706 done:
707
708         if (refcount_dec_and_test(&dd->user_refcount))
709                 complete(&dd->user_comp);
710
711         cleanup_srcu_struct(&fdata->pq_srcu);
712         kfree(fdata);
713         return 0;
714 }
715
716 /*
717  * Convert kernel *virtual* addresses to physical addresses.
718  * This is used to vmalloc'ed addresses.
719  */
720 static u64 kvirt_to_phys(void *addr)
721 {
722         struct page *page;
723         u64 paddr = 0;
724
725         page = vmalloc_to_page(addr);
726         if (page)
727                 paddr = page_to_pfn(page) << PAGE_SHIFT;
728
729         return paddr;
730 }
731
732 /**
733  * complete_subctxt - complete sub-context info
734  * @fd: valid filedata pointer
735  *
736  * Sub-context info can only be set up after the base context
737  * has been completed.  This is indicated by the clearing of the
738  * HFI1_CTXT_BASE_UINIT bit.
739  *
740  * Wait for the bit to be cleared, and then complete the subcontext
741  * initialization.
742  *
743  */
744 static int complete_subctxt(struct hfi1_filedata *fd)
745 {
746         int ret;
747         unsigned long flags;
748
749         /*
750          * sub-context info can only be set up after the base context
751          * has been completed.
752          */
753         ret = wait_event_interruptible(
754                 fd->uctxt->wait,
755                 !test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
756
757         if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
758                 ret = -ENOMEM;
759
760         /* Finish the sub-context init */
761         if (!ret) {
762                 fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
763                 ret = init_user_ctxt(fd, fd->uctxt);
764         }
765
766         if (ret) {
767                 spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
768                 __clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
769                 spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
770                 hfi1_rcd_put(fd->uctxt);
771                 fd->uctxt = NULL;
772         }
773
774         return ret;
775 }
776
777 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
778 {
779         int ret;
780         unsigned int swmajor;
781         struct hfi1_ctxtdata *uctxt = NULL;
782         struct hfi1_user_info uinfo;
783
784         if (fd->uctxt)
785                 return -EINVAL;
786
787         if (sizeof(uinfo) != len)
788                 return -EINVAL;
789
790         if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
791                 return -EFAULT;
792
793         swmajor = uinfo.userversion >> 16;
794         if (swmajor != HFI1_USER_SWMAJOR)
795                 return -ENODEV;
796
797         if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
798                 return -EINVAL;
799
800         /*
801          * Acquire the mutex to protect against multiple creations of what
802          * could be a shared base context.
803          */
804         mutex_lock(&hfi1_mutex);
805         /*
806          * Get a sub context if available  (fd->uctxt will be set).
807          * ret < 0 error, 0 no context, 1 sub-context found
808          */
809         ret = find_sub_ctxt(fd, &uinfo);
810
811         /*
812          * Allocate a base context if context sharing is not required or a
813          * sub context wasn't found.
814          */
815         if (!ret)
816                 ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
817
818         mutex_unlock(&hfi1_mutex);
819
820         /* Depending on the context type, finish the appropriate init */
821         switch (ret) {
822         case 0:
823                 ret = setup_base_ctxt(fd, uctxt);
824                 if (ret)
825                         deallocate_ctxt(uctxt);
826                 break;
827         case 1:
828                 ret = complete_subctxt(fd);
829                 break;
830         default:
831                 break;
832         }
833
834         return ret;
835 }
836
837 /**
838  * match_ctxt - match context
839  * @fd: valid filedata pointer
840  * @uinfo: user info to compare base context with
841  * @uctxt: context to compare uinfo to.
842  *
843  * Compare the given context with the given information to see if it
844  * can be used for a sub context.
