1 // SPDX-License-Identifier: GPL-2.0
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2018-2021 Linaro Ltd.
7 #include <linux/types.h>
8 #include <linux/atomic.h>
9 #include <linux/bitfield.h>
10 #include <linux/device.h>
11 #include <linux/bug.h>
13 #include <linux/firmware.h>
14 #include <linux/module.h>
16 #include <linux/of_device.h>
17 #include <linux/of_address.h>
18 #include <linux/qcom_scm.h>
19 #include <linux/soc/qcom/mdt_loader.h>
22 #include "ipa_clock.h"
24 #include "ipa_endpoint.h"
25 #include "ipa_resource.h"
29 #include "ipa_table.h"
30 #include "ipa_modem.h"
32 #include "ipa_interrupt.h"
33 #include "gsi_trans.h"
36 * DOC: The IP Accelerator
38 * This driver supports the Qualcomm IP Accelerator (IPA), which is a
39 * networking component found in many Qualcomm SoCs. The IPA is connected
40 * to the application processor (AP), but is also connected (and partially
41 * controlled by) other "execution environments" (EEs), such as a modem.
43 * The IPA is the conduit between the AP and the modem that carries network
44 * traffic. This driver presents a network interface representing the
45 * connection of the modem to external (e.g. LTE) networks.
47 * The IPA provides protocol checksum calculation, offloading this work
48 * from the AP. The IPA offers additional functionality, including routing,
49 * filtering, and NAT support, but that more advanced functionality is not
50 * currently supported. Despite that, some resources--including routing
51 * tables and filter tables--are defined in this driver because they must
52 * be initialized even when the advanced hardware features are not used.
54 * There are two distinct layers that implement the IPA hardware, and this
55 * is reflected in the organization of the driver. The generic software
56 * interface (GSI) is an integral component of the IPA, providing a
57 * well-defined communication layer between the AP subsystem and the IPA
58 * core. The GSI implements a set of "channels" used for communication
59 * between the AP and the IPA.
61 * The IPA layer uses GSI channels to implement its "endpoints". And while
62 * a GSI channel carries data between the AP and the IPA, a pair of IPA
63 * endpoints is used to carry traffic between two EEs. Specifically, the main
64 * modem network interface is implemented by two pairs of endpoints: a TX
65 * endpoint on the AP coupled with an RX endpoint on the modem; and another
66 * RX endpoint on the AP receiving data from a TX endpoint on the modem.
69 /* The name of the GSI firmware file relative to /lib/firmware */
70 #define IPA_FW_PATH_DEFAULT "ipa_fws.mdt"
73 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
74 #define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */
75 #define TAG_TIMESTAMP_SHIFT 14
76 #define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */
78 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
79 #define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */
82 * ipa_suspend_handler() - Handle the suspend IPA interrupt
84 * @irq_id: IPA interrupt type (unused)
86 * If an RX endpoint is in suspend state, and the IPA has a packet
87 * destined for that endpoint, the IPA generates a SUSPEND interrupt
88 * to inform the AP that it should resume the endpoint. If we get
89 * one of these interrupts we just resume everything.
91 static void ipa_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id)
93 /* Just report the event, and let system resume handle the rest.
94 * More than one endpoint could signal this; if so, ignore
97 if (!test_and_set_bit(IPA_FLAG_RESUMED, ipa->flags))
98 pm_wakeup_dev_event(&ipa->pdev->dev, 0, true);
100 /* Acknowledge/clear the suspend interrupt on all endpoints */
101 ipa_interrupt_suspend_clear_all(ipa->interrupt);
105 * ipa_setup() - Set up IPA hardware
108 * Perform initialization that requires issuing immediate commands on
109 * the command TX endpoint. If the modem is doing GSI firmware load
110 * and initialization, this function will be called when an SMP2P
111 * interrupt has been signaled by the modem. Otherwise it will be
112 * called from ipa_probe() after GSI firmware has been successfully
113 * loaded, authenticated, and started by Trust Zone.
