1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2006, Intel Corporation.
5 * Copyright (C) 2006-2008 Intel Corporation
10 * This file implements early detection/parsing of Remapping Devices
11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
14 * These routines are used by both DMA-remapping and Interrupt-remapping
17 #define pr_fmt(fmt) "DMAR: " fmt
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/intel-iommu.h>
23 #include <linux/timer.h>
24 #include <linux/irq.h>
25 #include <linux/interrupt.h>
26 #include <linux/tboot.h>
27 #include <linux/dmi.h>
28 #include <linux/slab.h>
29 #include <linux/iommu.h>
30 #include <linux/numa.h>
31 #include <linux/limits.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/iommu_table.h>
35 #include "../irq_remapping.h"
37 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
38 struct dmar_res_callback {
39 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
40 void *arg[ACPI_DMAR_TYPE_RESERVED];
41 bool ignore_unhandled;
47 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
48 * before IO devices managed by that unit.
49 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
50 * after IO devices managed by that unit.
51 * 3) Hotplug events are rare.
53 * Locking rules for DMA and interrupt remapping related global data structures:
54 * 1) Use dmar_global_lock in process context
55 * 2) Use RCU in interrupt context
57 DECLARE_RWSEM(dmar_global_lock);
58 LIST_HEAD(dmar_drhd_units);
60 struct acpi_table_header * __initdata dmar_tbl;
61 static int dmar_dev_scope_status = 1;
62 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
64 static int alloc_iommu(struct dmar_drhd_unit *drhd);
65 static void free_iommu(struct intel_iommu *iommu);
67 extern const struct iommu_ops intel_iommu_ops;
69 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
72 * add INCLUDE_ALL at the tail, so scan the list will find it at
75 if (drhd->include_all)
76 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
78 list_add_rcu(&drhd->list, &dmar_drhd_units);
81 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
83 struct acpi_dmar_device_scope *scope;
88 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
92 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
93 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
94 pr_warn("Unsupported device scope\n");
96 start += scope->length;
101 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
104 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
107 struct device *tmp_dev;
109 if (*devices && *cnt) {
110 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
119 /* Optimize out kzalloc()/kfree() for normal cases */
120 static char dmar_pci_notify_info_buf[64];
122 static struct dmar_pci_notify_info *
123 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
128 struct dmar_pci_notify_info *info;
130 BUG_ON(dev->is_virtfn);
133 * Ignore devices that have a domain number higher than what can
134 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
136 if (pci_domain_nr(dev->bus) > U16_MAX)
139 /* Only generate path[] for device addition event */
140 if (event == BUS_NOTIFY_ADD_DEVICE)
141 for (tmp = dev; tmp; tmp = tmp->bus->self)
144 size = struct_size(info, path, level);
145 if (size <= sizeof(dmar_pci_notify_info_buf)) {
146 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
148 info = kzalloc(size, GFP_KERNEL);
150 pr_warn("Out of memory when allocating notify_info "
151 "for %s.\n", pci_name(dev));
152 if (dmar_dev_scope_status == 0)
153 dmar_dev_scope_status = -ENOMEM;
160 info->seg = pci_domain_nr(dev->bus);
162 if (event == BUS_NOTIFY_ADD_DEVICE) {
163 for (tmp = dev; tmp; tmp = tmp->bus->self) {
165 info->path[level].bus = tmp->bus->number;
166 info->path[level].device = PCI_SLOT(tmp->devfn);
167 info->path[level].function = PCI_FUNC(tmp->devfn);
168 if (pci_is_root_bus(tmp->bus))
169 info->bus = tmp->bus->number;
176 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
178 if ((void *)info != dmar_pci_notify_info_buf)
182 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
183 struct acpi_dmar_pci_path *path, int count)
187 if (info->bus != bus)
189 if (info->level != count)
192 for (i = 0; i < count; i++) {
193 if (path[i].device != info->path[i].device ||
194 path[i].function != info->path[i].function)
206 if (bus == info->path[i].bus &&
207 path[0].device == info->path[i].device &&
208 path[0].function == info->path[i].function) {
209 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
210 bus, path[0].device, path[0].function);
217 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
218 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
219 void *start, void*end, u16 segment,
220 struct dmar_dev_scope *devices,
224 struct device *tmp, *dev = &info->dev->dev;
225 struct acpi_dmar_device_scope *scope;
226 struct acpi_dmar_pci_path *path;
228 if (segment != info->seg)
231 for (; start < end; start += scope->length) {
233 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
234 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
237 path = (struct acpi_dmar_pci_path *)(scope + 1);
238 level = (scope->length - sizeof(*scope)) / sizeof(*path);
239 if (!dmar_match_pci_path(info, scope->bus, path, level))
243 * We expect devices with endpoint scope to have normal PCI
244 * headers, and devices with bridge scope to have bridge PCI
245 * headers. However PCI NTB devices may be listed in the
246 * DMAR table with bridge scope, even though they have a
247 * normal PCI header. NTB devices are identified by class
248 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
249 * for this special case.
251 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
252 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
253 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
254 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
255 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
256 pr_warn("Device scope type does not match for %s\n",
257 pci_name(info->dev));
261 for_each_dev_scope(devices, devices_cnt, i, tmp)
263 devices[i].bus = info->dev->bus->number;
264 devices[i].devfn = info->dev->devfn;
265 rcu_assign_pointer(devices[i].dev,
269 BUG_ON(i >= devices_cnt);
275 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
276 struct dmar_dev_scope *devices, int count)
281 if (info->seg != segment)
284 for_each_active_dev_scope(devices, count, index, tmp)
285 if (tmp == &info->dev->dev) {
286 RCU_INIT_POINTER(devices[index].dev, NULL);
295 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
298 struct dmar_drhd_unit *dmaru;
299 struct acpi_dmar_hardware_unit *drhd;
301 for_each_drhd_unit(dmaru) {
302 if (dmaru->include_all)
305 drhd = container_of(dmaru->hdr,
306 struct acpi_dmar_hardware_unit, header);
307 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
308 ((void *)drhd) + drhd->header.length,
310 dmaru->devices, dmaru->devices_cnt);
315 ret = dmar_iommu_notify_scope_dev(info);
316 if (ret < 0 && dmar_dev_scope_status == 0)
317 dmar_dev_scope_status = ret;
320 intel_irq_remap_add_device(info);
325 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
327 struct dmar_drhd_unit *dmaru;
329 for_each_drhd_unit(dmaru)
330 if (dmar_remove_dev_scope(info, dmaru->segment,
331 dmaru->devices, dmaru->devices_cnt))
333 dmar_iommu_notify_scope_dev(info);
336 static int dmar_pci_bus_notifier(struct notifier_block *nb,
337 unsigned long action, void *data)
339 struct pci_dev *pdev = to_pci_dev(data);
340 struct dmar_pci_notify_info *info;
342 /* Only care about add/remove events for physical functions.