845  */
846 static int match_ctxt(struct hfi1_filedata *fd,
847                       const struct hfi1_user_info *uinfo,
848                       struct hfi1_ctxtdata *uctxt)
849 {
850         struct hfi1_devdata *dd = fd->dd;
851         unsigned long flags;
852         u16 subctxt;
853
854         /* Skip dynamically allocated kernel contexts */
855         if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
856                 return 0;
857
858         /* Skip ctxt if it doesn't match the requested one */
859         if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
860             uctxt->jkey != generate_jkey(current_uid()) ||
861             uctxt->subctxt_id != uinfo->subctxt_id ||
862             uctxt->subctxt_cnt != uinfo->subctxt_cnt)
863                 return 0;
864
865         /* Verify the sharing process matches the base */
866         if (uctxt->userversion != uinfo->userversion)
867                 return -EINVAL;
868
869         /* Find an unused sub context */
870         spin_lock_irqsave(&dd->uctxt_lock, flags);
871         if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
872                 /* context is being closed, do not use */
873                 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
874                 return 0;
875         }
876
877         subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
878                                       HFI1_MAX_SHARED_CTXTS);
879         if (subctxt >= uctxt->subctxt_cnt) {
880                 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
881                 return -EBUSY;
882         }
883
884         fd->subctxt = subctxt;
885         __set_bit(fd->subctxt, uctxt->in_use_ctxts);
886         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
887
888         fd->uctxt = uctxt;
889         hfi1_rcd_get(uctxt);
890
891         return 1;
892 }
893
894 /**
895  * find_sub_ctxt - fund sub-context
896  * @fd: valid filedata pointer
897  * @uinfo: matching info to use to find a possible context to share.
898  *
899  * The hfi1_mutex must be held when this function is called.  It is
900  * necessary to ensure serialized creation of shared contexts.
901  *
902  * Return:
903  *    0      No sub-context found
904  *    1      Subcontext found and allocated
905  *    errno  EINVAL (incorrect parameters)
906  *           EBUSY (all sub contexts in use)
907  */
908 static int find_sub_ctxt(struct hfi1_filedata *fd,
909                          const struct hfi1_user_info *uinfo)
910 {
911         struct hfi1_ctxtdata *uctxt;
912         struct hfi1_devdata *dd = fd->dd;
913         u16 i;
914         int ret;
915
916         if (!uinfo->subctxt_cnt)
917                 return 0;
918
919         for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
920                 uctxt = hfi1_rcd_get_by_index(dd, i);
921                 if (uctxt) {
922                         ret = match_ctxt(fd, uinfo, uctxt);
923                         hfi1_rcd_put(uctxt);
924                         /* value of != 0 will return */
925                         if (ret)
926                                 return ret;
927                 }
928         }
929
930         return 0;
931 }
932
933 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
934                          struct hfi1_user_info *uinfo,
935                          struct hfi1_ctxtdata **rcd)
936 {
937         struct hfi1_ctxtdata *uctxt;
938         int ret, numa;
939
940         if (dd->flags & HFI1_FROZEN) {
941                 /*
942                  * Pick an error that is unique from all other errors
943                  * that are returned so the user process knows that
944                  * it tried to allocate while the SPC was frozen.  It
945                  * it should be able to retry with success in a short
946                  * while.
947                  */
948                 return -EIO;
949         }
950
951         if (!dd->freectxts)
952                 return -EBUSY;
953
954         /*
955          * If we don't have a NUMA node requested, preference is towards
956          * device NUMA node.
957          */
958         fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
959         if (fd->rec_cpu_num != -1)
960                 numa = cpu_to_node(fd->rec_cpu_num);
961         else
962                 numa = numa_node_id();
963         ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
964         if (ret < 0) {
965                 dd_dev_err(dd, "user ctxtdata allocation failed\n");
966                 return ret;
967         }
968         hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
969                   uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
970                   uctxt->numa_id);
971
972         /*
973          * Allocate and enable a PIO send context.
974          */
975         uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
976         if (!uctxt->sc) {
977                 ret = -ENOMEM;
978                 goto ctxdata_free;
979         }
980         hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
981                   uctxt->sc->hw_context);
982         ret = sc_enable(uctxt->sc);
983         if (ret)
984                 goto ctxdata_free;
985
986         /*
987          * Setup sub context information if the user-level has requested
988          * sub contexts.
989          * This has to be done here so the rest of the sub-contexts find the
990          * proper base context.
991          * NOTE: _set_bit() can be used here because the context creation is
992          * protected by the mutex (rather than the spin_lock), and will be the
993          * very first instance of this context.
