]> Git Repo - J-linux.git/blob - drivers/net/ethernet/intel/ice/ice_flow.c
Merge tag 'net-6.7-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[J-linux.git] / drivers / net / ethernet / intel / ice / ice_flow.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3
4 #include "ice_common.h"
5 #include "ice_flow.h"
6 #include <net/gre.h>
7
8 /* Describe properties of a protocol header field */
9 struct ice_flow_field_info {
10         enum ice_flow_seg_hdr hdr;
11         s16 off;        /* Offset from start of a protocol header, in bits */
12         u16 size;       /* Size of fields in bits */
13         u16 mask;       /* 16-bit mask for field */
14 };
15
16 #define ICE_FLOW_FLD_INFO(_hdr, _offset_bytes, _size_bytes) { \
17         .hdr = _hdr, \
18         .off = (_offset_bytes) * BITS_PER_BYTE, \
19         .size = (_size_bytes) * BITS_PER_BYTE, \
20         .mask = 0, \
21 }
22
23 #define ICE_FLOW_FLD_INFO_MSK(_hdr, _offset_bytes, _size_bytes, _mask) { \
24         .hdr = _hdr, \
25         .off = (_offset_bytes) * BITS_PER_BYTE, \
26         .size = (_size_bytes) * BITS_PER_BYTE, \
27         .mask = _mask, \
28 }
29
30 /* Table containing properties of supported protocol header fields */
31 static const
32 struct ice_flow_field_info ice_flds_info[ICE_FLOW_FIELD_IDX_MAX] = {
33         /* Ether */
34         /* ICE_FLOW_FIELD_IDX_ETH_DA */
35         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, ETH_ALEN),
36         /* ICE_FLOW_FIELD_IDX_ETH_SA */
37         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, ETH_ALEN, ETH_ALEN),
38         /* ICE_FLOW_FIELD_IDX_S_VLAN */
39         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 12, sizeof(__be16)),
40         /* ICE_FLOW_FIELD_IDX_C_VLAN */
41         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 14, sizeof(__be16)),
42         /* ICE_FLOW_FIELD_IDX_ETH_TYPE */
43         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, sizeof(__be16)),
44         /* IPv4 / IPv6 */
45         /* ICE_FLOW_FIELD_IDX_IPV4_DSCP */
46         ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV4, 0, 1, 0x00fc),
47         /* ICE_FLOW_FIELD_IDX_IPV6_DSCP */
48         ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV6, 0, 1, 0x0ff0),
49         /* ICE_FLOW_FIELD_IDX_IPV4_TTL */
50         ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0xff00),
51         /* ICE_FLOW_FIELD_IDX_IPV4_PROT */
52         ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0x00ff),
53         /* ICE_FLOW_FIELD_IDX_IPV6_TTL */
54         ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0x00ff),
55         /* ICE_FLOW_FIELD_IDX_IPV6_PROT */
56         ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0xff00),
57         /* ICE_FLOW_FIELD_IDX_IPV4_SA */
58         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 12, sizeof(struct in_addr)),
59         /* ICE_FLOW_FIELD_IDX_IPV4_DA */
60         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 16, sizeof(struct in_addr)),
61         /* ICE_FLOW_FIELD_IDX_IPV6_SA */
62         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8, sizeof(struct in6_addr)),
63         /* ICE_FLOW_FIELD_IDX_IPV6_DA */
64         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24, sizeof(struct in6_addr)),
65         /* Transport */
66         /* ICE_FLOW_FIELD_IDX_TCP_SRC_PORT */
67         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 0, sizeof(__be16)),
68         /* ICE_FLOW_FIELD_IDX_TCP_DST_PORT */
69         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 2, sizeof(__be16)),
70         /* ICE_FLOW_FIELD_IDX_UDP_SRC_PORT */
71         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 0, sizeof(__be16)),
72         /* ICE_FLOW_FIELD_IDX_UDP_DST_PORT */
73         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 2, sizeof(__be16)),
74         /* ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT */
75         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 0, sizeof(__be16)),
76         /* ICE_FLOW_FIELD_IDX_SCTP_DST_PORT */
77         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 2, sizeof(__be16)),
78         /* ICE_FLOW_FIELD_IDX_TCP_FLAGS */
79         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 13, 1),
80         /* ARP */
81         /* ICE_FLOW_FIELD_IDX_ARP_SIP */
82         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 14, sizeof(struct in_addr)),
83         /* ICE_FLOW_FIELD_IDX_ARP_DIP */
84         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 24, sizeof(struct in_addr)),
85         /* ICE_FLOW_FIELD_IDX_ARP_SHA */
86         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 8, ETH_ALEN),
87         /* ICE_FLOW_FIELD_IDX_ARP_DHA */
88         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 18, ETH_ALEN),
89         /* ICE_FLOW_FIELD_IDX_ARP_OP */
90         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 6, sizeof(__be16)),
91         /* ICMP */
92         /* ICE_FLOW_FIELD_IDX_ICMP_TYPE */
93         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 0, 1),
94         /* ICE_FLOW_FIELD_IDX_ICMP_CODE */
95         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 1, 1),
96         /* GRE */
97         /* ICE_FLOW_FIELD_IDX_GRE_KEYID */
98         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GRE, 12,
99                           sizeof_field(struct gre_full_hdr, key)),
100         /* GTP */
101         /* ICE_FLOW_FIELD_IDX_GTPC_TEID */
102         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPC_TEID, 12, sizeof(__be32)),
103         /* ICE_FLOW_FIELD_IDX_GTPU_IP_TEID */
104         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_IP, 12, sizeof(__be32)),
105         /* ICE_FLOW_FIELD_IDX_GTPU_EH_TEID */
106         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_EH, 12, sizeof(__be32)),
107         /* ICE_FLOW_FIELD_IDX_GTPU_EH_QFI */
108         ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_GTPU_EH, 22, sizeof(__be16),
109                               0x3f00),
110         /* ICE_FLOW_FIELD_IDX_GTPU_UP_TEID */
111         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_UP, 12, sizeof(__be32)),
112         /* ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID */
113         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_DWN, 12, sizeof(__be32)),
114         /* PPPoE */
115         /* ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID */
116         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PPPOE, 2, sizeof(__be16)),
117         /* PFCP */
118         /* ICE_FLOW_FIELD_IDX_PFCP_SEID */
119         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PFCP_SESSION, 12, sizeof(__be64)),
120         /* L2TPv3 */
121         /* ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID */
122         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_L2TPV3, 0, sizeof(__be32)),
123         /* ESP */
124         /* ICE_FLOW_FIELD_IDX_ESP_SPI */
125         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ESP, 0, sizeof(__be32)),
126         /* AH */
127         /* ICE_FLOW_FIELD_IDX_AH_SPI */
128         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_AH, 4, sizeof(__be32)),
129         /* NAT_T_ESP */
130         /* ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI */
131         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NAT_T_ESP, 8, sizeof(__be32)),
132 };
133
134 /* Bitmaps indicating relevant packet types for a particular protocol header
135  *
136  * Packet types for packets with an Outer/First/Single MAC header
137  */
138 static const u32 ice_ptypes_mac_ofos[] = {
139         0xFDC00846, 0xBFBF7F7E, 0xF70001DF, 0xFEFDFDFB,
140         0x0000077E, 0x00000000, 0x00000000, 0x00000000,
141         0x00400000, 0x03FFF000, 0x7FFFFFE0, 0x00000000,
142         0x00000000, 0x00000000, 0x00000000, 0x00000000,
143         0x00000000, 0x00000000, 0x00000000, 0x00000000,
144         0x00000000, 0x00000000, 0x00000000, 0x00000000,
145         0x00000000, 0x00000000, 0x00000000, 0x00000000,
146         0x00000000, 0x00000000, 0x00000000, 0x00000000,
147 };
148
149 /* Packet types for packets with an Innermost/Last MAC VLAN header */
150 static const u32 ice_ptypes_macvlan_il[] = {
151         0x00000000, 0xBC000000, 0x000001DF, 0xF0000000,
152         0x0000077E, 0x00000000, 0x00000000, 0x00000000,
153         0x00000000, 0x00000000, 0x00000000, 0x00000000,
154         0x00000000, 0x00000000, 0x00000000, 0x00000000,
155         0x00000000, 0x00000000, 0x00000000, 0x00000000,
156         0x00000000, 0x00000000, 0x00000000, 0x00000000,
157         0x00000000, 0x00000000, 0x00000000, 0x00000000,
158         0x00000000, 0x00000000, 0x00000000, 0x00000000,
159 };
160
161 /* Packet types for packets with an Outer/First/Single IPv4 header, does NOT
162  * include IPv4 other PTYPEs
163  */
164 static const u32 ice_ptypes_ipv4_ofos[] = {
165         0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
166         0x00000000, 0x00000155, 0x00000000, 0x00000000,
167         0x00000000, 0x000FC000, 0x00000000, 0x00000000,
168         0x00000000, 0x00000000, 0x00000000, 0x00000000,
169         0x00000000, 0x00000000, 0x00000000, 0x00000000,
170         0x00000000, 0x00000000, 0x00000000, 0x00000000,
171         0x00000000, 0x00000000, 0x00000000, 0x00000000,
172         0x00000000, 0x00000000, 0x00000000, 0x00000000,
173 };
174
175 /* Packet types for packets with an Outer/First/Single IPv4 header, includes
176  * IPv4 other PTYPEs
177  */
178 static const u32 ice_ptypes_ipv4_ofos_all[] = {
179         0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
180         0x00000000, 0x00000155, 0x00000000, 0x00000000,
181         0x00000000, 0x000FC000, 0x83E0F800, 0x00000101,
182         0x00000000, 0x00000000, 0x00000000, 0x00000000,
183         0x00000000, 0x00000000, 0x00000000, 0x00000000,
184         0x00000000, 0x00000000, 0x00000000, 0x00000000,
185         0x00000000, 0x00000000, 0x00000000, 0x00000000,
186         0x00000000, 0x00000000, 0x00000000, 0x00000000,
187 };
188
189 /* Packet types for packets with an Innermost/Last IPv4 header */
190 static const u32 ice_ptypes_ipv4_il[] = {
191         0xE0000000, 0xB807700E, 0x80000003, 0xE01DC03B,
192         0x0000000E, 0x00000000, 0x00000000, 0x00000000,
193         0x00000000, 0x00000000, 0x001FF800, 0x00000000,
194         0x00000000, 0x00000000, 0x00000000, 0x00000000,
195         0x00000000, 0x00000000, 0x00000000, 0x00000000,
196         0x00000000, 0x00000000, 0x00000000, 0x00000000,
197         0x00000000, 0x00000000, 0x00000000, 0x00000000,
198         0x00000000, 0x00000000, 0x00000000, 0x00000000,
199 };
200
201 /* Packet types for packets with an Outer/First/Single IPv6 header, does NOT
202  * include IPv6 other PTYPEs
203  */
204 static const u32 ice_ptypes_ipv6_ofos[] = {
205         0x00000000, 0x00000000, 0x77000000, 0x10002000,
206         0x00000000, 0x000002AA, 0x00000000, 0x00000000,
207         0x00000000, 0x03F00000, 0x00000000, 0x00000000,
208         0x00000000, 0x00000000, 0x00000000, 0x00000000,
209         0x00000000, 0x00000000, 0x00000000, 0x00000000,
210         0x00000000, 0x00000000, 0x00000000, 0x00000000,
211         0x00000000, 0x00000000, 0x00000000, 0x00000000,
212         0x00000000, 0x00000000, 0x00000000, 0x00000000,
213 };
214
215 /* Packet types for packets with an Outer/First/Single IPv6 header, includes
216  * IPv6 other PTYPEs
217  */
218 static const u32 ice_ptypes_ipv6_ofos_all[] = {
219         0x00000000, 0x00000000, 0x77000000, 0x10002000,
220         0x00000000, 0x000002AA, 0x00000000, 0x00000000,
221         0x00080F00, 0x03F00000, 0x7C1F0000, 0x00000206,
222         0x00000000, 0x00000000, 0x00000000, 0x00000000,
223         0x00000000, 0x00000000, 0x00000000, 0x00000000,
224         0x00000000, 0x00000000, 0x00000000, 0x00000000,
225         0x00000000, 0x00000000, 0x00000000, 0x00000000,
226         0x00000000, 0x00000000, 0x00000000, 0x00000000,
227 };
228
229 /* Packet types for packets with an Innermost/Last IPv6 header */
230 static const u32 ice_ptypes_ipv6_il[] = {
231         0x00000000, 0x03B80770, 0x000001DC, 0x0EE00000,
232         0x00000770, 0x00000000, 0x00000000, 0x00000000,
233         0x00000000, 0x00000000, 0x7FE00000, 0x00000000,
234         0x00000000, 0x00000000, 0x00000000, 0x00000000,
235         0x00000000, 0x00000000, 0x00000000, 0x00000000,
236         0x00000000, 0x00000000, 0x00000000, 0x00000000,
237         0x00000000, 0x00000000, 0x00000000, 0x00000000,
238         0x00000000, 0x00000000, 0x00000000, 0x00000000,
239 };
240
241 /* Packet types for packets with an Outer/First/Single IPv4 header - no L4 */
242 static const u32 ice_ptypes_ipv4_ofos_no_l4[] = {
243         0x10C00000, 0x04000800, 0x00000000, 0x00000000,
244         0x00000000, 0x00000000, 0x00000000, 0x00000000,
245         0x00000000, 0x00000000, 0x00000000, 0x00000000,
246         0x00000000, 0x00000000, 0x00000000, 0x00000000,
247         0x00000000, 0x00000000, 0x00000000, 0x00000000,
248         0x00000000, 0x00000000, 0x00000000, 0x00000000,
249         0x00000000, 0x00000000, 0x00000000, 0x00000000,
250         0x00000000, 0x00000000, 0x00000000, 0x00000000,
251 };
252
253 /* Packet types for packets with an Outermost/First ARP header */
254 static const u32 ice_ptypes_arp_of[] = {
255         0x00000800, 0x00000000, 0x00000000, 0x00000000,
256         0x00000000, 0x00000000, 0x00000000, 0x00000000,
257         0x00000000, 0x00000000, 0x00000000, 0x00000000,
258         0x00000000, 0x00000000, 0x00000000, 0x00000000,
259         0x00000000, 0x00000000, 0x00000000, 0x00000000,
260         0x00000000, 0x00000000, 0x00000000, 0x00000000,
261         0x00000000, 0x00000000, 0x00000000, 0x00000000,
262         0x00000000, 0x00000000, 0x00000000, 0x00000000,
263 };
264
265 /* Packet types for packets with an Innermost/Last IPv4 header - no L4 */
266 static const u32 ice_ptypes_ipv4_il_no_l4[] = {
267         0x60000000, 0x18043008, 0x80000002, 0x6010c021,
268         0x00000008, 0x00000000, 0x00000000, 0x00000000,
269         0x00000000, 0x00000000, 0x00000000, 0x00000000,
270         0x00000000, 0x00000000, 0x00000000, 0x00000000,
271         0x00000000, 0x00000000, 0x00000000, 0x00000000,
272         0x00000000, 0x00000000, 0x00000000, 0x00000000,
273         0x00000000, 0x00000000, 0x00000000, 0x00000000,
274         0x00000000, 0x00000000, 0x00000000, 0x00000000,
275 };
276
277 /* Packet types for packets with an Outer/First/Single IPv6 header - no L4 */
278 static const u32 ice_ptypes_ipv6_ofos_no_l4[] = {
279         0x00000000, 0x00000000, 0x43000000, 0x10002000,
280         0x00000000, 0x00000000, 0x00000000, 0x00000000,
281         0x00000000, 0x00000000, 0x00000000, 0x00000000,
282         0x00000000, 0x00000000, 0x00000000, 0x00000000,
283         0x00000000, 0x00000000, 0x00000000, 0x00000000,
284         0x00000000, 0x00000000, 0x00000000, 0x00000000,
285         0x00000000, 0x00000000, 0x00000000, 0x00000000,
286         0x00000000, 0x00000000, 0x00000000, 0x00000000,
287 };
288
289 /* Packet types for packets with an Innermost/Last IPv6 header - no L4 */
290 static const u32 ice_ptypes_ipv6_il_no_l4[] = {
291         0x00000000, 0x02180430, 0x0000010c, 0x086010c0,
292         0x00000430, 0x00000000, 0x00000000, 0x00000000,
293         0x00000000, 0x00000000, 0x00000000, 0x00000000,
294         0x00000000, 0x00000000, 0x00000000, 0x00000000,
295         0x00000000, 0x00000000, 0x00000000, 0x00000000,
296         0x00000000, 0x00000000, 0x00000000, 0x00000000,
297         0x00000000, 0x00000000, 0x00000000, 0x00000000,
298         0x00000000, 0x00000000, 0x00000000, 0x00000000,
299 };
300
301 /* UDP Packet types for non-tunneled packets or tunneled
302  * packets with inner UDP.
