]> Git Repo - J-linux.git/blob - drivers/iommu/intel/dmar.c
Merge branch 'stable/for-linus-5.10' of git://git.kernel.org/pub/scm/linux/kernel...
[J-linux.git] / drivers / iommu / intel / dmar.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2006, Intel Corporation.
4  *
5  * Copyright (C) 2006-2008 Intel Corporation
6  * Author: Ashok Raj <[email protected]>
7  * Author: Shaohua Li <[email protected]>
8  * Author: Anil S Keshavamurthy <[email protected]>
9  *
10  * This file implements early detection/parsing of Remapping Devices
11  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12  * tables.
13  *
14  * These routines are used by both DMA-remapping and Interrupt-remapping
15  */
16
17 #define pr_fmt(fmt)     "DMAR: " fmt
18
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/intel-iommu.h>
23 #include <linux/timer.h>
24 #include <linux/irq.h>
25 #include <linux/interrupt.h>
26 #include <linux/tboot.h>
27 #include <linux/dmi.h>
28 #include <linux/slab.h>
29 #include <linux/iommu.h>
30 #include <linux/numa.h>
31 #include <linux/limits.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/iommu_table.h>
34
35 #include "../irq_remapping.h"
36
37 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
38 struct dmar_res_callback {
39         dmar_res_handler_t      cb[ACPI_DMAR_TYPE_RESERVED];
40         void                    *arg[ACPI_DMAR_TYPE_RESERVED];
41         bool                    ignore_unhandled;
42         bool                    print_entry;
43 };
44
45 /*
46  * Assumptions:
47  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
48  *    before IO devices managed by that unit.
49  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
50  *    after IO devices managed by that unit.
51  * 3) Hotplug events are rare.
52  *
53  * Locking rules for DMA and interrupt remapping related global data structures:
54  * 1) Use dmar_global_lock in process context
55  * 2) Use RCU in interrupt context
56  */
57 DECLARE_RWSEM(dmar_global_lock);
58 LIST_HEAD(dmar_drhd_units);
59
60 struct acpi_table_header * __initdata dmar_tbl;
61 static int dmar_dev_scope_status = 1;
62 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
63
64 static int alloc_iommu(struct dmar_drhd_unit *drhd);
65 static void free_iommu(struct intel_iommu *iommu);
66
67 extern const struct iommu_ops intel_iommu_ops;
68
69 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
70 {
71         /*
72          * add INCLUDE_ALL at the tail, so scan the list will find it at
73          * the very end.
74          */
75         if (drhd->include_all)
76                 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
77         else
78                 list_add_rcu(&drhd->list, &dmar_drhd_units);
79 }
80
81 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
82 {
83         struct acpi_dmar_device_scope *scope;
84
85         *cnt = 0;
86         while (start < end) {
87                 scope = start;
88                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
89                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
90                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
91                         (*cnt)++;
92                 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
93                         scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
94                         pr_warn("Unsupported device scope\n");
95                 }
96                 start += scope->length;
97         }
98         if (*cnt == 0)
99                 return NULL;
100
101         return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
102 }
103
104 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
105 {
106         int i;
107         struct device *tmp_dev;
108
109         if (*devices && *cnt) {
110                 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
111                         put_device(tmp_dev);
112                 kfree(*devices);
113         }
114
115         *devices = NULL;
116         *cnt = 0;
117 }
118
119 /* Optimize out kzalloc()/kfree() for normal cases */
120 static char dmar_pci_notify_info_buf[64];
121
122 static struct dmar_pci_notify_info *
123 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
124 {
125         int level = 0;
126         size_t size;
127         struct pci_dev *tmp;
128         struct dmar_pci_notify_info *info;
129
130         BUG_ON(dev->is_virtfn);
131
132         /*
133          * Ignore devices that have a domain number higher than what can
134          * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
135          */
136         if (pci_domain_nr(dev->bus) > U16_MAX)
137                 return NULL;
138
139         /* Only generate path[] for device addition event */
140         if (event == BUS_NOTIFY_ADD_DEVICE)
141                 for (tmp = dev; tmp; tmp = tmp->bus->self)
142                         level++;
143
144         size = struct_size(info, path, level);
145         if (size <= sizeof(dmar_pci_notify_info_buf)) {
146                 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
147         } else {
148                 info = kzalloc(size, GFP_KERNEL);
149                 if (!info) {
150                         pr_warn("Out of memory when allocating notify_info "
151                                 "for %s.\n", pci_name(dev));
152                         if (dmar_dev_scope_status == 0)
153                                 dmar_dev_scope_status = -ENOMEM;
154                         return NULL;
155                 }
156         }
157
158         info->event = event;
159         info->dev = dev;
160         info->seg = pci_domain_nr(dev->bus);
161         info->level = level;
162         if (event == BUS_NOTIFY_ADD_DEVICE) {
163                 for (tmp = dev; tmp; tmp = tmp->bus->self) {
164                         level--;
165                         info->path[level].bus = tmp->bus->number;
166                         info->path[level].device = PCI_SLOT(tmp->devfn);
167                         info->path[level].function = PCI_FUNC(tmp->devfn);
168                         if (pci_is_root_bus(tmp->bus))
169                                 info->bus = tmp->bus->number;
170                 }
171         }
172
173         return info;
174 }
175
176 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
177 {
178         if ((void *)info != dmar_pci_notify_info_buf)
179                 kfree(info);
180 }
181
182 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
183                                 struct acpi_dmar_pci_path *path, int count)
184 {
185         int i;
186
187         if (info->bus != bus)
188                 goto fallback;
189         if (info->level != count)
190                 goto fallback;
191
192         for (i = 0; i < count; i++) {
193                 if (path[i].device != info->path[i].device ||
194                     path[i].function != info->path[i].function)
195                         goto fallback;
196         }
197
198         return true;
199
200 fallback:
201
202         if (count != 1)
203                 return false;
204
205         i = info->level - 1;
206         if (bus              == info->path[i].bus &&
207             path[0].device   == info->path[i].device &&
208             path[0].function == info->path[i].function) {
209                 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
210                         bus, path[0].device, path[0].function);
211                 return true;
212         }
213
214         return false;
215 }
216
217 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
218 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
219                           void *start, void*end, u16 segment,
220                           struct dmar_dev_scope *devices,
221                           int devices_cnt)
222 {
223         int i, level;
224         struct device *tmp, *dev = &info->dev->dev;
225         struct acpi_dmar_device_scope *scope;
226         struct acpi_dmar_pci_path *path;
227
228         if (segment != info->seg)
229                 return 0;
230
231         for (; start < end; start += scope->length) {
232                 scope = start;
233                 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
234                     scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
235                         continue;
236
237                 path = (struct acpi_dmar_pci_path *)(scope + 1);
238                 level = (scope->length - sizeof(*scope)) / sizeof(*path);
239                 if (!dmar_match_pci_path(info, scope->bus, path, level))
240                         continue;
241
242                 /*
243                  * We expect devices with endpoint scope to have normal PCI
244                  * headers, and devices with bridge scope to have bridge PCI
245                  * headers.  However PCI NTB devices may be listed in the
246                  * DMAR table with bridge scope, even though they have a
247                  * normal PCI header.  NTB devices are identified by class
248                  * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
249                  * for this special case.
250                  */
251                 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
252                      info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
253                     (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
254                      (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
255                       info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
256                         pr_warn("Device scope type does not match for %s\n",
257                                 pci_name(info->dev));
258                         return -EINVAL;
259                 }
260
261                 for_each_dev_scope(devices, devices_cnt, i, tmp)
262                         if (tmp == NULL) {
263                                 devices[i].bus = info->dev->bus->number;
264                                 devices[i].devfn = info->dev->devfn;
265                                 rcu_assign_pointer(devices[i].dev,
266                                                    get_device(dev));
267                                 return 1;
268                         }
269                 BUG_ON(i >= devices_cnt);
270         }
271
272         return 0;
273 }
274
275 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
276                           struct dmar_dev_scope *devices, int count)
277 {
278         int index;
279         struct device *tmp;
280
281         if (info->seg != segment)
282                 return 0;
283
284         for_each_active_dev_scope(devices, count, index, tmp)
285                 if (tmp == &info->dev->dev) {
286                         RCU_INIT_POINTER(devices[index].dev, NULL);
287                         synchronize_rcu();
288                         put_device(tmp);
289                         return 1;
290                 }
291
292         return 0;
293 }
294
295 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
296 {
297         int ret = 0;
298         struct dmar_drhd_unit *dmaru;
299         struct acpi_dmar_hardware_unit *drhd;
300
301         for_each_drhd_unit(dmaru) {
302                 if (dmaru->include_all)
303                         continue;
304
305                 drhd = container_of(dmaru->hdr,
306                                     struct acpi_dmar_hardware_unit, header);
307                 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
308                                 ((void *)drhd) + drhd->header.length,
309                                 dmaru->segment,
310                                 dmaru->devices, dmaru->devices_cnt);
311                 if (ret)
312                         break;
313         }
314         if (ret >= 0)
315                 ret = dmar_iommu_notify_scope_dev(info);
316         if (ret < 0 && dmar_dev_scope_status == 0)
317                 dmar_dev_scope_status = ret;
318
319         if (ret >= 0)
320                 intel_irq_remap_add_device(info);
321
322         return ret;
323 }
324
325 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
326 {
327         struct dmar_drhd_unit *dmaru;
328
329         for_each_drhd_unit(dmaru)
330                 if (dmar_remove_dev_scope(info, dmaru->segment,
331                         dmaru->devices, dmaru->devices_cnt))
332                         break;
333         dmar_iommu_notify_scope_dev(info);
334 }
335
336 static int dmar_pci_bus_notifier(struct notifier_block *nb,
337                                  unsigned long action, void *data)
338 {
339         struct pci_dev *pdev = to_pci_dev(data);
340         struct dmar_pci_notify_info *info;
341
342         /* Only care about add/remove events for physical functions.