994          */
995         __set_bit(0, uctxt->in_use_ctxts);
996         if (uinfo->subctxt_cnt)
997                 init_subctxts(uctxt, uinfo);
998         uctxt->userversion = uinfo->userversion;
999         uctxt->flags = hfi1_cap_mask; /* save current flag state */
1000         init_waitqueue_head(&uctxt->wait);
1001         strscpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1002         memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1003         uctxt->jkey = generate_jkey(current_uid());
1004         hfi1_stats.sps_ctxts++;
1005         /*
1006          * Disable ASPM when there are open user/PSM contexts to avoid
1007          * issues with ASPM L1 exit latency
1008          */
1009         if (dd->freectxts-- == dd->num_user_contexts)
1010                 aspm_disable_all(dd);
1011
1012         *rcd = uctxt;
1013
1014         return 0;
1015
1016 ctxdata_free:
1017         hfi1_free_ctxt(uctxt);
1018         return ret;
1019 }
1020
1021 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
1022 {
1023         mutex_lock(&hfi1_mutex);
1024         hfi1_stats.sps_ctxts--;
1025         if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
1026                 aspm_enable_all(uctxt->dd);
1027         mutex_unlock(&hfi1_mutex);
1028
1029         hfi1_free_ctxt(uctxt);
1030 }
1031
1032 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1033                           const struct hfi1_user_info *uinfo)
1034 {
1035         uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1036         uctxt->subctxt_id = uinfo->subctxt_id;
1037         set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1038 }
1039
1040 static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1041 {
1042         int ret = 0;
1043         u16 num_subctxts = uctxt->subctxt_cnt;
1044
1045         uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1046         if (!uctxt->subctxt_uregbase)
1047                 return -ENOMEM;
1048
1049         /* We can take the size of the RcvHdr Queue from the master */
1050         uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1051                                                   num_subctxts);
1052         if (!uctxt->subctxt_rcvhdr_base) {
1053                 ret = -ENOMEM;
1054                 goto bail_ureg;
1055         }
1056
1057         uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1058                                                 num_subctxts);
1059         if (!uctxt->subctxt_rcvegrbuf) {
1060                 ret = -ENOMEM;
1061                 goto bail_rhdr;
1062         }
1063
1064         return 0;
1065
1066 bail_rhdr:
1067         vfree(uctxt->subctxt_rcvhdr_base);
1068         uctxt->subctxt_rcvhdr_base = NULL;
1069 bail_ureg:
1070         vfree(uctxt->subctxt_uregbase);
1071         uctxt->subctxt_uregbase = NULL;
1072
1073         return ret;
1074 }
1075
1076 static void user_init(struct hfi1_ctxtdata *uctxt)
1077 {
1078         unsigned int rcvctrl_ops = 0;
1079
1080         /* initialize poll variables... */
1081         uctxt->urgent = 0;
1082         uctxt->urgent_poll = 0;
1083
1084         /*
1085          * Now enable the ctxt for receive.
1086          * For chips that are set to DMA the tail register to memory
1087          * when they change (and when the update bit transitions from
1088          * 0 to 1.  So for those chips, we turn it off and then back on.
1089          * This will (very briefly) affect any other open ctxts, but the
1090          * duration is very short, and therefore isn't an issue.  We
1091          * explicitly set the in-memory tail copy to 0 beforehand, so we
1092          * don't have to wait to be sure the DMA update has happened
1093          * (chip resets head/tail to 0 on transition to enable).
1094          */
1095         if (hfi1_rcvhdrtail_kvaddr(uctxt))
1096                 clear_rcvhdrtail(uctxt);
1097
1098         /* Setup J_KEY before enabling the context */
1099         hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1100
1101         rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1102         rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1103         if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1104                 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1105         /*
1106          * Ignore the bit in the flags for now until proper
1107          * support for multiple packet per rcv array entry is
1108          * added.
1109          */
1110         if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1111                 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1112         if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1113                 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1114         if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1115                 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1116         /*
1117          * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1118          * We can't rely on the correct value to be set from prior
1119          * uses of the chip or ctxt. Therefore, add the rcvctrl op
1120          * for both cases.
