]> Git Repo - J-linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c
dma-buf: finally make dma_resv_excl_fence private v2
[J-linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <[email protected]>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 #include <linux/module.h>
45
46 #include <drm/drm_drv.h>
47 #include <drm/ttm/ttm_bo_api.h>
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_placement.h>
50 #include <drm/ttm/ttm_range_manager.h>
51
52 #include <drm/amdgpu_drm.h>
53
54 #include "amdgpu.h"
55 #include "amdgpu_object.h"
56 #include "amdgpu_trace.h"
57 #include "amdgpu_amdkfd.h"
58 #include "amdgpu_sdma.h"
59 #include "amdgpu_ras.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63
64 MODULE_IMPORT_NS(DMA_BUF);
65
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ     (size_t)128
67
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69                                    struct ttm_tt *ttm,
70                                    struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72                                       struct ttm_tt *ttm);
73
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75                                     unsigned int type,
76                                     uint64_t size_in_page)
77 {
78         return ttm_range_man_init(&adev->mman.bdev, type,
79                                   false, size_in_page);
80 }
81
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91                                 struct ttm_placement *placement)
92 {
93         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94         struct amdgpu_bo *abo;
95         static const struct ttm_place placements = {
96                 .fpfn = 0,
97                 .lpfn = 0,
98                 .mem_type = TTM_PL_SYSTEM,
99                 .flags = 0
100         };
101
102         /* Don't handle scatter gather BOs */
103         if (bo->type == ttm_bo_type_sg) {
104                 placement->num_placement = 0;
105                 placement->num_busy_placement = 0;
106                 return;
107         }
108
109         /* Object isn't an AMDGPU object so ignore */
110         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
111                 placement->placement = &placements;
112                 placement->busy_placement = &placements;
113                 placement->num_placement = 1;
114                 placement->num_busy_placement = 1;
115                 return;
116         }
117
118         abo = ttm_to_amdgpu_bo(bo);
119         if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) {
120                 placement->num_placement = 0;
121                 placement->num_busy_placement = 0;
122                 return;
123         }
124
125         switch (bo->resource->mem_type) {
126         case AMDGPU_PL_GDS:
127         case AMDGPU_PL_GWS:
128         case AMDGPU_PL_OA:
129                 placement->num_placement = 0;
130                 placement->num_busy_placement = 0;
131                 return;
132
133         case TTM_PL_VRAM:
134                 if (!adev->mman.buffer_funcs_enabled) {
135                         /* Move to system memory */
136                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
137                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
138                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
139                            amdgpu_bo_in_cpu_visible_vram(abo)) {
140
141                         /* Try evicting to the CPU inaccessible part of VRAM
142                          * first, but only set GTT as busy placement, so this
143                          * BO will be evicted to GTT rather than causing other
144                          * BOs to be evicted from VRAM
145                          */
146                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
147                                                         AMDGPU_GEM_DOMAIN_GTT |
148                                                         AMDGPU_GEM_DOMAIN_CPU);
149                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
150                         abo->placements[0].lpfn = 0;
151                         abo->placement.busy_placement = &abo->placements[1];
152                         abo->placement.num_busy_placement = 1;
153                 } else {
154                         /* Move to GTT memory */
155                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
156                                                         AMDGPU_GEM_DOMAIN_CPU);
157                 }
158                 break;
159         case TTM_PL_TT:
160         case AMDGPU_PL_PREEMPT:
161         default:
162                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
163                 break;
164         }
165         *placement = abo->placement;
166 }
167
168 /**
169  * amdgpu_ttm_map_buffer - Map memory into the GART windows
170  * @bo: buffer object to map
171  * @mem: memory object to map
172  * @mm_cur: range to map
173  * @num_pages: number of pages to map
174  * @window: which GART window to use
175  * @ring: DMA ring to use for the copy
176  * @tmz: if we should setup a TMZ enabled mapping
177  * @addr: resulting address inside the MC address space
178  *
179  * Setup one of the GART windows to access a specific piece of memory or return
180  * the physical address for local memory.