115 int ipa_setup(struct ipa *ipa)
117 struct ipa_endpoint *exception_endpoint;
118 struct ipa_endpoint *command_endpoint;
119 struct device *dev = &ipa->pdev->dev;
122 ret = gsi_setup(&ipa->gsi);
126 ipa->interrupt = ipa_interrupt_setup(ipa);
127 if (IS_ERR(ipa->interrupt)) {
128 ret = PTR_ERR(ipa->interrupt);
129 goto err_gsi_teardown;
131 ipa_interrupt_add(ipa->interrupt, IPA_IRQ_TX_SUSPEND,
132 ipa_suspend_handler);
136 ret = device_init_wakeup(dev, true);
138 goto err_uc_teardown;
140 ipa_endpoint_setup(ipa);
142 /* We need to use the AP command TX endpoint to perform other
143 * initialization, so we enable first.
145 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
146 ret = ipa_endpoint_enable_one(command_endpoint);
148 goto err_endpoint_teardown;
150 ret = ipa_mem_setup(ipa); /* No matching teardown required */
152 goto err_command_disable;
154 ret = ipa_table_setup(ipa); /* No matching teardown required */
156 goto err_command_disable;
158 /* Enable the exception handling endpoint, and tell the hardware
159 * to use it by default.
161 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
162 ret = ipa_endpoint_enable_one(exception_endpoint);
164 goto err_command_disable;
166 ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
168 /* We're all set. Now prepare for communication with the modem */
169 ret = ipa_modem_setup(ipa);
171 goto err_default_route_clear;
173 ipa->setup_complete = true;
175 dev_info(dev, "IPA driver setup completed successfully\n");
179 err_default_route_clear:
180 ipa_endpoint_default_route_clear(ipa);
181 ipa_endpoint_disable_one(exception_endpoint);
183 ipa_endpoint_disable_one(command_endpoint);
184 err_endpoint_teardown:
185 ipa_endpoint_teardown(ipa);
186 (void)device_init_wakeup(dev, false);
188 ipa_uc_teardown(ipa);
189 ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND);
190 ipa_interrupt_teardown(ipa->interrupt);
192 gsi_teardown(&ipa->gsi);
198 * ipa_teardown() - Inverse of ipa_setup()
201 static void ipa_teardown(struct ipa *ipa)
203 struct ipa_endpoint *exception_endpoint;
204 struct ipa_endpoint *command_endpoint;
206 ipa_modem_teardown(ipa);
207 ipa_endpoint_default_route_clear(ipa);
208 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
209 ipa_endpoint_disable_one(exception_endpoint);
210 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
211 ipa_endpoint_disable_one(command_endpoint);
212 ipa_endpoint_teardown(ipa);
213 (void)device_init_wakeup(&ipa->pdev->dev, false);
214 ipa_uc_teardown(ipa);
215 ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND);
216 ipa_interrupt_teardown(ipa->interrupt);
217 gsi_teardown(&ipa->gsi);
220 /* Configure bus access behavior for IPA components */
221 static void ipa_hardware_config_comp(struct ipa *ipa)
225 /* Nothing to configure prior to IPA v4.0 */
226 if (ipa->version < IPA_VERSION_4_0)
229 val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
231 if (ipa->version == IPA_VERSION_4_0) {
232 val &= ~IPA_QMB_SELECT_CONS_EN_FMASK;
233 val &= ~IPA_QMB_SELECT_PROD_EN_FMASK;
234 val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK;
235 } else if (ipa->version < IPA_VERSION_4_5) {
236 val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK;
238 /* For IPA v4.5 IPA_FULL_FLUSH_WAIT_RSC_CLOSE_EN is 0 */
241 val |= GSI_MULTI_INORDER_RD_DIS_FMASK;
242 val |= GSI_MULTI_INORDER_WR_DIS_FMASK;
244 iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
247 /* Configure DDR and (possibly) PCIe max read/write QSB values */
249 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
251 const struct ipa_qsb_data *data0;