303  */
304 static const u32 ice_ptypes_udp_il[] = {
305         0x81000000, 0x20204040, 0x04000010, 0x80810102,
306         0x00000040, 0x00000000, 0x00000000, 0x00000000,
307         0x00000000, 0x00410000, 0x90842000, 0x00000007,
308         0x00000000, 0x00000000, 0x00000000, 0x00000000,
309         0x00000000, 0x00000000, 0x00000000, 0x00000000,
310         0x00000000, 0x00000000, 0x00000000, 0x00000000,
311         0x00000000, 0x00000000, 0x00000000, 0x00000000,
312         0x00000000, 0x00000000, 0x00000000, 0x00000000,
313 };
314
315 /* Packet types for packets with an Innermost/Last TCP header */
316 static const u32 ice_ptypes_tcp_il[] = {
317         0x04000000, 0x80810102, 0x10000040, 0x02040408,
318         0x00000102, 0x00000000, 0x00000000, 0x00000000,
319         0x00000000, 0x00820000, 0x21084000, 0x00000000,
320         0x00000000, 0x00000000, 0x00000000, 0x00000000,
321         0x00000000, 0x00000000, 0x00000000, 0x00000000,
322         0x00000000, 0x00000000, 0x00000000, 0x00000000,
323         0x00000000, 0x00000000, 0x00000000, 0x00000000,
324         0x00000000, 0x00000000, 0x00000000, 0x00000000,
325 };
326
327 /* Packet types for packets with an Innermost/Last SCTP header */
328 static const u32 ice_ptypes_sctp_il[] = {
329         0x08000000, 0x01020204, 0x20000081, 0x04080810,
330         0x00000204, 0x00000000, 0x00000000, 0x00000000,
331         0x00000000, 0x01040000, 0x00000000, 0x00000000,
332         0x00000000, 0x00000000, 0x00000000, 0x00000000,
333         0x00000000, 0x00000000, 0x00000000, 0x00000000,
334         0x00000000, 0x00000000, 0x00000000, 0x00000000,
335         0x00000000, 0x00000000, 0x00000000, 0x00000000,
336         0x00000000, 0x00000000, 0x00000000, 0x00000000,
337 };
338
339 /* Packet types for packets with an Outermost/First ICMP header */
340 static const u32 ice_ptypes_icmp_of[] = {
341         0x10000000, 0x00000000, 0x00000000, 0x00000000,
342         0x00000000, 0x00000000, 0x00000000, 0x00000000,
343         0x00000000, 0x00000000, 0x00000000, 0x00000000,
344         0x00000000, 0x00000000, 0x00000000, 0x00000000,
345         0x00000000, 0x00000000, 0x00000000, 0x00000000,
346         0x00000000, 0x00000000, 0x00000000, 0x00000000,
347         0x00000000, 0x00000000, 0x00000000, 0x00000000,
348         0x00000000, 0x00000000, 0x00000000, 0x00000000,
349 };
350
351 /* Packet types for packets with an Innermost/Last ICMP header */
352 static const u32 ice_ptypes_icmp_il[] = {
353         0x00000000, 0x02040408, 0x40000102, 0x08101020,
354         0x00000408, 0x00000000, 0x00000000, 0x00000000,
355         0x00000000, 0x00000000, 0x42108000, 0x00000000,
356         0x00000000, 0x00000000, 0x00000000, 0x00000000,
357         0x00000000, 0x00000000, 0x00000000, 0x00000000,
358         0x00000000, 0x00000000, 0x00000000, 0x00000000,
359         0x00000000, 0x00000000, 0x00000000, 0x00000000,
360         0x00000000, 0x00000000, 0x00000000, 0x00000000,
361 };
362
363 /* Packet types for packets with an Outermost/First GRE header */
364 static const u32 ice_ptypes_gre_of[] = {
365         0x00000000, 0xBFBF7800, 0x000001DF, 0xFEFDE000,
366         0x0000017E, 0x00000000, 0x00000000, 0x00000000,
367         0x00000000, 0x00000000, 0x00000000, 0x00000000,
368         0x00000000, 0x00000000, 0x00000000, 0x00000000,
369         0x00000000, 0x00000000, 0x00000000, 0x00000000,
370         0x00000000, 0x00000000, 0x00000000, 0x00000000,
371         0x00000000, 0x00000000, 0x00000000, 0x00000000,
372         0x00000000, 0x00000000, 0x00000000, 0x00000000,
373 };
374
375 /* Packet types for packets with an Innermost/Last MAC header */
376 static const u32 ice_ptypes_mac_il[] = {
377         0x00000000, 0x00000000, 0x00000000, 0x00000000,
378         0x00000000, 0x00000000, 0x00000000, 0x00000000,
379         0x00000000, 0x00000000, 0x00000000, 0x00000000,
380         0x00000000, 0x00000000, 0x00000000, 0x00000000,
381         0x00000000, 0x00000000, 0x00000000, 0x00000000,
382         0x00000000, 0x00000000, 0x00000000, 0x00000000,
383         0x00000000, 0x00000000, 0x00000000, 0x00000000,
384         0x00000000, 0x00000000, 0x00000000, 0x00000000,
385 };
386
387 /* Packet types for GTPC */
388 static const u32 ice_ptypes_gtpc[] = {
389         0x00000000, 0x00000000, 0x00000000, 0x00000000,
390         0x00000000, 0x00000000, 0x00000000, 0x00000000,
391         0x00000000, 0x00000000, 0x00000180, 0x00000000,
392         0x00000000, 0x00000000, 0x00000000, 0x00000000,
393         0x00000000, 0x00000000, 0x00000000, 0x00000000,
394         0x00000000, 0x00000000, 0x00000000, 0x00000000,
395         0x00000000, 0x00000000, 0x00000000, 0x00000000,
396         0x00000000, 0x00000000, 0x00000000, 0x00000000,
397 };
398
399 /* Packet types for GTPC with TEID */
400 static const u32 ice_ptypes_gtpc_tid[] = {
401         0x00000000, 0x00000000, 0x00000000, 0x00000000,
402         0x00000000, 0x00000000, 0x00000000, 0x00000000,
403         0x00000000, 0x00000000, 0x00000060, 0x00000000,
404         0x00000000, 0x00000000, 0x00000000, 0x00000000,
405         0x00000000, 0x00000000, 0x00000000, 0x00000000,
406         0x00000000, 0x00000000, 0x00000000, 0x00000000,
407         0x00000000, 0x00000000, 0x00000000, 0x00000000,
408         0x00000000, 0x00000000, 0x00000000, 0x00000000,
409 };
410
411 /* Packet types for GTPU */
412 static const struct ice_ptype_attributes ice_attr_gtpu_eh[] = {
413         { ICE_MAC_IPV4_GTPU_IPV4_FRAG,    ICE_PTYPE_ATTR_GTP_PDU_EH },
414         { ICE_MAC_IPV4_GTPU_IPV4_PAY,     ICE_PTYPE_ATTR_GTP_PDU_EH },
415         { ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
416         { ICE_MAC_IPV4_GTPU_IPV4_TCP,     ICE_PTYPE_ATTR_GTP_PDU_EH },
417         { ICE_MAC_IPV4_GTPU_IPV4_ICMP,    ICE_PTYPE_ATTR_GTP_PDU_EH },
418         { ICE_MAC_IPV6_GTPU_IPV4_FRAG,    ICE_PTYPE_ATTR_GTP_PDU_EH },
419         { ICE_MAC_IPV6_GTPU_IPV4_PAY,     ICE_PTYPE_ATTR_GTP_PDU_EH },
420         { ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
421         { ICE_MAC_IPV6_GTPU_IPV4_TCP,     ICE_PTYPE_ATTR_GTP_PDU_EH },
422         { ICE_MAC_IPV6_GTPU_IPV4_ICMP,    ICE_PTYPE_ATTR_GTP_PDU_EH },
423         { ICE_MAC_IPV4_GTPU_IPV6_FRAG,    ICE_PTYPE_ATTR_GTP_PDU_EH },
424         { ICE_MAC_IPV4_GTPU_IPV6_PAY,     ICE_PTYPE_ATTR_GTP_PDU_EH },
425         { ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
426         { ICE_MAC_IPV4_GTPU_IPV6_TCP,     ICE_PTYPE_ATTR_GTP_PDU_EH },
427         { ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
428         { ICE_MAC_IPV6_GTPU_IPV6_FRAG,    ICE_PTYPE_ATTR_GTP_PDU_EH },
429         { ICE_MAC_IPV6_GTPU_IPV6_PAY,     ICE_PTYPE_ATTR_GTP_PDU_EH },
430         { ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
431         { ICE_MAC_IPV6_GTPU_IPV6_TCP,     ICE_PTYPE_ATTR_GTP_PDU_EH },
432         { ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_PDU_EH },
433 };
434
435 static const struct ice_ptype_attributes ice_attr_gtpu_down[] = {
436         { ICE_MAC_IPV4_GTPU_IPV4_FRAG,    ICE_PTYPE_ATTR_GTP_DOWNLINK },
437         { ICE_MAC_IPV4_GTPU_IPV4_PAY,     ICE_PTYPE_ATTR_GTP_DOWNLINK },
438         { ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
439         { ICE_MAC_IPV4_GTPU_IPV4_TCP,     ICE_PTYPE_ATTR_GTP_DOWNLINK },
440         { ICE_MAC_IPV4_GTPU_IPV4_ICMP,    ICE_PTYPE_ATTR_GTP_DOWNLINK },
441         { ICE_MAC_IPV6_GTPU_IPV4_FRAG,    ICE_PTYPE_ATTR_GTP_DOWNLINK },
442         { ICE_MAC_IPV6_GTPU_IPV4_PAY,     ICE_PTYPE_ATTR_GTP_DOWNLINK },
443         { ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
444         { ICE_MAC_IPV6_GTPU_IPV4_TCP,     ICE_PTYPE_ATTR_GTP_DOWNLINK },
445         { ICE_MAC_IPV6_GTPU_IPV4_ICMP,    ICE_PTYPE_ATTR_GTP_DOWNLINK },
446         { ICE_MAC_IPV4_GTPU_IPV6_FRAG,    ICE_PTYPE_ATTR_GTP_DOWNLINK },
447         { ICE_MAC_IPV4_GTPU_IPV6_PAY,     ICE_PTYPE_ATTR_GTP_DOWNLINK },
448         { ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
449         { ICE_MAC_IPV4_GTPU_IPV6_TCP,     ICE_PTYPE_ATTR_GTP_DOWNLINK },
450         { ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
451         { ICE_MAC_IPV6_GTPU_IPV6_FRAG,    ICE_PTYPE_ATTR_GTP_DOWNLINK },
452         { ICE_MAC_IPV6_GTPU_IPV6_PAY,     ICE_PTYPE_ATTR_GTP_DOWNLINK },
453         { ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
454         { ICE_MAC_IPV6_GTPU_IPV6_TCP,     ICE_PTYPE_ATTR_GTP_DOWNLINK },
455         { ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_DOWNLINK },
456 };
457
458 static const struct ice_ptype_attributes ice_attr_gtpu_up[] = {
459         { ICE_MAC_IPV4_GTPU_IPV4_FRAG,    ICE_PTYPE_ATTR_GTP_UPLINK },
460         { ICE_MAC_IPV4_GTPU_IPV4_PAY,     ICE_PTYPE_ATTR_GTP_UPLINK },
461         { ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
462         { ICE_MAC_IPV4_GTPU_IPV4_TCP,     ICE_PTYPE_ATTR_GTP_UPLINK },
463         { ICE_MAC_IPV4_GTPU_IPV4_ICMP,    ICE_PTYPE_ATTR_GTP_UPLINK },
464         { ICE_MAC_IPV6_GTPU_IPV4_FRAG,    ICE_PTYPE_ATTR_GTP_UPLINK },
465         { ICE_MAC_IPV6_GTPU_IPV4_PAY,     ICE_PTYPE_ATTR_GTP_UPLINK },
466         { ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
467         { ICE_MAC_IPV6_GTPU_IPV4_TCP,     ICE_PTYPE_ATTR_GTP_UPLINK },
468         { ICE_MAC_IPV6_GTPU_IPV4_ICMP,    ICE_PTYPE_ATTR_GTP_UPLINK },
469         { ICE_MAC_IPV4_GTPU_IPV6_FRAG,    ICE_PTYPE_ATTR_GTP_UPLINK },
470         { ICE_MAC_IPV4_GTPU_IPV6_PAY,     ICE_PTYPE_ATTR_GTP_UPLINK },
471         { ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
472         { ICE_MAC_IPV4_GTPU_IPV6_TCP,     ICE_PTYPE_ATTR_GTP_UPLINK },
473         { ICE_MAC_IPV4_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
474         { ICE_MAC_IPV6_GTPU_IPV6_FRAG,    ICE_PTYPE_ATTR_GTP_UPLINK },
475         { ICE_MAC_IPV6_GTPU_IPV6_PAY,     ICE_PTYPE_ATTR_GTP_UPLINK },
476         { ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
477         { ICE_MAC_IPV6_GTPU_IPV6_TCP,     ICE_PTYPE_ATTR_GTP_UPLINK },
478         { ICE_MAC_IPV6_GTPU_IPV6_ICMPV6,  ICE_PTYPE_ATTR_GTP_UPLINK },
479 };
480
481 static const u32 ice_ptypes_gtpu[] = {
482         0x00000000, 0x00000000, 0x00000000, 0x00000000,
