1 // SPDX-License-Identifier: GPL-2.0-only
3 * drivers/media/i2c/ccs/ccs-core.c
5 * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
7 * Copyright (C) 2020 Intel Corporation
8 * Copyright (C) 2010--2012 Nokia Corporation
11 * Based on smiapp driver by Vimarsh Zutshi
12 * Based on jt8ev1.c by Vimarsh Zutshi
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/firmware.h>
20 #include <linux/gpio.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/module.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/property.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/slab.h>
27 #include <linux/smiapp.h>
28 #include <linux/v4l2-mediabus.h>
29 #include <media/v4l2-fwnode.h>
30 #include <media/v4l2-device.h>
34 #define CCS_ALIGN_DIM(dim, flags) \
35 ((flags) & V4L2_SEL_FLAG_GE \
39 static struct ccs_limit_offset {
42 } ccs_limit_offsets[CCS_L_LAST + 1];
45 * ccs_module_idents - supported camera modules
47 static const struct ccs_module_ident ccs_module_idents[] = {
48 CCS_IDENT_L(0x01, 0x022b, -1, "vs6555"),
49 CCS_IDENT_L(0x01, 0x022e, -1, "vw6558"),
50 CCS_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
51 CCS_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
52 CCS_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
53 CCS_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
54 CCS_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
55 CCS_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
56 CCS_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
57 CCS_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
58 CCS_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
61 #define CCS_DEVICE_FLAG_IS_SMIA BIT(0)
67 static const char * const ccs_regulators[] = { "vcore", "vio", "vana" };
71 * Dynamic Capability Identification
75 static void ccs_assign_limit(void *ptr, unsigned int width, u32 val)
90 static int ccs_limit_ptr(struct ccs_sensor *sensor, unsigned int limit,
91 unsigned int offset, void **__ptr)
93 const struct ccs_limit *linfo;
95 if (WARN_ON(limit >= CCS_L_LAST))
98 linfo = &ccs_limits[ccs_limit_offsets[limit].info];
100 if (WARN_ON(!sensor->ccs_limits) ||
101 WARN_ON(offset + ccs_reg_width(linfo->reg) >
102 ccs_limit_offsets[limit + 1].lim))
105 *__ptr = sensor->ccs_limits + ccs_limit_offsets[limit].lim + offset;
110 void ccs_replace_limit(struct ccs_sensor *sensor,
111 unsigned int limit, unsigned int offset, u32 val)
113 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
114 const struct ccs_limit *linfo;
118 ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
122 linfo = &ccs_limits[ccs_limit_offsets[limit].info];
124 dev_dbg(&client->dev, "quirk: 0x%8.8x \"%s\" %u = %d, 0x%x\n",
125 linfo->reg, linfo->name, offset, val, val);
127 ccs_assign_limit(ptr, ccs_reg_width(linfo->reg), val);
130 u32 ccs_get_limit(struct ccs_sensor *sensor, unsigned int limit,
137 ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
141 switch (ccs_reg_width(ccs_limits[ccs_limit_offsets[limit].info].reg)) {
156 return ccs_reg_conv(sensor, ccs_limits[limit].reg, val);
159 static int ccs_read_all_limits(struct ccs_sensor *sensor)
161 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
162 void *ptr, *alloc, *end;
166 kfree(sensor->ccs_limits);
167 sensor->ccs_limits = NULL;
169 alloc = kzalloc(ccs_limit_offsets[CCS_L_LAST].lim, GFP_KERNEL);
173 end = alloc + ccs_limit_offsets[CCS_L_LAST].lim;
175 for (i = 0, l = 0, ptr = alloc; ccs_limits[i].size; i++) {
176 u32 reg = ccs_limits[i].reg;
177 unsigned int width = ccs_reg_width(reg);
180 if (l == CCS_L_LAST) {
181 dev_err(&client->dev,
182 "internal error --- end of limit array\n");
187 for (j = 0; j < ccs_limits[i].size / width;
188 j++, reg += width, ptr += width) {
191 ret = ccs_read_addr_noconv(sensor, reg, &val);
195 if (ptr + width > end) {
196 dev_err(&client->dev,
197 "internal error --- no room for regs\n");
205 ccs_assign_limit(ptr, width, val);
207 dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
208 reg, ccs_limits[i].name, val, val);
211 if (ccs_limits[i].flags & CCS_L_FL_SAME_REG)
215 ptr = alloc + ccs_limit_offsets[l].lim;
218 if (l != CCS_L_LAST) {
219 dev_err(&client->dev,
220 "internal error --- insufficient limits\n");
225 sensor->ccs_limits = alloc;
227 if (CCS_LIM(sensor, SCALER_N_MIN) < 16)
228 ccs_replace_limit(sensor, CCS_L_SCALER_N_MIN, 0, 16);
238 static int ccs_read_frame_fmt(struct ccs_sensor *sensor)
240 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
241 u8 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
246 fmt_model_type = CCS_LIM(sensor, FRAME_FORMAT_MODEL_TYPE);
247 fmt_model_subtype = CCS_LIM(sensor, FRAME_FORMAT_MODEL_SUBTYPE);
249 ncol_desc = (fmt_model_subtype
250 & CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_MASK)
251 >> CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_SHIFT;
252 nrow_desc = fmt_model_subtype
253 & CCS_FRAME_FORMAT_MODEL_SUBTYPE_ROWS_MASK;
255 dev_dbg(&client->dev, "format_model_type %s\n",
256 fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE
258 fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE
259 ? "4 byte" : "is simply bad");
261 dev_dbg(&client->dev, "%u column and %u row descriptors\n",
262 ncol_desc, nrow_desc);
264 for (i = 0; i < ncol_desc + nrow_desc; i++) {
271 if (fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE) {
272 desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR, i);
276 & CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_MASK)
277 >> CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_SHIFT;
278 pixels = desc & CCS_FRAME_FORMAT_DESCRIPTOR_PIXELS_MASK;
279 } else if (fmt_model_type
280 == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE) {
281 desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR_4, i);
285 & CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_MASK)
286 >> CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_SHIFT;
288 CCS_FRAME_FORMAT_DESCRIPTOR_4_PIXELS_MASK;
290 dev_dbg(&client->dev,
291 "invalid frame format model type %d\n",
302 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
305 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DUMMY_PIXEL:
308 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_BLACK_PIXEL:
311 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DARK_PIXEL:
314 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
322 dev_dbg(&client->dev,
323 "%s pixels: %d %s (pixelcode %u)\n",
324 what, pixels, which, pixelcode);
328 CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL)
329 sensor->visible_pixel_start = pixel_count;
330 pixel_count += pixels;
334 /* Handle row descriptors */
336 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
337 if (sensor->embedded_end)
339 sensor->embedded_start = line_count;
340 sensor->embedded_end = line_count + pixels;
342 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
343 sensor->image_start = line_count;
346 line_count += pixels;
349 if (sensor->embedded_end > sensor->image_start) {
350 dev_dbg(&client->dev,
351 "adjusting image start line to %u (was %u)\n",
352 sensor->embedded_end, sensor->image_start);
353 sensor->image_start = sensor->embedded_end;
356 dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
357 sensor->embedded_start, sensor->embedded_end);
358 dev_dbg(&client->dev, "image data starts at line %d\n",
359 sensor->image_start);
364 static int ccs_pll_configure(struct ccs_sensor *sensor)
366 struct ccs_pll *pll = &sensor->pll;
369 rval = ccs_write(sensor, VT_PIX_CLK_DIV, pll->vt_bk.pix_clk_div);
373 rval = ccs_write(sensor, VT_SYS_CLK_DIV, pll->vt_bk.sys_clk_div);
377 rval = ccs_write(sensor, PRE_PLL_CLK_DIV, pll->vt_fr.pre_pll_clk_div);
381 rval = ccs_write(sensor, PLL_MULTIPLIER, pll->vt_fr.pll_multiplier);
385 /* Lane op clock ratio does not apply here. */
386 rval = ccs_write(sensor, REQUESTED_LINK_RATE,
387 DIV_ROUND_UP(pll->op_bk.sys_clk_freq_hz,
388 1000000 / 256 / 256) *
389 (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ?
390 sensor->pll.csi2.lanes : 1) <<
391 (pll->flags & CCS_PLL_FLAG_OP_SYS_DDR ? 1 : 0));
392 if (rval < 0 || sensor->pll.flags & CCS_PLL_FLAG_NO_OP_CLOCKS)
395 rval = ccs_write(sensor, OP_PIX_CLK_DIV, pll->op_bk.pix_clk_div);
399 rval = ccs_write(sensor, OP_SYS_CLK_DIV, pll->op_bk.sys_clk_div);
403 if (!(pll->flags & CCS_PLL_FLAG_DUAL_PLL))
406 rval = ccs_write(sensor, PLL_MODE, CCS_PLL_MODE_DUAL);
410 rval = ccs_write(sensor, OP_PRE_PLL_CLK_DIV,
411 pll->op_fr.pre_pll_clk_div);
415 return ccs_write(sensor, OP_PLL_MULTIPLIER, pll->op_fr.pll_multiplier);
418 static int ccs_pll_try(struct ccs_sensor *sensor, struct ccs_pll *pll)
420 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
421 struct ccs_pll_limits lim = {
423 .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_PRE_PLL_CLK_DIV),
424 .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_PRE_PLL_CLK_DIV),
425 .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_IP_CLK_FREQ_MHZ),
426 .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_IP_CLK_FREQ_MHZ),
427 .min_pll_multiplier = CCS_LIM(sensor, MIN_PLL_MULTIPLIER),
428 .max_pll_multiplier = CCS_LIM(sensor, MAX_PLL_MULTIPLIER),
429 .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_OP_CLK_FREQ_MHZ),
430 .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_OP_CLK_FREQ_MHZ),
433 .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_OP_PRE_PLL_CLK_DIV),
434 .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_OP_PRE_PLL_CLK_DIV),
435 .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_IP_CLK_FREQ_MHZ),
436 .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_IP_CLK_FREQ_MHZ),
437 .min_pll_multiplier = CCS_LIM(sensor, MIN_OP_PLL_MULTIPLIER),
438 .max_pll_multiplier = CCS_LIM(sensor, MAX_OP_PLL_MULTIPLIER),
439 .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_OP_CLK_FREQ_MHZ),
440 .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_OP_CLK_FREQ_MHZ),
443 .min_sys_clk_div = CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV),
444 .max_sys_clk_div = CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV),
445 .min_pix_clk_div = CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV),
446 .max_pix_clk_div = CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV),
447 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_OP_SYS_CLK_FREQ_MHZ),
448 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_OP_SYS_CLK_FREQ_MHZ),
449 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PIX_CLK_FREQ_MHZ),
450 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PIX_CLK_FREQ_MHZ),
453 .min_sys_clk_div = CCS_LIM(sensor, MIN_VT_SYS_CLK_DIV),
454 .max_sys_clk_div = CCS_LIM(sensor, MAX_VT_SYS_CLK_DIV),
455 .min_pix_clk_div = CCS_LIM(sensor, MIN_VT_PIX_CLK_DIV),
456 .max_pix_clk_div = CCS_LIM(sensor, MAX_VT_PIX_CLK_DIV),
457 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_VT_SYS_CLK_FREQ_MHZ),
458 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_VT_SYS_CLK_FREQ_MHZ),
459 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_VT_PIX_CLK_FREQ_MHZ),
460 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_VT_PIX_CLK_FREQ_MHZ),
462 .min_line_length_pck_bin = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN),
463 .min_line_length_pck = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK),
466 return ccs_pll_calculate(&client->dev, &lim, pll);
469 static int ccs_pll_update(struct ccs_sensor *sensor)
471 struct ccs_pll *pll = &sensor->pll;
474 pll->binning_horizontal = sensor->binning_horizontal;
475 pll->binning_vertical = sensor->binning_vertical;
477 sensor->link_freq->qmenu_int[sensor->link_freq->val];
478 pll->scale_m = sensor->scale_m;
479 pll->bits_per_pixel = sensor->csi_format->compressed;
481 rval = ccs_pll_try(sensor, pll);
485 __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
486 pll->pixel_rate_pixel_array);
487 __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
495 * V4L2 Controls handling
499 static void __ccs_update_exposure_limits(struct ccs_sensor *sensor)
501 struct v4l2_ctrl *ctrl = sensor->exposure;
504 max = sensor->pixel_array->crop[CCS_PA_PAD_SRC].height
505 + sensor->vblank->val
506 - CCS_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN);
508 __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
514 * 1. Bits-per-pixel, descending.