343          * For VFs we actually do the lookup based on the corresponding
344          * PF in device_to_iommu() anyway. */
345         if (pdev->is_virtfn)
346                 return NOTIFY_DONE;
347         if (action != BUS_NOTIFY_ADD_DEVICE &&
348             action != BUS_NOTIFY_REMOVED_DEVICE)
349                 return NOTIFY_DONE;
350
351         info = dmar_alloc_pci_notify_info(pdev, action);
352         if (!info)
353                 return NOTIFY_DONE;
354
355         down_write(&dmar_global_lock);
356         if (action == BUS_NOTIFY_ADD_DEVICE)
357                 dmar_pci_bus_add_dev(info);
358         else if (action == BUS_NOTIFY_REMOVED_DEVICE)
359                 dmar_pci_bus_del_dev(info);
360         up_write(&dmar_global_lock);
361
362         dmar_free_pci_notify_info(info);
363
364         return NOTIFY_OK;
365 }
366
367 static struct notifier_block dmar_pci_bus_nb = {
368         .notifier_call = dmar_pci_bus_notifier,
369         .priority = INT_MIN,
370 };
371
372 static struct dmar_drhd_unit *
373 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
374 {
375         struct dmar_drhd_unit *dmaru;
376
377         list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
378                                 dmar_rcu_check())
379                 if (dmaru->segment == drhd->segment &&
380                     dmaru->reg_base_addr == drhd->address)
381                         return dmaru;
382
383         return NULL;
384 }
385
386 /**
387  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
388  * structure which uniquely represent one DMA remapping hardware unit
389  * present in the platform
390  */
391 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
392 {
393         struct acpi_dmar_hardware_unit *drhd;
394         struct dmar_drhd_unit *dmaru;
395         int ret;
396
397         drhd = (struct acpi_dmar_hardware_unit *)header;
398         dmaru = dmar_find_dmaru(drhd);
399         if (dmaru)
400                 goto out;
401
402         dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
403         if (!dmaru)
404                 return -ENOMEM;
405
406         /*
407          * If header is allocated from slab by ACPI _DSM method, we need to
408          * copy the content because the memory buffer will be freed on return.
409          */
410         dmaru->hdr = (void *)(dmaru + 1);
411         memcpy(dmaru->hdr, header, header->length);
412         dmaru->reg_base_addr = drhd->address;
413         dmaru->segment = drhd->segment;
414         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
415         dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
416                                               ((void *)drhd) + drhd->header.length,
417                                               &dmaru->devices_cnt);
418         if (dmaru->devices_cnt && dmaru->devices == NULL) {
419                 kfree(dmaru);
420                 return -ENOMEM;
421         }
422
423         ret = alloc_iommu(dmaru);
424         if (ret) {
425                 dmar_free_dev_scope(&dmaru->devices,
426                                     &dmaru->devices_cnt);
427                 kfree(dmaru);
428                 return ret;
429         }
430         dmar_register_drhd_unit(dmaru);
431
432 out:
433         if (arg)
434                 (*(int *)arg)++;
435
436         return 0;
437 }
438
439 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
440 {
441         if (dmaru->devices && dmaru->devices_cnt)
442                 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
443         if (dmaru->iommu)
444                 free_iommu(dmaru->iommu);
445         kfree(dmaru);
446 }
447
448 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
449                                       void *arg)
450 {
451         struct acpi_dmar_andd *andd = (void *)header;
452
453         /* Check for NUL termination within the designated length */
454         if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
455                 pr_warn(FW_BUG
456                            "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
457                            "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
458                            dmi_get_system_info(DMI_BIOS_VENDOR),
459                            dmi_get_system_info(DMI_BIOS_VERSION),
460                            dmi_get_system_info(DMI_PRODUCT_VERSION));
461                 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
462                 return -EINVAL;
463         }
464         pr_info("ANDD device: %x name: %s\n", andd->device_number,
465                 andd->device_name);
466
467         return 0;
468 }
469
470 #ifdef CONFIG_ACPI_NUMA
471 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
472 {
473         struct acpi_dmar_rhsa *rhsa;
474         struct dmar_drhd_unit *drhd;
475
476         rhsa = (struct acpi_dmar_rhsa *)header;
477         for_each_drhd_unit(drhd) {
478                 if (drhd->reg_base_addr == rhsa->base_address) {
479                         int node = pxm_to_node(rhsa->proximity_domain);
480
481                         if (!node_online(node))
482                                 node = NUMA_NO_NODE;
483                         drhd->iommu->node = node;
484                         return 0;
485                 }
486         }
487         pr_warn(FW_BUG
488                 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
489                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
490                 rhsa->base_address,
491                 dmi_get_system_info(DMI_BIOS_VENDOR),
492                 dmi_get_system_info(DMI_BIOS_VERSION),
493                 dmi_get_system_info(DMI_PRODUCT_VERSION));
494         add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
495
496         return 0;
497 }
498 #else
499 #define dmar_parse_one_rhsa             dmar_res_noop
500 #endif
501
502 static void
503 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
504 {
505         struct acpi_dmar_hardware_unit *drhd;
506         struct acpi_dmar_reserved_memory *rmrr;
507         struct acpi_dmar_atsr *atsr;
508         struct acpi_dmar_rhsa *rhsa;
509
510         switch (header->type) {
511         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
512                 drhd = container_of(header, struct acpi_dmar_hardware_unit,
513                                     header);
514                 pr_info("DRHD base: %#016Lx flags: %#x\n",
515                         (unsigned long long)drhd->address, drhd->flags);
516                 break;
517         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
518                 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
519                                     header);
520                 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
521                         (unsigned long long)rmrr->base_address,
522                         (unsigned long long)rmrr->end_address);
523                 break;
524         case ACPI_DMAR_TYPE_ROOT_ATS:
525                 atsr = container_of(header, struct acpi_dmar_atsr, header);
526                 pr_info("ATSR flags: %#x\n", atsr->flags);
527                 break;
528         case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
529                 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
530                 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
531                        (unsigned long long)rhsa->base_address,
532                        rhsa->proximity_domain);
533                 break;
534         case ACPI_DMAR_TYPE_NAMESPACE:
535                 /* We don't print this here because we need to sanity-check
536                    it first. So print it in dmar_parse_one_andd() instead. */
537                 break;
538         }
539 }
540
541 /**
542  * dmar_table_detect - checks to see if the platform supports DMAR devices
543  */
544 static int __init dmar_table_detect(void)
545 {
546         acpi_status status = AE_OK;
547
548         /* if we could find DMAR table, then there are DMAR devices */
549         status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
550
551         if (ACPI_SUCCESS(status) && !dmar_tbl) {
552                 pr_warn("Unable to map DMAR\n");
553                 status = AE_NOT_FOUND;
554         }
555
556         return ACPI_SUCCESS(status) ? 0 : -ENOENT;
557 }
558
559 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
560                                        size_t len, struct dmar_res_callback *cb)
561 {
562         struct acpi_dmar_header *iter, *next;
563         struct acpi_dmar_header *end = ((void *)start) + len;
564
565         for (iter = start; iter < end; iter = next) {
566                 next = (void *)iter + iter->length;
567                 if (iter->length == 0) {
568                         /* Avoid looping forever on bad ACPI tables */
569                         pr_debug(FW_BUG "Invalid 0-length structure\n");
570                         break;
571                 } else if (next > end) {
572                         /* Avoid passing table end */
573                         pr_warn(FW_BUG "Record passes table end\n");
574                         return -EINVAL;
575                 }
576
577                 if (cb->print_entry)
578                         dmar_table_print_dmar_entry(iter);
579
580                 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
581                         /* continue for forward compatibility */
582                         pr_debug("Unknown DMAR structure type %d\n",
583                                  iter->type);
584                 } else if (cb->cb[iter->type]) {
585                         int ret;
586
587                         ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
588                         if (ret)
589                                 return ret;
590                 } else if (!cb->ignore_unhandled) {
591                         pr_warn("No handler for DMAR structure type %d\n",
592                                 iter->type);
593                         return -EINVAL;
594                 }
595         }
596
597         return 0;
598 }
599
600 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
601                                        struct dmar_res_callback *cb)
602 {
603         return dmar_walk_remapping_entries((void *)(dmar + 1),
604                         dmar->header.length - sizeof(*dmar), cb);
605 }
606
607 /**
608  * parse_dmar_table - parses the DMA reporting table
609  */
610 static int __init
611 parse_dmar_table(void)
612 {
613         struct acpi_table_dmar *dmar;
614         int drhd_count = 0;
615         int ret;
616         struct dmar_res_callback cb = {
617                 .print_entry = true,
618                 .ignore_unhandled = true,
619                 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
620                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
621                 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
622                 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
623                 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
624                 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
625         };
626
627         /*
628          * Do it again, earlier dmar_tbl mapping could be mapped with
629          * fixed map.