181  */
182 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
183                                  struct ttm_resource *mem,
184                                  struct amdgpu_res_cursor *mm_cur,
185                                  unsigned num_pages, unsigned window,
186                                  struct amdgpu_ring *ring, bool tmz,
187                                  uint64_t *addr)
188 {
189         struct amdgpu_device *adev = ring->adev;
190         struct amdgpu_job *job;
191         unsigned num_dw, num_bytes;
192         struct dma_fence *fence;
193         uint64_t src_addr, dst_addr;
194         void *cpu_addr;
195         uint64_t flags;
196         unsigned int i;
197         int r;
198
199         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
200                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
201         BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT);
202
203         /* Map only what can't be accessed directly */
204         if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
205                 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
206                         mm_cur->start;
207                 return 0;
208         }
209
210         *addr = adev->gmc.gart_start;
211         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
212                 AMDGPU_GPU_PAGE_SIZE;
213         *addr += mm_cur->start & ~PAGE_MASK;
214
215         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
216         num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
217
218         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
219                                      AMDGPU_IB_POOL_DELAYED, &job);
220         if (r)
221                 return r;
222
223         src_addr = num_dw * 4;
224         src_addr += job->ibs[0].gpu_addr;
225
226         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
227         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
228         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
229                                 dst_addr, num_bytes, false);
230
231         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
232         WARN_ON(job->ibs[0].length_dw > num_dw);
233
234         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
235         if (tmz)
236                 flags |= AMDGPU_PTE_TMZ;
237
238         cpu_addr = &job->ibs[0].ptr[num_dw];
239
240         if (mem->mem_type == TTM_PL_TT) {
241                 dma_addr_t *dma_addr;
242
243                 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
244                 r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
245                                     cpu_addr);
246                 if (r)
247                         goto error_free;
248         } else {
249                 dma_addr_t dma_address;
250
251                 dma_address = mm_cur->start;
252                 dma_address += adev->vm_manager.vram_base_offset;
253
254                 for (i = 0; i < num_pages; ++i) {
255                         r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
256                                             &dma_address, flags, cpu_addr);
257                         if (r)
258                                 goto error_free;
259
260                         dma_address += PAGE_SIZE;
261                 }
262         }
263
264         r = amdgpu_job_submit(job, &adev->mman.entity,
265                               AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
266         if (r)
267                 goto error_free;
268
269         dma_fence_put(fence);
270
271         return r;
272
273 error_free:
274         amdgpu_job_free(job);
275         return r;
276 }
277
278 /**
279  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
280  * @adev: amdgpu device
281  * @src: buffer/address where to read from
282  * @dst: buffer/address where to write to
283  * @size: number of bytes to copy
284  * @tmz: if a secure copy should be used
285  * @resv: resv object to sync to
286  * @f: Returns the last fence if multiple jobs are submitted.
287  *
288  * The function copies @size bytes from {src->mem + src->offset} to
289  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
290  * move and different for a BO to BO copy.