343 * For VFs we actually do the lookup based on the corresponding
344 * PF in device_to_iommu() anyway. */
347 if (action != BUS_NOTIFY_ADD_DEVICE &&
348 action != BUS_NOTIFY_REMOVED_DEVICE)
351 info = dmar_alloc_pci_notify_info(pdev, action);
355 down_write(&dmar_global_lock);
356 if (action == BUS_NOTIFY_ADD_DEVICE)
357 dmar_pci_bus_add_dev(info);
358 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
359 dmar_pci_bus_del_dev(info);
360 up_write(&dmar_global_lock);
362 dmar_free_pci_notify_info(info);
367 static struct notifier_block dmar_pci_bus_nb = {
368 .notifier_call = dmar_pci_bus_notifier,
372 static struct dmar_drhd_unit *
373 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
375 struct dmar_drhd_unit *dmaru;
377 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
379 if (dmaru->segment == drhd->segment &&
380 dmaru->reg_base_addr == drhd->address)
387 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
388 * structure which uniquely represent one DMA remapping hardware unit
389 * present in the platform
391 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
393 struct acpi_dmar_hardware_unit *drhd;
394 struct dmar_drhd_unit *dmaru;
397 drhd = (struct acpi_dmar_hardware_unit *)header;
398 dmaru = dmar_find_dmaru(drhd);
402 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
407 * If header is allocated from slab by ACPI _DSM method, we need to
408 * copy the content because the memory buffer will be freed on return.
410 dmaru->hdr = (void *)(dmaru + 1);
411 memcpy(dmaru->hdr, header, header->length);
412 dmaru->reg_base_addr = drhd->address;
413 dmaru->segment = drhd->segment;
414 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
415 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
416 ((void *)drhd) + drhd->header.length,
417 &dmaru->devices_cnt);
418 if (dmaru->devices_cnt && dmaru->devices == NULL) {
423 ret = alloc_iommu(dmaru);
425 dmar_free_dev_scope(&dmaru->devices,
426 &dmaru->devices_cnt);
430 dmar_register_drhd_unit(dmaru);
439 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
441 if (dmaru->devices && dmaru->devices_cnt)
442 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
444 free_iommu(dmaru->iommu);
448 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
451 struct acpi_dmar_andd *andd = (void *)header;
453 /* Check for NUL termination within the designated length */
454 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
456 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
457 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
458 dmi_get_system_info(DMI_BIOS_VENDOR),
459 dmi_get_system_info(DMI_BIOS_VERSION),
460 dmi_get_system_info(DMI_PRODUCT_VERSION));
461 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
464 pr_info("ANDD device: %x name: %s\n", andd->device_number,
470 #ifdef CONFIG_ACPI_NUMA
471 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
473 struct acpi_dmar_rhsa *rhsa;
474 struct dmar_drhd_unit *drhd;
476 rhsa = (struct acpi_dmar_rhsa *)header;
477 for_each_drhd_unit(drhd) {
478 if (drhd->reg_base_addr == rhsa->base_address) {
479 int node = pxm_to_node(rhsa->proximity_domain);
481 if (!node_online(node))
483 drhd->iommu->node = node;
488 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
489 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
491 dmi_get_system_info(DMI_BIOS_VENDOR),
492 dmi_get_system_info(DMI_BIOS_VERSION),
493 dmi_get_system_info(DMI_PRODUCT_VERSION));
494 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
499 #define dmar_parse_one_rhsa dmar_res_noop
503 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
505 struct acpi_dmar_hardware_unit *drhd;
506 struct acpi_dmar_reserved_memory *rmrr;
507 struct acpi_dmar_atsr *atsr;
508 struct acpi_dmar_rhsa *rhsa;
510 switch (header->type) {
511 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
512 drhd = container_of(header, struct acpi_dmar_hardware_unit,
514 pr_info("DRHD base: %#016Lx flags: %#x\n",
515 (unsigned long long)drhd->address, drhd->flags);
517 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
518 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
520 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
521 (unsigned long long)rmrr->base_address,
522 (unsigned long long)rmrr->end_address);
524 case ACPI_DMAR_TYPE_ROOT_ATS:
525 atsr = container_of(header, struct acpi_dmar_atsr, header);
526 pr_info("ATSR flags: %#x\n", atsr->flags);
528 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
529 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
530 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
531 (unsigned long long)rhsa->base_address,
532 rhsa->proximity_domain);
534 case ACPI_DMAR_TYPE_NAMESPACE:
535 /* We don't print this here because we need to sanity-check
536 it first. So print it in dmar_parse_one_andd() instead. */
542 * dmar_table_detect - checks to see if the platform supports DMAR devices
544 static int __init dmar_table_detect(void)
546 acpi_status status = AE_OK;
548 /* if we could find DMAR table, then there are DMAR devices */
549 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
551 if (ACPI_SUCCESS(status) && !dmar_tbl) {
552 pr_warn("Unable to map DMAR\n");
553 status = AE_NOT_FOUND;
556 return ACPI_SUCCESS(status) ? 0 : -ENOENT;
559 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
560 size_t len, struct dmar_res_callback *cb)
562 struct acpi_dmar_header *iter, *next;
563 struct acpi_dmar_header *end = ((void *)start) + len;
565 for (iter = start; iter < end; iter = next) {
566 next = (void *)iter + iter->length;
567 if (iter->length == 0) {
568 /* Avoid looping forever on bad ACPI tables */
569 pr_debug(FW_BUG "Invalid 0-length structure\n");
571 } else if (next > end) {
572 /* Avoid passing table end */
573 pr_warn(FW_BUG "Record passes table end\n");
578 dmar_table_print_dmar_entry(iter);
580 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
581 /* continue for forward compatibility */
582 pr_debug("Unknown DMAR structure type %d\n",
584 } else if (cb->cb[iter->type]) {
587 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
590 } else if (!cb->ignore_unhandled) {
591 pr_warn("No handler for DMAR structure type %d\n",
600 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
601 struct dmar_res_callback *cb)
603 return dmar_walk_remapping_entries((void *)(dmar + 1),
604 dmar->header.length - sizeof(*dmar), cb);
608 * parse_dmar_table - parses the DMA reporting table
611 parse_dmar_table(void)
613 struct acpi_table_dmar *dmar;