515 * 2. Bits-per-pixel compressed, descending.
516 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
517 * orders must be defined.
519 static const struct ccs_csi_data_format ccs_csi_data_formats[] = {
520 { MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, CCS_PIXEL_ORDER_GRBG, },
521 { MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, CCS_PIXEL_ORDER_RGGB, },
522 { MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, CCS_PIXEL_ORDER_BGGR, },
523 { MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, CCS_PIXEL_ORDER_GBRG, },
524 { MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, CCS_PIXEL_ORDER_GRBG, },
525 { MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, CCS_PIXEL_ORDER_RGGB, },
526 { MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, CCS_PIXEL_ORDER_BGGR, },
527 { MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, CCS_PIXEL_ORDER_GBRG, },
528 { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, CCS_PIXEL_ORDER_GRBG, },
529 { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, CCS_PIXEL_ORDER_RGGB, },
530 { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, CCS_PIXEL_ORDER_BGGR, },
531 { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, CCS_PIXEL_ORDER_GBRG, },
532 { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, CCS_PIXEL_ORDER_GRBG, },
533 { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, CCS_PIXEL_ORDER_RGGB, },
534 { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, CCS_PIXEL_ORDER_BGGR, },
535 { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, CCS_PIXEL_ORDER_GBRG, },
536 { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GRBG, },
537 { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_RGGB, },
538 { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_BGGR, },
539 { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GBRG, },
540 { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, CCS_PIXEL_ORDER_GRBG, },
541 { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, CCS_PIXEL_ORDER_RGGB, },
542 { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, CCS_PIXEL_ORDER_BGGR, },
543 { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, CCS_PIXEL_ORDER_GBRG, },
546 static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
548 #define to_csi_format_idx(fmt) (((unsigned long)(fmt) \
549 - (unsigned long)ccs_csi_data_formats) \
550 / sizeof(*ccs_csi_data_formats))
552 static u32 ccs_pixel_order(struct ccs_sensor *sensor)
554 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
558 if (sensor->hflip->val)
559 flip |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
561 if (sensor->vflip->val)
562 flip |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
565 flip ^= sensor->hvflip_inv_mask;
567 dev_dbg(&client->dev, "flip %d\n", flip);
568 return sensor->default_pixel_order ^ flip;
571 static void ccs_update_mbus_formats(struct ccs_sensor *sensor)
573 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
574 unsigned int csi_format_idx =
575 to_csi_format_idx(sensor->csi_format) & ~3;
576 unsigned int internal_csi_format_idx =
577 to_csi_format_idx(sensor->internal_csi_format) & ~3;
578 unsigned int pixel_order = ccs_pixel_order(sensor);
580 if (WARN_ON_ONCE(max(internal_csi_format_idx, csi_format_idx) +
581 pixel_order >= ARRAY_SIZE(ccs_csi_data_formats)))
584 sensor->mbus_frame_fmts =
585 sensor->default_mbus_frame_fmts << pixel_order;
587 &ccs_csi_data_formats[csi_format_idx + pixel_order];
588 sensor->internal_csi_format =
589 &ccs_csi_data_formats[internal_csi_format_idx
592 dev_dbg(&client->dev, "new pixel order %s\n",
593 pixel_order_str[pixel_order]);
596 static const char * const ccs_test_patterns[] = {
599 "Eight Vertical Colour Bars",
600 "Colour Bars With Fade to Grey",
601 "Pseudorandom Sequence (PN9)",
604 static int ccs_set_ctrl(struct v4l2_ctrl *ctrl)
606 struct ccs_sensor *sensor =
607 container_of(ctrl->handler, struct ccs_subdev, ctrl_handler)
609 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
619 if (sensor->streaming)
622 if (sensor->hflip->val)
623 orient |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
625 if (sensor->vflip->val)
626 orient |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
628 orient ^= sensor->hvflip_inv_mask;
630 ccs_update_mbus_formats(sensor);
633 case V4L2_CID_VBLANK:
634 exposure = sensor->exposure->val;
636 __ccs_update_exposure_limits(sensor);
638 if (exposure > sensor->exposure->maximum) {
639 sensor->exposure->val = sensor->exposure->maximum;
640 rval = ccs_set_ctrl(sensor->exposure);
646 case V4L2_CID_LINK_FREQ:
647 if (sensor->streaming)
650 rval = ccs_pll_update(sensor);
655 case V4L2_CID_TEST_PATTERN:
656 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
658 sensor->test_data[i],
660 V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
665 pm_status = pm_runtime_get_if_active(&client->dev, true);
670 case V4L2_CID_ANALOGUE_GAIN:
671 rval = ccs_write(sensor, ANALOG_GAIN_CODE_GLOBAL, ctrl->val);
674 case V4L2_CID_EXPOSURE:
675 rval = ccs_write(sensor, COARSE_INTEGRATION_TIME, ctrl->val);
680 rval = ccs_write(sensor, IMAGE_ORIENTATION, orient);
683 case V4L2_CID_VBLANK:
684 rval = ccs_write(sensor, FRAME_LENGTH_LINES,
685 sensor->pixel_array->crop[
686 CCS_PA_PAD_SRC].height
690 case V4L2_CID_HBLANK:
691 rval = ccs_write(sensor, LINE_LENGTH_PCK,
692 sensor->pixel_array->crop[CCS_PA_PAD_SRC].width
696 case V4L2_CID_TEST_PATTERN:
697 rval = ccs_write(sensor, TEST_PATTERN_MODE, ctrl->val);
700 case V4L2_CID_TEST_PATTERN_RED:
701 rval = ccs_write(sensor, TEST_DATA_RED, ctrl->val);
704 case V4L2_CID_TEST_PATTERN_GREENR:
705 rval = ccs_write(sensor, TEST_DATA_GREENR, ctrl->val);
708 case V4L2_CID_TEST_PATTERN_BLUE:
709 rval = ccs_write(sensor, TEST_DATA_BLUE, ctrl->val);
712 case V4L2_CID_TEST_PATTERN_GREENB:
713 rval = ccs_write(sensor, TEST_DATA_GREENB, ctrl->val);
716 case V4L2_CID_PIXEL_RATE:
717 /* For v4l2_ctrl_s_ctrl_int64() used internally. */
726 pm_runtime_mark_last_busy(&client->dev);
727 pm_runtime_put_autosuspend(&client->dev);
733 static const struct v4l2_ctrl_ops ccs_ctrl_ops = {
734 .s_ctrl = ccs_set_ctrl,
737 static int ccs_init_controls(struct ccs_sensor *sensor)
739 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
742 rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 12);
746 sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
748 sensor->analog_gain = v4l2_ctrl_new_std(
749 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
750 V4L2_CID_ANALOGUE_GAIN,
751 CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN),
752 CCS_LIM(sensor, ANALOG_GAIN_CODE_MAX),
753 max(CCS_LIM(sensor, ANALOG_GAIN_CODE_STEP), 1U),
754 CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN));
756 /* Exposure limits will be updated soon, use just something here. */
757 sensor->exposure = v4l2_ctrl_new_std(
758 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
759 V4L2_CID_EXPOSURE, 0, 0, 1, 0);
761 sensor->hflip = v4l2_ctrl_new_std(
762 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
763 V4L2_CID_HFLIP, 0, 1, 1, 0);
764 sensor->vflip = v4l2_ctrl_new_std(
765 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
766 V4L2_CID_VFLIP, 0, 1, 1, 0);
768 sensor->vblank = v4l2_ctrl_new_std(
769 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
770 V4L2_CID_VBLANK, 0, 1, 1, 0);
773 sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
775 sensor->hblank = v4l2_ctrl_new_std(
776 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
777 V4L2_CID_HBLANK, 0, 1, 1, 0);
780 sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
782 sensor->pixel_rate_parray = v4l2_ctrl_new_std(
783 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
784 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
786 v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
787 &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN,
788 ARRAY_SIZE(ccs_test_patterns) - 1,
789 0, 0, ccs_test_patterns);
791 if (sensor->pixel_array->ctrl_handler.error) {
792 dev_err(&client->dev,
793 "pixel array controls initialization failed (%d)\n",
794 sensor->pixel_array->ctrl_handler.error);
795 return sensor->pixel_array->ctrl_handler.error;
798 sensor->pixel_array->sd.ctrl_handler =
799 &sensor->pixel_array->ctrl_handler;
801 v4l2_ctrl_cluster(2, &sensor->hflip);
803 rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
807 sensor->src->ctrl_handler.lock = &sensor->mutex;
809 sensor->pixel_rate_csi = v4l2_ctrl_new_std(
810 &sensor->src->ctrl_handler, &ccs_ctrl_ops,
811 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
813 if (sensor->src->ctrl_handler.error) {
814 dev_err(&client->dev,
815 "src controls initialization failed (%d)\n",
816 sensor->src->ctrl_handler.error);
817 return sensor->src->ctrl_handler.error;
820 sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
826 * For controls that require information on available media bus codes
827 * and linke frequencies.