1121          */
1122         if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1123                 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1124         else
1125                 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1126         hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1127 }
1128
1129 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1130 {
1131         struct hfi1_ctxt_info cinfo;
1132         struct hfi1_ctxtdata *uctxt = fd->uctxt;
1133
1134         if (sizeof(cinfo) != len)
1135                 return -EINVAL;
1136
1137         memset(&cinfo, 0, sizeof(cinfo));
1138         cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1139                                 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1140                         HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1141                         HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1142         /* adjust flag if this fd is not able to cache */
1143         if (!fd->use_mn)
1144                 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1145
1146         cinfo.num_active = hfi1_count_active_units();
1147         cinfo.unit = uctxt->dd->unit;
1148         cinfo.ctxt = uctxt->ctxt;
1149         cinfo.subctxt = fd->subctxt;
1150         cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1151                                 uctxt->dd->rcv_entries.group_size) +
1152                 uctxt->expected_count;
1153         cinfo.credits = uctxt->sc->credits;
1154         cinfo.numa_node = uctxt->numa_id;
1155         cinfo.rec_cpu = fd->rec_cpu_num;
1156         cinfo.send_ctxt = uctxt->sc->hw_context;
1157
1158         cinfo.egrtids = uctxt->egrbufs.alloced;
1159         cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
1160         cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
1161         cinfo.sdma_ring_size = fd->cq->nentries;
1162         cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1163
1164         trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1165         if (copy_to_user((void __user *)arg, &cinfo, len))
1166                 return -EFAULT;
1167
1168         return 0;
1169 }
1170
1171 static int init_user_ctxt(struct hfi1_filedata *fd,
1172                           struct hfi1_ctxtdata *uctxt)
1173 {
1174         int ret;
1175
1176         ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1177         if (ret)
1178                 return ret;
1179
1180         ret = hfi1_user_exp_rcv_init(fd, uctxt);
1181         if (ret)
1182                 hfi1_user_sdma_free_queues(fd, uctxt);
1183
1184         return ret;
1185 }
1186
1187 static int setup_base_ctxt(struct hfi1_filedata *fd,
1188                            struct hfi1_ctxtdata *uctxt)
1189 {
1190         struct hfi1_devdata *dd = uctxt->dd;
1191         int ret = 0;
1192
1193         hfi1_init_ctxt(uctxt->sc);
1194
1195         /* Now allocate the RcvHdr queue and eager buffers. */
1196         ret = hfi1_create_rcvhdrq(dd, uctxt);
1197         if (ret)
1198                 goto done;
1199
1200         ret = hfi1_setup_eagerbufs(uctxt);
1201         if (ret)
1202                 goto done;
1203
1204         /* If sub-contexts are enabled, do the appropriate setup */
1205         if (uctxt->subctxt_cnt)
1206                 ret = setup_subctxt(uctxt);
1207         if (ret)
1208                 goto done;
1209
1210         ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1211         if (ret)
1212                 goto done;
1213
1214         ret = init_user_ctxt(fd, uctxt);
1215         if (ret) {
1216                 hfi1_free_ctxt_rcv_groups(uctxt);
1217                 goto done;
1218         }
1219
1220         user_init(uctxt);
1221
1222         /* Now that the context is set up, the fd can get a reference. */
1223         fd->uctxt = uctxt;
1224         hfi1_rcd_get(uctxt);
1225
1226 done:
1227         if (uctxt->subctxt_cnt) {
1228                 /*
1229                  * On error, set the failed bit so sub-contexts will clean up
1230                  * correctly.
1231                  */
1232                 if (ret)
1233                         set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1234
1235                 /*
1236                  * Base context is done (successfully or not), notify anybody
1237                  * using a sub-context that is waiting for this completion.
1238                  */
1239                 clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1240                 wake_up(&uctxt->wait);
1241         }
1242
1243         return ret;
1244 }
1245
1246 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1247 {
1248         struct hfi1_base_info binfo;
1249         struct hfi1_ctxtdata *uctxt = fd->uctxt;
1250         struct hfi1_devdata *dd = uctxt->dd;
1251         unsigned offset;
1252
1253         trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1254
1255         if (sizeof(binfo) != len)
1256                 return -EINVAL;
1257
1258         memset(&binfo, 0, sizeof(binfo));
1259         binfo.hw_version = dd->revision;
1260         binfo.sw_version = HFI1_USER_SWVERSION;
1261         binfo.bthqp = RVT_KDETH_QP_PREFIX;
1262         binfo.jkey = uctxt->jkey;
1263         /*
1264          * If more than 64 contexts are enabled the allocated credit
1265          * return will span two or three contiguous pages. Since we only
1266          * map the page containing the context's credit return address,
1267          * we need to calculate the offset in the proper page.