616 struct dmar_res_callback cb = {
618 .ignore_unhandled = true,
619 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
620 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
621 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
622 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
623 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
624 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
628 * Do it again, earlier dmar_tbl mapping could be mapped with
634 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
635 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
637 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
639 dmar = (struct acpi_table_dmar *)dmar_tbl;
643 if (dmar->width < PAGE_SHIFT - 1) {
644 pr_warn("Invalid DMAR haw\n");
648 pr_info("Host address width %d\n", dmar->width + 1);
649 ret = dmar_walk_dmar_table(dmar, &cb);
650 if (ret == 0 && drhd_count == 0)
651 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
656 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
657 int cnt, struct pci_dev *dev)
663 for_each_active_dev_scope(devices, cnt, index, tmp)
664 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
667 /* Check our parent */
668 dev = dev->bus->self;
674 struct dmar_drhd_unit *
675 dmar_find_matched_drhd_unit(struct pci_dev *dev)
677 struct dmar_drhd_unit *dmaru;
678 struct acpi_dmar_hardware_unit *drhd;
680 dev = pci_physfn(dev);
683 for_each_drhd_unit(dmaru) {
684 drhd = container_of(dmaru->hdr,
685 struct acpi_dmar_hardware_unit,
688 if (dmaru->include_all &&
689 drhd->segment == pci_domain_nr(dev->bus))
692 if (dmar_pci_device_match(dmaru->devices,
693 dmaru->devices_cnt, dev))
703 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
704 struct acpi_device *adev)
706 struct dmar_drhd_unit *dmaru;
707 struct acpi_dmar_hardware_unit *drhd;
708 struct acpi_dmar_device_scope *scope;
711 struct acpi_dmar_pci_path *path;
713 for_each_drhd_unit(dmaru) {
714 drhd = container_of(dmaru->hdr,
715 struct acpi_dmar_hardware_unit,
718 for (scope = (void *)(drhd + 1);
719 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
720 scope = ((void *)scope) + scope->length) {
721 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
723 if (scope->enumeration_id != device_number)
726 path = (void *)(scope + 1);
727 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
728 dev_name(&adev->dev), dmaru->reg_base_addr,
729 scope->bus, path->device, path->function);
730 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
732 dmaru->devices[i].bus = scope->bus;
733 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
735 rcu_assign_pointer(dmaru->devices[i].dev,
736 get_device(&adev->dev));
739 BUG_ON(i >= dmaru->devices_cnt);
742 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
743 device_number, dev_name(&adev->dev));
746 static int __init dmar_acpi_dev_scope_init(void)
748 struct acpi_dmar_andd *andd;
750 if (dmar_tbl == NULL)
753 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
754 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
755 andd = ((void *)andd) + andd->header.length) {
756 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
758 struct acpi_device *adev;
760 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
763 pr_err("Failed to find handle for ACPI object %s\n",
767 if (acpi_bus_get_device(h, &adev)) {
768 pr_err("Failed to get device for ACPI object %s\n",
772 dmar_acpi_insert_dev_scope(andd->device_number, adev);
778 int __init dmar_dev_scope_init(void)
780 struct pci_dev *dev = NULL;
781 struct dmar_pci_notify_info *info;
783 if (dmar_dev_scope_status != 1)
784 return dmar_dev_scope_status;
786 if (list_empty(&dmar_drhd_units)) {
787 dmar_dev_scope_status = -ENODEV;
789 dmar_dev_scope_status = 0;
791 dmar_acpi_dev_scope_init();
793 for_each_pci_dev(dev) {
797 info = dmar_alloc_pci_notify_info(dev,
798 BUS_NOTIFY_ADD_DEVICE);
800 return dmar_dev_scope_status;
802 dmar_pci_bus_add_dev(info);
803 dmar_free_pci_notify_info(info);
808 return dmar_dev_scope_status;
811 void __init dmar_register_bus_notifier(void)
813 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
817 int __init dmar_table_init(void)
819 static int dmar_table_initialized;
822 if (dmar_table_initialized == 0) {
823 ret = parse_dmar_table();
826 pr_info("Parse DMAR table failure.\n");
827 } else if (list_empty(&dmar_drhd_units)) {
828 pr_info("No DMAR devices found\n");
833 dmar_table_initialized = ret;
835 dmar_table_initialized = 1;
838 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
841 static void warn_invalid_dmar(u64 addr, const char *message)
844 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
845 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
847 dmi_get_system_info(DMI_BIOS_VENDOR),
848 dmi_get_system_info(DMI_BIOS_VERSION),
849 dmi_get_system_info(DMI_PRODUCT_VERSION));
850 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
854 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
856 struct acpi_dmar_hardware_unit *drhd;
860 drhd = (void *)entry;
861 if (!drhd->address) {
862 warn_invalid_dmar(0, "");
867 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
869 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
871 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
875 cap = dmar_readq(addr + DMAR_CAP_REG);
876 ecap = dmar_readq(addr + DMAR_ECAP_REG);
881 early_iounmap(addr, VTD_PAGE_SIZE);
883 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
884 warn_invalid_dmar(drhd->address, " returns all ones");
891 int __init detect_intel_iommu(void)
894 struct dmar_res_callback validate_drhd_cb = {
895 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
896 .ignore_unhandled = true,
899 down_write(&dmar_global_lock);
900 ret = dmar_table_detect();
902 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
904 if (!ret && !no_iommu && !iommu_detected &&
905 (!dmar_disabled || dmar_platform_optin())) {
907 /* Make sure ACS will be enabled */
913 x86_init.iommu.iommu_init = intel_iommu_init;
914 x86_platform.iommu_shutdown = intel_iommu_shutdown;
920 acpi_put_table(dmar_tbl);
923 up_write(&dmar_global_lock);
925 return ret ? ret : 1;
928 static void unmap_iommu(struct intel_iommu *iommu)
931 release_mem_region(iommu->reg_phys, iommu->reg_size);
935 * map_iommu: map the iommu's registers
936 * @iommu: the iommu to map
937 * @phys_addr: the physical address of the base resgister
939 * Memory map the iommu's registers. Start w/ a single page, and
940 * possibly expand if that turns out to be insufficent.