829 static int ccs_init_late_controls(struct ccs_sensor *sensor)
831 unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
832 sensor->csi_format->compressed - sensor->compressed_min_bpp];
835 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
836 int max_value = (1 << sensor->csi_format->width) - 1;
838 sensor->test_data[i] = v4l2_ctrl_new_std(
839 &sensor->pixel_array->ctrl_handler,
840 &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
841 0, max_value, 1, max_value);
844 sensor->link_freq = v4l2_ctrl_new_int_menu(
845 &sensor->src->ctrl_handler, &ccs_ctrl_ops,
846 V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
847 __ffs(*valid_link_freqs), sensor->hwcfg.op_sys_clock);
849 return sensor->src->ctrl_handler.error;
852 static void ccs_free_controls(struct ccs_sensor *sensor)
856 for (i = 0; i < sensor->ssds_used; i++)
857 v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
860 static int ccs_get_mbus_formats(struct ccs_sensor *sensor)
862 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
863 struct ccs_pll *pll = &sensor->pll;
864 u8 compressed_max_bpp = 0;
865 unsigned int type, n;
866 unsigned int i, pixel_order;
869 type = CCS_LIM(sensor, DATA_FORMAT_MODEL_TYPE);
871 dev_dbg(&client->dev, "data_format_model_type %d\n", type);
873 rval = ccs_read(sensor, PIXEL_ORDER, &pixel_order);
877 if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
878 dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
882 dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
883 pixel_order_str[pixel_order]);
886 case CCS_DATA_FORMAT_MODEL_TYPE_NORMAL:
887 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
889 case CCS_DATA_FORMAT_MODEL_TYPE_EXTENDED:
890 n = CCS_LIM_DATA_FORMAT_DESCRIPTOR_MAX_N + 1;
896 sensor->default_pixel_order = pixel_order;
897 sensor->mbus_frame_fmts = 0;
899 for (i = 0; i < n; i++) {
902 fmt = CCS_LIM_AT(sensor, DATA_FORMAT_DESCRIPTOR, i);
904 dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
905 i, fmt >> 8, (u8)fmt);
907 for (j = 0; j < ARRAY_SIZE(ccs_csi_data_formats); j++) {
908 const struct ccs_csi_data_format *f =
909 &ccs_csi_data_formats[j];
911 if (f->pixel_order != CCS_PIXEL_ORDER_GRBG)
914 if (f->width != fmt >>
915 CCS_DATA_FORMAT_DESCRIPTOR_UNCOMPRESSED_SHIFT ||
917 (fmt & CCS_DATA_FORMAT_DESCRIPTOR_COMPRESSED_MASK))
920 dev_dbg(&client->dev, "jolly good! %d\n", j);
922 sensor->default_mbus_frame_fmts |= 1 << j;
926 /* Figure out which BPP values can be used with which formats. */
927 pll->binning_horizontal = 1;
928 pll->binning_vertical = 1;
929 pll->scale_m = sensor->scale_m;
931 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
932 sensor->compressed_min_bpp =
933 min(ccs_csi_data_formats[i].compressed,
934 sensor->compressed_min_bpp);
936 max(ccs_csi_data_formats[i].compressed,
940 sensor->valid_link_freqs = devm_kcalloc(
942 compressed_max_bpp - sensor->compressed_min_bpp + 1,
943 sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
944 if (!sensor->valid_link_freqs)
947 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
948 const struct ccs_csi_data_format *f =
949 &ccs_csi_data_formats[i];
950 unsigned long *valid_link_freqs =
951 &sensor->valid_link_freqs[
952 f->compressed - sensor->compressed_min_bpp];
955 if (!(sensor->default_mbus_frame_fmts & 1 << i))
958 pll->bits_per_pixel = f->compressed;
960 for (j = 0; sensor->hwcfg.op_sys_clock[j]; j++) {
961 pll->link_freq = sensor->hwcfg.op_sys_clock[j];
963 rval = ccs_pll_try(sensor, pll);
964 dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
965 pll->link_freq, pll->bits_per_pixel,
966 rval ? "not ok" : "ok");
970 set_bit(j, valid_link_freqs);
973 if (!*valid_link_freqs) {
974 dev_info(&client->dev,
975 "no valid link frequencies for %u bpp\n",
977 sensor->default_mbus_frame_fmts &= ~BIT(i);
981 if (!sensor->csi_format
982 || f->width > sensor->csi_format->width
983 || (f->width == sensor->csi_format->width
984 && f->compressed > sensor->csi_format->compressed)) {
985 sensor->csi_format = f;
986 sensor->internal_csi_format = f;
990 if (!sensor->csi_format) {
991 dev_err(&client->dev, "no supported mbus code found\n");
995 ccs_update_mbus_formats(sensor);
1000 static void ccs_update_blanking(struct ccs_sensor *sensor)
1002 struct v4l2_ctrl *vblank = sensor->vblank;
1003 struct v4l2_ctrl *hblank = sensor->hblank;
1004 uint16_t min_fll, max_fll, min_llp, max_llp, min_lbp;
1007 if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) {
1008 min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN);
1009 max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN);
1010 min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN);
1011 max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN);
1012 min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN);
1014 min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES);
1015 max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES);
1016 min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK);
1017 max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK);
1018 min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK);
1022 CCS_LIM(sensor, MIN_FRAME_BLANKING_LINES),
1023 min_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height);
1024 max = max_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height;
1026 __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
1029 min_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width,
1031 max = max_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width;
1033 __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
1035 __ccs_update_exposure_limits(sensor);
1038 static int ccs_pll_blanking_update(struct ccs_sensor *sensor)
1040 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1043 rval = ccs_pll_update(sensor);
1047 /* Output from pixel array, including blanking */
1048 ccs_update_blanking(sensor);
1050 dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
1051 dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
1053 dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
1054 sensor->pll.pixel_rate_pixel_array /
1055 ((sensor->pixel_array->crop[CCS_PA_PAD_SRC].width
1056 + sensor->hblank->val) *
1057 (sensor->pixel_array->crop[CCS_PA_PAD_SRC].height
1058 + sensor->vblank->val) / 100));
1065 * SMIA++ NVM handling
1069 static int ccs_read_nvm_page(struct ccs_sensor *sensor, u32 p, u8 *nvm,
1078 rval = ccs_write(sensor, DATA_TRANSFER_IF_1_PAGE_SELECT, p);
1082 rval = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL,
1083 CCS_DATA_TRANSFER_IF_1_CTRL_ENABLE);
1087 rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1091 if (s & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) {
1096 if (CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
1097 CCS_DATA_TRANSFER_IF_CAPABILITY_POLLING) {
1098 for (i = 1000; i > 0; i--) {
1099 if (s & CCS_DATA_TRANSFER_IF_1_STATUS_READ_IF_READY)
1102 rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1111 for (i = 0; i <= CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P; i++) {
1114 rval = ccs_read(sensor, DATA_TRANSFER_IF_1_DATA(i), &v);
1124 static int ccs_read_nvm(struct ccs_sensor *sensor, unsigned char *nvm,
1129 int rval = 0, rval2;
1131 for (p = 0; p < nvm_size / (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1)
1133 rval = ccs_read_nvm_page(sensor, p, nvm, &status);
1134 nvm += CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1;
1137 if (rval == -ENODATA &&
1138 status & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE)
1141 rval2 = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, 0);
1145 return rval2 ?: p * (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1);
1150 * SMIA++ CCI address control
1153 static int ccs_change_cci_addr(struct ccs_sensor *sensor)
1155 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1159 client->addr = sensor->hwcfg.i2c_addr_dfl;
1161 rval = ccs_write(sensor, CCI_ADDRESS_CTRL,
1162 sensor->hwcfg.i2c_addr_alt << 1);
1166 client->addr = sensor->hwcfg.i2c_addr_alt;
1168 /* verify addr change went ok */
1169 rval = ccs_read(sensor, CCI_ADDRESS_CTRL, &val);
1173 if (val != sensor->hwcfg.i2c_addr_alt << 1)
1181 * SMIA++ Mode Control
1184 static int ccs_setup_flash_strobe(struct ccs_sensor *sensor)
1186 struct ccs_flash_strobe_parms *strobe_setup;
1187 unsigned int ext_freq = sensor->hwcfg.ext_clk;
1189 u32 strobe_adjustment;
1190 u32 strobe_width_high_rs;
1193 strobe_setup = sensor->hwcfg.strobe_setup;
1196 * How to calculate registers related to strobe length. Please
1197 * do not change, or if you do at least know what you're
1202 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1203 * / EXTCLK freq [Hz]) * flash_strobe_adjustment
1205 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1206 * flash_strobe_adjustment E N, [1 - 0xff]
1208 * The formula above is written as below to keep it on one
1211 * l / 10^6 = w / e * a
1213 * Let's mark w * a by x:
1221 * The strobe width must be at least as long as requested,
1222 * thus rounding upwards is needed.
1224 * x = (l * e + 10^6 - 1) / 10^6
1225 * -----------------------------
1227 * Maximum possible accuracy is wanted at all times. Thus keep
1228 * a as small as possible.
1230 * Calculate a, assuming maximum w, with rounding upwards:
1232 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1233 * -------------------------------------
1235 * Thus, we also get w, with that a, with rounding upwards:
1237 * w = (x + a - 1) / a
1238 * -------------------
1242 * x E [1, (2^16 - 1) * (2^8 - 1)]
1244 * Substituting maximum x to the original formula (with rounding),
1245 * the maximum l is thus
1247 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1249 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1250 * --------------------------------------------------
1252 * flash_strobe_length must be clamped between 1 and
1253 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1257 * flash_strobe_adjustment = ((flash_strobe_length *
1258 * EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1260 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1261 * EXTCLK freq + 10^6 - 1) / 10^6 +
1262 * flash_strobe_adjustment - 1) / flash_strobe_adjustment
1264 tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1265 1000000 + 1, ext_freq);
1266 strobe_setup->strobe_width_high_us =
1267 clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1269 tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1270 1000000 - 1), 1000000ULL);
1271 strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1272 strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1275 rval = ccs_write(sensor, FLASH_MODE_RS, strobe_setup->mode);
1279 rval = ccs_write(sensor, FLASH_STROBE_ADJUSTMENT, strobe_adjustment);
1283 rval = ccs_write(sensor, TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1284 strobe_width_high_rs);
1288 rval = ccs_write(sensor, TFLASH_STROBE_DELAY_RS_CTRL,
1289 strobe_setup->strobe_delay);
1293 rval = ccs_write(sensor, FLASH_STROBE_START_POINT,
1294 strobe_setup->stobe_start_point);
1298 rval = ccs_write(sensor, FLASH_TRIGGER_RS, strobe_setup->trigger);
1301 sensor->hwcfg.strobe_setup->trigger = 0;
1306 /* -----------------------------------------------------------------------------
1310 static int ccs_write_msr_regs(struct ccs_sensor *sensor)
1314 rval = ccs_write_data_regs(sensor,
1315 sensor->sdata.sensor_manufacturer_regs,
1316 sensor->sdata.num_sensor_manufacturer_regs);
1320 return ccs_write_data_regs(sensor,
1321 sensor->mdata.module_manufacturer_regs,
1322 sensor->mdata.num_module_manufacturer_regs);
1325 static int ccs_power_on(struct device *dev)
1327 struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1328 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1330 * The sub-device related to the I2C device is always the
1331 * source one, i.e. ssds[0].
1333 struct ccs_sensor *sensor =
1334 container_of(ssd, struct ccs_sensor, ssds[0]);
1335 const struct ccs_device *ccsdev = device_get_match_data(dev);
1339 rval = regulator_bulk_enable(ARRAY_SIZE(ccs_regulators),
1340 sensor->regulators);
1342 dev_err(dev, "failed to enable vana regulator\n");
1346 rval = clk_prepare_enable(sensor->ext_clk);
1348 dev_dbg(dev, "failed to enable xclk\n");
1352 gpiod_set_value(sensor->reset, 0);
1353 gpiod_set_value(sensor->xshutdown, 1);
1355 if (ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA)
1356 sleep = SMIAPP_RESET_DELAY(sensor->hwcfg.ext_clk);
1360 usleep_range(sleep, sleep);
1363 * Failures to respond to the address change command have been noticed.