291  *
292  */
293 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
294                                const struct amdgpu_copy_mem *src,
295                                const struct amdgpu_copy_mem *dst,
296                                uint64_t size, bool tmz,
297                                struct dma_resv *resv,
298                                struct dma_fence **f)
299 {
300         const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
301                                         AMDGPU_GPU_PAGE_SIZE);
302
303         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
304         struct amdgpu_res_cursor src_mm, dst_mm;
305         struct dma_fence *fence = NULL;
306         int r = 0;
307
308         if (!adev->mman.buffer_funcs_enabled) {
309                 DRM_ERROR("Trying to move memory with ring turned off.\n");
310                 return -EINVAL;
311         }
312
313         amdgpu_res_first(src->mem, src->offset, size, &src_mm);
314         amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
315
316         mutex_lock(&adev->mman.gtt_window_lock);
317         while (src_mm.remaining) {
318                 uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
319                 uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
320                 struct dma_fence *next;
321                 uint32_t cur_size;
322                 uint64_t from, to;
323
324                 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
325                  * begins at an offset, then adjust the size accordingly
326                  */
327                 cur_size = max(src_page_offset, dst_page_offset);
328                 cur_size = min(min3(src_mm.size, dst_mm.size, size),
329                                (uint64_t)(GTT_MAX_BYTES - cur_size));
330
331                 /* Map src to window 0 and dst to window 1. */
332                 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
333                                           PFN_UP(cur_size + src_page_offset),
334                                           0, ring, tmz, &from);
335                 if (r)
336                         goto error;
337
338                 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
339                                           PFN_UP(cur_size + dst_page_offset),
340                                           1, ring, tmz, &to);
341                 if (r)
342                         goto error;
343
344                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
345                                        resv, &next, false, true, tmz);
346                 if (r)
347                         goto error;
348
349                 dma_fence_put(fence);
350                 fence = next;
351
352                 amdgpu_res_next(&src_mm, cur_size);
353                 amdgpu_res_next(&dst_mm, cur_size);
354         }
355 error:
356         mutex_unlock(&adev->mman.gtt_window_lock);
357         if (f)
358                 *f = dma_fence_get(fence);
359         dma_fence_put(fence);
360         return r;
361 }
362
363 /*
364  * amdgpu_move_blit - Copy an entire buffer to another buffer
365  *
366  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
367  * help move buffers to and from VRAM.
368  */
369 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
370                             bool evict,
371                             struct ttm_resource *new_mem,
372                             struct ttm_resource *old_mem)
373 {
374         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
375         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
376         struct amdgpu_copy_mem src, dst;
377         struct dma_fence *fence = NULL;
378         int r;
379
380         src.bo = bo;
381         dst.bo = bo;
382         src.mem = old_mem;
383         dst.mem = new_mem;
384         src.offset = 0;
385         dst.offset = 0;
386
387         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
388                                        new_mem->num_pages << PAGE_SHIFT,
389                                        amdgpu_bo_encrypted(abo),
390                                        bo->base.resv, &fence);
391         if (r)
392                 goto error;
393
394         /* clear the space being freed */
395         if (old_mem->mem_type == TTM_PL_VRAM &&
396             (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
397                 struct dma_fence *wipe_fence = NULL;
398
399                 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
400                                        NULL, &wipe_fence);
401                 if (r) {
402                         goto error;
403                 } else if (wipe_fence) {
404                         dma_fence_put(fence);
405                         fence = wipe_fence;
406                 }
407         }
408
409         /* Always block for VM page tables before committing the new location */
410         if (bo->type == ttm_bo_type_kernel)
411                 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
412         else
413                 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
414         dma_fence_put(fence);
415         return r;
416
417 error:
418         if (fence)
419                 dma_fence_wait(fence, false);
420         dma_fence_put(fence);
421         return r;
422 }
423