630          */
631         dmar_table_detect();
632
633         /*
634          * ACPI tables may not be DMA protected by tboot, so use DMAR copy
635          * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
636          */
637         dmar_tbl = tboot_get_dmar_table(dmar_tbl);
638
639         dmar = (struct acpi_table_dmar *)dmar_tbl;
640         if (!dmar)
641                 return -ENODEV;
642
643         if (dmar->width < PAGE_SHIFT - 1) {
644                 pr_warn("Invalid DMAR haw\n");
645                 return -EINVAL;
646         }
647
648         pr_info("Host address width %d\n", dmar->width + 1);
649         ret = dmar_walk_dmar_table(dmar, &cb);
650         if (ret == 0 && drhd_count == 0)
651                 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
652
653         return ret;
654 }
655
656 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
657                                  int cnt, struct pci_dev *dev)
658 {
659         int index;
660         struct device *tmp;
661
662         while (dev) {
663                 for_each_active_dev_scope(devices, cnt, index, tmp)
664                         if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
665                                 return 1;
666
667                 /* Check our parent */
668                 dev = dev->bus->self;
669         }
670
671         return 0;
672 }
673
674 struct dmar_drhd_unit *
675 dmar_find_matched_drhd_unit(struct pci_dev *dev)
676 {
677         struct dmar_drhd_unit *dmaru;
678         struct acpi_dmar_hardware_unit *drhd;
679
680         dev = pci_physfn(dev);
681
682         rcu_read_lock();
683         for_each_drhd_unit(dmaru) {
684                 drhd = container_of(dmaru->hdr,
685                                     struct acpi_dmar_hardware_unit,
686                                     header);
687
688                 if (dmaru->include_all &&
689                     drhd->segment == pci_domain_nr(dev->bus))
690                         goto out;
691
692                 if (dmar_pci_device_match(dmaru->devices,
693                                           dmaru->devices_cnt, dev))
694                         goto out;
695         }
696         dmaru = NULL;
697 out:
698         rcu_read_unlock();
699
700         return dmaru;
701 }
702
703 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
704                                               struct acpi_device *adev)
705 {
706         struct dmar_drhd_unit *dmaru;
707         struct acpi_dmar_hardware_unit *drhd;
708         struct acpi_dmar_device_scope *scope;
709         struct device *tmp;
710         int i;
711         struct acpi_dmar_pci_path *path;
712
713         for_each_drhd_unit(dmaru) {
714                 drhd = container_of(dmaru->hdr,
715                                     struct acpi_dmar_hardware_unit,
716                                     header);
717
718                 for (scope = (void *)(drhd + 1);
719                      (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
720                      scope = ((void *)scope) + scope->length) {
721                         if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
722                                 continue;
723                         if (scope->enumeration_id != device_number)
724                                 continue;
725
726                         path = (void *)(scope + 1);
727                         pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
728                                 dev_name(&adev->dev), dmaru->reg_base_addr,
729                                 scope->bus, path->device, path->function);
730                         for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
731                                 if (tmp == NULL) {
732                                         dmaru->devices[i].bus = scope->bus;
733                                         dmaru->devices[i].devfn = PCI_DEVFN(path->device,
734                                                                             path->function);
735                                         rcu_assign_pointer(dmaru->devices[i].dev,
736                                                            get_device(&adev->dev));
737                                         return;
738                                 }
739                         BUG_ON(i >= dmaru->devices_cnt);
740                 }
741         }
742         pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
743                 device_number, dev_name(&adev->dev));
744 }
745
746 static int __init dmar_acpi_dev_scope_init(void)
747 {
748         struct acpi_dmar_andd *andd;
749
750         if (dmar_tbl == NULL)
751                 return -ENODEV;
752
753         for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
754              ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
755              andd = ((void *)andd) + andd->header.length) {
756                 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
757                         acpi_handle h;
758                         struct acpi_device *adev;
759
760                         if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
761                                                           andd->device_name,
762                                                           &h))) {
763                                 pr_err("Failed to find handle for ACPI object %s\n",
764                                        andd->device_name);
765                                 continue;
766                         }
767                         if (acpi_bus_get_device(h, &adev)) {
768                                 pr_err("Failed to get device for ACPI object %s\n",
769                                        andd->device_name);
770                                 continue;
771                         }
772                         dmar_acpi_insert_dev_scope(andd->device_number, adev);
773                 }
774         }
775         return 0;
776 }
777
778 int __init dmar_dev_scope_init(void)
779 {
780         struct pci_dev *dev = NULL;
781         struct dmar_pci_notify_info *info;
782
783         if (dmar_dev_scope_status != 1)
784                 return dmar_dev_scope_status;
785
786         if (list_empty(&dmar_drhd_units)) {
787                 dmar_dev_scope_status = -ENODEV;
788         } else {
789                 dmar_dev_scope_status = 0;
790
791                 dmar_acpi_dev_scope_init();
792
793                 for_each_pci_dev(dev) {
794                         if (dev->is_virtfn)
795                                 continue;
796
797                         info = dmar_alloc_pci_notify_info(dev,
798                                         BUS_NOTIFY_ADD_DEVICE);
799                         if (!info) {
800                                 return dmar_dev_scope_status;
801                         } else {
802                                 dmar_pci_bus_add_dev(info);
803                                 dmar_free_pci_notify_info(info);
804                         }
805                 }
806         }
807
808         return dmar_dev_scope_status;
809 }
810
811 void __init dmar_register_bus_notifier(void)
812 {
813         bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
814 }
815
816
817 int __init dmar_table_init(void)
818 {
819         static int dmar_table_initialized;
820         int ret;
821
822         if (dmar_table_initialized == 0) {
823                 ret = parse_dmar_table();
824                 if (ret < 0) {
825                         if (ret != -ENODEV)
826                                 pr_info("Parse DMAR table failure.\n");
827                 } else  if (list_empty(&dmar_drhd_units)) {
828                         pr_info("No DMAR devices found\n");
829                         ret = -ENODEV;
830                 }
831
832                 if (ret < 0)
833                         dmar_table_initialized = ret;
834                 else
835                         dmar_table_initialized = 1;
836         }
837
838         return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
839 }
840
841 static void warn_invalid_dmar(u64 addr, const char *message)
842 {
843         pr_warn_once(FW_BUG
844                 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
845                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
846                 addr, message,
847                 dmi_get_system_info(DMI_BIOS_VENDOR),
848                 dmi_get_system_info(DMI_BIOS_VERSION),
849                 dmi_get_system_info(DMI_PRODUCT_VERSION));
850         add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
851 }
852
853 static int __ref
854 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
855 {
856         struct acpi_dmar_hardware_unit *drhd;
857         void __iomem *addr;
858         u64 cap, ecap;
859
860         drhd = (void *)entry;
861         if (!drhd->address) {
862                 warn_invalid_dmar(0, "");
863                 return -EINVAL;
864         }
865
866         if (arg)
867                 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
868         else
869                 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
870         if (!addr) {
871                 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
872                 return -EINVAL;
873         }
874
875         cap = dmar_readq(addr + DMAR_CAP_REG);
876         ecap = dmar_readq(addr + DMAR_ECAP_REG);
877
878         if (arg)
879                 iounmap(addr);
880         else
881                 early_iounmap(addr, VTD_PAGE_SIZE);
882
883         if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
884                 warn_invalid_dmar(drhd->address, " returns all ones");
885                 return -EINVAL;
886         }
887
888         return 0;
889 }
890
891 int __init detect_intel_iommu(void)
892 {
893         int ret;
894         struct dmar_res_callback validate_drhd_cb = {
895                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
896                 .ignore_unhandled = true,
897         };
898
899         down_write(&dmar_global_lock);
900         ret = dmar_table_detect();
901         if (!ret)
902                 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
903                                            &validate_drhd_cb);
904         if (!ret && !no_iommu && !iommu_detected &&
905             (!dmar_disabled || dmar_platform_optin())) {
906                 iommu_detected = 1;
907                 /* Make sure ACS will be enabled */
908                 pci_request_acs();
909         }
910
911 #ifdef CONFIG_X86
912         if (!ret) {
913                 x86_init.iommu.iommu_init = intel_iommu_init;
914                 x86_platform.iommu_shutdown = intel_iommu_shutdown;
915         }
916
917 #endif
918
919         if (dmar_tbl) {
920                 acpi_put_table(dmar_tbl);
921                 dmar_tbl = NULL;
922         }
923         up_write(&dmar_global_lock);
924
925         return ret ? ret : 1;
926 }
927
928 static void unmap_iommu(struct intel_iommu *iommu)
929 {
930         iounmap(iommu->reg);
931         release_mem_region(iommu->reg_phys, iommu->reg_size);
932 }
933
934 /**
935  * map_iommu: map the iommu's registers
936  * @iommu: the iommu to map
937  * @phys_addr: the physical address of the base resgister
938  *
939  * Memory map the iommu's registers.  Start w/ a single page, and
940  * possibly expand if that turns out to be insufficent.