1268          */
1269         offset = ((u64)uctxt->sc->hw_free -
1270                   (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1271         binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1272                                                 fd->subctxt, offset);
1273         binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1274                                             fd->subctxt,
1275                                             uctxt->sc->base_addr);
1276         binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1277                                                 uctxt->ctxt,
1278                                                 fd->subctxt,
1279                                                 uctxt->sc->base_addr);
1280         binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1281                                                fd->subctxt,
1282                                                uctxt->rcvhdrq);
1283         binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1284                                                fd->subctxt,
1285                                                uctxt->egrbufs.rcvtids[0].dma);
1286         binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1287                                                   fd->subctxt, 0);
1288         /*
1289          * user regs are at
1290          * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1291          */
1292         binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1293                                              fd->subctxt, 0);
1294         offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1295                                 sizeof(*dd->events));
1296         binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1297                                                fd->subctxt,
1298                                                offset);
1299         binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1300                                                fd->subctxt,
1301                                                dd->status);
1302         if (HFI1_CAP_IS_USET(DMA_RTAIL))
1303                 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1304                                                         fd->subctxt, 0);
1305         if (uctxt->subctxt_cnt) {
1306                 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1307                                                          uctxt->ctxt,
1308                                                          fd->subctxt, 0);
1309                 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1310                                                           uctxt->ctxt,
1311                                                           fd->subctxt, 0);
1312                 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1313                                                           uctxt->ctxt,
1314                                                           fd->subctxt, 0);
1315         }
1316
1317         if (copy_to_user((void __user *)arg, &binfo, len))
1318                 return -EFAULT;
1319
1320         return 0;
1321 }
1322
1323 /**
1324  * user_exp_rcv_setup - Set up the given tid rcv list
1325  * @fd: file data of the current driver instance
1326  * @arg: ioctl argumnent for user space information
1327  * @len: length of data structure associated with ioctl command
1328  *
1329  * Wrapper to validate ioctl information before doing _rcv_setup.
1330  *
1331  */
1332 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1333                               u32 len)
1334 {
1335         int ret;
1336         unsigned long addr;
1337         struct hfi1_tid_info tinfo;
1338
1339         if (sizeof(tinfo) != len)
1340                 return -EINVAL;
1341
1342         if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1343                 return -EFAULT;
1344
1345         ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1346         if (!ret) {
1347                 /*
1348                  * Copy the number of tidlist entries we used
1349                  * and the length of the buffer we registered.
1350                  */
1351                 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1352                 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1353                                  sizeof(tinfo.tidcnt)))
1354                         ret = -EFAULT;
1355
1356                 addr = arg + offsetof(struct hfi1_tid_info, length);
1357                 if (!ret && copy_to_user((void __user *)addr, &tinfo.length,
1358                                  sizeof(tinfo.length)))
1359                         ret = -EFAULT;
1360
1361                 if (ret)
1362                         hfi1_user_exp_rcv_invalid(fd, &tinfo);
1363         }
1364
1365         return ret;
1366 }
1367
1368 /**
1369  * user_exp_rcv_clear - Clear the given tid rcv list
1370  * @fd: file data of the current driver instance
1371  * @arg: ioctl argumnent for user space information
1372  * @len: length of data structure associated with ioctl command
1373  *
1374  * The hfi1_user_exp_rcv_clear() can be called from the error path.  Because
1375  * of this, we need to use this wrapper to copy the user space information
1376  * before doing the clear.
1377  */
1378 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1379                               u32 len)
1380 {
1381         int ret;
1382         unsigned long addr;
1383         struct hfi1_tid_info tinfo;
1384
1385         if (sizeof(tinfo) != len)
1386                 return -EINVAL;
1387
1388         if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1389                 return -EFAULT;
1390
1391         ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1392         if (!ret) {
1393                 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1394                 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1395                                  sizeof(tinfo.tidcnt)))
1396                         return -EFAULT;
1397         }
1398
1399         return ret;
1400 }
1401
1402 /**
1403  * user_exp_rcv_invalid - Invalidate the given tid rcv list
1404  * @fd: file data of the current driver instance
1405  * @arg: ioctl argumnent for user space information
1406  * @len: length of data structure associated with ioctl command
1407  *
1408  * Wrapper to validate ioctl information before doing _rcv_invalid.