424 /*
425  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
426  *
427  * Called by amdgpu_bo_move()
428  */
429 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
430                                struct ttm_resource *mem)
431 {
432         uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
433         struct amdgpu_res_cursor cursor;
434
435         if (mem->mem_type == TTM_PL_SYSTEM ||
436             mem->mem_type == TTM_PL_TT)
437                 return true;
438         if (mem->mem_type != TTM_PL_VRAM)
439                 return false;
440
441         amdgpu_res_first(mem, 0, mem_size, &cursor);
442
443         /* ttm_resource_ioremap only supports contiguous memory */
444         if (cursor.size != mem_size)
445                 return false;
446
447         return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
448 }
449
450 /*
451  * amdgpu_bo_move - Move a buffer object to a new memory location
452  *
453  * Called by ttm_bo_handle_move_mem()
454  */
455 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
456                           struct ttm_operation_ctx *ctx,
457                           struct ttm_resource *new_mem,
458                           struct ttm_place *hop)
459 {
460         struct amdgpu_device *adev;
461         struct amdgpu_bo *abo;
462         struct ttm_resource *old_mem = bo->resource;
463         int r;
464
465         if (new_mem->mem_type == TTM_PL_TT ||
466             new_mem->mem_type == AMDGPU_PL_PREEMPT) {
467                 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
468                 if (r)
469                         return r;
470         }
471
472         /* Can't move a pinned BO */
473         abo = ttm_to_amdgpu_bo(bo);
474         if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
475                 return -EINVAL;
476
477         adev = amdgpu_ttm_adev(bo->bdev);
478
479         if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
480                 ttm_bo_move_null(bo, new_mem);
481                 goto out;
482         }
483         if (old_mem->mem_type == TTM_PL_SYSTEM &&
484             (new_mem->mem_type == TTM_PL_TT ||
485              new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
486                 ttm_bo_move_null(bo, new_mem);
487                 goto out;
488         }
489         if ((old_mem->mem_type == TTM_PL_TT ||
490              old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
491             new_mem->mem_type == TTM_PL_SYSTEM) {
492                 r = ttm_bo_wait_ctx(bo, ctx);
493                 if (r)
494                         return r;
495
496                 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
497                 ttm_resource_free(bo, &bo->resource);
498                 ttm_bo_assign_mem(bo, new_mem);
499                 goto out;
500         }
501
502         if (old_mem->mem_type == AMDGPU_PL_GDS ||
503             old_mem->mem_type == AMDGPU_PL_GWS ||
504             old_mem->mem_type == AMDGPU_PL_OA ||
505             new_mem->mem_type == AMDGPU_PL_GDS ||
506             new_mem->mem_type == AMDGPU_PL_GWS ||
507             new_mem->mem_type == AMDGPU_PL_OA) {
508                 /* Nothing to save here */
509                 ttm_bo_move_null(bo, new_mem);
510                 goto out;
511         }
512
513         if (bo->type == ttm_bo_type_device &&
514             new_mem->mem_type == TTM_PL_VRAM &&
515             old_mem->mem_type != TTM_PL_VRAM) {
516                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
517                  * accesses the BO after it's moved.
518                  */
519                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
520         }
521
522         if (adev->mman.buffer_funcs_enabled) {
523                 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
524                       new_mem->mem_type == TTM_PL_VRAM) ||
525                      (old_mem->mem_type == TTM_PL_VRAM &&
526                       new_mem->mem_type == TTM_PL_SYSTEM))) {
527                         hop->fpfn = 0;
528                         hop->lpfn = 0;
529                         hop->mem_type = TTM_PL_TT;
530                         hop->flags = TTM_PL_FLAG_TEMPORARY;
531                         return -EMULTIHOP;
532                 }
533
534                 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
535         } else {
536                 r = -ENODEV;
537         }
538
539         if (r) {
540                 /* Check that all memory is CPU accessible */
541                 if (!amdgpu_mem_visible(adev, old_mem) ||
542                     !amdgpu_mem_visible(adev, new_mem)) {
543                         pr_err("Move buffer fallback to memcpy unavailable\n");
544                         return r;
545                 }
546
547                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
548                 if (r)
549                         return r;
550         }
551
552 out:
553         /* update statistics */
554         atomic64_add(bo->base.size, &adev->num_bytes_moved);
555         amdgpu_bo_move_notify(bo, evict, new_mem);
556         return 0;
557 }
558
559 /*
560  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
561  *
562  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
563  */
564 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