941  */
942 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
943 {
944         int map_size, err=0;
945
946         iommu->reg_phys = phys_addr;
947         iommu->reg_size = VTD_PAGE_SIZE;
948
949         if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
950                 pr_err("Can't reserve memory\n");
951                 err = -EBUSY;
952                 goto out;
953         }
954
955         iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
956         if (!iommu->reg) {
957                 pr_err("Can't map the region\n");
958                 err = -ENOMEM;
959                 goto release;
960         }
961
962         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
963         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
964
965         if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
966                 err = -EINVAL;
967                 warn_invalid_dmar(phys_addr, " returns all ones");
968                 goto unmap;
969         }
970         iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
971
972         /* the registers might be more than one page */
973         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
974                          cap_max_fault_reg_offset(iommu->cap));
975         map_size = VTD_PAGE_ALIGN(map_size);
976         if (map_size > iommu->reg_size) {
977                 iounmap(iommu->reg);
978                 release_mem_region(iommu->reg_phys, iommu->reg_size);
979                 iommu->reg_size = map_size;
980                 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
981                                         iommu->name)) {
982                         pr_err("Can't reserve memory\n");
983                         err = -EBUSY;
984                         goto out;
985                 }
986                 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
987                 if (!iommu->reg) {
988                         pr_err("Can't map the region\n");
989                         err = -ENOMEM;
990                         goto release;
991                 }
992         }
993         err = 0;
994         goto out;
995
996 unmap:
997         iounmap(iommu->reg);
998 release:
999         release_mem_region(iommu->reg_phys, iommu->reg_size);
1000 out:
1001         return err;
1002 }
1003
1004 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
1005 {
1006         iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
1007                                             DMAR_UNITS_SUPPORTED);
1008         if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
1009                 iommu->seq_id = -1;
1010         } else {
1011                 set_bit(iommu->seq_id, dmar_seq_ids);
1012                 sprintf(iommu->name, "dmar%d", iommu->seq_id);
1013         }
1014
1015         return iommu->seq_id;
1016 }
1017
1018 static void dmar_free_seq_id(struct intel_iommu *iommu)
1019 {
1020         if (iommu->seq_id >= 0) {
1021                 clear_bit(iommu->seq_id, dmar_seq_ids);
1022                 iommu->seq_id = -1;
1023         }
1024 }
1025
1026 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1027 {
1028         struct intel_iommu *iommu;
1029         u32 ver, sts;
1030         int agaw = 0;
1031         int msagaw = 0;
1032         int err;
1033
1034         if (!drhd->reg_base_addr) {
1035                 warn_invalid_dmar(0, "");
1036                 return -EINVAL;
1037         }
1038
1039         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1040         if (!iommu)
1041                 return -ENOMEM;
1042
1043         if (dmar_alloc_seq_id(iommu) < 0) {
1044                 pr_err("Failed to allocate seq_id\n");
1045                 err = -ENOSPC;
1046                 goto error;
1047         }
1048
1049         err = map_iommu(iommu, drhd->reg_base_addr);
1050         if (err) {
1051                 pr_err("Failed to map %s\n", iommu->name);
1052                 goto error_free_seq_id;
1053         }
1054
1055         err = -EINVAL;
1056         agaw = iommu_calculate_agaw(iommu);
1057         if (agaw < 0) {
1058                 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1059                         iommu->seq_id);
1060                 goto err_unmap;
1061         }
1062         msagaw = iommu_calculate_max_sagaw(iommu);
1063         if (msagaw < 0) {
1064                 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1065                         iommu->seq_id);
1066                 goto err_unmap;
1067         }
1068         iommu->agaw = agaw;
1069         iommu->msagaw = msagaw;
1070         iommu->segment = drhd->segment;
1071
1072         iommu->node = NUMA_NO_NODE;
1073
1074         ver = readl(iommu->reg + DMAR_VER_REG);
1075         pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1076                 iommu->name,
1077                 (unsigned long long)drhd->reg_base_addr,
1078                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1079                 (unsigned long long)iommu->cap,
1080                 (unsigned long long)iommu->ecap);
1081
1082         /* Reflect status in gcmd */
1083         sts = readl(iommu->reg + DMAR_GSTS_REG);
1084         if (sts & DMA_GSTS_IRES)
1085                 iommu->gcmd |= DMA_GCMD_IRE;
1086         if (sts & DMA_GSTS_TES)
1087                 iommu->gcmd |= DMA_GCMD_TE;
1088         if (sts & DMA_GSTS_QIES)
1089                 iommu->gcmd |= DMA_GCMD_QIE;
1090
1091         raw_spin_lock_init(&iommu->register_lock);
1092
1093         if (intel_iommu_enabled) {
1094                 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1095                                              intel_iommu_groups,
1096                                              "%s", iommu->name);
1097                 if (err)
1098                         goto err_unmap;
1099
1100                 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
1101
1102                 err = iommu_device_register(&iommu->iommu);
1103                 if (err)
1104                         goto err_unmap;
1105         }
1106
1107         drhd->iommu = iommu;
1108         iommu->drhd = drhd;
1109
1110         return 0;
1111
1112 err_unmap:
1113         unmap_iommu(iommu);
1114 error_free_seq_id:
1115         dmar_free_seq_id(iommu);
1116 error:
1117         kfree(iommu);
1118         return err;
1119 }
1120
1121 static void free_iommu(struct intel_iommu *iommu)
1122 {
1123         if (intel_iommu_enabled) {
1124                 iommu_device_unregister(&iommu->iommu);
1125                 iommu_device_sysfs_remove(&iommu->iommu);
1126         }
1127
1128         if (iommu->irq) {
1129                 if (iommu->pr_irq) {
1130                         free_irq(iommu->pr_irq, iommu);
1131                         dmar_free_hwirq(iommu->pr_irq);
1132                         iommu->pr_irq = 0;
1133                 }
1134                 free_irq(iommu->irq, iommu);
1135                 dmar_free_hwirq(iommu->irq);
1136                 iommu->irq = 0;
1137         }
1138
1139         if (iommu->qi) {
1140                 free_page((unsigned long)iommu->qi->desc);
1141                 kfree(iommu->qi->desc_status);
1142                 kfree(iommu->qi);
1143         }
1144
1145         if (iommu->reg)
1146                 unmap_iommu(iommu);
1147
1148         dmar_free_seq_id(iommu);
1149         kfree(iommu);
1150 }
1151
1152 /*
1153  * Reclaim all the submitted descriptors which have completed its work.