1364 * Those failures seem to be caused by the sensor requiring a longer
1365 * boot time than advertised. An additional 10ms delay seems to work
1366 * around the issue, but the SMIA++ I2C write retry hack makes the delay
1367 * unnecessary. The failures need to be investigated to find a proper
1368 * fix, and a delay will likely need to be added here if the I2C write
1369 * retry hack is reverted before the root cause of the boot time issue
1373 if (sensor->hwcfg.i2c_addr_alt) {
1374 rval = ccs_change_cci_addr(sensor);
1376 dev_err(dev, "cci address change error\n");
1377 goto out_cci_addr_fail;
1381 rval = ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1383 dev_err(dev, "software reset failed\n");
1384 goto out_cci_addr_fail;
1387 if (sensor->hwcfg.i2c_addr_alt) {
1388 rval = ccs_change_cci_addr(sensor);
1390 dev_err(dev, "cci address change error\n");
1391 goto out_cci_addr_fail;
1395 rval = ccs_write(sensor, COMPRESSION_MODE,
1396 CCS_COMPRESSION_MODE_DPCM_PCM_SIMPLE);
1398 dev_err(dev, "compression mode set failed\n");
1399 goto out_cci_addr_fail;
1402 rval = ccs_write(sensor, EXTCLK_FREQUENCY_MHZ,
1403 sensor->hwcfg.ext_clk / (1000000 / (1 << 8)));
1405 dev_err(dev, "extclk frequency set failed\n");
1406 goto out_cci_addr_fail;
1409 rval = ccs_write(sensor, CSI_LANE_MODE, sensor->hwcfg.lanes - 1);
1411 dev_err(dev, "csi lane mode set failed\n");
1412 goto out_cci_addr_fail;
1415 rval = ccs_write(sensor, FAST_STANDBY_CTRL,
1416 CCS_FAST_STANDBY_CTRL_FRAME_TRUNCATION);
1418 dev_err(dev, "fast standby set failed\n");
1419 goto out_cci_addr_fail;
1422 rval = ccs_write(sensor, CSI_SIGNALING_MODE,
1423 sensor->hwcfg.csi_signalling_mode);
1425 dev_err(dev, "csi signalling mode set failed\n");
1426 goto out_cci_addr_fail;
1429 /* DPHY control done by sensor based on requested link rate */
1430 rval = ccs_write(sensor, PHY_CTRL, CCS_PHY_CTRL_UI);
1432 goto out_cci_addr_fail;
1434 rval = ccs_write_msr_regs(sensor);
1436 goto out_cci_addr_fail;
1438 rval = ccs_call_quirk(sensor, post_poweron);
1440 dev_err(dev, "post_poweron quirks failed\n");
1441 goto out_cci_addr_fail;
1447 gpiod_set_value(sensor->reset, 1);
1448 gpiod_set_value(sensor->xshutdown, 0);
1449 clk_disable_unprepare(sensor->ext_clk);
1452 regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1453 sensor->regulators);
1458 static int ccs_power_off(struct device *dev)
1460 struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1461 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1462 struct ccs_sensor *sensor =
1463 container_of(ssd, struct ccs_sensor, ssds[0]);
1466 * Currently power/clock to lens are enable/disabled separately
1467 * but they are essentially the same signals. So if the sensor is
1468 * powered off while the lens is powered on the sensor does not
1469 * really see a power off and next time the cci address change
1470 * will fail. So do a soft reset explicitly here.
1472 if (sensor->hwcfg.i2c_addr_alt)
1473 ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1475 gpiod_set_value(sensor->reset, 1);
1476 gpiod_set_value(sensor->xshutdown, 0);
1477 clk_disable_unprepare(sensor->ext_clk);
1478 usleep_range(5000, 5000);
1479 regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1480 sensor->regulators);
1481 sensor->streaming = false;
1486 /* -----------------------------------------------------------------------------
1487 * Video stream management
1490 static int ccs_start_streaming(struct ccs_sensor *sensor)
1492 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1493 unsigned int binning_mode;
1496 mutex_lock(&sensor->mutex);
1498 rval = ccs_write(sensor, CSI_DATA_FORMAT,
1499 (sensor->csi_format->width << 8) |
1500 sensor->csi_format->compressed);
1504 /* Binning configuration */
1505 if (sensor->binning_horizontal == 1 &&
1506 sensor->binning_vertical == 1) {
1510 (sensor->binning_horizontal << 4)
1511 | sensor->binning_vertical;
1513 rval = ccs_write(sensor, BINNING_TYPE, binning_type);
1519 rval = ccs_write(sensor, BINNING_MODE, binning_mode);
1524 rval = ccs_pll_configure(sensor);
1528 /* Analog crop start coordinates */
1529 rval = ccs_write(sensor, X_ADDR_START,
1530 sensor->pixel_array->crop[CCS_PA_PAD_SRC].left);
1534 rval = ccs_write(sensor, Y_ADDR_START,
1535 sensor->pixel_array->crop[CCS_PA_PAD_SRC].top);
1539 /* Analog crop end coordinates */
1542 sensor->pixel_array->crop[CCS_PA_PAD_SRC].left
1543 + sensor->pixel_array->crop[CCS_PA_PAD_SRC].width - 1);
1549 sensor->pixel_array->crop[CCS_PA_PAD_SRC].top
1550 + sensor->pixel_array->crop[CCS_PA_PAD_SRC].height - 1);
1555 * Output from pixel array, including blanking, is set using
1556 * controls below. No need to set here.
1560 if (CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
1561 == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1563 sensor, DIGITAL_CROP_X_OFFSET,
1564 sensor->scaler->crop[CCS_PAD_SINK].left);
1569 sensor, DIGITAL_CROP_Y_OFFSET,
1570 sensor->scaler->crop[CCS_PAD_SINK].top);
1575 sensor, DIGITAL_CROP_IMAGE_WIDTH,
1576 sensor->scaler->crop[CCS_PAD_SINK].width);
1581 sensor, DIGITAL_CROP_IMAGE_HEIGHT,
1582 sensor->scaler->crop[CCS_PAD_SINK].height);
1588 if (CCS_LIM(sensor, SCALING_CAPABILITY)
1589 != CCS_SCALING_CAPABILITY_NONE) {
1590 rval = ccs_write(sensor, SCALING_MODE, sensor->scaling_mode);
1594 rval = ccs_write(sensor, SCALE_M, sensor->scale_m);
1599 /* Output size from sensor */
1600 rval = ccs_write(sensor, X_OUTPUT_SIZE,
1601 sensor->src->crop[CCS_PAD_SRC].width);
1604 rval = ccs_write(sensor, Y_OUTPUT_SIZE,
1605 sensor->src->crop[CCS_PAD_SRC].height);
1609 if (CCS_LIM(sensor, FLASH_MODE_CAPABILITY) &
1610 (CCS_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1611 SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE) &&
1612 sensor->hwcfg.strobe_setup != NULL &&
1613 sensor->hwcfg.strobe_setup->trigger != 0) {
1614 rval = ccs_setup_flash_strobe(sensor);
1619 rval = ccs_call_quirk(sensor, pre_streamon);
1621 dev_err(&client->dev, "pre_streamon quirks failed\n");
1625 rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_STREAMING);
1628 mutex_unlock(&sensor->mutex);
1633 static int ccs_stop_streaming(struct ccs_sensor *sensor)
1635 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1638 mutex_lock(&sensor->mutex);
1639 rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_SOFTWARE_STANDBY);
1643 rval = ccs_call_quirk(sensor, post_streamoff);
1645 dev_err(&client->dev, "post_streamoff quirks failed\n");
1648 mutex_unlock(&sensor->mutex);
1652 /* -----------------------------------------------------------------------------
1653 * V4L2 subdev video operations
1656 static int ccs_pm_get_init(struct ccs_sensor *sensor)
1658 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1661 rval = pm_runtime_get_sync(&client->dev);
1663 pm_runtime_put_noidle(&client->dev);
1667 rval = v4l2_ctrl_handler_setup(&sensor->pixel_array->
1672 return v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1678 static int ccs_set_stream(struct v4l2_subdev *subdev, int enable)
1680 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1681 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1684 if (sensor->streaming == enable)
1688 ccs_stop_streaming(sensor);
1689 sensor->streaming = false;
1690 pm_runtime_mark_last_busy(&client->dev);
1691 pm_runtime_put_autosuspend(&client->dev);
1696 rval = ccs_pm_get_init(sensor);
1700 sensor->streaming = true;
1702 rval = ccs_start_streaming(sensor);
1704 sensor->streaming = false;
1705 pm_runtime_mark_last_busy(&client->dev);
1706 pm_runtime_put_autosuspend(&client->dev);
1712 static int ccs_enum_mbus_code(struct v4l2_subdev *subdev,
1713 struct v4l2_subdev_pad_config *cfg,
1714 struct v4l2_subdev_mbus_code_enum *code)
1716 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1717 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1722 mutex_lock(&sensor->mutex);
1724 dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
1725 subdev->name, code->pad, code->index);
1727 if (subdev != &sensor->src->sd || code->pad != CCS_PAD_SRC) {
1731 code->code = sensor->internal_csi_format->code;
1736 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1737 if (sensor->mbus_frame_fmts & (1 << i))
1740 if (idx == code->index) {
1741 code->code = ccs_csi_data_formats[i].code;
1742 dev_err(&client->dev, "found index %d, i %d, code %x\n",
1743 code->index, i, code->code);
1750 mutex_unlock(&sensor->mutex);
1755 static u32 __ccs_get_mbus_code(struct v4l2_subdev *subdev, unsigned int pad)
1757 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1759 if (subdev == &sensor->src->sd && pad == CCS_PAD_SRC)
1760 return sensor->csi_format->code;
1762 return sensor->internal_csi_format->code;
1765 static int __ccs_get_format(struct v4l2_subdev *subdev,
1766 struct v4l2_subdev_pad_config *cfg,
1767 struct v4l2_subdev_format *fmt)
1769 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1771 if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
1772 fmt->format = *v4l2_subdev_get_try_format(subdev, cfg,
1775 struct v4l2_rect *r;
1777 if (fmt->pad == ssd->source_pad)
1778 r = &ssd->crop[ssd->source_pad];
1782 fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
1783 fmt->format.width = r->width;
1784 fmt->format.height = r->height;
1785 fmt->format.field = V4L2_FIELD_NONE;
1791 static int ccs_get_format(struct v4l2_subdev *subdev,
1792 struct v4l2_subdev_pad_config *cfg,
1793 struct v4l2_subdev_format *fmt)
1795 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1798 mutex_lock(&sensor->mutex);
1799 rval = __ccs_get_format(subdev, cfg, fmt);
1800 mutex_unlock(&sensor->mutex);
1805 static void ccs_get_crop_compose(struct v4l2_subdev *subdev,
1806 struct v4l2_subdev_pad_config *cfg,
1807 struct v4l2_rect **crops,
1808 struct v4l2_rect **comps, int which)
1810 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1813 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1815 for (i = 0; i < subdev->entity.num_pads; i++)
1816 crops[i] = &ssd->crop[i];
1818 *comps = &ssd->compose;
1821 for (i = 0; i < subdev->entity.num_pads; i++)
1822 crops[i] = v4l2_subdev_get_try_crop(subdev,
1826 *comps = v4l2_subdev_get_try_compose(subdev, cfg,
1831 /* Changes require propagation only on sink pad. */
1832 static void ccs_propagate(struct v4l2_subdev *subdev,
1833 struct v4l2_subdev_pad_config *cfg, int which,
1836 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1837 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1838 struct v4l2_rect *comp, *crops[CCS_PADS];
1840 ccs_get_crop_compose(subdev, cfg, crops, &comp, which);
1843 case V4L2_SEL_TGT_CROP:
1844 comp->width = crops[CCS_PAD_SINK]->width;
1845 comp->height = crops[CCS_PAD_SINK]->height;
1846 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1847 if (ssd == sensor->scaler) {
1848 sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
1849 sensor->scaling_mode =
1850 CCS_SCALING_MODE_NO_SCALING;
1851 } else if (ssd == sensor->binner) {
1852 sensor->binning_horizontal = 1;
1853 sensor->binning_vertical = 1;
1857 case V4L2_SEL_TGT_COMPOSE:
1858 *crops[CCS_PAD_SRC] = *comp;
1865 static const struct ccs_csi_data_format
1866 *ccs_validate_csi_data_format(struct ccs_sensor *sensor, u32 code)
1870 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1871 if (sensor->mbus_frame_fmts & (1 << i) &&
1872 ccs_csi_data_formats[i].code == code)
1873 return &ccs_csi_data_formats[i];
1876 return sensor->csi_format;
1879 static int ccs_set_format_source(struct v4l2_subdev *subdev,
1880 struct v4l2_subdev_pad_config *cfg,
1881 struct v4l2_subdev_format *fmt)
1883 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1884 const struct ccs_csi_data_format *csi_format,
1885 *old_csi_format = sensor->csi_format;
1886 unsigned long *valid_link_freqs;
1887 u32 code = fmt->format.code;
1891 rval = __ccs_get_format(subdev, cfg, fmt);
1896 * Media bus code is changeable on src subdev's source pad. On
1897 * other source pads we just get format here.