565                                      struct ttm_resource *mem)
566 {
567         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
568         size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
569
570         switch (mem->mem_type) {
571         case TTM_PL_SYSTEM:
572                 /* system memory */
573                 return 0;
574         case TTM_PL_TT:
575         case AMDGPU_PL_PREEMPT:
576                 break;
577         case TTM_PL_VRAM:
578                 mem->bus.offset = mem->start << PAGE_SHIFT;
579                 /* check if it's visible */
580                 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
581                         return -EINVAL;
582
583                 if (adev->mman.aper_base_kaddr &&
584                     mem->placement & TTM_PL_FLAG_CONTIGUOUS)
585                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
586                                         mem->bus.offset;
587
588                 mem->bus.offset += adev->gmc.aper_base;
589                 mem->bus.is_iomem = true;
590                 break;
591         default:
592                 return -EINVAL;
593         }
594         return 0;
595 }
596
597 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
598                                            unsigned long page_offset)
599 {
600         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
601         struct amdgpu_res_cursor cursor;
602
603         amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
604                          &cursor);
605         return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
606 }
607
608 /**
609  * amdgpu_ttm_domain_start - Returns GPU start address
610  * @adev: amdgpu device object
611  * @type: type of the memory
612  *
613  * Returns:
614  * GPU start address of a memory domain
615  */
616
617 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
618 {
619         switch (type) {
620         case TTM_PL_TT:
621                 return adev->gmc.gart_start;
622         case TTM_PL_VRAM:
623                 return adev->gmc.vram_start;
624         }
625
626         return 0;
627 }
628
629 /*
630  * TTM backend functions.
631  */
632 struct amdgpu_ttm_tt {
633         struct ttm_tt   ttm;
634         struct drm_gem_object   *gobj;
635         u64                     offset;
636         uint64_t                userptr;
637         struct task_struct      *usertask;
638         uint32_t                userflags;
639         bool                    bound;
640 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
641         struct hmm_range        *range;
642 #endif
643 };
644
645 #ifdef CONFIG_DRM_AMDGPU_USERPTR
646 /*
647  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
648  * memory and start HMM tracking CPU page table update
649  *
650  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
651  * once afterwards to stop HMM tracking
652  */
653 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
654 {
655         struct ttm_tt *ttm = bo->tbo.ttm;
656         struct amdgpu_ttm_tt *gtt = (void *)ttm;
657         unsigned long start = gtt->userptr;
658         struct vm_area_struct *vma;
659         struct mm_struct *mm;
660         bool readonly;
661         int r = 0;
662
663         mm = bo->notifier.mm;
664         if (unlikely(!mm)) {
665                 DRM_DEBUG_DRIVER("BO is not registered?\n");
666                 return -EFAULT;
667         }
668
669         /* Another get_user_pages is running at the same time?? */
670         if (WARN_ON(gtt->range))
671                 return -EFAULT;
672
673         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
674                 return -ESRCH;
675
676         mmap_read_lock(mm);
677         vma = vma_lookup(mm, start);
678         if (unlikely(!vma)) {
679                 r = -EFAULT;
680                 goto out_unlock;
681         }
682         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
683                 vma->vm_file)) {
684                 r = -EPERM;
685                 goto out_unlock;
686         }
687
688         readonly = amdgpu_ttm_tt_is_readonly(ttm);
689         r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
690                                        ttm->num_pages, &gtt->range, readonly,
691                                        true, NULL);
692 out_unlock:
693         mmap_read_unlock(mm);
694         if (r)
695                 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
696
697         mmput(mm);
698
699         return r;
700 }
701
702 /*
703  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
704  * Check if the pages backing this ttm range have been invalidated
705  *
706  * Returns: true if pages are still valid
707  */
708 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
709 {
710         struct amdgpu_ttm_tt *gtt = (void *)ttm;
711         bool r = false;
712
713         if (!gtt || !gtt->userptr)
714                 return false;
715
716         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
717                 gtt->userptr, ttm->num_pages);
718
719         WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
720                 "No user pages to check\n");
721
722         if (gtt->range) {
723                 /*
724                  * FIXME: Must always hold notifier_lock for this, and must
725                  * not ignore the return code.