483         0x00000000, 0x00000000, 0x00000000, 0x00000000,
484         0x00000000, 0x00000000, 0x7FFFFE00, 0x00000000,
485         0x00000000, 0x00000000, 0x00000000, 0x00000000,
486         0x00000000, 0x00000000, 0x00000000, 0x00000000,
487         0x00000000, 0x00000000, 0x00000000, 0x00000000,
488         0x00000000, 0x00000000, 0x00000000, 0x00000000,
489         0x00000000, 0x00000000, 0x00000000, 0x00000000,
490 };
491
492 /* Packet types for PPPoE */
493 static const u32 ice_ptypes_pppoe[] = {
494         0x00000000, 0x00000000, 0x00000000, 0x00000000,
495         0x00000000, 0x00000000, 0x00000000, 0x00000000,
496         0x00000000, 0x03ffe000, 0x00000000, 0x00000000,
497         0x00000000, 0x00000000, 0x00000000, 0x00000000,
498         0x00000000, 0x00000000, 0x00000000, 0x00000000,
499         0x00000000, 0x00000000, 0x00000000, 0x00000000,
500         0x00000000, 0x00000000, 0x00000000, 0x00000000,
501         0x00000000, 0x00000000, 0x00000000, 0x00000000,
502 };
503
504 /* Packet types for packets with PFCP NODE header */
505 static const u32 ice_ptypes_pfcp_node[] = {
506         0x00000000, 0x00000000, 0x00000000, 0x00000000,
507         0x00000000, 0x00000000, 0x00000000, 0x00000000,
508         0x00000000, 0x00000000, 0x80000000, 0x00000002,
509         0x00000000, 0x00000000, 0x00000000, 0x00000000,
510         0x00000000, 0x00000000, 0x00000000, 0x00000000,
511         0x00000000, 0x00000000, 0x00000000, 0x00000000,
512         0x00000000, 0x00000000, 0x00000000, 0x00000000,
513         0x00000000, 0x00000000, 0x00000000, 0x00000000,
514 };
515
516 /* Packet types for packets with PFCP SESSION header */
517 static const u32 ice_ptypes_pfcp_session[] = {
518         0x00000000, 0x00000000, 0x00000000, 0x00000000,
519         0x00000000, 0x00000000, 0x00000000, 0x00000000,
520         0x00000000, 0x00000000, 0x00000000, 0x00000005,
521         0x00000000, 0x00000000, 0x00000000, 0x00000000,
522         0x00000000, 0x00000000, 0x00000000, 0x00000000,
523         0x00000000, 0x00000000, 0x00000000, 0x00000000,
524         0x00000000, 0x00000000, 0x00000000, 0x00000000,
525         0x00000000, 0x00000000, 0x00000000, 0x00000000,
526 };
527
528 /* Packet types for L2TPv3 */
529 static const u32 ice_ptypes_l2tpv3[] = {
530         0x00000000, 0x00000000, 0x00000000, 0x00000000,
531         0x00000000, 0x00000000, 0x00000000, 0x00000000,
532         0x00000000, 0x00000000, 0x00000000, 0x00000300,
533         0x00000000, 0x00000000, 0x00000000, 0x00000000,
534         0x00000000, 0x00000000, 0x00000000, 0x00000000,
535         0x00000000, 0x00000000, 0x00000000, 0x00000000,
536         0x00000000, 0x00000000, 0x00000000, 0x00000000,
537         0x00000000, 0x00000000, 0x00000000, 0x00000000,
538 };
539
540 /* Packet types for ESP */
541 static const u32 ice_ptypes_esp[] = {
542         0x00000000, 0x00000000, 0x00000000, 0x00000000,
543         0x00000000, 0x00000003, 0x00000000, 0x00000000,
544         0x00000000, 0x00000000, 0x00000000, 0x00000000,
545         0x00000000, 0x00000000, 0x00000000, 0x00000000,
546         0x00000000, 0x00000000, 0x00000000, 0x00000000,
547         0x00000000, 0x00000000, 0x00000000, 0x00000000,
548         0x00000000, 0x00000000, 0x00000000, 0x00000000,
549         0x00000000, 0x00000000, 0x00000000, 0x00000000,
550 };
551
552 /* Packet types for AH */
553 static const u32 ice_ptypes_ah[] = {
554         0x00000000, 0x00000000, 0x00000000, 0x00000000,
555         0x00000000, 0x0000000C, 0x00000000, 0x00000000,
556         0x00000000, 0x00000000, 0x00000000, 0x00000000,
557         0x00000000, 0x00000000, 0x00000000, 0x00000000,
558         0x00000000, 0x00000000, 0x00000000, 0x00000000,
559         0x00000000, 0x00000000, 0x00000000, 0x00000000,
560         0x00000000, 0x00000000, 0x00000000, 0x00000000,
561         0x00000000, 0x00000000, 0x00000000, 0x00000000,
562 };
563
564 /* Packet types for packets with NAT_T ESP header */
565 static const u32 ice_ptypes_nat_t_esp[] = {
566         0x00000000, 0x00000000, 0x00000000, 0x00000000,
567         0x00000000, 0x00000030, 0x00000000, 0x00000000,
568         0x00000000, 0x00000000, 0x00000000, 0x00000000,
569         0x00000000, 0x00000000, 0x00000000, 0x00000000,
570         0x00000000, 0x00000000, 0x00000000, 0x00000000,
571         0x00000000, 0x00000000, 0x00000000, 0x00000000,
572         0x00000000, 0x00000000, 0x00000000, 0x00000000,
573         0x00000000, 0x00000000, 0x00000000, 0x00000000,
574 };
575
576 static const u32 ice_ptypes_mac_non_ip_ofos[] = {
577         0x00000846, 0x00000000, 0x00000000, 0x00000000,
578         0x00000000, 0x00000000, 0x00000000, 0x00000000,
579         0x00400000, 0x03FFF000, 0x00000000, 0x00000000,
580         0x00000000, 0x00000000, 0x00000000, 0x00000000,
581         0x00000000, 0x00000000, 0x00000000, 0x00000000,
582         0x00000000, 0x00000000, 0x00000000, 0x00000000,
583         0x00000000, 0x00000000, 0x00000000, 0x00000000,
584         0x00000000, 0x00000000, 0x00000000, 0x00000000,
585 };
586
587 /* Manage parameters and info. used during the creation of a flow profile */
588 struct ice_flow_prof_params {
589         enum ice_block blk;
590         u16 entry_length; /* # of bytes formatted entry will require */
591         u8 es_cnt;
592         struct ice_flow_prof *prof;
593
594         /* For ACL, the es[0] will have the data of ICE_RX_MDID_PKT_FLAGS_15_0
595          * This will give us the direction flags.
596          */
597         struct ice_fv_word es[ICE_MAX_FV_WORDS];
598         /* attributes can be used to add attributes to a particular PTYPE */
599         const struct ice_ptype_attributes *attr;
600         u16 attr_cnt;
601
602         u16 mask[ICE_MAX_FV_WORDS];
603         DECLARE_BITMAP(ptypes, ICE_FLOW_PTYPE_MAX);
604 };
605
606 #define ICE_FLOW_RSS_HDRS_INNER_MASK \
607         (ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_GTPC | \
608         ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_GTPU | \
609         ICE_FLOW_SEG_HDR_PFCP_SESSION | ICE_FLOW_SEG_HDR_L2TPV3 | \
610         ICE_FLOW_SEG_HDR_ESP | ICE_FLOW_SEG_HDR_AH | \
611         ICE_FLOW_SEG_HDR_NAT_T_ESP)
612
613 #define ICE_FLOW_SEG_HDRS_L3_MASK       \
614         (ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_ARP)
615 #define ICE_FLOW_SEG_HDRS_L4_MASK       \
616         (ICE_FLOW_SEG_HDR_ICMP | ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | \
617          ICE_FLOW_SEG_HDR_SCTP)
618 /* mask for L4 protocols that are NOT part of IPv4/6 OTHER PTYPE groups */
619 #define ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER      \
620         (ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
621
622 /**
623  * ice_flow_val_hdrs - validates packet segments for valid protocol headers
624  * @segs: array of one or more packet segments that describe the flow
625  * @segs_cnt: number of packet segments provided
626  */
627 static int ice_flow_val_hdrs(struct ice_flow_seg_info *segs, u8 segs_cnt)
628 {
629         u8 i;
630
631         for (i = 0; i < segs_cnt; i++) {
632                 /* Multiple L3 headers */
633                 if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK &&
634                     !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK))
635                         return -EINVAL;
636
637                 /* Multiple L4 headers */
638                 if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK &&
639                     !is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK))
640                         return -EINVAL;
641         }
642
643         return 0;
644 }
645
646 /* Sizes of fixed known protocol headers without header options */
647 #define ICE_FLOW_PROT_HDR_SZ_MAC        14
648 #define ICE_FLOW_PROT_HDR_SZ_MAC_VLAN   (ICE_FLOW_PROT_HDR_SZ_MAC + 2)
649 #define ICE_FLOW_PROT_HDR_SZ_IPV4       20
650 #define ICE_FLOW_PROT_HDR_SZ_IPV6       40
651 #define ICE_FLOW_PROT_HDR_SZ_ARP        28
652 #define ICE_FLOW_PROT_HDR_SZ_ICMP       8
653 #define ICE_FLOW_PROT_HDR_SZ_TCP        20
654 #define ICE_FLOW_PROT_HDR_SZ_UDP        8
655 #define ICE_FLOW_PROT_HDR_SZ_SCTP       12
656
657 /**
658  * ice_flow_calc_seg_sz - calculates size of a packet segment based on headers
659  * @params: information about the flow to be processed
660  * @seg: index of packet segment whose header size is to be determined
661  */
662 static u16 ice_flow_calc_seg_sz(struct ice_flow_prof_params *params, u8 seg)
663 {
664         u16 sz;
665
666         /* L2 headers */
667         sz = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_VLAN) ?
668                 ICE_FLOW_PROT_HDR_SZ_MAC_VLAN : ICE_FLOW_PROT_HDR_SZ_MAC;
669
670         /* L3 headers */
671         if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4)
672                 sz += ICE_FLOW_PROT_HDR_SZ_IPV4;
673         else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV6)
674                 sz += ICE_FLOW_PROT_HDR_SZ_IPV6;
675         else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ARP)
676                 sz += ICE_FLOW_PROT_HDR_SZ_ARP;
677         else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK)
678                 /* An L3 header is required if L4 is specified */
679                 return 0;
680
681         /* L4 headers */
682         if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ICMP)
683                 sz += ICE_FLOW_PROT_HDR_SZ_ICMP;
684         else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_TCP)
685                 sz += ICE_FLOW_PROT_HDR_SZ_TCP;
686         else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_UDP)
687                 sz += ICE_FLOW_PROT_HDR_SZ_UDP;
688         else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_SCTP)
689                 sz += ICE_FLOW_PROT_HDR_SZ_SCTP;
690
691         return sz;
692 }
693
694 /**
695  * ice_flow_proc_seg_hdrs - process protocol headers present in pkt segments
696  * @params: information about the flow to be processed
697  *
698  * This function identifies the packet types associated with the protocol
699  * headers being present in packet segments of the specified flow profile.