942 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
946 iommu->reg_phys = phys_addr;
947 iommu->reg_size = VTD_PAGE_SIZE;
949 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
950 pr_err("Can't reserve memory\n");
955 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
957 pr_err("Can't map the region\n");
962 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
963 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
965 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
967 warn_invalid_dmar(phys_addr, " returns all ones");
970 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
972 /* the registers might be more than one page */
973 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
974 cap_max_fault_reg_offset(iommu->cap));
975 map_size = VTD_PAGE_ALIGN(map_size);
976 if (map_size > iommu->reg_size) {
978 release_mem_region(iommu->reg_phys, iommu->reg_size);
979 iommu->reg_size = map_size;
980 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
982 pr_err("Can't reserve memory\n");
986 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
988 pr_err("Can't map the region\n");
999 release_mem_region(iommu->reg_phys, iommu->reg_size);
1004 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
1006 iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
1007 DMAR_UNITS_SUPPORTED);
1008 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
1011 set_bit(iommu->seq_id, dmar_seq_ids);
1012 sprintf(iommu->name, "dmar%d", iommu->seq_id);
1015 return iommu->seq_id;
1018 static void dmar_free_seq_id(struct intel_iommu *iommu)
1020 if (iommu->seq_id >= 0) {
1021 clear_bit(iommu->seq_id, dmar_seq_ids);
1026 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1028 struct intel_iommu *iommu;
1034 if (!drhd->reg_base_addr) {
1035 warn_invalid_dmar(0, "");
1039 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1043 if (dmar_alloc_seq_id(iommu) < 0) {
1044 pr_err("Failed to allocate seq_id\n");
1049 err = map_iommu(iommu, drhd->reg_base_addr);
1051 pr_err("Failed to map %s\n", iommu->name);
1052 goto error_free_seq_id;
1056 agaw = iommu_calculate_agaw(iommu);
1058 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1062 msagaw = iommu_calculate_max_sagaw(iommu);
1064 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1069 iommu->msagaw = msagaw;
1070 iommu->segment = drhd->segment;
1072 iommu->node = NUMA_NO_NODE;
1074 ver = readl(iommu->reg + DMAR_VER_REG);
1075 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1077 (unsigned long long)drhd->reg_base_addr,
1078 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1079 (unsigned long long)iommu->cap,
1080 (unsigned long long)iommu->ecap);
1082 /* Reflect status in gcmd */
1083 sts = readl(iommu->reg + DMAR_GSTS_REG);
1084 if (sts & DMA_GSTS_IRES)
1085 iommu->gcmd |= DMA_GCMD_IRE;
1086 if (sts & DMA_GSTS_TES)
1087 iommu->gcmd |= DMA_GCMD_TE;
1088 if (sts & DMA_GSTS_QIES)
1089 iommu->gcmd |= DMA_GCMD_QIE;
1091 raw_spin_lock_init(&iommu->register_lock);
1093 if (intel_iommu_enabled) {
1094 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1100 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
1102 err = iommu_device_register(&iommu->iommu);
1107 drhd->iommu = iommu;
1115 dmar_free_seq_id(iommu);
1121 static void free_iommu(struct intel_iommu *iommu)
1123 if (intel_iommu_enabled) {
1124 iommu_device_unregister(&iommu->iommu);
1125 iommu_device_sysfs_remove(&iommu->iommu);
1129 if (iommu->pr_irq) {
1130 free_irq(iommu->pr_irq, iommu);
1131 dmar_free_hwirq(iommu->pr_irq);
1134 free_irq(iommu->irq, iommu);
1135 dmar_free_hwirq(iommu->irq);
1140 free_page((unsigned long)iommu->qi->desc);
1141 kfree(iommu->qi->desc_status);
1148 dmar_free_seq_id(iommu);
1153 * Reclaim all the submitted descriptors which have completed its work.
1155 static inline void reclaim_free_desc(struct q_inval *qi)
1157 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1158 qi->desc_status[qi->free_tail] == QI_ABORT) {
1159 qi->desc_status[qi->free_tail] = QI_FREE;
1160 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1165 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1169 struct q_inval *qi = iommu->qi;
1170 int shift = qi_shift(iommu);
1172 if (qi->desc_status[wait_index] == QI_ABORT)
1175 fault = readl(iommu->reg + DMAR_FSTS_REG);
1178 * If IQE happens, the head points to the descriptor associated
1179 * with the error. No new descriptors are fetched until the IQE
1182 if (fault & DMA_FSTS_IQE) {
1183 head = readl(iommu->reg + DMAR_IQH_REG);
1184 if ((head >> shift) == index) {
1185 struct qi_desc *desc = qi->desc + head;
1188 * desc->qw2 and desc->qw3 are either reserved or
1189 * used by software as private data. We won't print
1190 * out these two qw's for security consideration.