252 const struct ipa_qsb_data *data1;
255 /* assert(data->qsb_count > 0); */
256 /* assert(data->qsb_count < 3); */
258 /* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
259 data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
260 if (data->qsb_count > 1)
261 data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
263 /* Max outstanding write accesses for QSB masters */
264 val = u32_encode_bits(data0->max_writes, GEN_QMB_0_MAX_WRITES_FMASK);
265 if (data->qsb_count > 1)
266 val |= u32_encode_bits(data1->max_writes,
267 GEN_QMB_1_MAX_WRITES_FMASK);
268 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET);
270 /* Max outstanding read accesses for QSB masters */
271 val = u32_encode_bits(data0->max_reads, GEN_QMB_0_MAX_READS_FMASK);
272 if (ipa->version >= IPA_VERSION_4_0)
273 val |= u32_encode_bits(data0->max_reads_beats,
274 GEN_QMB_0_MAX_READS_BEATS_FMASK);
275 if (data->qsb_count > 1) {
276 val |= u32_encode_bits(data1->max_reads,
277 GEN_QMB_1_MAX_READS_FMASK);
278 if (ipa->version >= IPA_VERSION_4_0)
279 val |= u32_encode_bits(data1->max_reads_beats,
280 GEN_QMB_1_MAX_READS_BEATS_FMASK);
282 iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET);
285 /* The internal inactivity timer clock is used for the aggregation timer */
286 #define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */
288 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
289 * field to represent the given number of microseconds. The value is one
290 * less than the number of timer ticks in the requested period. 0 is not
291 * a valid granularity value.
293 static u32 ipa_aggr_granularity_val(u32 usec)
295 /* assert(usec != 0); */
297 return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
300 /* IPA uses unified Qtime starting at IPA v4.5, implementing various
301 * timestamps and timers independent of the IPA core clock rate. The
302 * Qtimer is based on a 56-bit timestamp incremented at each tick of
303 * a 19.2 MHz SoC crystal oscillator (XO clock).
305 * For IPA timestamps (tag, NAT, data path logging) a lower resolution
306 * timestamp is achieved by shifting the Qtimer timestamp value right
307 * some number of bits to produce the low-order bits of the coarser
308 * granularity timestamp.
310 * For timers, a common timer clock is derived from the XO clock using
311 * a divider (we use 192, to produce a 100kHz timer clock). From
312 * this common clock, three "pulse generators" are used to produce
313 * timer ticks at a configurable frequency. IPA timers (such as
314 * those used for aggregation or head-of-line block handling) now
315 * define their period based on one of these pulse generators.
317 static void ipa_qtime_config(struct ipa *ipa)
321 /* Timer clock divider must be disabled when we change the rate */
322 iowrite32(0, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
324 /* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */
325 val = u32_encode_bits(DPL_TIMESTAMP_SHIFT, DPL_TIMESTAMP_LSB_FMASK);
326 val |= u32_encode_bits(1, DPL_TIMESTAMP_SEL_FMASK);
327 /* Configure tag and NAT Qtime timestamp resolution as well */
328 val |= u32_encode_bits(TAG_TIMESTAMP_SHIFT, TAG_TIMESTAMP_LSB_FMASK);
329 val |= u32_encode_bits(NAT_TIMESTAMP_SHIFT, NAT_TIMESTAMP_LSB_FMASK);
330 iowrite32(val, ipa->reg_virt + IPA_REG_QTIME_TIMESTAMP_CFG_OFFSET);
332 /* Set granularity of pulse generators used for other timers */
333 val = u32_encode_bits(IPA_GRAN_100_US, GRAN_0_FMASK);
334 val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_1_FMASK);
335 val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_2_FMASK);