700  */
701 static int ice_flow_proc_seg_hdrs(struct ice_flow_prof_params *params)
702 {
703         struct ice_flow_prof *prof;
704         u8 i;
705
706         memset(params->ptypes, 0xff, sizeof(params->ptypes));
707
708         prof = params->prof;
709
710         for (i = 0; i < params->prof->segs_cnt; i++) {
711                 const unsigned long *src;
712                 u32 hdrs;
713
714                 hdrs = prof->segs[i].hdrs;
715
716                 if (hdrs & ICE_FLOW_SEG_HDR_ETH) {
717                         src = !i ? (const unsigned long *)ice_ptypes_mac_ofos :
718                                 (const unsigned long *)ice_ptypes_mac_il;
719                         bitmap_and(params->ptypes, params->ptypes, src,
720                                    ICE_FLOW_PTYPE_MAX);
721                 }
722
723                 if (i && hdrs & ICE_FLOW_SEG_HDR_VLAN) {
724                         src = (const unsigned long *)ice_ptypes_macvlan_il;
725                         bitmap_and(params->ptypes, params->ptypes, src,
726                                    ICE_FLOW_PTYPE_MAX);
727                 }
728
729                 if (!i && hdrs & ICE_FLOW_SEG_HDR_ARP) {
730                         bitmap_and(params->ptypes, params->ptypes,
731                                    (const unsigned long *)ice_ptypes_arp_of,
732                                    ICE_FLOW_PTYPE_MAX);
733                 }
734
735                 if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
736                     (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
737                         src = i ? (const unsigned long *)ice_ptypes_ipv4_il :
738                                 (const unsigned long *)ice_ptypes_ipv4_ofos_all;
739                         bitmap_and(params->ptypes, params->ptypes, src,
740                                    ICE_FLOW_PTYPE_MAX);
741                 } else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
742                            (hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
743                         src = i ? (const unsigned long *)ice_ptypes_ipv6_il :
744                                 (const unsigned long *)ice_ptypes_ipv6_ofos_all;
745                         bitmap_and(params->ptypes, params->ptypes, src,
746                                    ICE_FLOW_PTYPE_MAX);
747                 } else if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
748                            !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
749                         src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos_no_l4 :
750                                 (const unsigned long *)ice_ptypes_ipv4_il_no_l4;
751                         bitmap_and(params->ptypes, params->ptypes, src,
752                                    ICE_FLOW_PTYPE_MAX);
753                 } else if (hdrs & ICE_FLOW_SEG_HDR_IPV4) {
754                         src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos :
755                                 (const unsigned long *)ice_ptypes_ipv4_il;
756                         bitmap_and(params->ptypes, params->ptypes, src,
757                                    ICE_FLOW_PTYPE_MAX);
758                 } else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
759                            !(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
760                         src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos_no_l4 :
761                                 (const unsigned long *)ice_ptypes_ipv6_il_no_l4;
762                         bitmap_and(params->ptypes, params->ptypes, src,
763                                    ICE_FLOW_PTYPE_MAX);
764                 } else if (hdrs & ICE_FLOW_SEG_HDR_IPV6) {
765                         src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos :
766                                 (const unsigned long *)ice_ptypes_ipv6_il;
767                         bitmap_and(params->ptypes, params->ptypes, src,
768                                    ICE_FLOW_PTYPE_MAX);
769                 }
770
771                 if (hdrs & ICE_FLOW_SEG_HDR_ETH_NON_IP) {
772                         src = (const unsigned long *)ice_ptypes_mac_non_ip_ofos;
773                         bitmap_and(params->ptypes, params->ptypes, src,
774                                    ICE_FLOW_PTYPE_MAX);
775                 } else if (hdrs & ICE_FLOW_SEG_HDR_PPPOE) {
776                         src = (const unsigned long *)ice_ptypes_pppoe;
777                         bitmap_and(params->ptypes, params->ptypes, src,
778                                    ICE_FLOW_PTYPE_MAX);
779                 } else {
780                         src = (const unsigned long *)ice_ptypes_pppoe;
781                         bitmap_andnot(params->ptypes, params->ptypes, src,
782                                       ICE_FLOW_PTYPE_MAX);
783                 }
784
785                 if (hdrs & ICE_FLOW_SEG_HDR_UDP) {
786                         src = (const unsigned long *)ice_ptypes_udp_il;
787                         bitmap_and(params->ptypes, params->ptypes, src,
788                                    ICE_FLOW_PTYPE_MAX);
789                 } else if (hdrs & ICE_FLOW_SEG_HDR_TCP) {
790                         bitmap_and(params->ptypes, params->ptypes,
791                                    (const unsigned long *)ice_ptypes_tcp_il,
792                                    ICE_FLOW_PTYPE_MAX);
793                 } else if (hdrs & ICE_FLOW_SEG_HDR_SCTP) {
794                         src = (const unsigned long *)ice_ptypes_sctp_il;
795                         bitmap_and(params->ptypes, params->ptypes, src,
796                                    ICE_FLOW_PTYPE_MAX);
797                 }
798
799                 if (hdrs & ICE_FLOW_SEG_HDR_ICMP) {
800                         src = !i ? (const unsigned long *)ice_ptypes_icmp_of :
801                                 (const unsigned long *)ice_ptypes_icmp_il;
802                         bitmap_and(params->ptypes, params->ptypes, src,
803                                    ICE_FLOW_PTYPE_MAX);
804                 } else if (hdrs & ICE_FLOW_SEG_HDR_GRE) {
805                         if (!i) {
806                                 src = (const unsigned long *)ice_ptypes_gre_of;
807                                 bitmap_and(params->ptypes, params->ptypes,
808                                            src, ICE_FLOW_PTYPE_MAX);
809                         }
810                 } else if (hdrs & ICE_FLOW_SEG_HDR_GTPC) {
811                         src = (const unsigned long *)ice_ptypes_gtpc;
812                         bitmap_and(params->ptypes, params->ptypes, src,
813                                    ICE_FLOW_PTYPE_MAX);
814                 } else if (hdrs & ICE_FLOW_SEG_HDR_GTPC_TEID) {
815                         src = (const unsigned long *)ice_ptypes_gtpc_tid;
816                         bitmap_and(params->ptypes, params->ptypes, src,
817                                    ICE_FLOW_PTYPE_MAX);
818                 } else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_DWN) {
819                         src = (const unsigned long *)ice_ptypes_gtpu;
820                         bitmap_and(params->ptypes, params->ptypes, src,
821                                    ICE_FLOW_PTYPE_MAX);
822
823                         /* Attributes for GTP packet with downlink */
824                         params->attr = ice_attr_gtpu_down;
825                         params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_down);
826                 } else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_UP) {
827                         src = (const unsigned long *)ice_ptypes_gtpu;
828                         bitmap_and(params->ptypes, params->ptypes, src,
829                                    ICE_FLOW_PTYPE_MAX);
830
831                         /* Attributes for GTP packet with uplink */
832                         params->attr = ice_attr_gtpu_up;
833                         params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_up);
834                 } else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_EH) {
835                         src = (const unsigned long *)ice_ptypes_gtpu;
836                         bitmap_and(params->ptypes, params->ptypes, src,
837                                    ICE_FLOW_PTYPE_MAX);
838
839                         /* Attributes for GTP packet with Extension Header */
840                         params->attr = ice_attr_gtpu_eh;
841                         params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_eh);
842                 } else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_IP) {
843                         src = (const unsigned long *)ice_ptypes_gtpu;
844                         bitmap_and(params->ptypes, params->ptypes, src,
845                                    ICE_FLOW_PTYPE_MAX);
846                 } else if (hdrs & ICE_FLOW_SEG_HDR_L2TPV3) {
847                         src = (const unsigned long *)ice_ptypes_l2tpv3;
848                         bitmap_and(params->ptypes, params->ptypes, src,
849                                    ICE_FLOW_PTYPE_MAX);
850                 } else if (hdrs & ICE_FLOW_SEG_HDR_ESP) {
851                         src = (const unsigned long *)ice_ptypes_esp;
852                         bitmap_and(params->ptypes, params->ptypes, src,
853                                    ICE_FLOW_PTYPE_MAX);
854                 } else if (hdrs & ICE_FLOW_SEG_HDR_AH) {
855                         src = (const unsigned long *)ice_ptypes_ah;
856                         bitmap_and(params->ptypes, params->ptypes, src,
857                                    ICE_FLOW_PTYPE_MAX);
858                 } else if (hdrs & ICE_FLOW_SEG_HDR_NAT_T_ESP) {
859                         src = (const unsigned long *)ice_ptypes_nat_t_esp;
860                         bitmap_and(params->ptypes, params->ptypes, src,
861                                    ICE_FLOW_PTYPE_MAX);
862                 }
863
864                 if (hdrs & ICE_FLOW_SEG_HDR_PFCP) {
865                         if (hdrs & ICE_FLOW_SEG_HDR_PFCP_NODE)
866                                 src = (const unsigned long *)ice_ptypes_pfcp_node;
867                         else
868                                 src = (const unsigned long *)ice_ptypes_pfcp_session;
869
870                         bitmap_and(params->ptypes, params->ptypes, src,
871                                    ICE_FLOW_PTYPE_MAX);
872                 } else {
873                         src = (const unsigned long *)ice_ptypes_pfcp_node;
874                         bitmap_andnot(params->ptypes, params->ptypes, src,
875                                       ICE_FLOW_PTYPE_MAX);
876
877                         src = (const unsigned long *)ice_ptypes_pfcp_session;
878                         bitmap_andnot(params->ptypes, params->ptypes, src,
879                                       ICE_FLOW_PTYPE_MAX);
880                 }
881         }
882
883         return 0;
884 }
885
886 /**
887  * ice_flow_xtract_fld - Create an extraction sequence entry for the given field
888  * @hw: pointer to the HW struct
889  * @params: information about the flow to be processed
890  * @seg: packet segment index of the field to be extracted
891  * @fld: ID of field to be extracted
892  * @match: bit field of all fields
893  *
894  * This function determines the protocol ID, offset, and size of the given
895  * field. It then allocates one or more extraction sequence entries for the
896  * given field, and fill the entries with protocol ID and offset information.
897  */
898 static int
899 ice_flow_xtract_fld(struct ice_hw *hw, struct ice_flow_prof_params *params,
900                     u8 seg, enum ice_flow_field fld, u64 match)
901 {
902         enum ice_flow_field sib = ICE_FLOW_FIELD_IDX_MAX;
903         enum ice_prot_id prot_id = ICE_PROT_ID_INVAL;
904         u8 fv_words = hw->blk[params->blk].es.fvw;
905         struct ice_flow_fld_info *flds;
906         u16 cnt, ese_bits, i;
907         u16 sib_mask = 0;
908         u16 mask;
909         u16 off;
910
911         flds = params->prof->segs[seg].fields;
912
913         switch (fld) {
914         case ICE_FLOW_FIELD_IDX_ETH_DA:
915         case ICE_FLOW_FIELD_IDX_ETH_SA:
916         case ICE_FLOW_FIELD_IDX_S_VLAN:
917         case ICE_FLOW_FIELD_IDX_C_VLAN:
918                 prot_id = seg == 0 ? ICE_PROT_MAC_OF_OR_S : ICE_PROT_MAC_IL;
919                 break;
920         case ICE_FLOW_FIELD_IDX_ETH_TYPE:
921                 prot_id = seg == 0 ? ICE_PROT_ETYPE_OL : ICE_PROT_ETYPE_IL;
922                 break;
923         case ICE_FLOW_FIELD_IDX_IPV4_DSCP:
924                 prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
925                 break;
926         case ICE_FLOW_FIELD_IDX_IPV6_DSCP:
927                 prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
928                 break;
929         case ICE_FLOW_FIELD_IDX_IPV4_TTL:
930         case ICE_FLOW_FIELD_IDX_IPV4_PROT:
931                 prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
932
933                 /* TTL and PROT share the same extraction seq. entry.
934                  * Each is considered a sibling to the other in terms of sharing
935                  * the same extraction sequence entry.
936                  */
937                 if (fld == ICE_FLOW_FIELD_IDX_IPV4_TTL)
938                         sib = ICE_FLOW_FIELD_IDX_IPV4_PROT;
939                 else if (fld == ICE_FLOW_FIELD_IDX_IPV4_PROT)
940                         sib = ICE_FLOW_FIELD_IDX_IPV4_TTL;
941
942                 /* If the sibling field is also included, that field's
943                  * mask needs to be included.
944                  */
945                 if (match & BIT(sib))
946                         sib_mask = ice_flds_info[sib].mask;
947                 break;
948         case ICE_FLOW_FIELD_IDX_IPV6_TTL:
949         case ICE_FLOW_FIELD_IDX_IPV6_PROT:
950                 prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
951
952                 /* TTL and PROT share the same extraction seq. entry.
953                  * Each is considered a sibling to the other in terms of sharing
954                  * the same extraction sequence entry.
955                  */
956                 if (fld == ICE_FLOW_FIELD_IDX_IPV6_TTL)
957                         sib = ICE_FLOW_FIELD_IDX_IPV6_PROT;
958                 else if (fld == ICE_FLOW_FIELD_IDX_IPV6_PROT)
959                         sib = ICE_FLOW_FIELD_IDX_IPV6_TTL;
960
961                 /* If the sibling field is also included, that field's
962                  * mask needs to be included.
963                  */
964                 if (match & BIT(sib))
965                         sib_mask = ice_flds_info[sib].mask;
966                 break;
967         case ICE_FLOW_FIELD_IDX_IPV4_SA:
968         case ICE_FLOW_FIELD_IDX_IPV4_DA:
969                 prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
970                 break;
971         case ICE_FLOW_FIELD_IDX_IPV6_SA:
972         case ICE_FLOW_FIELD_IDX_IPV6_DA:
973                 prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
974                 break;
975         case ICE_FLOW_FIELD_IDX_TCP_SRC_PORT:
976         case ICE_FLOW_FIELD_IDX_TCP_DST_PORT:
977         case ICE_FLOW_FIELD_IDX_TCP_FLAGS:
978                 prot_id = ICE_PROT_TCP_IL;
979                 break;
980         case ICE_FLOW_FIELD_IDX_UDP_SRC_PORT:
981         case ICE_FLOW_FIELD_IDX_UDP_DST_PORT:
982                 prot_id = ICE_PROT_UDP_IL_OR_S;
983                 break;
984         case ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT:
985         case ICE_FLOW_FIELD_IDX_SCTP_DST_PORT:
986                 prot_id = ICE_PROT_SCTP_IL;
987                 break;
988         case ICE_FLOW_FIELD_IDX_GTPC_TEID:
989         case ICE_FLOW_FIELD_IDX_GTPU_IP_TEID:
990         case ICE_FLOW_FIELD_IDX_GTPU_UP_TEID:
991         case ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID:
992         case ICE_FLOW_FIELD_IDX_GTPU_EH_TEID:
993         case ICE_FLOW_FIELD_IDX_GTPU_EH_QFI:
994                 /* GTP is accessed through UDP OF protocol */
995                 prot_id = ICE_PROT_UDP_OF;
996                 break;
997         case ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID:
998                 prot_id = ICE_PROT_PPPOE;
999                 break;
1000         case ICE_FLOW_FIELD_IDX_PFCP_SEID:
1001                 prot_id = ICE_PROT_UDP_IL_OR_S;
1002                 break;
1003         case ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID:
1004                 prot_id = ICE_PROT_L2TPV3;
1005                 break;
1006         case ICE_FLOW_FIELD_IDX_ESP_SPI:
1007                 prot_id = ICE_PROT_ESP_F;
1008                 break;
1009         case ICE_FLOW_FIELD_IDX_AH_SPI:
1010                 prot_id = ICE_PROT_ESP_2;
1011                 break;
1012         case ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI:
1013                 prot_id = ICE_PROT_UDP_IL_OR_S;
1014                 break;
1015         case ICE_FLOW_FIELD_IDX_ARP_SIP:
1016         case ICE_FLOW_FIELD_IDX_ARP_DIP:
1017         case ICE_FLOW_FIELD_IDX_ARP_SHA:
1018         case ICE_FLOW_FIELD_IDX_ARP_DHA:
1019         case ICE_FLOW_FIELD_IDX_ARP_OP:
1020                 prot_id = ICE_PROT_ARP_OF;
1021                 break;
1022         case ICE_FLOW_FIELD_IDX_ICMP_TYPE:
1023         case ICE_FLOW_FIELD_IDX_ICMP_CODE:
1024                 /* ICMP type and code share the same extraction seq. entry */
1025                 prot_id = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4) ?