726                  */
727                 r = amdgpu_hmm_range_get_pages_done(gtt->range);
728                 gtt->range = NULL;
729         }
730
731         return !r;
732 }
733 #endif
734
735 /*
736  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
737  *
738  * Called by amdgpu_cs_list_validate(). This creates the page list
739  * that backs user memory and will ultimately be mapped into the device
740  * address space.
741  */
742 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
743 {
744         unsigned long i;
745
746         for (i = 0; i < ttm->num_pages; ++i)
747                 ttm->pages[i] = pages ? pages[i] : NULL;
748 }
749
750 /*
751  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
752  *
753  * Called by amdgpu_ttm_backend_bind()
754  **/
755 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
756                                      struct ttm_tt *ttm)
757 {
758         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
759         struct amdgpu_ttm_tt *gtt = (void *)ttm;
760         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
761         enum dma_data_direction direction = write ?
762                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
763         int r;
764
765         /* Allocate an SG array and squash pages into it */
766         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
767                                       (u64)ttm->num_pages << PAGE_SHIFT,
768                                       GFP_KERNEL);
769         if (r)
770                 goto release_sg;
771
772         /* Map SG to device */
773         r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
774         if (r)
775                 goto release_sg;
776
777         /* convert SG to linear array of pages and dma addresses */
778         drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
779                                        ttm->num_pages);
780
781         return 0;
782
783 release_sg:
784         kfree(ttm->sg);
785         ttm->sg = NULL;
786         return r;
787 }
788
789 /*
790  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
791  */
792 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
793                                         struct ttm_tt *ttm)
794 {
795         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
796         struct amdgpu_ttm_tt *gtt = (void *)ttm;
797         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
798         enum dma_data_direction direction = write ?
799                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
800
801         /* double check that we don't free the table twice */
802         if (!ttm->sg || !ttm->sg->sgl)
803                 return;
804
805         /* unmap the pages mapped to the device */
806         dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
807         sg_free_table(ttm->sg);
808
809 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
810         if (gtt->range) {
811                 unsigned long i;
812
813                 for (i = 0; i < ttm->num_pages; i++) {
814                         if (ttm->pages[i] !=
815                             hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
816                                 break;
817                 }
818
819                 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
820         }
821 #endif
822 }
823
824 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
825                                 struct ttm_buffer_object *tbo,
826                                 uint64_t flags)
827 {
828         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
829         struct ttm_tt *ttm = tbo->ttm;
830         struct amdgpu_ttm_tt *gtt = (void *)ttm;
831         int r;
832
833         if (amdgpu_bo_encrypted(abo))
834                 flags |= AMDGPU_PTE_TMZ;
835
836         if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
837                 uint64_t page_idx = 1;
838
839                 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
840                                 gtt->ttm.dma_address, flags);
841                 if (r)
842                         goto gart_bind_fail;
843
844                 /* The memory type of the first page defaults to UC. Now
845                  * modify the memory type to NC from the second page of
846                  * the BO onward.
847                  */
848                 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
849                 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
850
851                 r = amdgpu_gart_bind(adev,
852                                 gtt->offset + (page_idx << PAGE_SHIFT),
853                                 ttm->num_pages - page_idx,
854                                 &(gtt->ttm.dma_address[page_idx]), flags);
855         } else {
856                 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
857                                      gtt->ttm.dma_address, flags);
858         }
859
860 gart_bind_fail:
861         if (r)
862                 DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
863                           ttm->num_pages, gtt->offset);
864
865         return r;
866 }
867
868 /*
869  * amdgpu_ttm_backend_bind - Bind GTT memory
870  *
871  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
872  * This handles binding GTT memory to the device address space.