1899 if (subdev != &sensor->src->sd)
1902 csi_format = ccs_validate_csi_data_format(sensor, code);
1904 fmt->format.code = csi_format->code;
1906 if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1909 sensor->csi_format = csi_format;
1911 if (csi_format->width != old_csi_format->width)
1912 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
1913 __v4l2_ctrl_modify_range(
1914 sensor->test_data[i], 0,
1915 (1 << csi_format->width) - 1, 1, 0);
1917 if (csi_format->compressed == old_csi_format->compressed)
1921 &sensor->valid_link_freqs[sensor->csi_format->compressed
1922 - sensor->compressed_min_bpp];
1924 __v4l2_ctrl_modify_range(
1925 sensor->link_freq, 0,
1926 __fls(*valid_link_freqs), ~*valid_link_freqs,
1927 __ffs(*valid_link_freqs));
1929 return ccs_pll_update(sensor);
1932 static int ccs_set_format(struct v4l2_subdev *subdev,
1933 struct v4l2_subdev_pad_config *cfg,
1934 struct v4l2_subdev_format *fmt)
1936 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1937 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1938 struct v4l2_rect *crops[CCS_PADS];
1940 mutex_lock(&sensor->mutex);
1942 if (fmt->pad == ssd->source_pad) {
1945 rval = ccs_set_format_source(subdev, cfg, fmt);
1947 mutex_unlock(&sensor->mutex);
1952 /* Sink pad. Width and height are changeable here. */
1953 fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
1954 fmt->format.width &= ~1;
1955 fmt->format.height &= ~1;
1956 fmt->format.field = V4L2_FIELD_NONE;
1959 clamp(fmt->format.width,
1960 CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
1961 CCS_LIM(sensor, MAX_X_OUTPUT_SIZE));
1962 fmt->format.height =
1963 clamp(fmt->format.height,
1964 CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
1965 CCS_LIM(sensor, MAX_Y_OUTPUT_SIZE));
1967 ccs_get_crop_compose(subdev, cfg, crops, NULL, fmt->which);
1969 crops[ssd->sink_pad]->left = 0;
1970 crops[ssd->sink_pad]->top = 0;
1971 crops[ssd->sink_pad]->width = fmt->format.width;
1972 crops[ssd->sink_pad]->height = fmt->format.height;
1973 if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1974 ssd->sink_fmt = *crops[ssd->sink_pad];
1975 ccs_propagate(subdev, cfg, fmt->which, V4L2_SEL_TGT_CROP);
1977 mutex_unlock(&sensor->mutex);
1983 * Calculate goodness of scaled image size compared to expected image
1984 * size and flags provided.
1986 #define SCALING_GOODNESS 100000
1987 #define SCALING_GOODNESS_EXTREME 100000000
1988 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
1989 int h, int ask_h, u32 flags)
1991 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1992 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2000 if (flags & V4L2_SEL_FLAG_GE) {
2002 val -= SCALING_GOODNESS;
2004 val -= SCALING_GOODNESS;
2007 if (flags & V4L2_SEL_FLAG_LE) {
2009 val -= SCALING_GOODNESS;
2011 val -= SCALING_GOODNESS;
2014 val -= abs(w - ask_w);
2015 val -= abs(h - ask_h);
2017 if (w < CCS_LIM(sensor, MIN_X_OUTPUT_SIZE))
2018 val -= SCALING_GOODNESS_EXTREME;
2020 dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
2021 w, ask_w, h, ask_h, val);
2026 static void ccs_set_compose_binner(struct v4l2_subdev *subdev,
2027 struct v4l2_subdev_pad_config *cfg,
2028 struct v4l2_subdev_selection *sel,
2029 struct v4l2_rect **crops,
2030 struct v4l2_rect *comp)
2032 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2034 unsigned int binh = 1, binv = 1;
2035 int best = scaling_goodness(
2037 crops[CCS_PAD_SINK]->width, sel->r.width,
2038 crops[CCS_PAD_SINK]->height, sel->r.height, sel->flags);
2040 for (i = 0; i < sensor->nbinning_subtypes; i++) {
2041 int this = scaling_goodness(
2043 crops[CCS_PAD_SINK]->width
2044 / sensor->binning_subtypes[i].horizontal,
2046 crops[CCS_PAD_SINK]->height
2047 / sensor->binning_subtypes[i].vertical,
2048 sel->r.height, sel->flags);
2051 binh = sensor->binning_subtypes[i].horizontal;
2052 binv = sensor->binning_subtypes[i].vertical;
2056 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2057 sensor->binning_vertical = binv;
2058 sensor->binning_horizontal = binh;
2061 sel->r.width = (crops[CCS_PAD_SINK]->width / binh) & ~1;
2062 sel->r.height = (crops[CCS_PAD_SINK]->height / binv) & ~1;
2066 * Calculate best scaling ratio and mode for given output resolution.
2068 * Try all of these: horizontal ratio, vertical ratio and smallest
2069 * size possible (horizontally).
2071 * Also try whether horizontal scaler or full scaler gives a better
2074 static void ccs_set_compose_scaler(struct v4l2_subdev *subdev,
2075 struct v4l2_subdev_pad_config *cfg,
2076 struct v4l2_subdev_selection *sel,
2077 struct v4l2_rect **crops,
2078 struct v4l2_rect *comp)
2080 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2081 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2082 u32 min, max, a, b, max_m;
2083 u32 scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2084 int mode = CCS_SCALING_MODE_HORIZONTAL;
2090 sel->r.width = min_t(unsigned int, sel->r.width,
2091 crops[CCS_PAD_SINK]->width);
2092 sel->r.height = min_t(unsigned int, sel->r.height,
2093 crops[CCS_PAD_SINK]->height);
2095 a = crops[CCS_PAD_SINK]->width
2096 * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.width;
2097 b = crops[CCS_PAD_SINK]->height
2098 * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.height;
2099 max_m = crops[CCS_PAD_SINK]->width
2100 * CCS_LIM(sensor, SCALER_N_MIN)
2101 / CCS_LIM(sensor, MIN_X_OUTPUT_SIZE);
2103 a = clamp(a, CCS_LIM(sensor, SCALER_M_MIN),
2104 CCS_LIM(sensor, SCALER_M_MAX));
2105 b = clamp(b, CCS_LIM(sensor, SCALER_M_MIN),
2106 CCS_LIM(sensor, SCALER_M_MAX));
2107 max_m = clamp(max_m, CCS_LIM(sensor, SCALER_M_MIN),
2108 CCS_LIM(sensor, SCALER_M_MAX));
2110 dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
2112 min = min(max_m, min(a, b));
2113 max = min(max_m, max(a, b));
2122 try[ntry] = min + 1;
2125 try[ntry] = max + 1;
2130 for (i = 0; i < ntry; i++) {
2131 int this = scaling_goodness(
2133 crops[CCS_PAD_SINK]->width
2134 / try[i] * CCS_LIM(sensor, SCALER_N_MIN),
2136 crops[CCS_PAD_SINK]->height,
2140 dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
2144 mode = CCS_SCALING_MODE_HORIZONTAL;
2148 if (CCS_LIM(sensor, SCALING_CAPABILITY)
2149 == CCS_SCALING_CAPABILITY_HORIZONTAL)
2152 this = scaling_goodness(
2153 subdev, crops[CCS_PAD_SINK]->width
2155 * CCS_LIM(sensor, SCALER_N_MIN),
2157 crops[CCS_PAD_SINK]->height
2159 * CCS_LIM(sensor, SCALER_N_MIN),
2165 mode = SMIAPP_SCALING_MODE_BOTH;
2171 (crops[CCS_PAD_SINK]->width
2173 * CCS_LIM(sensor, SCALER_N_MIN)) & ~1;
2174 if (mode == SMIAPP_SCALING_MODE_BOTH)
2176 (crops[CCS_PAD_SINK]->height
2178 * CCS_LIM(sensor, SCALER_N_MIN))
2181 sel->r.height = crops[CCS_PAD_SINK]->height;
2183 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2184 sensor->scale_m = scale_m;
2185 sensor->scaling_mode = mode;
2188 /* We're only called on source pads. This function sets scaling. */
2189 static int ccs_set_compose(struct v4l2_subdev *subdev,
2190 struct v4l2_subdev_pad_config *cfg,
2191 struct v4l2_subdev_selection *sel)
2193 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2194 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2195 struct v4l2_rect *comp, *crops[CCS_PADS];
2197 ccs_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
2202 if (ssd == sensor->binner)
2203 ccs_set_compose_binner(subdev, cfg, sel, crops, comp);
2205 ccs_set_compose_scaler(subdev, cfg, sel, crops, comp);
2208 ccs_propagate(subdev, cfg, sel->which, V4L2_SEL_TGT_COMPOSE);
2210 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2211 return ccs_pll_blanking_update(sensor);
2216 static int __ccs_sel_supported(struct v4l2_subdev *subdev,
2217 struct v4l2_subdev_selection *sel)
2219 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2220 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2222 /* We only implement crop in three places. */
2223 switch (sel->target) {
2224 case V4L2_SEL_TGT_CROP:
2225 case V4L2_SEL_TGT_CROP_BOUNDS:
2226 if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2228 if (ssd == sensor->src && sel->pad == CCS_PAD_SRC)
2230 if (ssd == sensor->scaler && sel->pad == CCS_PAD_SINK &&
2231 CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
2232 == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2235 case V4L2_SEL_TGT_NATIVE_SIZE:
2236 if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2239 case V4L2_SEL_TGT_COMPOSE:
2240 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2241 if (sel->pad == ssd->source_pad)
2243 if (ssd == sensor->binner)
2245 if (ssd == sensor->scaler && CCS_LIM(sensor, SCALING_CAPABILITY)
2246 != CCS_SCALING_CAPABILITY_NONE)
2254 static int ccs_set_crop(struct v4l2_subdev *subdev,
2255 struct v4l2_subdev_pad_config *cfg,
2256 struct v4l2_subdev_selection *sel)
2258 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2259 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2260 struct v4l2_rect *src_size, *crops[CCS_PADS];