1026                                 ICE_PROT_ICMP_IL : ICE_PROT_ICMPV6_IL;
1027                 sib = fld == ICE_FLOW_FIELD_IDX_ICMP_TYPE ?
1028                         ICE_FLOW_FIELD_IDX_ICMP_CODE :
1029                         ICE_FLOW_FIELD_IDX_ICMP_TYPE;
1030                 break;
1031         case ICE_FLOW_FIELD_IDX_GRE_KEYID:
1032                 prot_id = ICE_PROT_GRE_OF;
1033                 break;
1034         default:
1035                 return -EOPNOTSUPP;
1036         }
1037
1038         /* Each extraction sequence entry is a word in size, and extracts a
1039          * word-aligned offset from a protocol header.
1040          */
1041         ese_bits = ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE;
1042
1043         flds[fld].xtrct.prot_id = prot_id;
1044         flds[fld].xtrct.off = (ice_flds_info[fld].off / ese_bits) *
1045                 ICE_FLOW_FV_EXTRACT_SZ;
1046         flds[fld].xtrct.disp = (u8)(ice_flds_info[fld].off % ese_bits);
1047         flds[fld].xtrct.idx = params->es_cnt;
1048         flds[fld].xtrct.mask = ice_flds_info[fld].mask;
1049
1050         /* Adjust the next field-entry index after accommodating the number of
1051          * entries this field consumes
1052          */
1053         cnt = DIV_ROUND_UP(flds[fld].xtrct.disp + ice_flds_info[fld].size,
1054                            ese_bits);
1055
1056         /* Fill in the extraction sequence entries needed for this field */
1057         off = flds[fld].xtrct.off;
1058         mask = flds[fld].xtrct.mask;
1059         for (i = 0; i < cnt; i++) {
1060                 /* Only consume an extraction sequence entry if there is no
1061                  * sibling field associated with this field or the sibling entry
1062                  * already extracts the word shared with this field.
1063                  */
1064                 if (sib == ICE_FLOW_FIELD_IDX_MAX ||
1065                     flds[sib].xtrct.prot_id == ICE_PROT_ID_INVAL ||
1066                     flds[sib].xtrct.off != off) {
1067                         u8 idx;
1068
1069                         /* Make sure the number of extraction sequence required
1070                          * does not exceed the block's capability
1071                          */
1072                         if (params->es_cnt >= fv_words)
1073                                 return -ENOSPC;
1074
1075                         /* some blocks require a reversed field vector layout */
1076                         if (hw->blk[params->blk].es.reverse)
1077                                 idx = fv_words - params->es_cnt - 1;
1078                         else
1079                                 idx = params->es_cnt;
1080
1081                         params->es[idx].prot_id = prot_id;
1082                         params->es[idx].off = off;
1083                         params->mask[idx] = mask | sib_mask;
1084                         params->es_cnt++;
1085                 }
1086
1087                 off += ICE_FLOW_FV_EXTRACT_SZ;
1088         }
1089
1090         return 0;
1091 }
1092
1093 /**
1094  * ice_flow_xtract_raws - Create extract sequence entries for raw bytes
1095  * @hw: pointer to the HW struct
1096  * @params: information about the flow to be processed
1097  * @seg: index of packet segment whose raw fields are to be extracted
1098  */
1099 static int
1100 ice_flow_xtract_raws(struct ice_hw *hw, struct ice_flow_prof_params *params,
1101                      u8 seg)
1102 {
1103         u16 fv_words;
1104         u16 hdrs_sz;
1105         u8 i;
1106
1107         if (!params->prof->segs[seg].raws_cnt)
1108                 return 0;
1109
1110         if (params->prof->segs[seg].raws_cnt >
1111             ARRAY_SIZE(params->prof->segs[seg].raws))
1112                 return -ENOSPC;
1113
1114         /* Offsets within the segment headers are not supported */
1115         hdrs_sz = ice_flow_calc_seg_sz(params, seg);
1116         if (!hdrs_sz)
1117                 return -EINVAL;
1118
1119         fv_words = hw->blk[params->blk].es.fvw;
1120
1121         for (i = 0; i < params->prof->segs[seg].raws_cnt; i++) {
1122                 struct ice_flow_seg_fld_raw *raw;
1123                 u16 off, cnt, j;
1124
1125                 raw = &params->prof->segs[seg].raws[i];
1126
1127                 /* Storing extraction information */
1128                 raw->info.xtrct.prot_id = ICE_PROT_MAC_OF_OR_S;
1129                 raw->info.xtrct.off = (raw->off / ICE_FLOW_FV_EXTRACT_SZ) *
1130                         ICE_FLOW_FV_EXTRACT_SZ;
1131                 raw->info.xtrct.disp = (raw->off % ICE_FLOW_FV_EXTRACT_SZ) *
1132                         BITS_PER_BYTE;
1133                 raw->info.xtrct.idx = params->es_cnt;
1134
1135                 /* Determine the number of field vector entries this raw field
1136                  * consumes.
1137                  */
1138                 cnt = DIV_ROUND_UP(raw->info.xtrct.disp +
1139                                    (raw->info.src.last * BITS_PER_BYTE),
1140                                    (ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE));
1141                 off = raw->info.xtrct.off;
1142                 for (j = 0; j < cnt; j++) {
1143                         u16 idx;
1144
1145                         /* Make sure the number of extraction sequence required
1146                          * does not exceed the block's capability
1147                          */
1148                         if (params->es_cnt >= hw->blk[params->blk].es.count ||
1149                             params->es_cnt >= ICE_MAX_FV_WORDS)
1150                                 return -ENOSPC;
1151
1152                         /* some blocks require a reversed field vector layout */
1153                         if (hw->blk[params->blk].es.reverse)
1154                                 idx = fv_words - params->es_cnt - 1;
1155                         else
1156                                 idx = params->es_cnt;
1157
1158                         params->es[idx].prot_id = raw->info.xtrct.prot_id;
1159                         params->es[idx].off = off;
1160                         params->es_cnt++;
1161                         off += ICE_FLOW_FV_EXTRACT_SZ;
1162                 }
1163         }
1164
1165         return 0;
1166 }
1167
1168 /**
1169  * ice_flow_create_xtrct_seq - Create an extraction sequence for given segments
1170  * @hw: pointer to the HW struct
1171  * @params: information about the flow to be processed
1172  *
1173  * This function iterates through all matched fields in the given segments, and
1174  * creates an extraction sequence for the fields.
1175  */
1176 static int
1177 ice_flow_create_xtrct_seq(struct ice_hw *hw,
1178                           struct ice_flow_prof_params *params)
1179 {
1180         struct ice_flow_prof *prof = params->prof;
1181         int status = 0;
1182         u8 i;
1183
1184         for (i = 0; i < prof->segs_cnt; i++) {
1185                 u64 match = params->prof->segs[i].match;
1186                 enum ice_flow_field j;
1187
1188                 for_each_set_bit(j, (unsigned long *)&match,
1189                                  ICE_FLOW_FIELD_IDX_MAX) {
1190                         status = ice_flow_xtract_fld(hw, params, i, j, match);
1191                         if (status)
1192                                 return status;
1193                         clear_bit(j, (unsigned long *)&match);
1194                 }
1195
1196                 /* Process raw matching bytes */
1197                 status = ice_flow_xtract_raws(hw, params, i);
1198                 if (status)
1199                         return status;
1200         }
1201
1202         return status;
1203 }
1204
1205 /**
1206  * ice_flow_proc_segs - process all packet segments associated with a profile
1207  * @hw: pointer to the HW struct
1208  * @params: information about the flow to be processed
1209  */
1210 static int
1211 ice_flow_proc_segs(struct ice_hw *hw, struct ice_flow_prof_params *params)
1212 {
1213         int status;
1214
1215         status = ice_flow_proc_seg_hdrs(params);
1216         if (status)
1217                 return status;
1218
1219         status = ice_flow_create_xtrct_seq(hw, params);
1220         if (status)
1221                 return status;
1222
1223         switch (params->blk) {
1224         case ICE_BLK_FD:
1225         case ICE_BLK_RSS:
1226                 status = 0;
1227                 break;
1228         default:
1229                 return -EOPNOTSUPP;
1230         }
1231
1232         return status;
1233 }
1234
1235 #define ICE_FLOW_FIND_PROF_CHK_FLDS     0x00000001
1236 #define ICE_FLOW_FIND_PROF_CHK_VSI      0x00000002
1237 #define ICE_FLOW_FIND_PROF_NOT_CHK_DIR  0x00000004
1238
1239 /**
1240  * ice_flow_find_prof_conds - Find a profile matching headers and conditions
1241  * @hw: pointer to the HW struct
1242  * @blk: classification stage
1243  * @dir: flow direction
1244  * @segs: array of one or more packet segments that describe the flow
1245  * @segs_cnt: number of packet segments provided
1246  * @vsi_handle: software VSI handle to check VSI (ICE_FLOW_FIND_PROF_CHK_VSI)
1247  * @conds: additional conditions to be checked (ICE_FLOW_FIND_PROF_CHK_*)
1248  */
1249 static struct ice_flow_prof *
1250 ice_flow_find_prof_conds(struct ice_hw *hw, enum ice_block blk,
1251                          enum ice_flow_dir dir, struct ice_flow_seg_info *segs,
1252                          u8 segs_cnt, u16 vsi_handle, u32 conds)
1253 {
1254         struct ice_flow_prof *p, *prof = NULL;
1255
1256         mutex_lock(&hw->fl_profs_locks[blk]);
1257         list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1258                 if ((p->dir == dir || conds & ICE_FLOW_FIND_PROF_NOT_CHK_DIR) &&
1259                     segs_cnt && segs_cnt == p->segs_cnt) {
1260                         u8 i;
1261
1262                         /* Check for profile-VSI association if specified */
1263                         if ((conds & ICE_FLOW_FIND_PROF_CHK_VSI) &&
1264                             ice_is_vsi_valid(hw, vsi_handle) &&
1265                             !test_bit(vsi_handle, p->vsis))
1266                                 continue;
1267
1268                         /* Protocol headers must be checked. Matched fields are
1269                          * checked if specified.