336 iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_PULSE_GRAN_CFG_OFFSET);
338 /* Actual divider is 1 more than value supplied here */
339 val = u32_encode_bits(IPA_XO_CLOCK_DIVIDER - 1, DIV_VALUE_FMASK);
340 iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
342 /* Divider value is set; re-enable the common timer clock divider */
343 val |= u32_encode_bits(1, DIV_ENABLE_FMASK);
344 iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
347 static void ipa_idle_indication_cfg(struct ipa *ipa,
348 u32 enter_idle_debounce_thresh,
349 bool const_non_idle_enable)
354 val = u32_encode_bits(enter_idle_debounce_thresh,
355 ENTER_IDLE_DEBOUNCE_THRESH_FMASK);
356 if (const_non_idle_enable)
357 val |= CONST_NON_IDLE_ENABLE_FMASK;
359 offset = ipa_reg_idle_indication_cfg_offset(ipa->version);
360 iowrite32(val, ipa->reg_virt + offset);
364 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
367 * Configures when the IPA signals it is idle to the global clock
368 * controller, which can respond by scalling down the clock to
371 static void ipa_hardware_dcd_config(struct ipa *ipa)
373 /* Recommended values for IPA 3.5 and later according to IPA HPG */
374 ipa_idle_indication_cfg(ipa, 256, false);
377 static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
379 /* Power-on reset values */
380 ipa_idle_indication_cfg(ipa, 0, true);
384 * ipa_hardware_config() - Primitive hardware initialization
386 * @data: IPA configuration data
388 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
390 enum ipa_version version = ipa->version;
394 /* IPA v4.5+ has no backward compatibility register */
395 if (version < IPA_VERSION_4_5) {
396 val = data->backward_compat;
397 iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET);
400 /* Implement some hardware workarounds */
401 if (version >= IPA_VERSION_4_0 && version < IPA_VERSION_4_5) {
402 /* Enable open global clocks (not needed for IPA v4.5) */
404 val |= GLOBAL_2X_CLK_FMASK;
405 iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET);
407 /* Disable PA mask to allow HOLB drop */
408 val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
409 val &= ~PA_MASK_EN_FMASK;
410 iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
413 ipa_hardware_config_comp(ipa);
415 /* Configure system bus limits */
416 ipa_hardware_config_qsb(ipa, data);
418 if (version < IPA_VERSION_4_5) {
419 /* Configure aggregation timer granularity */
420 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
421 val = u32_encode_bits(granularity, AGGR_GRANULARITY_FMASK);
422 iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET);
424 ipa_qtime_config(ipa);
427 /* IPA v4.2 does not support hashed tables, so disable them */
428 if (version == IPA_VERSION_4_2) {
429 u32 offset = ipa_reg_filt_rout_hash_en_offset(version);
431 iowrite32(0, ipa->reg_virt + offset);
434 /* Enable dynamic clock division */
435 ipa_hardware_dcd_config(ipa);
439 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
442 * This restores the power-on reset values (even if they aren't different)
444 static void ipa_hardware_deconfig(struct ipa *ipa)
446 /* Mostly we just leave things as we set them. */
447 ipa_hardware_dcd_deconfig(ipa);
451 * ipa_config() - Configure IPA hardware
453 * @data: IPA configuration data
455 * Perform initialization requiring IPA clock to be enabled.
457 static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
461 /* Get a clock reference to allow initialization. This reference
462 * is held after initialization completes, and won't get dropped
463 * unless/until a system suspend request arrives.