873  */
874 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
875                                    struct ttm_tt *ttm,
876                                    struct ttm_resource *bo_mem)
877 {
878         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
879         struct amdgpu_ttm_tt *gtt = (void*)ttm;
880         uint64_t flags;
881         int r = 0;
882
883         if (!bo_mem)
884                 return -EINVAL;
885
886         if (gtt->bound)
887                 return 0;
888
889         if (gtt->userptr) {
890                 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
891                 if (r) {
892                         DRM_ERROR("failed to pin userptr\n");
893                         return r;
894                 }
895         } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
896                 if (!ttm->sg) {
897                         struct dma_buf_attachment *attach;
898                         struct sg_table *sgt;
899
900                         attach = gtt->gobj->import_attach;
901                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
902                         if (IS_ERR(sgt))
903                                 return PTR_ERR(sgt);
904
905                         ttm->sg = sgt;
906                 }
907
908                 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
909                                                ttm->num_pages);
910         }
911
912         if (!ttm->num_pages) {
913                 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
914                      ttm->num_pages, bo_mem, ttm);
915         }
916
917         if (bo_mem->mem_type != TTM_PL_TT ||
918             !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
919                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
920                 return 0;
921         }
922
923         /* compute PTE flags relevant to this BO memory */
924         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
925
926         /* bind pages into GART page tables */
927         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
928         r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
929                 gtt->ttm.dma_address, flags);
930
931         if (r)
932                 DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
933                           ttm->num_pages, gtt->offset);
934         gtt->bound = true;
935         return r;
936 }
937
938 /*
939  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
940  * through AGP or GART aperture.
941  *
942  * If bo is accessible through AGP aperture, then use AGP aperture
943  * to access bo; otherwise allocate logical space in GART aperture
944  * and map bo to GART aperture.
945  */
946 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
947 {
948         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
949         struct ttm_operation_ctx ctx = { false, false };
950         struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
951         struct ttm_placement placement;
952         struct ttm_place placements;
953         struct ttm_resource *tmp;
954         uint64_t addr, flags;
955         int r;
956
957         if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
958                 return 0;
959
960         addr = amdgpu_gmc_agp_addr(bo);
961         if (addr != AMDGPU_BO_INVALID_OFFSET) {
962                 bo->resource->start = addr >> PAGE_SHIFT;
963                 return 0;
964         }
965
966         /* allocate GART space */
967         placement.num_placement = 1;
968         placement.placement = &placements;
969         placement.num_busy_placement = 1;
970         placement.busy_placement = &placements;
971         placements.fpfn = 0;
972         placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
973         placements.mem_type = TTM_PL_TT;
974         placements.flags = bo->resource->placement;
975
976         r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
977         if (unlikely(r))
978                 return r;
979
980         /* compute PTE flags for this buffer object */
981         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
982
983         /* Bind pages */
984         gtt->offset = (u64)tmp->start << PAGE_SHIFT;
985         r = amdgpu_ttm_gart_bind(adev, bo, flags);
986         if (unlikely(r)) {
987                 ttm_resource_free(bo, &tmp);
988                 return r;
989         }
990
991         amdgpu_gart_invalidate_tlb(adev);
992         ttm_resource_free(bo, &bo->resource);
993         ttm_bo_assign_mem(bo, tmp);
994
995         return 0;
996 }
997
998 /*
999  * amdgpu_ttm_recover_gart - Rebind GTT pages
1000  *
1001  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1002  * rebind GTT pages during a GPU reset.
1003  */
1004 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1005 {
1006         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1007         uint64_t flags;
1008         int r;
1009
1010         if (!tbo->ttm)
1011                 return 0;
1012
1013         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1014         r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1015
1016         return r;
1017 }
1018
1019 /*
1020  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1021  *
1022  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1023  * ttm_tt_destroy().