1270                          */
1271                         for (i = 0; i < segs_cnt; i++)
1272                                 if (segs[i].hdrs != p->segs[i].hdrs ||
1273                                     ((conds & ICE_FLOW_FIND_PROF_CHK_FLDS) &&
1274                                      segs[i].match != p->segs[i].match))
1275                                         break;
1276
1277                         /* A match is found if all segments are matched */
1278                         if (i == segs_cnt) {
1279                                 prof = p;
1280                                 break;
1281                         }
1282                 }
1283         mutex_unlock(&hw->fl_profs_locks[blk]);
1284
1285         return prof;
1286 }
1287
1288 /**
1289  * ice_flow_find_prof_id - Look up a profile with given profile ID
1290  * @hw: pointer to the HW struct
1291  * @blk: classification stage
1292  * @prof_id: unique ID to identify this flow profile
1293  */
1294 static struct ice_flow_prof *
1295 ice_flow_find_prof_id(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1296 {
1297         struct ice_flow_prof *p;
1298
1299         list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
1300                 if (p->id == prof_id)
1301                         return p;
1302
1303         return NULL;
1304 }
1305
1306 /**
1307  * ice_flow_rem_entry_sync - Remove a flow entry
1308  * @hw: pointer to the HW struct
1309  * @blk: classification stage
1310  * @entry: flow entry to be removed
1311  */
1312 static int
1313 ice_flow_rem_entry_sync(struct ice_hw *hw, enum ice_block __always_unused blk,
1314                         struct ice_flow_entry *entry)
1315 {
1316         if (!entry)
1317                 return -EINVAL;
1318
1319         list_del(&entry->l_entry);
1320
1321         devm_kfree(ice_hw_to_dev(hw), entry);
1322
1323         return 0;
1324 }
1325
1326 /**
1327  * ice_flow_add_prof_sync - Add a flow profile for packet segments and fields
1328  * @hw: pointer to the HW struct
1329  * @blk: classification stage
1330  * @dir: flow direction
1331  * @prof_id: unique ID to identify this flow profile
1332  * @segs: array of one or more packet segments that describe the flow
1333  * @segs_cnt: number of packet segments provided
1334  * @prof: stores the returned flow profile added
1335  *
1336  * Assumption: the caller has acquired the lock to the profile list
1337  */
1338 static int
1339 ice_flow_add_prof_sync(struct ice_hw *hw, enum ice_block blk,
1340                        enum ice_flow_dir dir, u64 prof_id,
1341                        struct ice_flow_seg_info *segs, u8 segs_cnt,
1342                        struct ice_flow_prof **prof)
1343 {
1344         struct ice_flow_prof_params *params;
1345         int status;
1346         u8 i;
1347
1348         if (!prof)
1349                 return -EINVAL;
1350
1351         params = kzalloc(sizeof(*params), GFP_KERNEL);
1352         if (!params)
1353                 return -ENOMEM;
1354
1355         params->prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*params->prof),
1356                                     GFP_KERNEL);
1357         if (!params->prof) {
1358                 status = -ENOMEM;
1359                 goto free_params;
1360         }
1361
1362         /* initialize extraction sequence to all invalid (0xff) */
1363         for (i = 0; i < ICE_MAX_FV_WORDS; i++) {
1364                 params->es[i].prot_id = ICE_PROT_INVALID;
1365                 params->es[i].off = ICE_FV_OFFSET_INVAL;
1366         }
1367
1368         params->blk = blk;
1369         params->prof->id = prof_id;
1370         params->prof->dir = dir;
1371         params->prof->segs_cnt = segs_cnt;
1372
1373         /* Make a copy of the segments that need to be persistent in the flow
1374          * profile instance
1375          */
1376         for (i = 0; i < segs_cnt; i++)
1377                 memcpy(&params->prof->segs[i], &segs[i], sizeof(*segs));
1378
1379         status = ice_flow_proc_segs(hw, params);
1380         if (status) {
1381                 ice_debug(hw, ICE_DBG_FLOW, "Error processing a flow's packet segments\n");
1382                 goto out;
1383         }
1384
1385         /* Add a HW profile for this flow profile */
1386         status = ice_add_prof(hw, blk, prof_id, (u8 *)params->ptypes,
1387                               params->attr, params->attr_cnt, params->es,
1388                               params->mask);
1389         if (status) {
1390                 ice_debug(hw, ICE_DBG_FLOW, "Error adding a HW flow profile\n");
1391                 goto out;
1392         }
1393
1394         INIT_LIST_HEAD(&params->prof->entries);
1395         mutex_init(&params->prof->entries_lock);
1396         *prof = params->prof;
1397
1398 out:
1399         if (status)
1400                 devm_kfree(ice_hw_to_dev(hw), params->prof);
1401 free_params:
1402         kfree(params);
1403
1404         return status;
1405 }
1406
1407 /**
1408  * ice_flow_rem_prof_sync - remove a flow profile
1409  * @hw: pointer to the hardware structure
1410  * @blk: classification stage
1411  * @prof: pointer to flow profile to remove
1412  *
1413  * Assumption: the caller has acquired the lock to the profile list
1414  */
1415 static int
1416 ice_flow_rem_prof_sync(struct ice_hw *hw, enum ice_block blk,
1417                        struct ice_flow_prof *prof)
1418 {
1419         int status;
1420
1421         /* Remove all remaining flow entries before removing the flow profile */
1422         if (!list_empty(&prof->entries)) {
1423                 struct ice_flow_entry *e, *t;
1424
1425                 mutex_lock(&prof->entries_lock);
1426
1427                 list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
1428                         status = ice_flow_rem_entry_sync(hw, blk, e);
1429                         if (status)
1430                                 break;
1431                 }
1432
1433                 mutex_unlock(&prof->entries_lock);
1434         }
1435
1436         /* Remove all hardware profiles associated with this flow profile */
1437         status = ice_rem_prof(hw, blk, prof->id);
1438         if (!status) {
1439                 list_del(&prof->l_entry);
1440                 mutex_destroy(&prof->entries_lock);
1441                 devm_kfree(ice_hw_to_dev(hw), prof);
1442         }
1443
1444         return status;
1445 }
1446
1447 /**
1448  * ice_flow_assoc_prof - associate a VSI with a flow profile
1449  * @hw: pointer to the hardware structure
1450  * @blk: classification stage
1451  * @prof: pointer to flow profile
1452  * @vsi_handle: software VSI handle
1453  *
1454  * Assumption: the caller has acquired the lock to the profile list
1455  * and the software VSI handle has been validated
1456  */
1457 static int
1458 ice_flow_assoc_prof(struct ice_hw *hw, enum ice_block blk,
1459                     struct ice_flow_prof *prof, u16 vsi_handle)
1460 {
1461         int status = 0;
1462
1463         if (!test_bit(vsi_handle, prof->vsis)) {
1464                 status = ice_add_prof_id_flow(hw, blk,
1465                                               ice_get_hw_vsi_num(hw,
1466                                                                  vsi_handle),
1467                                               prof->id);
1468                 if (!status)
1469                         set_bit(vsi_handle, prof->vsis);
1470                 else
1471                         ice_debug(hw, ICE_DBG_FLOW, "HW profile add failed, %d\n",
1472                                   status);
1473         }
1474
1475         return status;
1476 }
1477
1478 /**
1479  * ice_flow_disassoc_prof - disassociate a VSI from a flow profile
1480  * @hw: pointer to the hardware structure
1481  * @blk: classification stage
1482  * @prof: pointer to flow profile
1483  * @vsi_handle: software VSI handle
1484  *
1485  * Assumption: the caller has acquired the lock to the profile list
1486  * and the software VSI handle has been validated
1487  */
1488 static int
1489 ice_flow_disassoc_prof(struct ice_hw *hw, enum ice_block blk,
1490                        struct ice_flow_prof *prof, u16 vsi_handle)
1491 {
1492         int status = 0;
1493
1494         if (test_bit(vsi_handle, prof->vsis)) {
1495                 status = ice_rem_prof_id_flow(hw, blk,
1496                                               ice_get_hw_vsi_num(hw,
1497                                                                  vsi_handle),
1498                                               prof->id);
1499                 if (!status)
1500                         clear_bit(vsi_handle, prof->vsis);
1501                 else
1502                         ice_debug(hw, ICE_DBG_FLOW, "HW profile remove failed, %d\n",
1503                                   status);
1504         }
1505
1506         return status;
1507 }
1508
1509 /**
1510  * ice_flow_add_prof - Add a flow profile for packet segments and matched fields
1511  * @hw: pointer to the HW struct
1512  * @blk: classification stage
1513  * @dir: flow direction
1514  * @prof_id: unique ID to identify this flow profile
1515  * @segs: array of one or more packet segments that describe the flow
1516  * @segs_cnt: number of packet segments provided
1517  * @prof: stores the returned flow profile added
1518  */
1519 int
1520 ice_flow_add_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir,
1521                   u64 prof_id, struct ice_flow_seg_info *segs, u8 segs_cnt,
1522                   struct ice_flow_prof **prof)
1523 {
1524         int status;
1525
1526         if (segs_cnt > ICE_FLOW_SEG_MAX)
1527                 return -ENOSPC;
1528
1529         if (!segs_cnt)
1530                 return -EINVAL;
1531
1532         if (!segs)
1533                 return -EINVAL;
1534
1535         status = ice_flow_val_hdrs(segs, segs_cnt);
1536         if (status)
1537                 return status;
1538
1539         mutex_lock(&hw->fl_profs_locks[blk]);
1540
1541         status = ice_flow_add_prof_sync(hw, blk, dir, prof_id, segs, segs_cnt,
1542                                         prof);
1543         if (!status)
1544                 list_add(&(*prof)->l_entry, &hw->fl_profs[blk]);
1545
1546         mutex_unlock(&hw->fl_profs_locks[blk]);
1547
1548         return status;
1549 }
1550
1551 /**
1552  * ice_flow_rem_prof - Remove a flow profile and all entries associated with it
1553  * @hw: pointer to the HW struct
1554  * @blk: the block for which the flow profile is to be removed
1555  * @prof_id: unique ID of the flow profile to be removed
1556  */
1557 int ice_flow_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1558 {
1559         struct ice_flow_prof *prof;
1560         int status;
1561
1562         mutex_lock(&hw->fl_profs_locks[blk]);
1563
1564         prof = ice_flow_find_prof_id(hw, blk, prof_id);
1565         if (!prof) {
1566                 status = -ENOENT;
1567                 goto out;
1568         }
1569
1570         /* prof becomes invalid after the call */
1571         status = ice_flow_rem_prof_sync(hw, blk, prof);
1572
1573 out:
1574         mutex_unlock(&hw->fl_profs_locks[blk]);
1575
1576         return status;
1577 }
1578
1579 /**
1580  * ice_flow_add_entry - Add a flow entry
1581  * @hw: pointer to the HW struct
1582  * @blk: classification stage
1583  * @prof_id: ID of the profile to add a new flow entry to
1584  * @entry_id: unique ID to identify this flow entry
1585  * @vsi_handle: software VSI handle for the flow entry
1586  * @prio: priority of the flow entry
1587  * @data: pointer to a data buffer containing flow entry's match values/masks
1588  * @entry_h: pointer to buffer that receives the new flow entry's handle
1589  */
1590 int
1591 ice_flow_add_entry(struct ice_hw *hw, enum ice_block blk, u64 prof_id,
1592                    u64 entry_id, u16 vsi_handle, enum ice_flow_priority prio,
1593                    void *data, u64 *entry_h)
1594 {
1595         struct ice_flow_entry *e = NULL;
1596         struct ice_flow_prof *prof;
1597         int status;
1598
1599         /* No flow entry data is expected for RSS */
1600         if (!entry_h || (!data && blk != ICE_BLK_RSS))
1601                 return -EINVAL;
1602
1603         if (!ice_is_vsi_valid(hw, vsi_handle))
1604                 return -EINVAL;
1605
1606         mutex_lock(&hw->fl_profs_locks[blk]);
1607
1608         prof = ice_flow_find_prof_id(hw, blk, prof_id);
1609         if (!prof) {
1610                 status = -ENOENT;
1611         } else {
1612                 /* Allocate memory for the entry being added and associate
1613                  * the VSI to the found flow profile
1614                  */
1615                 e = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*e), GFP_KERNEL);
1616                 if (!e)
1617                         status = -ENOMEM;
1618                 else
1619                         status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
1620         }
1621
1622         mutex_unlock(&hw->fl_profs_locks[blk]);
1623         if (status)
1624                 goto out;
1625
1626         e->id = entry_id;
1627         e->vsi_handle = vsi_handle;
1628         e->prof = prof;
1629         e->priority = prio;
1630
1631         switch (blk) {
1632         case ICE_BLK_FD:
1633         case ICE_BLK_RSS:
1634                 break;
1635         default:
1636                 status = -EOPNOTSUPP;
1637                 goto out;
1638         }
1639
1640         mutex_lock(&prof->entries_lock);
1641         list_add(&e->l_entry, &prof->entries);
1642         mutex_unlock(&prof->entries_lock);
1643
1644         *entry_h = ICE_FLOW_ENTRY_HNDL(e);
1645
1646 out:
1647         if (status)
1648                 devm_kfree(ice_hw_to_dev(hw), e);
1649
1650         return status;
1651 }
1652
1653 /**
1654  * ice_flow_rem_entry - Remove a flow entry
1655  * @hw: pointer to the HW struct
1656  * @blk: classification stage
1657  * @entry_h: handle to the flow entry to be removed
1658  */
1659 int ice_flow_rem_entry(struct ice_hw *hw, enum ice_block blk, u64 entry_h)
1660 {
1661         struct ice_flow_entry *entry;
1662         struct ice_flow_prof *prof;
1663         int status = 0;
1664
1665         if (entry_h == ICE_FLOW_ENTRY_HANDLE_INVAL)
1666                 return -EINVAL;
1667
1668         entry = ICE_FLOW_ENTRY_PTR(entry_h);
1669
1670         /* Retain the pointer to the flow profile as the entry will be freed */
1671         prof = entry->prof;
1672
1673         if (prof) {
1674                 mutex_lock(&prof->entries_lock);
1675                 status = ice_flow_rem_entry_sync(hw, blk, entry);
1676                 mutex_unlock(&prof->entries_lock);
1677         }
1678
1679         return status;
1680 }
1681
1682 /**
1683  * ice_flow_set_fld_ext - specifies locations of field from entry's input buffer
1684  * @seg: packet segment the field being set belongs to
1685  * @fld: field to be set
1686  * @field_type: type of the field
1687  * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1688  *           entry's input buffer
1689  * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1690  *            input buffer
1691  * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1692  *            entry's input buffer
1693  *
1694  * This helper function stores information of a field being matched, including
1695  * the type of the field and the locations of the value to match, the mask, and
1696  * the upper-bound value in the start of the input buffer for a flow entry.
1697  * This function should only be used for fixed-size data structures.
1698  *
1699  * This function also opportunistically determines the protocol headers to be
1700  * present based on the fields being set. Some fields cannot be used alone to
1701  * determine the protocol headers present. Sometimes, fields for particular
1702  * protocol headers are not matched. In those cases, the protocol headers
1703  * must be explicitly set.
1704  */
1705 static void
1706 ice_flow_set_fld_ext(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1707                      enum ice_flow_fld_match_type field_type, u16 val_loc,
1708                      u16 mask_loc, u16 last_loc)
1709 {
1710         u64 bit = BIT_ULL(fld);
1711
1712         seg->match |= bit;
1713         if (field_type == ICE_FLOW_FLD_TYPE_RANGE)
1714                 seg->range |= bit;
1715
1716         seg->fields[fld].type = field_type;
1717         seg->fields[fld].src.val = val_loc;
1718         seg->fields[fld].src.mask = mask_loc;
1719         seg->fields[fld].src.last = last_loc;
1720
1721         ICE_FLOW_SET_HDRS(seg, ice_flds_info[fld].hdr);
1722 }
1723
1724 /**
1725  * ice_flow_set_fld - specifies locations of field from entry's input buffer
1726  * @seg: packet segment the field being set belongs to
1727  * @fld: field to be set
1728  * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1729  *           entry's input buffer
1730  * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1731  *            input buffer
1732  * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1733  *            entry's input buffer
1734  * @range: indicate if field being matched is to be in a range
1735  *
1736  * This function specifies the locations, in the form of byte offsets from the
1737  * start of the input buffer for a flow entry, from where the value to match,
1738  * the mask value, and upper value can be extracted. These locations are then
1739  * stored in the flow profile. When adding a flow entry associated with the
1740  * flow profile, these locations will be used to quickly extract the values and
1741  * create the content of a match entry. This function should only be used for
1742  * fixed-size data structures.