467 ipa_hardware_config(ipa, data);
469 ret = ipa_endpoint_config(ipa);
471 goto err_hardware_deconfig;
473 ret = ipa_mem_config(ipa);
475 goto err_endpoint_deconfig;
477 ipa_table_config(ipa); /* No deconfig required */
479 /* Assign resource limitation to each group; no deconfig required */
480 ret = ipa_resource_config(ipa, data->resource_data);
482 goto err_mem_deconfig;
484 ret = ipa_modem_config(ipa);
486 goto err_mem_deconfig;
491 ipa_mem_deconfig(ipa);
492 err_endpoint_deconfig:
493 ipa_endpoint_deconfig(ipa);
494 err_hardware_deconfig:
495 ipa_hardware_deconfig(ipa);
502 * ipa_deconfig() - Inverse of ipa_config()
505 static void ipa_deconfig(struct ipa *ipa)
507 ipa_modem_deconfig(ipa);
508 ipa_mem_deconfig(ipa);
509 ipa_endpoint_deconfig(ipa);
510 ipa_hardware_deconfig(ipa);
514 static int ipa_firmware_load(struct device *dev)
516 const struct firmware *fw;
517 struct device_node *node;
525 node = of_parse_phandle(dev->of_node, "memory-region", 0);
527 dev_err(dev, "DT error getting \"memory-region\" property\n");
531 ret = of_address_to_resource(node, 0, &res);
533 dev_err(dev, "error %d getting \"memory-region\" resource\n",
538 /* Use name from DTB if specified; use default for *any* error */
539 ret = of_property_read_string(dev->of_node, "firmware-name", &path);
541 dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
543 path = IPA_FW_PATH_DEFAULT;
546 ret = request_firmware(&fw, path, dev);
548 dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
553 size = (size_t)resource_size(&res);
554 virt = memremap(phys, size, MEMREMAP_WC);
556 dev_err(dev, "unable to remap firmware memory\n");
558 goto out_release_firmware;
561 ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
563 dev_err(dev, "error %d loading \"%s\"\n", ret, path);
564 else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
565 dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
568 out_release_firmware:
569 release_firmware(fw);
574 static const struct of_device_id ipa_match[] = {
576 .compatible = "qcom,sdm845-ipa",
577 .data = &ipa_data_v3_5_1,
580 .compatible = "qcom,sc7180-ipa",
581 .data = &ipa_data_v4_2,
584 .compatible = "qcom,sdx55-ipa",
585 .data = &ipa_data_v4_5,
588 .compatible = "qcom,sm8350-ipa",
589 .data = &ipa_data_v4_9,
592 .compatible = "qcom,sc7280-ipa",
593 .data = &ipa_data_v4_11,
597 MODULE_DEVICE_TABLE(of, ipa_match);
599 /* Check things that can be validated at build time. This just
600 * groups these things BUILD_BUG_ON() calls don't clutter the rest
603 static void ipa_validate_build(void)
606 /* At one time we assumed a 64-bit build, allowing some do_div()
607 * calls to be replaced by simple division or modulo operations.
608 * We currently only perform divide and modulo operations on u32,
609 * u16, or size_t objects, and of those only size_t has any chance
610 * of being a 64-bit value. (It should be guaranteed 32 bits wide
611 * on a 32-bit build, but there is no harm in verifying that.)
613 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
615 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
616 BUILD_BUG_ON(GSI_EE_AP != 0);
618 /* There's no point if we have no channels or event rings */
619 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
620 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
622 /* GSI hardware design limits */
623 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
624 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
626 /* The number of TREs in a transaction is limited by the channel's
627 * TLV FIFO size. A transaction structure uses 8-bit fields
628 * to represents the number of TREs it has allocated and used.
630 BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
632 /* This is used as a divisor */
633 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
635 /* Aggregation granularity value can't be 0, and must fit */
636 BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
637 BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) >
638 field_max(AGGR_GRANULARITY_FMASK));
639 #endif /* IPA_VALIDATE */
643 * ipa_probe() - IPA platform driver probe function
644 * @pdev: Platform device pointer
646 * Return: 0 if successful, or a negative error code (possibly
649 * This is the main entry point for the IPA driver. Initialization proceeds
651 * - The "init" stage involves activities that can be initialized without
652 * access to the IPA hardware.
653 * - The "config" stage requires the IPA clock to be active so IPA registers
654 * can be accessed, but does not require the use of IPA immediate commands.
655 * - The "setup" stage uses IPA immediate commands, and so requires the GSI
656 * layer to be initialized.
658 * A Boolean Device Tree "modem-init" property determines whether GSI
659 * initialization will be performed by the AP (Trust Zone) or the modem.
660 * If the AP does GSI initialization, the setup phase is entered after
661 * this has completed successfully. Otherwise the modem initializes
662 * the GSI layer and signals it has finished by sending an SMP2P interrupt
663 * to the AP; this triggers the start if IPA setup.