1192 pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
1193 (unsigned long long)desc->qw0,
1194 (unsigned long long)desc->qw1);
1195 memcpy(desc, qi->desc + (wait_index << shift),
1197 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1203 * If ITE happens, all pending wait_desc commands are aborted.
1204 * No new descriptors are fetched until the ITE is cleared.
1206 if (fault & DMA_FSTS_ITE) {
1207 head = readl(iommu->reg + DMAR_IQH_REG);
1208 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1210 tail = readl(iommu->reg + DMAR_IQT_REG);
1211 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1213 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1216 if (qi->desc_status[head] == QI_IN_USE)
1217 qi->desc_status[head] = QI_ABORT;
1218 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1219 } while (head != tail);
1221 if (qi->desc_status[wait_index] == QI_ABORT)
1225 if (fault & DMA_FSTS_ICE)
1226 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1232 * Function to submit invalidation descriptors of all types to the queued
1233 * invalidation interface(QI). Multiple descriptors can be submitted at a
1234 * time, a wait descriptor will be appended to each submission to ensure
1235 * hardware has completed the invalidation before return. Wait descriptors
1236 * can be part of the submission but it will not be polled for completion.
1238 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1239 unsigned int count, unsigned long options)
1241 struct q_inval *qi = iommu->qi;
1242 struct qi_desc wait_desc;
1243 int wait_index, index;
1244 unsigned long flags;
1254 raw_spin_lock_irqsave(&qi->q_lock, flags);
1256 * Check if we have enough empty slots in the queue to submit,
1257 * the calculation is based on:
1258 * # of desc + 1 wait desc + 1 space between head and tail
1260 while (qi->free_cnt < count + 2) {
1261 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1263 raw_spin_lock_irqsave(&qi->q_lock, flags);
1266 index = qi->free_head;
1267 wait_index = (index + count) % QI_LENGTH;
1268 shift = qi_shift(iommu);
1270 for (i = 0; i < count; i++) {
1271 offset = ((index + i) % QI_LENGTH) << shift;
1272 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1273 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1275 qi->desc_status[wait_index] = QI_IN_USE;
1277 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1278 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1279 if (options & QI_OPT_WAIT_DRAIN)
1280 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1281 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1285 offset = wait_index << shift;
1286 memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1288 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1289 qi->free_cnt -= count + 1;
1292 * update the HW tail register indicating the presence of
1295 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1297 while (qi->desc_status[wait_index] != QI_DONE) {
1299 * We will leave the interrupts disabled, to prevent interrupt
1300 * context to queue another cmd while a cmd is already submitted
1301 * and waiting for completion on this cpu. This is to avoid
1302 * a deadlock where the interrupt context can wait indefinitely
1303 * for free slots in the queue.
1305 rc = qi_check_fault(iommu, index, wait_index);
1309 raw_spin_unlock(&qi->q_lock);
1311 raw_spin_lock(&qi->q_lock);
1314 for (i = 0; i < count; i++)
1315 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1317 reclaim_free_desc(qi);
1318 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1327 * Flush the global interrupt entry cache.
1329 void qi_global_iec(struct intel_iommu *iommu)
1331 struct qi_desc desc;
1333 desc.qw0 = QI_IEC_TYPE;
1338 /* should never fail */
1339 qi_submit_sync(iommu, &desc, 1, 0);
1342 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1345 struct qi_desc desc;
1347 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1348 | QI_CC_GRAN(type) | QI_CC_TYPE;
1353 qi_submit_sync(iommu, &desc, 1, 0);
1356 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1357 unsigned int size_order, u64 type)
1361 struct qi_desc desc;
1364 if (cap_write_drain(iommu->cap))
1367 if (cap_read_drain(iommu->cap))
1370 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1371 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1372 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1373 | QI_IOTLB_AM(size_order);
1377 qi_submit_sync(iommu, &desc, 1, 0);
1380 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1381 u16 qdep, u64 addr, unsigned mask)
1383 struct qi_desc desc;
1386 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1387 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1389 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1391 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1394 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1395 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1399 qi_submit_sync(iommu, &desc, 1, 0);
1402 /* PASID-based IOTLB invalidation */
1403 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1404 unsigned long npages, bool ih)
1406 struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1409 * npages == -1 means a PASID-selective invalidation, otherwise,
1410 * a positive value for Page-selective-within-PASID invalidation.
1411 * 0 is not a valid input.
1413 if (WARN_ON(!npages)) {
1414 pr_err("Invalid input npages = %ld\n", npages);
1419 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1420 QI_EIOTLB_DID(did) |
1421 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1425 int mask = ilog2(__roundup_pow_of_two(npages));
1426 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1428 if (WARN_ON_ONCE(!ALIGN(addr, align)))
1429 addr &= ~(align - 1);
1431 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1432 QI_EIOTLB_DID(did) |
1433 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1435 desc.qw1 = QI_EIOTLB_ADDR(addr) |
1440 qi_submit_sync(iommu, &desc, 1, 0);
1443 /* PASID-based device IOTLB Invalidate */
1444 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1445 u32 pasid, u16 qdep, u64 addr, unsigned int size_order)
1447 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1448 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1450 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1451 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1452 QI_DEV_IOTLB_PFSID(pfsid);
1455 * If S bit is 0, we only flush a single page. If S bit is set,
1456 * The least significant zero bit indicates the invalidation address
1457 * range. VT-d spec 6.5.2.6.
1458 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1459 * size order = 0 is PAGE_SIZE 4KB
1460 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1463 if (addr & GENMASK_ULL(size_order + VTD_PAGE_SHIFT, 0))
1464 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1467 /* Take page address */
1468 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1472 * Existing 0s in address below size_order may be the least
1473 * significant bit, we must set them to 1s to avoid having
1474 * smaller size than desired.