2261 struct v4l2_rect _r;
2263 ccs_get_crop_compose(subdev, cfg, crops, NULL, sel->which);
2265 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2266 if (sel->pad == ssd->sink_pad)
2267 src_size = &ssd->sink_fmt;
2269 src_size = &ssd->compose;
2271 if (sel->pad == ssd->sink_pad) {
2274 _r.width = v4l2_subdev_get_try_format(subdev, cfg,
2277 _r.height = v4l2_subdev_get_try_format(subdev, cfg,
2282 src_size = v4l2_subdev_get_try_compose(
2283 subdev, cfg, ssd->sink_pad);
2287 if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) {
2292 sel->r.width = min(sel->r.width, src_size->width);
2293 sel->r.height = min(sel->r.height, src_size->height);
2295 sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
2296 sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
2298 *crops[sel->pad] = sel->r;
2300 if (ssd != sensor->pixel_array && sel->pad == CCS_PAD_SINK)
2301 ccs_propagate(subdev, cfg, sel->which, V4L2_SEL_TGT_CROP);
2306 static void ccs_get_native_size(struct ccs_subdev *ssd, struct v4l2_rect *r)
2310 r->width = CCS_LIM(ssd->sensor, X_ADDR_MAX) + 1;
2311 r->height = CCS_LIM(ssd->sensor, Y_ADDR_MAX) + 1;
2314 static int __ccs_get_selection(struct v4l2_subdev *subdev,
2315 struct v4l2_subdev_pad_config *cfg,
2316 struct v4l2_subdev_selection *sel)
2318 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2319 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2320 struct v4l2_rect *comp, *crops[CCS_PADS];
2321 struct v4l2_rect sink_fmt;
2324 ret = __ccs_sel_supported(subdev, sel);
2328 ccs_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
2330 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2331 sink_fmt = ssd->sink_fmt;
2333 struct v4l2_mbus_framefmt *fmt =
2334 v4l2_subdev_get_try_format(subdev, cfg, ssd->sink_pad);
2338 sink_fmt.width = fmt->width;
2339 sink_fmt.height = fmt->height;
2342 switch (sel->target) {
2343 case V4L2_SEL_TGT_CROP_BOUNDS:
2344 case V4L2_SEL_TGT_NATIVE_SIZE:
2345 if (ssd == sensor->pixel_array)
2346 ccs_get_native_size(ssd, &sel->r);
2347 else if (sel->pad == ssd->sink_pad)
2352 case V4L2_SEL_TGT_CROP:
2353 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2354 sel->r = *crops[sel->pad];
2356 case V4L2_SEL_TGT_COMPOSE:
2364 static int ccs_get_selection(struct v4l2_subdev *subdev,
2365 struct v4l2_subdev_pad_config *cfg,
2366 struct v4l2_subdev_selection *sel)
2368 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2371 mutex_lock(&sensor->mutex);
2372 rval = __ccs_get_selection(subdev, cfg, sel);
2373 mutex_unlock(&sensor->mutex);
2378 static int ccs_set_selection(struct v4l2_subdev *subdev,
2379 struct v4l2_subdev_pad_config *cfg,
2380 struct v4l2_subdev_selection *sel)
2382 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2385 ret = __ccs_sel_supported(subdev, sel);
2389 mutex_lock(&sensor->mutex);
2391 sel->r.left = max(0, sel->r.left & ~1);
2392 sel->r.top = max(0, sel->r.top & ~1);
2393 sel->r.width = CCS_ALIGN_DIM(sel->r.width, sel->flags);
2394 sel->r.height = CCS_ALIGN_DIM(sel->r.height, sel->flags);
2396 sel->r.width = max_t(unsigned int, CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2398 sel->r.height = max_t(unsigned int, CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2401 switch (sel->target) {
2402 case V4L2_SEL_TGT_CROP:
2403 ret = ccs_set_crop(subdev, cfg, sel);
2405 case V4L2_SEL_TGT_COMPOSE:
2406 ret = ccs_set_compose(subdev, cfg, sel);
2412 mutex_unlock(&sensor->mutex);
2416 static int ccs_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2418 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2420 *frames = sensor->frame_skip;
2424 static int ccs_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
2426 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2428 *lines = sensor->image_start;
2433 /* -----------------------------------------------------------------------------
2438 ccs_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
2441 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2442 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2443 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2446 if (!sensor->dev_init_done)
2449 rval = ccs_pm_get_init(sensor);
2453 rval = ccs_read_nvm(sensor, buf, PAGE_SIZE);
2455 pm_runtime_put(&client->dev);
2456 dev_err(&client->dev, "nvm read failed\n");
2460 pm_runtime_mark_last_busy(&client->dev);
2461 pm_runtime_put_autosuspend(&client->dev);
2464 * NVM is still way below a PAGE_SIZE, so we can safely
2465 * assume this for now.
2469 static DEVICE_ATTR(nvm, S_IRUGO, ccs_sysfs_nvm_read, NULL);
2472 ccs_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
2475 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2476 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2477 struct ccs_module_info *minfo = &sensor->minfo;
2479 if (minfo->mipi_manufacturer_id)
2480 return snprintf(buf, PAGE_SIZE, "%4.4x%4.4x%2.2x\n",
2481 minfo->mipi_manufacturer_id, minfo->model_id,
2482 minfo->revision_number) + 1;
2484 return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
2485 minfo->smia_manufacturer_id, minfo->model_id,
2486 minfo->revision_number) + 1;
2489 static DEVICE_ATTR(ident, S_IRUGO, ccs_sysfs_ident_read, NULL);
2491 /* -----------------------------------------------------------------------------
2492 * V4L2 subdev core operations
2495 static int ccs_identify_module(struct ccs_sensor *sensor)
2497 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2498 struct ccs_module_info *minfo = &sensor->minfo;
2504 rval = ccs_read(sensor, MODULE_MANUFACTURER_ID,
2505 &minfo->mipi_manufacturer_id);
2506 if (!rval && !minfo->mipi_manufacturer_id)
2507 rval = ccs_read_addr_8only(sensor,
2508 SMIAPP_REG_U8_MANUFACTURER_ID,
2509 &minfo->smia_manufacturer_id);
2511 rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_MODEL_ID,
2514 rval = ccs_read_addr_8only(sensor,
2515 CCS_R_MODULE_REVISION_NUMBER_MAJOR,
2518 rval = ccs_read_addr_8only(sensor,
2519 CCS_R_MODULE_REVISION_NUMBER_MINOR,
2520 &minfo->revision_number);
2521 minfo->revision_number |= rev << 8;
2524 rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_YEAR,
2525 &minfo->module_year);
2527 rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_MONTH,
2528 &minfo->module_month);
2530 rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_DAY,
2531 &minfo->module_day);
2535 rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID,
2536 &minfo->sensor_mipi_manufacturer_id);
2537 if (!rval && !minfo->sensor_mipi_manufacturer_id)
2538 rval = ccs_read_addr_8only(sensor,
2539 CCS_R_SENSOR_MANUFACTURER_ID,
2540 &minfo->sensor_smia_manufacturer_id);
2542 rval = ccs_read_addr_8only(sensor,
2543 CCS_R_SENSOR_MODEL_ID,
2544 &minfo->sensor_model_id);
2546 rval = ccs_read_addr_8only(sensor,
2547 CCS_R_SENSOR_REVISION_NUMBER,
2548 &minfo->sensor_revision_number);
2550 rval = ccs_read_addr_8only(sensor,
2551 CCS_R_SENSOR_FIRMWARE_VERSION,
2552 &minfo->sensor_firmware_version);
2556 rval = ccs_read(sensor, MIPI_CCS_VERSION, &minfo->ccs_version);
2557 if (!rval && !minfo->ccs_version)
2558 rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2559 &minfo->smia_version);
2560 if (!rval && !minfo->ccs_version)
2561 rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2562 &minfo->smiapp_version);
2565 dev_err(&client->dev, "sensor detection failed\n");
2569 if (minfo->mipi_manufacturer_id)
2570 dev_dbg(&client->dev, "MIPI CCS module 0x%4.4x-0x%4.4x\n",
2571 minfo->mipi_manufacturer_id, minfo->model_id);
2573 dev_dbg(&client->dev, "SMIA module 0x%2.2x-0x%4.4x\n",
2574 minfo->smia_manufacturer_id, minfo->model_id);
2576 dev_dbg(&client->dev,
2577 "module revision 0x%4.4x date %2.2d-%2.2d-%2.2d\n",
2578 minfo->revision_number, minfo->module_year, minfo->module_month,
2581 if (minfo->sensor_mipi_manufacturer_id)
2582 dev_dbg(&client->dev, "MIPI CCS sensor 0x%4.4x-0x%4.4x\n",
2583 minfo->sensor_mipi_manufacturer_id,
2584 minfo->sensor_model_id);
2586 dev_dbg(&client->dev, "SMIA sensor 0x%2.2x-0x%4.4x\n",
2587 minfo->sensor_smia_manufacturer_id,
2588 minfo->sensor_model_id);
2590 dev_dbg(&client->dev,
2591 "sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2592 minfo->sensor_revision_number, minfo->sensor_firmware_version);
2594 if (minfo->ccs_version) {
2595 dev_dbg(&client->dev, "MIPI CCS version %u.%u",
2596 (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MAJOR_MASK)
2597 >> CCS_MIPI_CCS_VERSION_MAJOR_SHIFT,
2598 (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MINOR_MASK));
2599 minfo->name = CCS_NAME;
2601 dev_dbg(&client->dev,
2602 "smia version %2.2d smiapp version %2.2d\n",
2603 minfo->smia_version, minfo->smiapp_version);
2604 minfo->name = SMIAPP_NAME;
2608 * Some modules have bad data in the lvalues below. Hope the
2609 * rvalues have better stuff. The lvalues are module
2610 * parameters whereas the rvalues are sensor parameters.