1154  */
1155 static inline void reclaim_free_desc(struct q_inval *qi)
1156 {
1157         while (qi->desc_status[qi->free_tail] == QI_DONE ||
1158                qi->desc_status[qi->free_tail] == QI_ABORT) {
1159                 qi->desc_status[qi->free_tail] = QI_FREE;
1160                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1161                 qi->free_cnt++;
1162         }
1163 }
1164
1165 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1166 {
1167         u32 fault;
1168         int head, tail;
1169         struct q_inval *qi = iommu->qi;
1170         int shift = qi_shift(iommu);
1171
1172         if (qi->desc_status[wait_index] == QI_ABORT)
1173                 return -EAGAIN;
1174
1175         fault = readl(iommu->reg + DMAR_FSTS_REG);
1176
1177         /*
1178          * If IQE happens, the head points to the descriptor associated
1179          * with the error. No new descriptors are fetched until the IQE
1180          * is cleared.
1181          */
1182         if (fault & DMA_FSTS_IQE) {
1183                 head = readl(iommu->reg + DMAR_IQH_REG);
1184                 if ((head >> shift) == index) {
1185                         struct qi_desc *desc = qi->desc + head;
1186
1187                         /*
1188                          * desc->qw2 and desc->qw3 are either reserved or
1189                          * used by software as private data. We won't print
1190                          * out these two qw's for security consideration.
1191                          */
1192                         pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
1193                                (unsigned long long)desc->qw0,
1194                                (unsigned long long)desc->qw1);
1195                         memcpy(desc, qi->desc + (wait_index << shift),
1196                                1 << shift);
1197                         writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1198                         return -EINVAL;
1199                 }
1200         }
1201
1202         /*
1203          * If ITE happens, all pending wait_desc commands are aborted.
1204          * No new descriptors are fetched until the ITE is cleared.
1205          */
1206         if (fault & DMA_FSTS_ITE) {
1207                 head = readl(iommu->reg + DMAR_IQH_REG);
1208                 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1209                 head |= 1;
1210                 tail = readl(iommu->reg + DMAR_IQT_REG);
1211                 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1212
1213                 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1214
1215                 do {
1216                         if (qi->desc_status[head] == QI_IN_USE)
1217                                 qi->desc_status[head] = QI_ABORT;
1218                         head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1219                 } while (head != tail);
1220
1221                 if (qi->desc_status[wait_index] == QI_ABORT)
1222                         return -EAGAIN;
1223         }
1224
1225         if (fault & DMA_FSTS_ICE)
1226                 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1227
1228         return 0;
1229 }
1230
1231 /*
1232  * Function to submit invalidation descriptors of all types to the queued
1233  * invalidation interface(QI). Multiple descriptors can be submitted at a
1234  * time, a wait descriptor will be appended to each submission to ensure
1235  * hardware has completed the invalidation before return. Wait descriptors
1236  * can be part of the submission but it will not be polled for completion.
1237  */
1238 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1239                    unsigned int count, unsigned long options)
1240 {
1241         struct q_inval *qi = iommu->qi;
1242         struct qi_desc wait_desc;
1243         int wait_index, index;
1244         unsigned long flags;
1245         int offset, shift;
1246         int rc, i;
1247
1248         if (!qi)
1249                 return 0;
1250
1251 restart:
1252         rc = 0;
1253
1254         raw_spin_lock_irqsave(&qi->q_lock, flags);
1255         /*
1256          * Check if we have enough empty slots in the queue to submit,
1257          * the calculation is based on:
1258          * # of desc + 1 wait desc + 1 space between head and tail
1259          */
1260         while (qi->free_cnt < count + 2) {
1261                 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1262                 cpu_relax();
1263                 raw_spin_lock_irqsave(&qi->q_lock, flags);
1264         }
1265
1266         index = qi->free_head;
1267         wait_index = (index + count) % QI_LENGTH;
1268         shift = qi_shift(iommu);
1269
1270         for (i = 0; i < count; i++) {
1271                 offset = ((index + i) % QI_LENGTH) << shift;
1272                 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1273                 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1274         }
1275         qi->desc_status[wait_index] = QI_IN_USE;
1276
1277         wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1278                         QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1279         if (options & QI_OPT_WAIT_DRAIN)
1280                 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1281         wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1282         wait_desc.qw2 = 0;
1283         wait_desc.qw3 = 0;
1284
1285         offset = wait_index << shift;
1286         memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1287
1288         qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1289         qi->free_cnt -= count + 1;
1290
1291         /*
1292          * update the HW tail register indicating the presence of
1293          * new descriptors.
1294          */
1295         writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1296
1297         while (qi->desc_status[wait_index] != QI_DONE) {
1298                 /*
1299                  * We will leave the interrupts disabled, to prevent interrupt
1300                  * context to queue another cmd while a cmd is already submitted
1301                  * and waiting for completion on this cpu. This is to avoid
1302                  * a deadlock where the interrupt context can wait indefinitely
1303                  * for free slots in the queue.
1304                  */
1305                 rc = qi_check_fault(iommu, index, wait_index);
1306                 if (rc)
1307                         break;
1308
1309                 raw_spin_unlock(&qi->q_lock);
1310                 cpu_relax();
1311                 raw_spin_lock(&qi->q_lock);
1312         }
1313
1314         for (i = 0; i < count; i++)
1315                 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1316
1317         reclaim_free_desc(qi);
1318         raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1319
1320         if (rc == -EAGAIN)
1321                 goto restart;
1322
1323         return rc;
1324 }
1325
1326 /*
1327  * Flush the global interrupt entry cache.
1328  */
1329 void qi_global_iec(struct intel_iommu *iommu)
1330 {
1331         struct qi_desc desc;
1332
1333         desc.qw0 = QI_IEC_TYPE;
1334         desc.qw1 = 0;
1335         desc.qw2 = 0;
1336         desc.qw3 = 0;
1337
1338         /* should never fail */
1339         qi_submit_sync(iommu, &desc, 1, 0);
1340 }
1341
1342 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1343                       u64 type)
1344 {
1345         struct qi_desc desc;
1346
1347         desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1348                         | QI_CC_GRAN(type) | QI_CC_TYPE;
1349         desc.qw1 = 0;
1350         desc.qw2 = 0;
1351         desc.qw3 = 0;
1352
1353         qi_submit_sync(iommu, &desc, 1, 0);
1354 }
1355
1356 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1357                     unsigned int size_order, u64 type)
1358 {
1359         u8 dw = 0, dr = 0;
1360
1361         struct qi_desc desc;
1362         int ih = 0;
1363
1364         if (cap_write_drain(iommu->cap))
1365                 dw = 1;
1366
1367         if (cap_read_drain(iommu->cap))
1368                 dr = 1;
1369
1370         desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1371                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1372         desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1373                 | QI_IOTLB_AM(size_order);
1374         desc.qw2 = 0;
1375         desc.qw3 = 0;
1376
1377         qi_submit_sync(iommu, &desc, 1, 0);
1378 }
1379
1380 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1381                         u16 qdep, u64 addr, unsigned mask)
1382 {
1383         struct qi_desc desc;
1384
1385         if (mask) {
1386                 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1387                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1388         } else
1389                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1390
1391         if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1392                 qdep = 0;
1393
1394         desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1395                    QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1396         desc.qw2 = 0;
1397         desc.qw3 = 0;
1398
1399         qi_submit_sync(iommu, &desc, 1, 0);
1400 }
1401
1402 /* PASID-based IOTLB invalidation */
1403 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1404                      unsigned long npages, bool ih)
1405 {
1406         struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1407
1408         /*
1409          * npages == -1 means a PASID-selective invalidation, otherwise,
1410          * a positive value for Page-selective-within-PASID invalidation.
1411          * 0 is not a valid input.
1412          */
1413         if (WARN_ON(!npages)) {
1414                 pr_err("Invalid input npages = %ld\n", npages);
1415                 return;
1416         }
1417
1418         if (npages == -1) {
1419                 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1420                                 QI_EIOTLB_DID(did) |
1421                                 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1422                                 QI_EIOTLB_TYPE;
1423                 desc.qw1 = 0;
1424         } else {
1425                 int mask = ilog2(__roundup_pow_of_two(npages));
1426                 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1427
1428                 if (WARN_ON_ONCE(!ALIGN(addr, align)))
1429                         addr &= ~(align - 1);
1430
1431                 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1432                                 QI_EIOTLB_DID(did) |
1433                                 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1434                                 QI_EIOTLB_TYPE;
1435                 desc.qw1 = QI_EIOTLB_ADDR(addr) |
1436                                 QI_EIOTLB_IH(ih) |
1437                                 QI_EIOTLB_AM(mask);
1438         }
1439
1440         qi_submit_sync(iommu, &desc, 1, 0);
1441 }
1442
1443 /* PASID-based device IOTLB Invalidate */
1444 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1445                               u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1446 {
1447         unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1448         struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1449
1450         desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1451                 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1452                 QI_DEV_IOTLB_PFSID(pfsid);
1453
1454         /*
1455          * If S bit is 0, we only flush a single page. If S bit is set,
1456          * The least significant zero bit indicates the invalidation address
1457          * range. VT-d spec 6.5.2.6.