1476 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1478 /* Clear size_order bit to indicate size */
1480 /* Set the S bit to indicate flushing more than 1 page */
1481 desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1484 qi_submit_sync(iommu, &desc, 1, 0);
1487 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1488 u64 granu, u32 pasid)
1490 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1492 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1493 QI_PC_GRAN(granu) | QI_PC_TYPE;
1494 qi_submit_sync(iommu, &desc, 1, 0);
1498 * Disable Queued Invalidation interface.
1500 void dmar_disable_qi(struct intel_iommu *iommu)
1502 unsigned long flags;
1504 cycles_t start_time = get_cycles();
1506 if (!ecap_qis(iommu->ecap))
1509 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1511 sts = readl(iommu->reg + DMAR_GSTS_REG);
1512 if (!(sts & DMA_GSTS_QIES))
1516 * Give a chance to HW to complete the pending invalidation requests.
1518 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1519 readl(iommu->reg + DMAR_IQH_REG)) &&
1520 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1523 iommu->gcmd &= ~DMA_GCMD_QIE;
1524 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1526 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1527 !(sts & DMA_GSTS_QIES), sts);
1529 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1533 * Enable queued invalidation.
1535 static void __dmar_enable_qi(struct intel_iommu *iommu)
1538 unsigned long flags;
1539 struct q_inval *qi = iommu->qi;
1540 u64 val = virt_to_phys(qi->desc);
1542 qi->free_head = qi->free_tail = 0;
1543 qi->free_cnt = QI_LENGTH;
1546 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1549 if (ecap_smts(iommu->ecap))
1550 val |= (1 << 11) | 1;
1552 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1554 /* write zero to the tail reg */
1555 writel(0, iommu->reg + DMAR_IQT_REG);
1557 dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1559 iommu->gcmd |= DMA_GCMD_QIE;
1560 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1562 /* Make sure hardware complete it */
1563 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1565 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1569 * Enable Queued Invalidation interface. This is a must to support
1570 * interrupt-remapping. Also used by DMA-remapping, which replaces
1571 * register based IOTLB invalidation.
1573 int dmar_enable_qi(struct intel_iommu *iommu)
1576 struct page *desc_page;
1578 if (!ecap_qis(iommu->ecap))
1582 * queued invalidation is already setup and enabled.
1587 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1594 * Need two pages to accommodate 256 descriptors of 256 bits each
1595 * if the remapping hardware supports scalable mode translation.
1597 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1598 !!ecap_smts(iommu->ecap));
1605 qi->desc = page_address(desc_page);
1607 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1608 if (!qi->desc_status) {
1609 free_page((unsigned long) qi->desc);
1615 raw_spin_lock_init(&qi->q_lock);
1617 __dmar_enable_qi(iommu);
1622 /* iommu interrupt handling. Most stuff are MSI-like. */
1630 static const char *dma_remap_fault_reasons[] =
1633 "Present bit in root entry is clear",
1634 "Present bit in context entry is clear",
1635 "Invalid context entry",
1636 "Access beyond MGAW",
1637 "PTE Write access is not set",
1638 "PTE Read access is not set",
1639 "Next page table ptr is invalid",
1640 "Root table address invalid",
1641 "Context table ptr is invalid",
1642 "non-zero reserved fields in RTP",
1643 "non-zero reserved fields in CTP",
1644 "non-zero reserved fields in PTE",
1645 "PCE for translation request specifies blocking",
1648 static const char * const dma_remap_sm_fault_reasons[] = {
1649 "SM: Invalid Root Table Address",
1650 "SM: TTM 0 for request with PASID",
1651 "SM: TTM 0 for page group request",
1652 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1653 "SM: Error attempting to access Root Entry",
1654 "SM: Present bit in Root Entry is clear",
1655 "SM: Non-zero reserved field set in Root Entry",
1656 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1657 "SM: Error attempting to access Context Entry",
1658 "SM: Present bit in Context Entry is clear",
1659 "SM: Non-zero reserved field set in the Context Entry",
1660 "SM: Invalid Context Entry",
1661 "SM: DTE field in Context Entry is clear",
1662 "SM: PASID Enable field in Context Entry is clear",
1663 "SM: PASID is larger than the max in Context Entry",
1664 "SM: PRE field in Context-Entry is clear",
1665 "SM: RID_PASID field error in Context-Entry",
1666 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1667 "SM: Error attempting to access the PASID Directory Entry",
1668 "SM: Present bit in Directory Entry is clear",
1669 "SM: Non-zero reserved field set in PASID Directory Entry",
1670 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1671 "SM: Error attempting to access PASID Table Entry",
1672 "SM: Present bit in PASID Table Entry is clear",
1673 "SM: Non-zero reserved field set in PASID Table Entry",
1674 "SM: Invalid Scalable-Mode PASID Table Entry",
1675 "SM: ERE field is clear in PASID Table Entry",
1676 "SM: SRE field is clear in PASID Table Entry",
1677 "Unknown", "Unknown",/* 0x5E-0x5F */
1678 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1679 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1680 "SM: Error attempting to access first-level paging entry",
1681 "SM: Present bit in first-level paging entry is clear",
1682 "SM: Non-zero reserved field set in first-level paging entry",
1683 "SM: Error attempting to access FL-PML4 entry",
1684 "SM: First-level entry address beyond MGAW in Nested translation",
1685 "SM: Read permission error in FL-PML4 entry in Nested translation",
1686 "SM: Read permission error in first-level paging entry in Nested translation",
1687 "SM: Write permission error in first-level paging entry in Nested translation",
1688 "SM: Error attempting to access second-level paging entry",
1689 "SM: Read/Write permission error in second-level paging entry",
1690 "SM: Non-zero reserved field set in second-level paging entry",
1691 "SM: Invalid second-level page table pointer",
1692 "SM: A/D bit update needed in second-level entry when set up in no snoop",
1693 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1694 "SM: Address in first-level translation is not canonical",
1695 "SM: U/S set 0 for first-level translation with user privilege",