1743  */
1744 void
1745 ice_flow_set_fld(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1746                  u16 val_loc, u16 mask_loc, u16 last_loc, bool range)
1747 {
1748         enum ice_flow_fld_match_type t = range ?
1749                 ICE_FLOW_FLD_TYPE_RANGE : ICE_FLOW_FLD_TYPE_REG;
1750
1751         ice_flow_set_fld_ext(seg, fld, t, val_loc, mask_loc, last_loc);
1752 }
1753
1754 /**
1755  * ice_flow_add_fld_raw - sets locations of a raw field from entry's input buf
1756  * @seg: packet segment the field being set belongs to
1757  * @off: offset of the raw field from the beginning of the segment in bytes
1758  * @len: length of the raw pattern to be matched
1759  * @val_loc: location of the value to match from entry's input buffer
1760  * @mask_loc: location of mask value from entry's input buffer
1761  *
1762  * This function specifies the offset of the raw field to be match from the
1763  * beginning of the specified packet segment, and the locations, in the form of
1764  * byte offsets from the start of the input buffer for a flow entry, from where
1765  * the value to match and the mask value to be extracted. These locations are
1766  * then stored in the flow profile. When adding flow entries to the associated
1767  * flow profile, these locations can be used to quickly extract the values to
1768  * create the content of a match entry. This function should only be used for
1769  * fixed-size data structures.
1770  */
1771 void
1772 ice_flow_add_fld_raw(struct ice_flow_seg_info *seg, u16 off, u8 len,
1773                      u16 val_loc, u16 mask_loc)
1774 {
1775         if (seg->raws_cnt < ICE_FLOW_SEG_RAW_FLD_MAX) {
1776                 seg->raws[seg->raws_cnt].off = off;
1777                 seg->raws[seg->raws_cnt].info.type = ICE_FLOW_FLD_TYPE_SIZE;
1778                 seg->raws[seg->raws_cnt].info.src.val = val_loc;
1779                 seg->raws[seg->raws_cnt].info.src.mask = mask_loc;
1780                 /* The "last" field is used to store the length of the field */
1781                 seg->raws[seg->raws_cnt].info.src.last = len;
1782         }
1783
1784         /* Overflows of "raws" will be handled as an error condition later in
1785          * the flow when this information is processed.
1786          */
1787         seg->raws_cnt++;
1788 }
1789
1790 /**
1791  * ice_flow_rem_vsi_prof - remove VSI from flow profile
1792  * @hw: pointer to the hardware structure
1793  * @vsi_handle: software VSI handle
1794  * @prof_id: unique ID to identify this flow profile
1795  *
1796  * This function removes the flow entries associated to the input
1797  * VSI handle and disassociate the VSI from the flow profile.
1798  */
1799 int ice_flow_rem_vsi_prof(struct ice_hw *hw, u16 vsi_handle, u64 prof_id)
1800 {
1801         struct ice_flow_prof *prof;
1802         int status = 0;
1803
1804         if (!ice_is_vsi_valid(hw, vsi_handle))
1805                 return -EINVAL;
1806
1807         /* find flow profile pointer with input package block and profile ID */
1808         prof = ice_flow_find_prof_id(hw, ICE_BLK_FD, prof_id);
1809         if (!prof) {
1810                 ice_debug(hw, ICE_DBG_PKG, "Cannot find flow profile id=%llu\n",
1811                           prof_id);
1812                 return -ENOENT;
1813         }
1814
1815         /* Remove all remaining flow entries before removing the flow profile */
1816         if (!list_empty(&prof->entries)) {
1817                 struct ice_flow_entry *e, *t;
1818
1819                 mutex_lock(&prof->entries_lock);
1820                 list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
1821                         if (e->vsi_handle != vsi_handle)
1822                                 continue;
1823
1824                         status = ice_flow_rem_entry_sync(hw, ICE_BLK_FD, e);
1825                         if (status)
1826                                 break;
1827                 }
1828                 mutex_unlock(&prof->entries_lock);
1829         }
1830         if (status)
1831                 return status;
1832
1833         /* disassociate the flow profile from sw VSI handle */
1834         status = ice_flow_disassoc_prof(hw, ICE_BLK_FD, prof, vsi_handle);
1835         if (status)
1836                 ice_debug(hw, ICE_DBG_PKG, "ice_flow_disassoc_prof() failed with status=%d\n",
1837                           status);
1838         return status;
1839 }
1840
1841 #define ICE_FLOW_RSS_SEG_HDR_L2_MASKS \
1842         (ICE_FLOW_SEG_HDR_ETH | ICE_FLOW_SEG_HDR_VLAN)
1843
1844 #define ICE_FLOW_RSS_SEG_HDR_L3_MASKS \
1845         (ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)
1846
1847 #define ICE_FLOW_RSS_SEG_HDR_L4_MASKS \
1848         (ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
1849
1850 #define ICE_FLOW_RSS_SEG_HDR_VAL_MASKS \
1851         (ICE_FLOW_RSS_SEG_HDR_L2_MASKS | \
1852          ICE_FLOW_RSS_SEG_HDR_L3_MASKS | \
1853          ICE_FLOW_RSS_SEG_HDR_L4_MASKS)
1854
1855 /**
1856  * ice_flow_set_rss_seg_info - setup packet segments for RSS
1857  * @segs: pointer to the flow field segment(s)
1858  * @hash_fields: fields to be hashed on for the segment(s)
1859  * @flow_hdr: protocol header fields within a packet segment
1860  *
1861  * Helper function to extract fields from hash bitmap and use flow
1862  * header value to set flow field segment for further use in flow
1863  * profile entry or removal.
1864  */
1865 static int
1866 ice_flow_set_rss_seg_info(struct ice_flow_seg_info *segs, u64 hash_fields,
1867                           u32 flow_hdr)
1868 {
1869         u64 val;
1870         u8 i;
1871
1872         for_each_set_bit(i, (unsigned long *)&hash_fields,
1873                          ICE_FLOW_FIELD_IDX_MAX)
1874                 ice_flow_set_fld(segs, (enum ice_flow_field)i,
1875                                  ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
1876                                  ICE_FLOW_FLD_OFF_INVAL, false);
1877
1878         ICE_FLOW_SET_HDRS(segs, flow_hdr);
1879
1880         if (segs->hdrs & ~ICE_FLOW_RSS_SEG_HDR_VAL_MASKS &
1881             ~ICE_FLOW_RSS_HDRS_INNER_MASK & ~ICE_FLOW_SEG_HDR_IPV_OTHER)
1882                 return -EINVAL;
1883
1884         val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L3_MASKS);
1885         if (val && !is_power_of_2(val))
1886                 return -EIO;
1887
1888         val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L4_MASKS);
1889         if (val && !is_power_of_2(val))
1890                 return -EIO;
1891
1892         return 0;
1893 }
1894
1895 /**
1896  * ice_rem_vsi_rss_list - remove VSI from RSS list
1897  * @hw: pointer to the hardware structure
1898  * @vsi_handle: software VSI handle
1899  *
1900  * Remove the VSI from all RSS configurations in the list.
1901  */
1902 void ice_rem_vsi_rss_list(struct ice_hw *hw, u16 vsi_handle)
1903 {
1904         struct ice_rss_cfg *r, *tmp;
1905
1906         if (list_empty(&hw->rss_list_head))
1907                 return;
1908
1909         mutex_lock(&hw->rss_locks);
1910         list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
1911                 if (test_and_clear_bit(vsi_handle, r->vsis))
1912                         if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
1913                                 list_del(&r->l_entry);
1914                                 devm_kfree(ice_hw_to_dev(hw), r);
1915                         }
1916         mutex_unlock(&hw->rss_locks);
1917 }
1918
1919 /**
1920  * ice_rem_vsi_rss_cfg - remove RSS configurations associated with VSI
1921  * @hw: pointer to the hardware structure
1922  * @vsi_handle: software VSI handle
1923  *
1924  * This function will iterate through all flow profiles and disassociate
1925  * the VSI from that profile. If the flow profile has no VSIs it will
1926  * be removed.
1927  */
1928 int ice_rem_vsi_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
1929 {
1930         const enum ice_block blk = ICE_BLK_RSS;
1931         struct ice_flow_prof *p, *t;
1932         int status = 0;
1933
1934         if (!ice_is_vsi_valid(hw, vsi_handle))
1935                 return -EINVAL;
1936
1937         if (list_empty(&hw->fl_profs[blk]))
1938                 return 0;
1939
1940         mutex_lock(&hw->rss_locks);
1941         list_for_each_entry_safe(p, t, &hw->fl_profs[blk], l_entry)
1942                 if (test_bit(vsi_handle, p->vsis)) {
1943                         status = ice_flow_disassoc_prof(hw, blk, p, vsi_handle);
1944                         if (status)
1945                                 break;
1946
1947                         if (bitmap_empty(p->vsis, ICE_MAX_VSI)) {
1948                                 status = ice_flow_rem_prof(hw, blk, p->id);
1949                                 if (status)
1950                                         break;
1951                         }
1952                 }
1953         mutex_unlock(&hw->rss_locks);
1954
1955         return status;
1956 }
1957
1958 /**
1959  * ice_rem_rss_list - remove RSS configuration from list
1960  * @hw: pointer to the hardware structure
1961  * @vsi_handle: software VSI handle
1962  * @prof: pointer to flow profile
1963  *
1964  * Assumption: lock has already been acquired for RSS list
1965  */
1966 static void
1967 ice_rem_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
1968 {
1969         struct ice_rss_cfg *r, *tmp;
1970
1971         /* Search for RSS hash fields associated to the VSI that match the
1972          * hash configurations associated to the flow profile. If found
1973          * remove from the RSS entry list of the VSI context and delete entry.
1974          */
1975         list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
1976                 if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
1977                     r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
1978                         clear_bit(vsi_handle, r->vsis);
1979                         if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
1980                                 list_del(&r->l_entry);
1981                                 devm_kfree(ice_hw_to_dev(hw), r);
1982                         }
1983                         return;
1984                 }
1985 }
1986
1987 /**
1988  * ice_add_rss_list - add RSS configuration to list
1989  * @hw: pointer to the hardware structure
1990  * @vsi_handle: software VSI handle
1991  * @prof: pointer to flow profile
1992  *
1993  * Assumption: lock has already been acquired for RSS list
1994  */
1995 static int
1996 ice_add_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
1997 {
1998         struct ice_rss_cfg *r, *rss_cfg;
1999
2000         list_for_each_entry(r, &hw->rss_list_head, l_entry)
2001                 if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
2002                     r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
2003                         set_bit(vsi_handle, r->vsis);
2004                         return 0;
2005                 }
2006
2007         rss_cfg = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rss_cfg),
2008                                GFP_KERNEL);
2009         if (!rss_cfg)
2010                 return -ENOMEM;
2011
2012         rss_cfg->hashed_flds = prof->segs[prof->segs_cnt - 1].match;
2013         rss_cfg->packet_hdr = prof->segs[prof->segs_cnt - 1].hdrs;
2014         set_bit(vsi_handle, rss_cfg->vsis);
2015
2016         list_add_tail(&rss_cfg->l_entry, &hw->rss_list_head);
2017
2018         return 0;
2019 }
2020
2021 #define ICE_FLOW_PROF_HASH_S    0
2022 #define ICE_FLOW_PROF_HASH_M    (0xFFFFFFFFULL << ICE_FLOW_PROF_HASH_S)
2023 #define ICE_FLOW_PROF_HDR_S     32
2024 #define ICE_FLOW_PROF_HDR_M     (0x3FFFFFFFULL << ICE_FLOW_PROF_HDR_S)
2025 #define ICE_FLOW_PROF_ENCAP_S   63
2026 #define ICE_FLOW_PROF_ENCAP_M   (BIT_ULL(ICE_FLOW_PROF_ENCAP_S))
2027
2028 #define ICE_RSS_OUTER_HEADERS   1
2029 #define ICE_RSS_INNER_HEADERS   2
2030
2031 /* Flow profile ID format:
2032  * [0:31] - Packet match fields
2033  * [32:62] - Protocol header
2034  * [63] - Encapsulation flag, 0 if non-tunneled, 1 if tunneled
2035  */
2036 #define ICE_FLOW_GEN_PROFID(hash, hdr, segs_cnt) \
2037         ((u64)(((u64)(hash) & ICE_FLOW_PROF_HASH_M) | \
2038                (((u64)(hdr) << ICE_FLOW_PROF_HDR_S) & ICE_FLOW_PROF_HDR_M) | \
2039                ((u8)((segs_cnt) - 1) ? ICE_FLOW_PROF_ENCAP_M : 0)))
2040
2041 /**
2042  * ice_add_rss_cfg_sync - add an RSS configuration
2043  * @hw: pointer to the hardware structure
2044  * @vsi_handle: software VSI handle
2045  * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
2046  * @addl_hdrs: protocol header fields
2047  * @segs_cnt: packet segment count
2048  *
2049  * Assumption: lock has already been acquired for RSS list
2050  */
2051 static int
2052 ice_add_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2053                      u32 addl_hdrs, u8 segs_cnt)
2054 {
2055         const enum ice_block blk = ICE_BLK_RSS;
2056         struct ice_flow_prof *prof = NULL;
2057         struct ice_flow_seg_info *segs;
2058         int status;
2059
2060         if (!segs_cnt || segs_cnt > ICE_FLOW_SEG_MAX)
2061                 return -EINVAL;
2062
2063         segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2064         if (!segs)
2065                 return -ENOMEM;
2066
2067         /* Construct the packet segment info from the hashed fields */
2068         status = ice_flow_set_rss_seg_info(&segs[segs_cnt - 1], hashed_flds,
2069                                            addl_hdrs);
2070         if (status)
2071                 goto exit;
2072
2073         /* Search for a flow profile that has matching headers, hash fields
2074          * and has the input VSI associated to it. If found, no further
2075          * operations required and exit.