2612 if (minfo->sensor_smia_manufacturer_id &&
2613 !minfo->smia_manufacturer_id && !minfo->model_id) {
2614 minfo->smia_manufacturer_id =
2615 minfo->sensor_smia_manufacturer_id;
2616 minfo->model_id = minfo->sensor_model_id;
2617 minfo->revision_number = minfo->sensor_revision_number;
2620 for (i = 0; i < ARRAY_SIZE(ccs_module_idents); i++) {
2621 if (ccs_module_idents[i].mipi_manufacturer_id &&
2622 ccs_module_idents[i].mipi_manufacturer_id
2623 != minfo->mipi_manufacturer_id)
2625 if (ccs_module_idents[i].smia_manufacturer_id &&
2626 ccs_module_idents[i].smia_manufacturer_id
2627 != minfo->smia_manufacturer_id)
2629 if (ccs_module_idents[i].model_id != minfo->model_id)
2631 if (ccs_module_idents[i].flags
2632 & CCS_MODULE_IDENT_FLAG_REV_LE) {
2633 if (ccs_module_idents[i].revision_number_major
2634 < (minfo->revision_number >> 8))
2637 if (ccs_module_idents[i].revision_number_major
2638 != (minfo->revision_number >> 8))
2642 minfo->name = ccs_module_idents[i].name;
2643 minfo->quirk = ccs_module_idents[i].quirk;
2647 if (i >= ARRAY_SIZE(ccs_module_idents))
2648 dev_warn(&client->dev,
2649 "no quirks for this module; let's hope it's fully compliant\n");
2651 dev_dbg(&client->dev, "the sensor is called %s\n", minfo->name);
2656 static const struct v4l2_subdev_ops ccs_ops;
2657 static const struct v4l2_subdev_internal_ops ccs_internal_ops;
2658 static const struct media_entity_operations ccs_entity_ops;
2660 static int ccs_register_subdev(struct ccs_sensor *sensor,
2661 struct ccs_subdev *ssd,
2662 struct ccs_subdev *sink_ssd,
2663 u16 source_pad, u16 sink_pad, u32 link_flags)
2665 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2671 rval = media_entity_pads_init(&ssd->sd.entity, ssd->npads, ssd->pads);
2673 dev_err(&client->dev, "media_entity_pads_init failed\n");
2677 rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev, &ssd->sd);
2679 dev_err(&client->dev, "v4l2_device_register_subdev failed\n");
2683 rval = media_create_pad_link(&ssd->sd.entity, source_pad,
2684 &sink_ssd->sd.entity, sink_pad,
2687 dev_err(&client->dev, "media_create_pad_link failed\n");
2688 v4l2_device_unregister_subdev(&ssd->sd);
2695 static void ccs_unregistered(struct v4l2_subdev *subdev)
2697 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2700 for (i = 1; i < sensor->ssds_used; i++)
2701 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2704 static int ccs_registered(struct v4l2_subdev *subdev)
2706 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2709 if (sensor->scaler) {
2710 rval = ccs_register_subdev(sensor, sensor->binner,
2712 CCS_PAD_SRC, CCS_PAD_SINK,
2713 MEDIA_LNK_FL_ENABLED |
2714 MEDIA_LNK_FL_IMMUTABLE);
2719 rval = ccs_register_subdev(sensor, sensor->pixel_array, sensor->binner,
2720 CCS_PA_PAD_SRC, CCS_PAD_SINK,
2721 MEDIA_LNK_FL_ENABLED |
2722 MEDIA_LNK_FL_IMMUTABLE);
2729 ccs_unregistered(subdev);
2734 static void ccs_cleanup(struct ccs_sensor *sensor)
2736 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2738 device_remove_file(&client->dev, &dev_attr_nvm);
2739 device_remove_file(&client->dev, &dev_attr_ident);
2741 ccs_free_controls(sensor);
2744 static void ccs_create_subdev(struct ccs_sensor *sensor,
2745 struct ccs_subdev *ssd, const char *name,
2746 unsigned short num_pads, u32 function)
2748 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2753 if (ssd != sensor->src)
2754 v4l2_subdev_init(&ssd->sd, &ccs_ops);
2756 ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2757 ssd->sd.entity.function = function;
2758 ssd->sensor = sensor;
2760 ssd->npads = num_pads;
2761 ssd->source_pad = num_pads - 1;
2763 v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name);
2765 ccs_get_native_size(ssd, &ssd->sink_fmt);
2767 ssd->compose.width = ssd->sink_fmt.width;
2768 ssd->compose.height = ssd->sink_fmt.height;
2769 ssd->crop[ssd->source_pad] = ssd->compose;
2770 ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2771 if (ssd != sensor->pixel_array) {
2772 ssd->crop[ssd->sink_pad] = ssd->compose;
2773 ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
2776 ssd->sd.entity.ops = &ccs_entity_ops;
2778 if (ssd == sensor->src)
2781 ssd->sd.internal_ops = &ccs_internal_ops;
2782 ssd->sd.owner = THIS_MODULE;
2783 ssd->sd.dev = &client->dev;
2784 v4l2_set_subdevdata(&ssd->sd, client);
2787 static int ccs_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2789 struct ccs_subdev *ssd = to_ccs_subdev(sd);
2790 struct ccs_sensor *sensor = ssd->sensor;
2793 mutex_lock(&sensor->mutex);
2795 for (i = 0; i < ssd->npads; i++) {
2796 struct v4l2_mbus_framefmt *try_fmt =
2797 v4l2_subdev_get_try_format(sd, fh->pad, i);
2798 struct v4l2_rect *try_crop =
2799 v4l2_subdev_get_try_crop(sd, fh->pad, i);
2800 struct v4l2_rect *try_comp;
2802 ccs_get_native_size(ssd, try_crop);
2804 try_fmt->width = try_crop->width;
2805 try_fmt->height = try_crop->height;
2806 try_fmt->code = sensor->internal_csi_format->code;
2807 try_fmt->field = V4L2_FIELD_NONE;
2809 if (ssd != sensor->pixel_array)
2812 try_comp = v4l2_subdev_get_try_compose(sd, fh->pad, i);
2813 *try_comp = *try_crop;
2816 mutex_unlock(&sensor->mutex);
2821 static const struct v4l2_subdev_video_ops ccs_video_ops = {
2822 .s_stream = ccs_set_stream,
2825 static const struct v4l2_subdev_pad_ops ccs_pad_ops = {
2826 .enum_mbus_code = ccs_enum_mbus_code,
2827 .get_fmt = ccs_get_format,
2828 .set_fmt = ccs_set_format,
2829 .get_selection = ccs_get_selection,
2830 .set_selection = ccs_set_selection,
2833 static const struct v4l2_subdev_sensor_ops ccs_sensor_ops = {
2834 .g_skip_frames = ccs_get_skip_frames,
2835 .g_skip_top_lines = ccs_get_skip_top_lines,
2838 static const struct v4l2_subdev_ops ccs_ops = {
2839 .video = &ccs_video_ops,
2840 .pad = &ccs_pad_ops,
2841 .sensor = &ccs_sensor_ops,
2844 static const struct media_entity_operations ccs_entity_ops = {
2845 .link_validate = v4l2_subdev_link_validate,
2848 static const struct v4l2_subdev_internal_ops ccs_internal_src_ops = {
2849 .registered = ccs_registered,
2850 .unregistered = ccs_unregistered,
2854 static const struct v4l2_subdev_internal_ops ccs_internal_ops = {
2858 /* -----------------------------------------------------------------------------
2862 static int __maybe_unused ccs_suspend(struct device *dev)
2864 struct i2c_client *client = to_i2c_client(dev);
2865 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2866 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2867 bool streaming = sensor->streaming;
2870 rval = pm_runtime_get_sync(dev);
2872 pm_runtime_put_noidle(dev);
2877 if (sensor->streaming)
2878 ccs_stop_streaming(sensor);
2880 /* save state for resume */
2881 sensor->streaming = streaming;
2886 static int __maybe_unused ccs_resume(struct device *dev)
2888 struct i2c_client *client = to_i2c_client(dev);
2889 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2890 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2893 pm_runtime_put(dev);
2895 if (sensor->streaming)
2896 rval = ccs_start_streaming(sensor);
2901 static int ccs_get_hwconfig(struct ccs_sensor *sensor, struct device *dev)
2903 struct ccs_hwconfig *hwcfg = &sensor->hwcfg;
2904 struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_UNKNOWN };
2905 struct fwnode_handle *ep;
2906 struct fwnode_handle *fwnode = dev_fwnode(dev);
2911 ep = fwnode_graph_get_next_endpoint(fwnode, NULL);
2916 * Note that we do need to rely on detecting the bus type between CSI-2
2917 * D-PHY and CCP2 as the old bindings did not require it.
2919 rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
2923 switch (bus_cfg.bus_type) {
2924 case V4L2_MBUS_CSI2_DPHY:
2925 hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_DPHY;
2926 hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
2928 case V4L2_MBUS_CSI2_CPHY:
2929 hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_CPHY;
2930 hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
2932 case V4L2_MBUS_CSI1:
2933 case V4L2_MBUS_CCP2:
2934 hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
2935 SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
2936 SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
2940 dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
2945 dev_dbg(dev, "lanes %u\n", hwcfg->lanes);
2947 rval = fwnode_property_read_u32(fwnode, "rotation", &rotation);
2951 hwcfg->module_board_orient =
2952 CCS_MODULE_BOARD_ORIENT_180;
2957 dev_err(dev, "invalid rotation %u\n", rotation);
2963 rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
2966 dev_info(dev, "can't get clock-frequency\n");
2968 dev_dbg(dev, "clk %d, mode %d\n", hwcfg->ext_clk,
2969 hwcfg->csi_signalling_mode);
2971 if (!bus_cfg.nr_of_link_frequencies) {
2972 dev_warn(dev, "no link frequencies defined\n");
2977 hwcfg->op_sys_clock = devm_kcalloc(
2978 dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
2979 sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
2980 if (!hwcfg->op_sys_clock) {
2985 for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
2986 hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
2987 dev_dbg(dev, "freq %d: %lld\n", i, hwcfg->op_sys_clock[i]);
2990 v4l2_fwnode_endpoint_free(&bus_cfg);
2991 fwnode_handle_put(ep);
2996 v4l2_fwnode_endpoint_free(&bus_cfg);
2997 fwnode_handle_put(ep);
3002 static int ccs_probe(struct i2c_client *client)
3004 struct ccs_sensor *sensor;
3005 const struct firmware *fw;
3010 sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
3014 rval = ccs_get_hwconfig(sensor, &client->dev);
3018 sensor->src = &sensor->ssds[sensor->ssds_used];
3020 v4l2_i2c_subdev_init(&sensor->src->sd, client, &ccs_ops);
3021 sensor->src->sd.internal_ops = &ccs_internal_src_ops;
3023 sensor->regulators = devm_kcalloc(&client->dev,
3024 ARRAY_SIZE(ccs_regulators),
3025 sizeof(*sensor->regulators),
3027 if (!sensor->regulators)
3030 for (i = 0; i < ARRAY_SIZE(ccs_regulators); i++)
3031 sensor->regulators[i].supply = ccs_regulators[i];
3033 rval = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(ccs_regulators),
3034 sensor->regulators);
3036 dev_err(&client->dev, "could not get regulators\n");
3040 sensor->ext_clk = devm_clk_get(&client->dev, NULL);
3041 if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
3042 dev_info(&client->dev, "no clock defined, continuing...\n");
3043 sensor->ext_clk = NULL;
3044 } else if (IS_ERR(sensor->ext_clk)) {
3045 dev_err(&client->dev, "could not get clock (%ld)\n",
3046 PTR_ERR(sensor->ext_clk));
3047 return -EPROBE_DEFER;
3050 if (sensor->ext_clk) {
3051 if (sensor->hwcfg.ext_clk) {
3054 rval = clk_set_rate(sensor->ext_clk,
3055 sensor->hwcfg.ext_clk);
3057 dev_err(&client->dev,
3058 "unable to set clock freq to %u\n",
3059 sensor->hwcfg.ext_clk);
3063 rate = clk_get_rate(sensor->ext_clk);
3064 if (rate != sensor->hwcfg.ext_clk) {
3065 dev_err(&client->dev,
3066 "can't set clock freq, asked for %u but got %lu\n",
3067 sensor->hwcfg.ext_clk, rate);
3071 sensor->hwcfg.ext_clk = clk_get_rate(sensor->ext_clk);
3072 dev_dbg(&client->dev, "obtained clock freq %u\n",
3073 sensor->hwcfg.ext_clk);
3075 } else if (sensor->hwcfg.ext_clk) {
3076 dev_dbg(&client->dev, "assuming clock freq %u\n",
3077 sensor->hwcfg.ext_clk);
3079 dev_err(&client->dev, "unable to obtain clock freq\n");
3083 sensor->reset = devm_gpiod_get_optional(&client->dev, "reset",
3085 if (IS_ERR(sensor->reset))
3086 return PTR_ERR(sensor->reset);
3087 /* Support old users that may have used "xshutdown" property. */
3089 sensor->xshutdown = devm_gpiod_get_optional(&client->dev,
3092 if (IS_ERR(sensor->xshutdown))
3093 return PTR_ERR(sensor->xshutdown);
3095 rval = ccs_power_on(&client->dev);
3099 mutex_init(&sensor->mutex);
3101 rval = ccs_identify_module(sensor);
3107 rval = snprintf(filename, sizeof(filename),
3108 "ccs/ccs-sensor-%4.4x-%4.4x-%4.4x.fw",
3109 sensor->minfo.sensor_mipi_manufacturer_id,
3110 sensor->minfo.sensor_model_id,
3111 sensor->minfo.sensor_revision_number);
3112 if (rval >= sizeof(filename)) {
3117 rval = request_firmware(&fw, filename, &client->dev);
3119 ccs_data_parse(&sensor->sdata, fw->data, fw->size, &client->dev,
3121 release_firmware(fw);
3124 rval = snprintf(filename, sizeof(filename),
3125 "ccs/ccs-module-%4.4x-%4.4x-%4.4x.fw",
3126 sensor->minfo.mipi_manufacturer_id,
3127 sensor->minfo.model_id,
3128 sensor->minfo.revision_number);
3129 if (rval >= sizeof(filename)) {
3131 goto out_release_sdata;
3134 rval = request_firmware(&fw, filename, &client->dev);
3136 ccs_data_parse(&sensor->mdata, fw->data, fw->size, &client->dev,
3138 release_firmware(fw);
3141 rval = ccs_read_all_limits(sensor);
3143 goto out_release_mdata;
3145 rval = ccs_read_frame_fmt(sensor);
3148 goto out_free_ccs_limits;
3152 * Handle Sensor Module orientation on the board.