1409  *
1410  */
1411 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1412                                 u32 len)
1413 {
1414         int ret;
1415         unsigned long addr;
1416         struct hfi1_tid_info tinfo;
1417
1418         if (sizeof(tinfo) != len)
1419                 return -EINVAL;
1420
1421         if (!fd->invalid_tids)
1422                 return -EINVAL;
1423
1424         if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1425                 return -EFAULT;
1426
1427         ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1428         if (ret)
1429                 return ret;
1430
1431         addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1432         if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1433                          sizeof(tinfo.tidcnt)))
1434                 ret = -EFAULT;
1435
1436         return ret;
1437 }
1438
1439 static __poll_t poll_urgent(struct file *fp,
1440                                 struct poll_table_struct *pt)
1441 {
1442         struct hfi1_filedata *fd = fp->private_data;
1443         struct hfi1_ctxtdata *uctxt = fd->uctxt;
1444         struct hfi1_devdata *dd = uctxt->dd;
1445         __poll_t pollflag;
1446
1447         poll_wait(fp, &uctxt->wait, pt);
1448
1449         spin_lock_irq(&dd->uctxt_lock);
1450         if (uctxt->urgent != uctxt->urgent_poll) {
1451                 pollflag = EPOLLIN | EPOLLRDNORM;
1452                 uctxt->urgent_poll = uctxt->urgent;
1453         } else {
1454                 pollflag = 0;
1455                 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1456         }
1457         spin_unlock_irq(&dd->uctxt_lock);
1458
1459         return pollflag;
1460 }
1461
1462 static __poll_t poll_next(struct file *fp,
1463                               struct poll_table_struct *pt)
1464 {
1465         struct hfi1_filedata *fd = fp->private_data;
1466         struct hfi1_ctxtdata *uctxt = fd->uctxt;
1467         struct hfi1_devdata *dd = uctxt->dd;
1468         __poll_t pollflag;
1469
1470         poll_wait(fp, &uctxt->wait, pt);
1471
1472         spin_lock_irq(&dd->uctxt_lock);
1473         if (hdrqempty(uctxt)) {
1474                 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1475                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1476                 pollflag = 0;
1477         } else {
1478                 pollflag = EPOLLIN | EPOLLRDNORM;
1479         }
1480         spin_unlock_irq(&dd->uctxt_lock);
1481
1482         return pollflag;
1483 }
1484
1485 /*
1486  * Find all user contexts in use, and set the specified bit in their
1487  * event mask.
1488  * See also find_ctxt() for a similar use, that is specific to send buffers.
1489  */
1490 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1491 {
1492         struct hfi1_ctxtdata *uctxt;
1493         struct hfi1_devdata *dd = ppd->dd;
1494         u16 ctxt;
1495
1496         if (!dd->events)
1497                 return -EINVAL;
1498
1499         for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1500              ctxt++) {
1501                 uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1502                 if (uctxt) {
1503                         unsigned long *evs;
1504                         int i;
1505                         /*
1506                          * subctxt_cnt is 0 if not shared, so do base
1507                          * separately, first, then remaining subctxt, if any
1508                          */
1509                         evs = dd->events + uctxt_offset(uctxt);
1510                         set_bit(evtbit, evs);
1511                         for (i = 1; i < uctxt->subctxt_cnt; i++)
1512                                 set_bit(evtbit, evs + i);
1513                         hfi1_rcd_put(uctxt);
1514                 }
1515         }
1516
1517         return 0;
1518 }
1519
1520 /**
1521  * manage_rcvq - manage a context's receive queue
1522  * @uctxt: the context
1523  * @subctxt: the sub-context
1524  * @arg: start/stop action to carry out
1525  *
1526  * start_stop == 0 disables receive on the context, for use in queue
1527  * overflow conditions.  start_stop==1 re-enables, to be used to
1528  * re-init the software copy of the head register
1529  */
1530 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1531                        unsigned long arg)
1532 {
1533         struct hfi1_devdata *dd = uctxt->dd;
1534         unsigned int rcvctrl_op;
1535         int start_stop;
1536
1537         if (subctxt)
1538                 return 0;
1539
1540         if (get_user(start_stop, (int __user *)arg))
1541                 return -EFAULT;
1542
1543         /* atomically clear receive enable ctxt. */
1544         if (start_stop) {
1545                 /*
1546                  * On enable, force in-memory copy of the tail register to
1547                  * 0, so that protocol code doesn't have to worry about
1548                  * whether or not the chip has yet updated the in-memory
1549                  * copy or not on return from the system call. The chip
1550                  * always resets it's tail register back to 0 on a
1551                  * transition from disabled to enabled.
1552                  */
1553                 if (hfi1_rcvhdrtail_kvaddr(uctxt))
1554                         clear_rcvhdrtail(uctxt);
1555                 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1556         } else {
1557                 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1558         }
1559         hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1560         /* always; new head should be equal to new tail; see above */
1561
1562         return 0;
1563 }
1564
1565 /*
1566  * clear the event notifier events for this context.