1458          * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1459          * size order = 0 is PAGE_SIZE 4KB
1460          * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1461          * ECAP.
1462          */
1463         if (addr & GENMASK_ULL(size_order + VTD_PAGE_SHIFT, 0))
1464                 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1465                                     addr, size_order);
1466
1467         /* Take page address */
1468         desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1469
1470         if (size_order) {
1471                 /*
1472                  * Existing 0s in address below size_order may be the least
1473                  * significant bit, we must set them to 1s to avoid having
1474                  * smaller size than desired.
1475                  */
1476                 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1477                                         VTD_PAGE_SHIFT);
1478                 /* Clear size_order bit to indicate size */
1479                 desc.qw1 &= ~mask;
1480                 /* Set the S bit to indicate flushing more than 1 page */
1481                 desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1482         }
1483
1484         qi_submit_sync(iommu, &desc, 1, 0);
1485 }
1486
1487 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1488                           u64 granu, u32 pasid)
1489 {
1490         struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1491
1492         desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1493                         QI_PC_GRAN(granu) | QI_PC_TYPE;
1494         qi_submit_sync(iommu, &desc, 1, 0);
1495 }
1496
1497 /*
1498  * Disable Queued Invalidation interface.
1499  */
1500 void dmar_disable_qi(struct intel_iommu *iommu)
1501 {
1502         unsigned long flags;
1503         u32 sts;
1504         cycles_t start_time = get_cycles();
1505
1506         if (!ecap_qis(iommu->ecap))
1507                 return;
1508
1509         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1510
1511         sts =  readl(iommu->reg + DMAR_GSTS_REG);
1512         if (!(sts & DMA_GSTS_QIES))
1513                 goto end;
1514
1515         /*
1516          * Give a chance to HW to complete the pending invalidation requests.
1517          */
1518         while ((readl(iommu->reg + DMAR_IQT_REG) !=
1519                 readl(iommu->reg + DMAR_IQH_REG)) &&
1520                 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1521                 cpu_relax();
1522
1523         iommu->gcmd &= ~DMA_GCMD_QIE;
1524         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1525
1526         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1527                       !(sts & DMA_GSTS_QIES), sts);
1528 end:
1529         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1530 }
1531
1532 /*
1533  * Enable queued invalidation.
1534  */
1535 static void __dmar_enable_qi(struct intel_iommu *iommu)
1536 {
1537         u32 sts;
1538         unsigned long flags;
1539         struct q_inval *qi = iommu->qi;
1540         u64 val = virt_to_phys(qi->desc);
1541
1542         qi->free_head = qi->free_tail = 0;
1543         qi->free_cnt = QI_LENGTH;
1544
1545         /*
1546          * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1547          * is present.
1548          */
1549         if (ecap_smts(iommu->ecap))
1550                 val |= (1 << 11) | 1;
1551
1552         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1553
1554         /* write zero to the tail reg */
1555         writel(0, iommu->reg + DMAR_IQT_REG);
1556
1557         dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1558
1559         iommu->gcmd |= DMA_GCMD_QIE;
1560         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1561
1562         /* Make sure hardware complete it */
1563         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1564
1565         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1566 }
1567
1568 /*
1569  * Enable Queued Invalidation interface. This is a must to support
1570  * interrupt-remapping. Also used by DMA-remapping, which replaces
1571  * register based IOTLB invalidation.
1572  */
1573 int dmar_enable_qi(struct intel_iommu *iommu)
1574 {
1575         struct q_inval *qi;
1576         struct page *desc_page;
1577
1578         if (!ecap_qis(iommu->ecap))
1579                 return -ENOENT;
1580
1581         /*
1582          * queued invalidation is already setup and enabled.
1583          */
1584         if (iommu->qi)
1585                 return 0;
1586
1587         iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1588         if (!iommu->qi)
1589                 return -ENOMEM;
1590
1591         qi = iommu->qi;
1592
1593         /*
1594          * Need two pages to accommodate 256 descriptors of 256 bits each
1595          * if the remapping hardware supports scalable mode translation.
1596          */
1597         desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1598                                      !!ecap_smts(iommu->ecap));
1599         if (!desc_page) {
1600                 kfree(qi);
1601                 iommu->qi = NULL;
1602                 return -ENOMEM;
1603         }
1604
1605         qi->desc = page_address(desc_page);
1606
1607         qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1608         if (!qi->desc_status) {
1609                 free_page((unsigned long) qi->desc);
1610                 kfree(qi);
1611                 iommu->qi = NULL;
1612                 return -ENOMEM;
1613         }
1614
1615         raw_spin_lock_init(&qi->q_lock);
1616
1617         __dmar_enable_qi(iommu);
1618
1619         return 0;
1620 }
1621
1622 /* iommu interrupt handling. Most stuff are MSI-like. */
1623
1624 enum faulttype {
1625         DMA_REMAP,
1626         INTR_REMAP,
1627         UNKNOWN,
1628 };
1629
1630 static const char *dma_remap_fault_reasons[] =
1631 {
1632         "Software",
1633         "Present bit in root entry is clear",
1634         "Present bit in context entry is clear",
1635         "Invalid context entry",
1636         "Access beyond MGAW",
1637         "PTE Write access is not set",
1638         "PTE Read access is not set",
1639         "Next page table ptr is invalid",
1640         "Root table address invalid",
1641         "Context table ptr is invalid",
1642         "non-zero reserved fields in RTP",
1643         "non-zero reserved fields in CTP",
1644         "non-zero reserved fields in PTE",
1645         "PCE for translation request specifies blocking",
1646 };
1647
1648 static const char * const dma_remap_sm_fault_reasons[] = {
1649         "SM: Invalid Root Table Address",
1650         "SM: TTM 0 for request with PASID",
1651         "SM: TTM 0 for page group request",
1652         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1653         "SM: Error attempting to access Root Entry",
1654         "SM: Present bit in Root Entry is clear",
1655         "SM: Non-zero reserved field set in Root Entry",
1656         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1657         "SM: Error attempting to access Context Entry",
1658         "SM: Present bit in Context Entry is clear",
1659         "SM: Non-zero reserved field set in the Context Entry",
1660         "SM: Invalid Context Entry",
1661         "SM: DTE field in Context Entry is clear",
1662         "SM: PASID Enable field in Context Entry is clear",
1663         "SM: PASID is larger than the max in Context Entry",
1664         "SM: PRE field in Context-Entry is clear",
1665         "SM: RID_PASID field error in Context-Entry",
1666         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1667         "SM: Error attempting to access the PASID Directory Entry",
1668         "SM: Present bit in Directory Entry is clear",
1669         "SM: Non-zero reserved field set in PASID Directory Entry",
1670         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1671         "SM: Error attempting to access PASID Table Entry",
1672         "SM: Present bit in PASID Table Entry is clear",
1673         "SM: Non-zero reserved field set in PASID Table Entry",
1674         "SM: Invalid Scalable-Mode PASID Table Entry",
1675         "SM: ERE field is clear in PASID Table Entry",
1676         "SM: SRE field is clear in PASID Table Entry",
1677         "Unknown", "Unknown",/* 0x5E-0x5F */
1678         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1679         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1680         "SM: Error attempting to access first-level paging entry",
1681         "SM: Present bit in first-level paging entry is clear",
1682         "SM: Non-zero reserved field set in first-level paging entry",
1683         "SM: Error attempting to access FL-PML4 entry",
1684         "SM: First-level entry address beyond MGAW in Nested translation",
1685         "SM: Read permission error in FL-PML4 entry in Nested translation",
1686         "SM: Read permission error in first-level paging entry in Nested translation",
1687         "SM: Write permission error in first-level paging entry in Nested translation",
1688         "SM: Error attempting to access second-level paging entry",
1689         "SM: Read/Write permission error in second-level paging entry",
1690         "SM: Non-zero reserved field set in second-level paging entry",
1691         "SM: Invalid second-level page table pointer",
1692         "SM: A/D bit update needed in second-level entry when set up in no snoop",
1693         "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1694         "SM: Address in first-level translation is not canonical",
1695         "SM: U/S set 0 for first-level translation with user privilege",
1696         "SM: No execute permission for request with PASID and ER=1",
1697         "SM: Address beyond the DMA hardware max",
1698         "SM: Second-level entry address beyond the max",
1699         "SM: No write permission for Write/AtomicOp request",
1700         "SM: No read permission for Read/AtomicOp request",
1701         "SM: Invalid address-interrupt address",
1702         "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1703         "SM: A/D bit update needed in first-level entry when set up in no snoop",
1704 };
1705
1706 static const char *irq_remap_fault_reasons[] =
1707 {
1708         "Detected reserved fields in the decoded interrupt-remapped request",