3154 * The application of H-FLIP and V-FLIP on the sensor is modified by
3155 * the sensor orientation on the board.
3157 * For CCS_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
3158 * both H-FLIP and V-FLIP for normal operation which also implies
3159 * that a set/unset operation for user space HFLIP and VFLIP v4l2
3160 * controls will need to be internally inverted.
3162 * Rotation also changes the bayer pattern.
3164 if (sensor->hwcfg.module_board_orient ==
3165 CCS_MODULE_BOARD_ORIENT_180)
3166 sensor->hvflip_inv_mask =
3167 CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR |
3168 CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
3170 rval = ccs_call_quirk(sensor, limits);
3172 dev_err(&client->dev, "limits quirks failed\n");
3173 goto out_free_ccs_limits;
3176 if (CCS_LIM(sensor, BINNING_CAPABILITY)) {
3177 sensor->nbinning_subtypes =
3178 min_t(u8, CCS_LIM(sensor, BINNING_SUB_TYPES),
3179 CCS_LIM_BINNING_SUB_TYPE_MAX_N);
3181 for (i = 0; i < sensor->nbinning_subtypes; i++) {
3182 sensor->binning_subtypes[i].horizontal =
3183 CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) >>
3184 CCS_BINNING_SUB_TYPE_COLUMN_SHIFT;
3185 sensor->binning_subtypes[i].vertical =
3186 CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) &
3187 CCS_BINNING_SUB_TYPE_ROW_MASK;
3189 dev_dbg(&client->dev, "binning %xx%x\n",
3190 sensor->binning_subtypes[i].horizontal,
3191 sensor->binning_subtypes[i].vertical);
3194 sensor->binning_horizontal = 1;
3195 sensor->binning_vertical = 1;
3197 if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
3198 dev_err(&client->dev, "sysfs ident entry creation failed\n");
3200 goto out_free_ccs_limits;
3203 if (sensor->minfo.smiapp_version &&
3204 CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
3205 CCS_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) {
3206 if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
3207 dev_err(&client->dev, "sysfs nvm entry failed\n");
3213 if (!CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV) ||
3214 !CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV) ||
3215 !CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV) ||
3216 !CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV)) {
3217 /* No OP clock branch */
3218 sensor->pll.flags |= CCS_PLL_FLAG_NO_OP_CLOCKS;
3219 } else if (CCS_LIM(sensor, SCALING_CAPABILITY)
3220 != CCS_SCALING_CAPABILITY_NONE ||
3221 CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
3222 == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
3223 /* We have a scaler or digital crop. */
3224 sensor->scaler = &sensor->ssds[sensor->ssds_used];
3225 sensor->ssds_used++;
3227 sensor->binner = &sensor->ssds[sensor->ssds_used];
3228 sensor->ssds_used++;
3229 sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
3230 sensor->ssds_used++;
3232 sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
3234 /* prepare PLL configuration input values */
3235 sensor->pll.bus_type = CCS_PLL_BUS_TYPE_CSI2_DPHY;
3236 sensor->pll.csi2.lanes = sensor->hwcfg.lanes;
3237 if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3238 CCS_CLOCK_CALCULATION_LANE_SPEED) {
3239 sensor->pll.flags |= CCS_PLL_FLAG_LANE_SPEED_MODEL;
3240 if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3241 CCS_CLOCK_CALCULATION_LINK_DECOUPLED) {
3242 sensor->pll.vt_lanes =
3243 CCS_LIM(sensor, NUM_OF_VT_LANES) + 1;
3244 sensor->pll.op_lanes =
3245 CCS_LIM(sensor, NUM_OF_OP_LANES) + 1;
3246 sensor->pll.flags |= CCS_PLL_FLAG_LINK_DECOUPLED;
3248 sensor->pll.vt_lanes = sensor->pll.csi2.lanes;
3249 sensor->pll.op_lanes = sensor->pll.csi2.lanes;
3252 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3253 CCS_CLOCK_TREE_PLL_CAPABILITY_EXT_DIVIDER)
3254 sensor->pll.flags |= CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER;
3255 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3256 CCS_CLOCK_TREE_PLL_CAPABILITY_FLEXIBLE_OP_PIX_CLK_DIV)
3257 sensor->pll.flags |= CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV;
3258 if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3259 CCS_FIFO_SUPPORT_CAPABILITY_DERATING)
3260 sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING;
3261 if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3262 CCS_FIFO_SUPPORT_CAPABILITY_DERATING_OVERRATING)
3263 sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING |
3264 CCS_PLL_FLAG_FIFO_OVERRATING;
3265 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3266 CCS_CLOCK_TREE_PLL_CAPABILITY_DUAL_PLL) {
3267 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3268 CCS_CLOCK_TREE_PLL_CAPABILITY_SINGLE_PLL) {
3271 /* Use sensor default in PLL mode selection */
3272 rval = ccs_read(sensor, PLL_MODE, &v);
3276 if (v == CCS_PLL_MODE_DUAL)
3277 sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3279 sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3281 if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3282 CCS_CLOCK_CALCULATION_DUAL_PLL_OP_SYS_DDR)
3283 sensor->pll.flags |= CCS_PLL_FLAG_OP_SYS_DDR;
3284 if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3285 CCS_CLOCK_CALCULATION_DUAL_PLL_OP_PIX_DDR)
3286 sensor->pll.flags |= CCS_PLL_FLAG_OP_PIX_DDR;
3288 sensor->pll.op_bits_per_lane = CCS_LIM(sensor, OP_BITS_PER_LANE);
3289 sensor->pll.ext_clk_freq_hz = sensor->hwcfg.ext_clk;
3290 sensor->pll.scale_n = CCS_LIM(sensor, SCALER_N_MIN);
3292 ccs_create_subdev(sensor, sensor->scaler, " scaler", 2,
3293 MEDIA_ENT_F_CAM_SENSOR);
3294 ccs_create_subdev(sensor, sensor->binner, " binner", 2,
3295 MEDIA_ENT_F_PROC_VIDEO_SCALER);
3296 ccs_create_subdev(sensor, sensor->pixel_array, " pixel_array", 1,
3297 MEDIA_ENT_F_PROC_VIDEO_SCALER);
3299 rval = ccs_init_controls(sensor);
3303 rval = ccs_call_quirk(sensor, init);
3307 rval = ccs_get_mbus_formats(sensor);
3313 rval = ccs_init_late_controls(sensor);
3319 mutex_lock(&sensor->mutex);
3320 rval = ccs_pll_blanking_update(sensor);
3321 mutex_unlock(&sensor->mutex);
3323 dev_err(&client->dev, "update mode failed\n");
3327 sensor->streaming = false;
3328 sensor->dev_init_done = true;
3330 rval = media_entity_pads_init(&sensor->src->sd.entity, 2,
3333 goto out_media_entity_cleanup;
3335 rval = ccs_write_msr_regs(sensor);
3337 goto out_media_entity_cleanup;
3339 pm_runtime_set_active(&client->dev);
3340 pm_runtime_get_noresume(&client->dev);
3341 pm_runtime_enable(&client->dev);
3343 rval = v4l2_async_register_subdev_sensor_common(&sensor->src->sd);
3345 goto out_disable_runtime_pm;
3347 pm_runtime_set_autosuspend_delay(&client->dev, 1000);
3348 pm_runtime_use_autosuspend(&client->dev);
3349 pm_runtime_put_autosuspend(&client->dev);
3353 out_disable_runtime_pm:
3354 pm_runtime_put_noidle(&client->dev);
3355 pm_runtime_disable(&client->dev);
3357 out_media_entity_cleanup:
3358 media_entity_cleanup(&sensor->src->sd.entity);
3361 ccs_cleanup(sensor);
3364 kvfree(sensor->mdata.backing);
3367 kvfree(sensor->sdata.backing);
3369 out_free_ccs_limits:
3370 kfree(sensor->ccs_limits);
3373 ccs_power_off(&client->dev);
3374 mutex_destroy(&sensor->mutex);
3379 static int ccs_remove(struct i2c_client *client)
3381 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3382 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3385 v4l2_async_unregister_subdev(subdev);
3387 pm_runtime_disable(&client->dev);
3388 if (!pm_runtime_status_suspended(&client->dev))
3389 ccs_power_off(&client->dev);
3390 pm_runtime_set_suspended(&client->dev);
3392 for (i = 0; i < sensor->ssds_used; i++) {
3393 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
3394 media_entity_cleanup(&sensor->ssds[i].sd.entity);
3396 ccs_cleanup(sensor);
3397 mutex_destroy(&sensor->mutex);
3398 kfree(sensor->ccs_limits);
3399 kvfree(sensor->sdata.backing);
3400 kvfree(sensor->mdata.backing);
3405 static const struct ccs_device smia_device = {
3406 .flags = CCS_DEVICE_FLAG_IS_SMIA,
3409 static const struct ccs_device ccs_device = {};
3411 static const struct acpi_device_id ccs_acpi_table[] = {
3412 { .id = "MIPI0200", .driver_data = (unsigned long)&ccs_device },
3415 MODULE_DEVICE_TABLE(acpi, ccs_acpi_table);
3417 static const struct of_device_id ccs_of_table[] = {
3418 { .compatible = "mipi-ccs-1.1", .data = &ccs_device },
3419 { .compatible = "mipi-ccs-1.0", .data = &ccs_device },
3420 { .compatible = "mipi-ccs", .data = &ccs_device },
3421 { .compatible = "nokia,smia", .data = &smia_device },
3424 MODULE_DEVICE_TABLE(of, ccs_of_table);
3426 static const struct dev_pm_ops ccs_pm_ops = {
3427 SET_SYSTEM_SLEEP_PM_OPS(ccs_suspend, ccs_resume)
3428 SET_RUNTIME_PM_OPS(ccs_power_off, ccs_power_on, NULL)
3431 static struct i2c_driver ccs_i2c_driver = {
3433 .acpi_match_table = ccs_acpi_table,
3434 .of_match_table = ccs_of_table,
3438 .probe_new = ccs_probe,
3439 .remove = ccs_remove,
3442 static int ccs_module_init(void)
3446 for (i = 0, l = 0; ccs_limits[i].size && l < CCS_L_LAST; i++) {
3447 if (!(ccs_limits[i].flags & CCS_L_FL_SAME_REG)) {
3448 ccs_limit_offsets[l + 1].lim =
3449 ALIGN(ccs_limit_offsets[l].lim +
3451 ccs_reg_width(ccs_limits[i + 1].reg));
3452 ccs_limit_offsets[l].info = i;
3455 ccs_limit_offsets[l].lim += ccs_limits[i].size;
3459 if (WARN_ON(ccs_limits[i].size))
3462 if (WARN_ON(l != CCS_L_LAST))
3465 return i2c_register_driver(THIS_MODULE, &ccs_i2c_driver);
3468 static void ccs_module_cleanup(void)
3470 i2c_del_driver(&ccs_i2c_driver);
3473 module_init(ccs_module_init);
3474 module_exit(ccs_module_cleanup);
3477 MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ camera sensor driver");
3478 MODULE_LICENSE("GPL v2");
3479 MODULE_ALIAS("smiapp");