1696 "SM: No execute permission for request with PASID and ER=1",
1697 "SM: Address beyond the DMA hardware max",
1698 "SM: Second-level entry address beyond the max",
1699 "SM: No write permission for Write/AtomicOp request",
1700 "SM: No read permission for Read/AtomicOp request",
1701 "SM: Invalid address-interrupt address",
1702 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1703 "SM: A/D bit update needed in first-level entry when set up in no snoop",
1706 static const char *irq_remap_fault_reasons[] =
1708 "Detected reserved fields in the decoded interrupt-remapped request",
1709 "Interrupt index exceeded the interrupt-remapping table size",
1710 "Present field in the IRTE entry is clear",
1711 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1712 "Detected reserved fields in the IRTE entry",
1713 "Blocked a compatibility format interrupt request",
1714 "Blocked an interrupt request due to source-id verification failure",
1717 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1719 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1720 ARRAY_SIZE(irq_remap_fault_reasons))) {
1721 *fault_type = INTR_REMAP;
1722 return irq_remap_fault_reasons[fault_reason - 0x20];
1723 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1724 ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1725 *fault_type = DMA_REMAP;
1726 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1727 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1728 *fault_type = DMA_REMAP;
1729 return dma_remap_fault_reasons[fault_reason];
1731 *fault_type = UNKNOWN;
1737 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1739 if (iommu->irq == irq)
1740 return DMAR_FECTL_REG;
1741 else if (iommu->pr_irq == irq)
1742 return DMAR_PECTL_REG;
1747 void dmar_msi_unmask(struct irq_data *data)
1749 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1750 int reg = dmar_msi_reg(iommu, data->irq);
1754 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1755 writel(0, iommu->reg + reg);
1756 /* Read a reg to force flush the post write */
1757 readl(iommu->reg + reg);
1758 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1761 void dmar_msi_mask(struct irq_data *data)
1763 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1764 int reg = dmar_msi_reg(iommu, data->irq);
1768 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1769 writel(DMA_FECTL_IM, iommu->reg + reg);
1770 /* Read a reg to force flush the post write */
1771 readl(iommu->reg + reg);
1772 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1775 void dmar_msi_write(int irq, struct msi_msg *msg)
1777 struct intel_iommu *iommu = irq_get_handler_data(irq);
1778 int reg = dmar_msi_reg(iommu, irq);
1781 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1782 writel(msg->data, iommu->reg + reg + 4);
1783 writel(msg->address_lo, iommu->reg + reg + 8);
1784 writel(msg->address_hi, iommu->reg + reg + 12);
1785 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1788 void dmar_msi_read(int irq, struct msi_msg *msg)
1790 struct intel_iommu *iommu = irq_get_handler_data(irq);
1791 int reg = dmar_msi_reg(iommu, irq);
1794 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1795 msg->data = readl(iommu->reg + reg + 4);
1796 msg->address_lo = readl(iommu->reg + reg + 8);
1797 msg->address_hi = readl(iommu->reg + reg + 12);
1798 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1801 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1802 u8 fault_reason, u32 pasid, u16 source_id,
1803 unsigned long long addr)
1808 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1810 if (fault_type == INTR_REMAP)
1811 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1812 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1813 PCI_FUNC(source_id & 0xFF), addr >> 48,
1814 fault_reason, reason);
1816 pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n",
1817 type ? "DMA Read" : "DMA Write",
1818 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1819 PCI_FUNC(source_id & 0xFF), pasid, addr,
1820 fault_reason, reason);
1824 #define PRIMARY_FAULT_REG_LEN (16)
1825 irqreturn_t dmar_fault(int irq, void *dev_id)
1827 struct intel_iommu *iommu = dev_id;
1828 int reg, fault_index;
1831 static DEFINE_RATELIMIT_STATE(rs,
1832 DEFAULT_RATELIMIT_INTERVAL,
1833 DEFAULT_RATELIMIT_BURST);
1835 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1836 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1837 if (fault_status && __ratelimit(&rs))
1838 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1840 /* TBD: ignore advanced fault log currently */
1841 if (!(fault_status & DMA_FSTS_PPF))
1844 fault_index = dma_fsts_fault_record_index(fault_status);
1845 reg = cap_fault_reg_offset(iommu->cap);
1847 /* Disable printing, simply clear the fault when ratelimited */
1848 bool ratelimited = !__ratelimit(&rs);
1857 /* highest 32 bits */
1858 data = readl(iommu->reg + reg +
1859 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1860 if (!(data & DMA_FRCD_F))
1864 fault_reason = dma_frcd_fault_reason(data);
1865 type = dma_frcd_type(data);
1867 pasid = dma_frcd_pasid_value(data);
1868 data = readl(iommu->reg + reg +
1869 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1870 source_id = dma_frcd_source_id(data);
1872 pasid_present = dma_frcd_pasid_present(data);
1873 guest_addr = dmar_readq(iommu->reg + reg +
1874 fault_index * PRIMARY_FAULT_REG_LEN);
1875 guest_addr = dma_frcd_page_addr(guest_addr);
1878 /* clear the fault */
1879 writel(DMA_FRCD_F, iommu->reg + reg +
1880 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1882 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1885 /* Using pasid -1 if pasid is not present */
1886 dmar_fault_do_one(iommu, type, fault_reason,
1887 pasid_present ? pasid : -1,
1888 source_id, guest_addr);
1891 if (fault_index >= cap_num_fault_regs(iommu->cap))
1893 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1896 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
1897 iommu->reg + DMAR_FSTS_REG);
1900 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1904 int dmar_set_interrupt(struct intel_iommu *iommu)
1909 * Check if the fault interrupt is already initialized.
1914 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1918 pr_err("No free IRQ vectors\n");
1922 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1924 pr_err("Can't request irq\n");
1928 int __init enable_drhd_fault_handling(void)
1930 struct dmar_drhd_unit *drhd;
1931 struct intel_iommu *iommu;
1934 * Enable fault control interrupt.