1709         "Interrupt index exceeded the interrupt-remapping table size",
1710         "Present field in the IRTE entry is clear",
1711         "Error accessing interrupt-remapping table pointed by IRTA_REG",
1712         "Detected reserved fields in the IRTE entry",
1713         "Blocked a compatibility format interrupt request",
1714         "Blocked an interrupt request due to source-id verification failure",
1715 };
1716
1717 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1718 {
1719         if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1720                                         ARRAY_SIZE(irq_remap_fault_reasons))) {
1721                 *fault_type = INTR_REMAP;
1722                 return irq_remap_fault_reasons[fault_reason - 0x20];
1723         } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1724                         ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1725                 *fault_type = DMA_REMAP;
1726                 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1727         } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1728                 *fault_type = DMA_REMAP;
1729                 return dma_remap_fault_reasons[fault_reason];
1730         } else {
1731                 *fault_type = UNKNOWN;
1732                 return "Unknown";
1733         }
1734 }
1735
1736
1737 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1738 {
1739         if (iommu->irq == irq)
1740                 return DMAR_FECTL_REG;
1741         else if (iommu->pr_irq == irq)
1742                 return DMAR_PECTL_REG;
1743         else
1744                 BUG();
1745 }
1746
1747 void dmar_msi_unmask(struct irq_data *data)
1748 {
1749         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1750         int reg = dmar_msi_reg(iommu, data->irq);
1751         unsigned long flag;
1752
1753         /* unmask it */
1754         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1755         writel(0, iommu->reg + reg);
1756         /* Read a reg to force flush the post write */
1757         readl(iommu->reg + reg);
1758         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1759 }
1760
1761 void dmar_msi_mask(struct irq_data *data)
1762 {
1763         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1764         int reg = dmar_msi_reg(iommu, data->irq);
1765         unsigned long flag;
1766
1767         /* mask it */
1768         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1769         writel(DMA_FECTL_IM, iommu->reg + reg);
1770         /* Read a reg to force flush the post write */
1771         readl(iommu->reg + reg);
1772         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1773 }
1774
1775 void dmar_msi_write(int irq, struct msi_msg *msg)
1776 {
1777         struct intel_iommu *iommu = irq_get_handler_data(irq);
1778         int reg = dmar_msi_reg(iommu, irq);
1779         unsigned long flag;
1780
1781         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1782         writel(msg->data, iommu->reg + reg + 4);
1783         writel(msg->address_lo, iommu->reg + reg + 8);
1784         writel(msg->address_hi, iommu->reg + reg + 12);
1785         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1786 }
1787
1788 void dmar_msi_read(int irq, struct msi_msg *msg)
1789 {
1790         struct intel_iommu *iommu = irq_get_handler_data(irq);
1791         int reg = dmar_msi_reg(iommu, irq);
1792         unsigned long flag;
1793
1794         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1795         msg->data = readl(iommu->reg + reg + 4);
1796         msg->address_lo = readl(iommu->reg + reg + 8);
1797         msg->address_hi = readl(iommu->reg + reg + 12);
1798         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1799 }
1800
1801 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1802                 u8 fault_reason, u32 pasid, u16 source_id,
1803                 unsigned long long addr)
1804 {
1805         const char *reason;
1806         int fault_type;
1807
1808         reason = dmar_get_fault_reason(fault_reason, &fault_type);
1809
1810         if (fault_type == INTR_REMAP)
1811                 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1812                         source_id >> 8, PCI_SLOT(source_id & 0xFF),
1813                         PCI_FUNC(source_id & 0xFF), addr >> 48,
1814                         fault_reason, reason);
1815         else
1816                 pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n",
1817                        type ? "DMA Read" : "DMA Write",
1818                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
1819                        PCI_FUNC(source_id & 0xFF), pasid, addr,
1820                        fault_reason, reason);
1821         return 0;
1822 }
1823
1824 #define PRIMARY_FAULT_REG_LEN (16)
1825 irqreturn_t dmar_fault(int irq, void *dev_id)
1826 {
1827         struct intel_iommu *iommu = dev_id;
1828         int reg, fault_index;
1829         u32 fault_status;
1830         unsigned long flag;
1831         static DEFINE_RATELIMIT_STATE(rs,
1832                                       DEFAULT_RATELIMIT_INTERVAL,
1833                                       DEFAULT_RATELIMIT_BURST);
1834
1835         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1836         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1837         if (fault_status && __ratelimit(&rs))
1838                 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1839
1840         /* TBD: ignore advanced fault log currently */
1841         if (!(fault_status & DMA_FSTS_PPF))
1842                 goto unlock_exit;
1843
1844         fault_index = dma_fsts_fault_record_index(fault_status);
1845         reg = cap_fault_reg_offset(iommu->cap);
1846         while (1) {
1847                 /* Disable printing, simply clear the fault when ratelimited */
1848                 bool ratelimited = !__ratelimit(&rs);
1849                 u8 fault_reason;
1850                 u16 source_id;
1851                 u64 guest_addr;
1852                 u32 pasid;
1853                 int type;
1854                 u32 data;
1855                 bool pasid_present;
1856
1857                 /* highest 32 bits */
1858                 data = readl(iommu->reg + reg +
1859                                 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1860                 if (!(data & DMA_FRCD_F))
1861                         break;
1862
1863                 if (!ratelimited) {
1864                         fault_reason = dma_frcd_fault_reason(data);
1865                         type = dma_frcd_type(data);
1866
1867                         pasid = dma_frcd_pasid_value(data);
1868                         data = readl(iommu->reg + reg +
1869                                      fault_index * PRIMARY_FAULT_REG_LEN + 8);
1870                         source_id = dma_frcd_source_id(data);
1871
1872                         pasid_present = dma_frcd_pasid_present(data);
1873                         guest_addr = dmar_readq(iommu->reg + reg +
1874                                         fault_index * PRIMARY_FAULT_REG_LEN);
1875                         guest_addr = dma_frcd_page_addr(guest_addr);
1876                 }
1877
1878                 /* clear the fault */
1879                 writel(DMA_FRCD_F, iommu->reg + reg +
1880                         fault_index * PRIMARY_FAULT_REG_LEN + 12);
1881
1882                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1883
1884                 if (!ratelimited)
1885                         /* Using pasid -1 if pasid is not present */
1886                         dmar_fault_do_one(iommu, type, fault_reason,
1887                                           pasid_present ? pasid : -1,
1888                                           source_id, guest_addr);
1889
1890                 fault_index++;
1891                 if (fault_index >= cap_num_fault_regs(iommu->cap))
1892                         fault_index = 0;
1893                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1894         }
1895
1896         writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
1897                iommu->reg + DMAR_FSTS_REG);
1898
1899 unlock_exit:
1900         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1901         return IRQ_HANDLED;
1902 }
1903
1904 int dmar_set_interrupt(struct intel_iommu *iommu)
1905 {
1906         int irq, ret;
1907
1908         /*
1909          * Check if the fault interrupt is already initialized.
1910          */
1911         if (iommu->irq)
1912                 return 0;
1913
1914         irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1915         if (irq > 0) {
1916                 iommu->irq = irq;
1917         } else {
1918                 pr_err("No free IRQ vectors\n");
1919                 return -EINVAL;
1920         }
1921
1922         ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1923         if (ret)
1924                 pr_err("Can't request irq\n");
1925         return ret;
1926 }
1927
1928 int __init enable_drhd_fault_handling(void)
1929 {
1930         struct dmar_drhd_unit *drhd;
1931         struct intel_iommu *iommu;
1932
1933         /*
1934          * Enable fault control interrupt.
1935          */
1936         for_each_iommu(iommu, drhd) {
1937                 u32 fault_status;
1938                 int ret = dmar_set_interrupt(iommu);
1939
1940                 if (ret) {
1941                         pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1942                                (unsigned long long)drhd->reg_base_addr, ret);
1943                         return -1;
1944                 }
1945
1946                 /*
1947                  * Clear any previous faults.
1948                  */
1949                 dmar_fault(iommu->irq, iommu);
1950                 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1951                 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1952         }
1953
1954         return 0;
1955 }
1956
1957 /*
1958  * Re-enable Queued Invalidation interface.
1959  */
1960 int dmar_reenable_qi(struct intel_iommu *iommu)
1961 {
1962         if (!ecap_qis(iommu->ecap))
1963                 return -ENOENT;
1964
1965         if (!iommu->qi)
1966                 return -ENOENT;
1967
1968         /*
1969          * First disable queued invalidation.