2076          */
2077         prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2078                                         vsi_handle,
2079                                         ICE_FLOW_FIND_PROF_CHK_FLDS |
2080                                         ICE_FLOW_FIND_PROF_CHK_VSI);
2081         if (prof)
2082                 goto exit;
2083
2084         /* Check if a flow profile exists with the same protocol headers and
2085          * associated with the input VSI. If so disassociate the VSI from
2086          * this profile. The VSI will be added to a new profile created with
2087          * the protocol header and new hash field configuration.
2088          */
2089         prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2090                                         vsi_handle, ICE_FLOW_FIND_PROF_CHK_VSI);
2091         if (prof) {
2092                 status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2093                 if (!status)
2094                         ice_rem_rss_list(hw, vsi_handle, prof);
2095                 else
2096                         goto exit;
2097
2098                 /* Remove profile if it has no VSIs associated */
2099                 if (bitmap_empty(prof->vsis, ICE_MAX_VSI)) {
2100                         status = ice_flow_rem_prof(hw, blk, prof->id);
2101                         if (status)
2102                                 goto exit;
2103                 }
2104         }
2105
2106         /* Search for a profile that has same match fields only. If this
2107          * exists then associate the VSI to this profile.
2108          */
2109         prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2110                                         vsi_handle,
2111                                         ICE_FLOW_FIND_PROF_CHK_FLDS);
2112         if (prof) {
2113                 status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2114                 if (!status)
2115                         status = ice_add_rss_list(hw, vsi_handle, prof);
2116                 goto exit;
2117         }
2118
2119         /* Create a new flow profile with generated profile and packet
2120          * segment information.
2121          */
2122         status = ice_flow_add_prof(hw, blk, ICE_FLOW_RX,
2123                                    ICE_FLOW_GEN_PROFID(hashed_flds,
2124                                                        segs[segs_cnt - 1].hdrs,
2125                                                        segs_cnt),
2126                                    segs, segs_cnt, &prof);
2127         if (status)
2128                 goto exit;
2129
2130         status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
2131         /* If association to a new flow profile failed then this profile can
2132          * be removed.
2133          */
2134         if (status) {
2135                 ice_flow_rem_prof(hw, blk, prof->id);
2136                 goto exit;
2137         }
2138
2139         status = ice_add_rss_list(hw, vsi_handle, prof);
2140
2141 exit:
2142         kfree(segs);
2143         return status;
2144 }
2145
2146 /**
2147  * ice_add_rss_cfg - add an RSS configuration with specified hashed fields
2148  * @hw: pointer to the hardware structure
2149  * @vsi_handle: software VSI handle
2150  * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
2151  * @addl_hdrs: protocol header fields
2152  *
2153  * This function will generate a flow profile based on fields associated with
2154  * the input fields to hash on, the flow type and use the VSI number to add
2155  * a flow entry to the profile.
2156  */
2157 int
2158 ice_add_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2159                 u32 addl_hdrs)
2160 {
2161         int status;
2162
2163         if (hashed_flds == ICE_HASH_INVALID ||
2164             !ice_is_vsi_valid(hw, vsi_handle))
2165                 return -EINVAL;
2166
2167         mutex_lock(&hw->rss_locks);
2168         status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs,
2169                                       ICE_RSS_OUTER_HEADERS);
2170         if (!status)
2171                 status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds,
2172                                               addl_hdrs, ICE_RSS_INNER_HEADERS);
2173         mutex_unlock(&hw->rss_locks);
2174
2175         return status;
2176 }
2177
2178 /**
2179  * ice_rem_rss_cfg_sync - remove an existing RSS configuration
2180  * @hw: pointer to the hardware structure
2181  * @vsi_handle: software VSI handle
2182  * @hashed_flds: Packet hash types (ICE_FLOW_HASH_*) to remove
2183  * @addl_hdrs: Protocol header fields within a packet segment
2184  * @segs_cnt: packet segment count
2185  *
2186  * Assumption: lock has already been acquired for RSS list
2187  */
2188 static int
2189 ice_rem_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2190                      u32 addl_hdrs, u8 segs_cnt)
2191 {
2192         const enum ice_block blk = ICE_BLK_RSS;
2193         struct ice_flow_seg_info *segs;
2194         struct ice_flow_prof *prof;
2195         int status;
2196
2197         segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
2198         if (!segs)
2199                 return -ENOMEM;
2200
2201         /* Construct the packet segment info from the hashed fields */
2202         status = ice_flow_set_rss_seg_info(&segs[segs_cnt - 1], hashed_flds,
2203                                            addl_hdrs);
2204         if (status)
2205                 goto out;
2206
2207         prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
2208                                         vsi_handle,
2209                                         ICE_FLOW_FIND_PROF_CHK_FLDS);
2210         if (!prof) {
2211                 status = -ENOENT;
2212                 goto out;
2213         }
2214
2215         status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
2216         if (status)
2217                 goto out;
2218
2219         /* Remove RSS configuration from VSI context before deleting
2220          * the flow profile.
2221          */
2222         ice_rem_rss_list(hw, vsi_handle, prof);
2223
2224         if (bitmap_empty(prof->vsis, ICE_MAX_VSI))
2225                 status = ice_flow_rem_prof(hw, blk, prof->id);
2226
2227 out:
2228         kfree(segs);
2229         return status;
2230 }
2231
2232 /**
2233  * ice_rem_rss_cfg - remove an existing RSS config with matching hashed fields
2234  * @hw: pointer to the hardware structure
2235  * @vsi_handle: software VSI handle
2236  * @hashed_flds: Packet hash types (ICE_FLOW_HASH_*) to remove
2237  * @addl_hdrs: Protocol header fields within a packet segment
2238  *
2239  * This function will lookup the flow profile based on the input
2240  * hash field bitmap, iterate through the profile entry list of
2241  * that profile and find entry associated with input VSI to be
2242  * removed. Calls are made to underlying flow s which will APIs
2243  * turn build or update buffers for RSS XLT1 section.
2244  */
2245 int __maybe_unused
2246 ice_rem_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2247                 u32 addl_hdrs)
2248 {
2249         int status;
2250
2251         if (hashed_flds == ICE_HASH_INVALID ||
2252             !ice_is_vsi_valid(hw, vsi_handle))
2253                 return -EINVAL;
2254
2255         mutex_lock(&hw->rss_locks);
2256         status = ice_rem_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs,
2257                                       ICE_RSS_OUTER_HEADERS);
2258         if (!status)
2259                 status = ice_rem_rss_cfg_sync(hw, vsi_handle, hashed_flds,
2260                                               addl_hdrs, ICE_RSS_INNER_HEADERS);
2261         mutex_unlock(&hw->rss_locks);
2262
2263         return status;
2264 }
2265
2266 /* Mapping of AVF hash bit fields to an L3-L4 hash combination.
2267  * As the ice_flow_avf_hdr_field represent individual bit shifts in a hash,
2268  * convert its values to their appropriate flow L3, L4 values.
2269  */
2270 #define ICE_FLOW_AVF_RSS_IPV4_MASKS \
2271         (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_OTHER) | \
2272          BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV4))
2273 #define ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS \
2274         (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP_SYN_NO_ACK) | \
2275          BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP))
2276 #define ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS \
2277         (BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV4_UDP) | \
2278          BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV4_UDP) | \
2279          BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_UDP))
2280 #define ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS \
2281         (ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS | \
2282          ICE_FLOW_AVF_RSS_IPV4_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP))
2283
2284 #define ICE_FLOW_AVF_RSS_IPV6_MASKS \
2285         (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_OTHER) | \
2286          BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV6))
2287 #define ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS \
2288         (BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV6_UDP) | \
2289          BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV6_UDP) | \
2290          BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_UDP))
2291 #define ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS \
2292         (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP_SYN_NO_ACK) | \
2293          BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP))
2294 #define ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS \
2295         (ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS | \
2296          ICE_FLOW_AVF_RSS_IPV6_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP))
2297
2298 /**
2299  * ice_add_avf_rss_cfg - add an RSS configuration for AVF driver
2300  * @hw: pointer to the hardware structure
2301  * @vsi_handle: software VSI handle
2302  * @avf_hash: hash bit fields (ICE_AVF_FLOW_FIELD_*) to configure
2303  *
2304  * This function will take the hash bitmap provided by the AVF driver via a
2305  * message, convert it to ICE-compatible values, and configure RSS flow
2306  * profiles.
2307  */
2308 int ice_add_avf_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 avf_hash)
2309 {
2310         int status = 0;
2311         u64 hash_flds;
2312
2313         if (avf_hash == ICE_AVF_FLOW_FIELD_INVALID ||
2314             !ice_is_vsi_valid(hw, vsi_handle))
2315                 return -EINVAL;
2316
2317         /* Make sure no unsupported bits are specified */
2318         if (avf_hash & ~(ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS |
2319                          ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS))
2320                 return -EIO;
2321
2322         hash_flds = avf_hash;
2323
2324         /* Always create an L3 RSS configuration for any L4 RSS configuration */
2325         if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS)
2326                 hash_flds |= ICE_FLOW_AVF_RSS_IPV4_MASKS;
2327
2328         if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS)
2329                 hash_flds |= ICE_FLOW_AVF_RSS_IPV6_MASKS;
2330
2331         /* Create the corresponding RSS configuration for each valid hash bit */
2332         while (hash_flds) {
2333                 u64 rss_hash = ICE_HASH_INVALID;
2334
2335                 if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) {
2336                         if (hash_flds & ICE_FLOW_AVF_RSS_IPV4_MASKS) {
2337                                 rss_hash = ICE_FLOW_HASH_IPV4;
2338                                 hash_flds &= ~ICE_FLOW_AVF_RSS_IPV4_MASKS;
2339                         } else if (hash_flds &
2340                                    ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS) {
2341                                 rss_hash = ICE_FLOW_HASH_IPV4 |
2342                                         ICE_FLOW_HASH_TCP_PORT;
2343                                 hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS;
2344                         } else if (hash_flds &
2345                                    ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS) {
2346                                 rss_hash = ICE_FLOW_HASH_IPV4 |
2347                                         ICE_FLOW_HASH_UDP_PORT;
2348                                 hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS;
2349                         } else if (hash_flds &
2350                                    BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) {
2351                                 rss_hash = ICE_FLOW_HASH_IPV4 |
2352                                         ICE_FLOW_HASH_SCTP_PORT;
2353                                 hash_flds &=
2354                                         ~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP);
2355                         }
2356                 } else if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) {
2357                         if (hash_flds & ICE_FLOW_AVF_RSS_IPV6_MASKS) {
2358                                 rss_hash = ICE_FLOW_HASH_IPV6;
2359                                 hash_flds &= ~ICE_FLOW_AVF_RSS_IPV6_MASKS;
2360                         } else if (hash_flds &
2361                                    ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS) {
2362                                 rss_hash = ICE_FLOW_HASH_IPV6 |
2363                                         ICE_FLOW_HASH_TCP_PORT;
2364                                 hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS;
2365                         } else if (hash_flds &
2366                                    ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS) {
2367                                 rss_hash = ICE_FLOW_HASH_IPV6 |
2368                                         ICE_FLOW_HASH_UDP_PORT;
2369                                 hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS;
2370                         } else if (hash_flds &
2371                                    BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) {
2372                                 rss_hash = ICE_FLOW_HASH_IPV6 |
2373                                         ICE_FLOW_HASH_SCTP_PORT;
2374                                 hash_flds &=
2375                                         ~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP);
2376                         }
2377                 }
2378
2379                 if (rss_hash == ICE_HASH_INVALID)
2380                         return -EIO;
2381
2382                 status = ice_add_rss_cfg(hw, vsi_handle, rss_hash,
2383                                          ICE_FLOW_SEG_HDR_NONE);
2384                 if (status)
2385                         break;
2386         }
2387
2388         return status;
2389 }
2390
2391 /**
2392  * ice_replay_rss_cfg - replay RSS configurations associated with VSI
2393  * @hw: pointer to the hardware structure
2394  * @vsi_handle: software VSI handle
2395  */
2396 int ice_replay_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
2397 {
2398         struct ice_rss_cfg *r;
2399         int status = 0;
2400
2401         if (!ice_is_vsi_valid(hw, vsi_handle))
2402                 return -EINVAL;
2403
2404         mutex_lock(&hw->rss_locks);
2405         list_for_each_entry(r, &hw->rss_list_head, l_entry) {
2406                 if (test_bit(vsi_handle, r->vsis)) {
2407                         status = ice_add_rss_cfg_sync(hw, vsi_handle,
2408                                                       r->hashed_flds,
2409                                                       r->packet_hdr,
2410                                                       ICE_RSS_OUTER_HEADERS);
2411                         if (status)
2412                                 break;
2413                         status = ice_add_rss_cfg_sync(hw, vsi_handle,
2414                                                       r->hashed_flds,
2415                                                       r->packet_hdr,
2416                                                       ICE_RSS_INNER_HEADERS);
2417                         if (status)
2418                                 break;
2419                 }
2420         }
2421         mutex_unlock(&hw->rss_locks);
2422
2423         return status;
2424 }
2425
2426 /**
2427  * ice_get_rss_cfg - returns hashed fields for the given header types
2428  * @hw: pointer to the hardware structure
2429  * @vsi_handle: software VSI handle
2430  * @hdrs: protocol header type
2431  *
2432  * This function will return the match fields of the first instance of flow
2433  * profile having the given header types and containing input VSI
2434  */
2435 u64 ice_get_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u32 hdrs)
2436 {
2437         u64 rss_hash = ICE_HASH_INVALID;
2438         struct ice_rss_cfg *r;
2439
2440         /* verify if the protocol header is non zero and VSI is valid */
2441         if (hdrs == ICE_FLOW_SEG_HDR_NONE || !ice_is_vsi_valid(hw, vsi_handle))
2442                 return ICE_HASH_INVALID;
2443
2444         mutex_lock(&hw->rss_locks);
2445         list_for_each_entry(r, &hw->rss_list_head, l_entry)
2446                 if (test_bit(vsi_handle, r->vsis) &&
2447                     r->packet_hdr == hdrs) {
2448                         rss_hash = r->hashed_flds;
2449                         break;
2450                 }
2451         mutex_unlock(&hw->rss_locks);
2452
2453         return rss_hash;
2454 }
This page took 0.178154 seconds and 4 git commands to generate.