1567  * User process then performs actions appropriate to bit having been
1568  * set, if desired, and checks again in future.
1569  */
1570 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1571                           unsigned long arg)
1572 {
1573         int i;
1574         struct hfi1_devdata *dd = uctxt->dd;
1575         unsigned long *evs;
1576         unsigned long events;
1577
1578         if (!dd->events)
1579                 return 0;
1580
1581         if (get_user(events, (unsigned long __user *)arg))
1582                 return -EFAULT;
1583
1584         evs = dd->events + uctxt_offset(uctxt) + subctxt;
1585
1586         for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1587                 if (!test_bit(i, &events))
1588                         continue;
1589                 clear_bit(i, evs);
1590         }
1591         return 0;
1592 }
1593
1594 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1595 {
1596         int i;
1597         struct hfi1_pportdata *ppd = uctxt->ppd;
1598         struct hfi1_devdata *dd = uctxt->dd;
1599         u16 pkey;
1600
1601         if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1602                 return -EPERM;
1603
1604         if (get_user(pkey, (u16 __user *)arg))
1605                 return -EFAULT;
1606
1607         if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1608                 return -EINVAL;
1609
1610         for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1611                 if (pkey == ppd->pkeys[i])
1612                         return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1613
1614         return -ENOENT;
1615 }
1616
1617 /**
1618  * ctxt_reset - Reset the user context
1619  * @uctxt: valid user context
1620  */
1621 static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1622 {
1623         struct send_context *sc;
1624         struct hfi1_devdata *dd;
1625         int ret = 0;
1626
1627         if (!uctxt || !uctxt->dd || !uctxt->sc)
1628                 return -EINVAL;
1629
1630         /*
1631          * There is no protection here. User level has to guarantee that
1632          * no one will be writing to the send context while it is being
1633          * re-initialized.  If user level breaks that guarantee, it will
1634          * break it's own context and no one else's.
1635          */
1636         dd = uctxt->dd;
1637         sc = uctxt->sc;
1638
1639         /*
1640          * Wait until the interrupt handler has marked the context as
1641          * halted or frozen. Report error if we time out.
1642          */
1643         wait_event_interruptible_timeout(
1644                 sc->halt_wait, (sc->flags & SCF_HALTED),
1645                 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1646         if (!(sc->flags & SCF_HALTED))
1647                 return -ENOLCK;
1648
1649         /*
1650          * If the send context was halted due to a Freeze, wait until the
1651          * device has been "unfrozen" before resetting the context.
1652          */
1653         if (sc->flags & SCF_FROZEN) {
1654                 wait_event_interruptible_timeout(
1655                         dd->event_queue,
1656                         !(READ_ONCE(dd->flags) & HFI1_FROZEN),
1657                         msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1658                 if (dd->flags & HFI1_FROZEN)
1659                         return -ENOLCK;
1660
1661                 if (dd->flags & HFI1_FORCED_FREEZE)
1662                         /*
1663                          * Don't allow context reset if we are into
1664                          * forced freeze
1665                          */
1666                         return -ENODEV;
1667
1668                 sc_disable(sc);
1669                 ret = sc_enable(sc);
1670                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1671         } else {
1672                 ret = sc_restart(sc);
1673         }
1674         if (!ret)
1675                 sc_return_credits(sc);
1676
1677         return ret;
1678 }
1679
1680 static void user_remove(struct hfi1_devdata *dd)
1681 {
1682
1683         hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1684 }
1685
1686 static int user_add(struct hfi1_devdata *dd)
1687 {
1688         char name[10];
1689         int ret;
1690
1691         snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1692         ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1693                              &dd->user_cdev, &dd->user_device,
1694                              true, &dd->verbs_dev.rdi.ibdev.dev.kobj);
1695         if (ret)
1696                 user_remove(dd);
1697
1698         return ret;
1699 }
1700
1701 /*
1702  * Create per-unit files in /dev
1703  */
1704 int hfi1_device_create(struct hfi1_devdata *dd)
1705 {
1706         return user_add(dd);
1707 }
1708
1709 /*
1710  * Remove per-unit files in /dev
1711  * void, core kernel returns no errors for this stuff
1712  */
1713 void hfi1_device_remove(struct hfi1_devdata *dd)
1714 {
1715         user_remove(dd);
1716 }
This page took 0.143032 seconds and 4 git commands to generate.