1936 for_each_iommu(iommu, drhd) {
1938 int ret = dmar_set_interrupt(iommu);
1941 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1942 (unsigned long long)drhd->reg_base_addr, ret);
1947 * Clear any previous faults.
1949 dmar_fault(iommu->irq, iommu);
1950 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1951 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1958 * Re-enable Queued Invalidation interface.
1960 int dmar_reenable_qi(struct intel_iommu *iommu)
1962 if (!ecap_qis(iommu->ecap))
1969 * First disable queued invalidation.
1971 dmar_disable_qi(iommu);
1973 * Then enable queued invalidation again. Since there is no pending
1974 * invalidation requests now, it's safe to re-enable queued
1977 __dmar_enable_qi(iommu);
1983 * Check interrupt remapping support in DMAR table description.
1985 int __init dmar_ir_support(void)
1987 struct acpi_table_dmar *dmar;
1988 dmar = (struct acpi_table_dmar *)dmar_tbl;
1991 return dmar->flags & 0x1;
1994 /* Check whether DMAR units are in use */
1995 static inline bool dmar_in_use(void)
1997 return irq_remapping_enabled || intel_iommu_enabled;
2000 static int __init dmar_free_unused_resources(void)
2002 struct dmar_drhd_unit *dmaru, *dmaru_n;
2007 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2008 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2010 down_write(&dmar_global_lock);
2011 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2012 list_del(&dmaru->list);
2013 dmar_free_drhd(dmaru);
2015 up_write(&dmar_global_lock);
2020 late_initcall(dmar_free_unused_resources);
2021 IOMMU_INIT_POST(detect_intel_iommu);
2024 * DMAR Hotplug Support
2025 * For more details, please refer to Intel(R) Virtualization Technology
2026 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2027 * "Remapping Hardware Unit Hot Plug".
2029 static guid_t dmar_hp_guid =
2030 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2031 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2034 * Currently there's only one revision and BIOS will not check the revision id,
2035 * so use 0 for safety.
2037 #define DMAR_DSM_REV_ID 0
2038 #define DMAR_DSM_FUNC_DRHD 1
2039 #define DMAR_DSM_FUNC_ATSR 2
2040 #define DMAR_DSM_FUNC_RHSA 3
2042 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2044 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2047 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2048 dmar_res_handler_t handler, void *arg)
2051 union acpi_object *obj;
2052 struct acpi_dmar_header *start;
2053 struct dmar_res_callback callback;
2054 static int res_type[] = {
2055 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2056 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2057 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2060 if (!dmar_detect_dsm(handle, func))
2063 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2064 func, NULL, ACPI_TYPE_BUFFER);
2068 memset(&callback, 0, sizeof(callback));
2069 callback.cb[res_type[func]] = handler;
2070 callback.arg[res_type[func]] = arg;
2071 start = (struct acpi_dmar_header *)obj->buffer.pointer;
2072 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2079 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2082 struct dmar_drhd_unit *dmaru;
2084 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2088 ret = dmar_ir_hotplug(dmaru, true);
2090 ret = dmar_iommu_hotplug(dmaru, true);
2095 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2099 struct dmar_drhd_unit *dmaru;
2101 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2106 * All PCI devices managed by this unit should have been destroyed.
2108 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2109 for_each_active_dev_scope(dmaru->devices,
2110 dmaru->devices_cnt, i, dev)
2114 ret = dmar_ir_hotplug(dmaru, false);
2116 ret = dmar_iommu_hotplug(dmaru, false);
2121 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2123 struct dmar_drhd_unit *dmaru;
2125 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2127 list_del_rcu(&dmaru->list);
2129 dmar_free_drhd(dmaru);
2135 static int dmar_hotplug_insert(acpi_handle handle)
2140 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2141 &dmar_validate_one_drhd, (void *)1);
2145 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2146 &dmar_parse_one_drhd, (void *)&drhd_count);
2147 if (ret == 0 && drhd_count == 0) {
2148 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2154 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2155 &dmar_parse_one_rhsa, NULL);
2159 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2160 &dmar_parse_one_atsr, NULL);
2164 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2165 &dmar_hp_add_drhd, NULL);
2169 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2170 &dmar_hp_remove_drhd, NULL);
2172 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2173 &dmar_release_one_atsr, NULL);
2175 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2176 &dmar_hp_release_drhd, NULL);
2181 static int dmar_hotplug_remove(acpi_handle handle)
2185 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2186 &dmar_check_one_atsr, NULL);
2190 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2191 &dmar_hp_remove_drhd, NULL);
2193 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2194 &dmar_release_one_atsr, NULL));
2195 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2196 &dmar_hp_release_drhd, NULL));
2198 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2199 &dmar_hp_add_drhd, NULL);
2205 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2206 void *context, void **retval)
2208 acpi_handle *phdl = retval;
2210 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2212 return AE_CTRL_TERMINATE;
2218 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2221 acpi_handle tmp = NULL;
2227 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2230 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2232 dmar_get_dsm_handle,
2234 if (ACPI_FAILURE(status)) {
2235 pr_warn("Failed to locate _DSM method.\n");
2242 down_write(&dmar_global_lock);
2244 ret = dmar_hotplug_insert(tmp);
2246 ret = dmar_hotplug_remove(tmp);
2247 up_write(&dmar_global_lock);
2252 int dmar_device_add(acpi_handle handle)
2254 return dmar_device_hotplug(handle, true);
2257 int dmar_device_remove(acpi_handle handle)
2259 return dmar_device_hotplug(handle, false);
2263 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2265 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2266 * the ACPI DMAR table. This means that the platform boot firmware has made
2267 * sure no device can issue DMA outside of RMRR regions.
2269 bool dmar_platform_optin(void)
2271 struct acpi_table_dmar *dmar;
2275 status = acpi_get_table(ACPI_SIG_DMAR, 0,
2276 (struct acpi_table_header **)&dmar);
2277 if (ACPI_FAILURE(status))
2280 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2281 acpi_put_table((struct acpi_table_header *)dmar);
2285 EXPORT_SYMBOL_GPL(dmar_platform_optin);