665 static int ipa_probe(struct platform_device *pdev)
667 struct device *dev = &pdev->dev;
668 const struct ipa_data *data;
669 struct ipa_clock *clock;
674 ipa_validate_build();
676 /* Get configuration data early; needed for clock initialization */
677 data = of_device_get_match_data(dev);
679 /* This is really IPA_VALIDATE (should never happen) */
680 dev_err(dev, "matched hardware not supported\n");
684 /* If we need Trust Zone, make sure it's available */
685 modem_init = of_property_read_bool(dev->of_node, "modem-init");
687 if (!qcom_scm_is_available())
688 return -EPROBE_DEFER;
690 /* The clock and interconnects might not be ready when we're
691 * probed, so might return -EPROBE_DEFER.
693 clock = ipa_clock_init(dev, data->clock_data);
695 return PTR_ERR(clock);
697 /* No more EPROBE_DEFER. Allocate and initialize the IPA structure */
698 ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
705 dev_set_drvdata(dev, ipa);
707 ipa->version = data->version;
708 init_completion(&ipa->completion);
710 ret = ipa_reg_init(ipa);
714 ret = ipa_mem_init(ipa, data->mem_data);
718 ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
719 data->endpoint_data);
723 /* Result is a non-zero mask of endpoints that support filtering */
724 ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count,
725 data->endpoint_data);
726 if (!ipa->filter_map) {
731 ret = ipa_table_init(ipa);
733 goto err_endpoint_exit;
735 ret = ipa_modem_init(ipa, modem_init);
739 ret = ipa_config(ipa, data);
743 dev_info(dev, "IPA driver initialized");
745 /* If the modem is doing early initialization, it will trigger a
746 * call to ipa_setup() call when it has finished. In that case
752 /* Otherwise we need to load the firmware and have Trust Zone validate
753 * and install it. If that succeeds we can proceed with setup.
755 ret = ipa_firmware_load(dev);
759 ret = ipa_setup(ipa);
772 ipa_endpoint_exit(ipa);
782 ipa_clock_exit(clock);
787 static int ipa_remove(struct platform_device *pdev)
789 struct ipa *ipa = dev_get_drvdata(&pdev->dev);
790 struct ipa_clock *clock = ipa->clock;
793 if (ipa->setup_complete) {
794 ret = ipa_modem_stop(ipa);
795 /* If starting or stopping is in progress, try once more */
797 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
798 ret = ipa_modem_stop(ipa);
809 ipa_endpoint_exit(ipa);
814 ipa_clock_exit(clock);
819 static void ipa_shutdown(struct platform_device *pdev)
823 ret = ipa_remove(pdev);
825 dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret);
829 * ipa_suspend() - Power management system suspend callback
830 * @dev: IPA device structure
832 * Return: Always returns zero
834 * Called by the PM framework when a system suspend operation is invoked.
835 * Suspends endpoints and releases the clock reference held to keep
836 * the IPA clock running until this point.
838 static int ipa_suspend(struct device *dev)
840 struct ipa *ipa = dev_get_drvdata(dev);
842 /* When a suspended RX endpoint has a packet ready to receive, we
843 * get an IPA SUSPEND interrupt. We trigger a system resume in
844 * that case, but only on the first such interrupt since suspend.
846 __clear_bit(IPA_FLAG_RESUMED, ipa->flags);
848 ipa_endpoint_suspend(ipa);
856 * ipa_resume() - Power management system resume callback
857 * @dev: IPA device structure
859 * Return: Always returns 0
861 * Called by the PM framework when a system resume operation is invoked.
862 * Takes an IPA clock reference to keep the clock running until suspend,
863 * and resumes endpoints.
865 static int ipa_resume(struct device *dev)
867 struct ipa *ipa = dev_get_drvdata(dev);
869 /* This clock reference will keep the IPA out of suspend
870 * until we get a power management suspend request.
874 ipa_endpoint_resume(ipa);
879 static const struct dev_pm_ops ipa_pm_ops = {
880 .suspend = ipa_suspend,
881 .resume = ipa_resume,
884 static struct platform_driver ipa_driver = {
886 .remove = ipa_remove,
887 .shutdown = ipa_shutdown,
891 .of_match_table = ipa_match,
895 module_platform_driver(ipa_driver);
897 MODULE_LICENSE("GPL v2");
898 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");