1970          */
1971         dmar_disable_qi(iommu);
1972         /*
1973          * Then enable queued invalidation again. Since there is no pending
1974          * invalidation requests now, it's safe to re-enable queued
1975          * invalidation.
1976          */
1977         __dmar_enable_qi(iommu);
1978
1979         return 0;
1980 }
1981
1982 /*
1983  * Check interrupt remapping support in DMAR table description.
1984  */
1985 int __init dmar_ir_support(void)
1986 {
1987         struct acpi_table_dmar *dmar;
1988         dmar = (struct acpi_table_dmar *)dmar_tbl;
1989         if (!dmar)
1990                 return 0;
1991         return dmar->flags & 0x1;
1992 }
1993
1994 /* Check whether DMAR units are in use */
1995 static inline bool dmar_in_use(void)
1996 {
1997         return irq_remapping_enabled || intel_iommu_enabled;
1998 }
1999
2000 static int __init dmar_free_unused_resources(void)
2001 {
2002         struct dmar_drhd_unit *dmaru, *dmaru_n;
2003
2004         if (dmar_in_use())
2005                 return 0;
2006
2007         if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2008                 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2009
2010         down_write(&dmar_global_lock);
2011         list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2012                 list_del(&dmaru->list);
2013                 dmar_free_drhd(dmaru);
2014         }
2015         up_write(&dmar_global_lock);
2016
2017         return 0;
2018 }
2019
2020 late_initcall(dmar_free_unused_resources);
2021 IOMMU_INIT_POST(detect_intel_iommu);
2022
2023 /*
2024  * DMAR Hotplug Support
2025  * For more details, please refer to Intel(R) Virtualization Technology
2026  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2027  * "Remapping Hardware Unit Hot Plug".
2028  */
2029 static guid_t dmar_hp_guid =
2030         GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2031                   0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2032
2033 /*
2034  * Currently there's only one revision and BIOS will not check the revision id,
2035  * so use 0 for safety.
2036  */
2037 #define DMAR_DSM_REV_ID                 0
2038 #define DMAR_DSM_FUNC_DRHD              1
2039 #define DMAR_DSM_FUNC_ATSR              2
2040 #define DMAR_DSM_FUNC_RHSA              3
2041
2042 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2043 {
2044         return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2045 }
2046
2047 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2048                                   dmar_res_handler_t handler, void *arg)
2049 {
2050         int ret = -ENODEV;
2051         union acpi_object *obj;
2052         struct acpi_dmar_header *start;
2053         struct dmar_res_callback callback;
2054         static int res_type[] = {
2055                 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2056                 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2057                 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2058         };
2059
2060         if (!dmar_detect_dsm(handle, func))
2061                 return 0;
2062
2063         obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2064                                       func, NULL, ACPI_TYPE_BUFFER);
2065         if (!obj)
2066                 return -ENODEV;
2067
2068         memset(&callback, 0, sizeof(callback));
2069         callback.cb[res_type[func]] = handler;
2070         callback.arg[res_type[func]] = arg;
2071         start = (struct acpi_dmar_header *)obj->buffer.pointer;
2072         ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2073
2074         ACPI_FREE(obj);
2075
2076         return ret;
2077 }
2078
2079 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2080 {
2081         int ret;
2082         struct dmar_drhd_unit *dmaru;
2083
2084         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2085         if (!dmaru)
2086                 return -ENODEV;
2087
2088         ret = dmar_ir_hotplug(dmaru, true);
2089         if (ret == 0)
2090                 ret = dmar_iommu_hotplug(dmaru, true);
2091
2092         return ret;
2093 }
2094
2095 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2096 {
2097         int i, ret;
2098         struct device *dev;
2099         struct dmar_drhd_unit *dmaru;
2100
2101         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2102         if (!dmaru)
2103                 return 0;
2104
2105         /*
2106          * All PCI devices managed by this unit should have been destroyed.
2107          */
2108         if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2109                 for_each_active_dev_scope(dmaru->devices,
2110                                           dmaru->devices_cnt, i, dev)
2111                         return -EBUSY;
2112         }
2113
2114         ret = dmar_ir_hotplug(dmaru, false);
2115         if (ret == 0)
2116                 ret = dmar_iommu_hotplug(dmaru, false);
2117
2118         return ret;
2119 }
2120
2121 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2122 {
2123         struct dmar_drhd_unit *dmaru;
2124
2125         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2126         if (dmaru) {
2127                 list_del_rcu(&dmaru->list);
2128                 synchronize_rcu();
2129                 dmar_free_drhd(dmaru);
2130         }
2131
2132         return 0;
2133 }
2134
2135 static int dmar_hotplug_insert(acpi_handle handle)
2136 {
2137         int ret;
2138         int drhd_count = 0;
2139
2140         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2141                                      &dmar_validate_one_drhd, (void *)1);
2142         if (ret)
2143                 goto out;
2144
2145         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2146                                      &dmar_parse_one_drhd, (void *)&drhd_count);
2147         if (ret == 0 && drhd_count == 0) {
2148                 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2149                 goto out;
2150         } else if (ret) {
2151                 goto release_drhd;
2152         }
2153
2154         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2155                                      &dmar_parse_one_rhsa, NULL);
2156         if (ret)
2157                 goto release_drhd;
2158
2159         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2160                                      &dmar_parse_one_atsr, NULL);
2161         if (ret)
2162                 goto release_atsr;
2163
2164         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2165                                      &dmar_hp_add_drhd, NULL);
2166         if (!ret)
2167                 return 0;
2168
2169         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2170                                &dmar_hp_remove_drhd, NULL);
2171 release_atsr:
2172         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2173                                &dmar_release_one_atsr, NULL);
2174 release_drhd:
2175         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2176                                &dmar_hp_release_drhd, NULL);
2177 out:
2178         return ret;
2179 }
2180
2181 static int dmar_hotplug_remove(acpi_handle handle)
2182 {
2183         int ret;
2184
2185         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2186                                      &dmar_check_one_atsr, NULL);
2187         if (ret)
2188                 return ret;
2189
2190         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2191                                      &dmar_hp_remove_drhd, NULL);
2192         if (ret == 0) {
2193                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2194                                                &dmar_release_one_atsr, NULL));
2195                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2196                                                &dmar_hp_release_drhd, NULL));
2197         } else {
2198                 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2199                                        &dmar_hp_add_drhd, NULL);
2200         }
2201
2202         return ret;
2203 }
2204
2205 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2206                                        void *context, void **retval)
2207 {
2208         acpi_handle *phdl = retval;
2209
2210         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2211                 *phdl = handle;
2212                 return AE_CTRL_TERMINATE;
2213         }
2214
2215         return AE_OK;
2216 }
2217
2218 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2219 {
2220         int ret;
2221         acpi_handle tmp = NULL;
2222         acpi_status status;
2223
2224         if (!dmar_in_use())
2225                 return 0;
2226
2227         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2228                 tmp = handle;
2229         } else {
2230                 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2231                                              ACPI_UINT32_MAX,
2232                                              dmar_get_dsm_handle,
2233                                              NULL, NULL, &tmp);
2234                 if (ACPI_FAILURE(status)) {
2235                         pr_warn("Failed to locate _DSM method.\n");
2236                         return -ENXIO;
2237                 }
2238         }
2239         if (tmp == NULL)
2240                 return 0;
2241
2242         down_write(&dmar_global_lock);
2243         if (insert)
2244                 ret = dmar_hotplug_insert(tmp);
2245         else
2246                 ret = dmar_hotplug_remove(tmp);
2247         up_write(&dmar_global_lock);
2248
2249         return ret;
2250 }
2251
2252 int dmar_device_add(acpi_handle handle)
2253 {
2254         return dmar_device_hotplug(handle, true);
2255 }
2256
2257 int dmar_device_remove(acpi_handle handle)
2258 {
2259         return dmar_device_hotplug(handle, false);
2260 }
2261
2262 /*
2263  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2264  *
2265  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2266  * the ACPI DMAR table. This means that the platform boot firmware has made
2267  * sure no device can issue DMA outside of RMRR regions.
2268  */
2269 bool dmar_platform_optin(void)
2270 {
2271         struct acpi_table_dmar *dmar;
2272         acpi_status status;
2273         bool ret;
2274
2275         status = acpi_get_table(ACPI_SIG_DMAR, 0,
2276                                 (struct acpi_table_header **)&dmar);
2277         if (ACPI_FAILURE(status))
2278                 return false;
2279
2280         ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2281         acpi_put_table((struct acpi_table_header *)dmar);
2282
2283         return ret;
2284 }
2285 EXPORT_SYMBOL_GPL(dmar_platform_optin);
This page took 0.169567 seconds and 4 git commands to generate.