1024  */
1025 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1026                                       struct ttm_tt *ttm)
1027 {
1028         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1029         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1030         int r;
1031
1032         /* if the pages have userptr pinning then clear that first */
1033         if (gtt->userptr) {
1034                 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1035         } else if (ttm->sg && gtt->gobj->import_attach) {
1036                 struct dma_buf_attachment *attach;
1037
1038                 attach = gtt->gobj->import_attach;
1039                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1040                 ttm->sg = NULL;
1041         }
1042
1043         if (!gtt->bound)
1044                 return;
1045
1046         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1047                 return;
1048
1049         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1050         r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1051         if (r)
1052                 DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1053                           gtt->ttm.num_pages, gtt->offset);
1054         gtt->bound = false;
1055 }
1056
1057 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1058                                        struct ttm_tt *ttm)
1059 {
1060         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1061
1062         if (gtt->usertask)
1063                 put_task_struct(gtt->usertask);
1064
1065         ttm_tt_fini(&gtt->ttm);
1066         kfree(gtt);
1067 }
1068
1069 /**
1070  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1071  *
1072  * @bo: The buffer object to create a GTT ttm_tt object around
1073  * @page_flags: Page flags to be added to the ttm_tt object
1074  *
1075  * Called by ttm_tt_create().
1076  */
1077 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1078                                            uint32_t page_flags)
1079 {
1080         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1081         struct amdgpu_ttm_tt *gtt;
1082         enum ttm_caching caching;
1083
1084         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1085         if (gtt == NULL) {
1086                 return NULL;
1087         }
1088         gtt->gobj = &bo->base;
1089
1090         if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1091                 caching = ttm_write_combined;
1092         else
1093                 caching = ttm_cached;
1094
1095         /* allocate space for the uninitialized page entries */
1096         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1097                 kfree(gtt);
1098                 return NULL;
1099         }
1100         return &gtt->ttm;
1101 }
1102
1103 /*
1104  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1105  *
1106  * Map the pages of a ttm_tt object to an address space visible
1107  * to the underlying device.
1108  */
1109 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1110                                   struct ttm_tt *ttm,
1111                                   struct ttm_operation_ctx *ctx)
1112 {
1113         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1114         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1115         pgoff_t i;
1116         int ret;
1117
1118         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1119         if (gtt->userptr) {
1120                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1121                 if (!ttm->sg)
1122                         return -ENOMEM;
1123                 return 0;
1124         }
1125
1126         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1127                 return 0;
1128
1129         ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1130         if (ret)
1131                 return ret;
1132
1133         for (i = 0; i < ttm->num_pages; ++i)
1134                 ttm->pages[i]->mapping = bdev->dev_mapping;
1135
1136         return 0;
1137 }
1138
1139 /*
1140  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1141  *
1142  * Unmaps pages of a ttm_tt object from the device address space and
1143  * unpopulates the page array backing it.
1144  */
1145 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1146                                      struct ttm_tt *ttm)
1147 {
1148         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1149         struct amdgpu_device *adev;
1150         pgoff_t i;
1151
1152         amdgpu_ttm_backend_unbind(bdev, ttm);
1153
1154         if (gtt->userptr) {
1155                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1156                 kfree(ttm->sg);
1157                 ttm->sg = NULL;
1158                 return;
1159         }
1160
1161         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1162                 return;
1163
1164         for (i = 0; i < ttm->num_pages; ++i)
1165                 ttm->pages[i]->mapping = NULL;
1166
1167         adev = amdgpu_ttm_adev(bdev);
1168         return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1169 }
1170
1171 /**
1172  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1173  * task
1174  *
1175  * @bo: The ttm_buffer_object to bind this userptr to
1176  * @addr:  The address in the current tasks VM space to use
1177  * @flags: Requirements of userptr object.
1178  *
1179  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1180  * to current task
1181  */
1182 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1183                               uint64_t addr, uint32_t flags)
1184 {
1185         struct amdgpu_ttm_tt *gtt;
1186
1187         if (!bo->ttm) {
1188                 /* TODO: We want a separate TTM object type for userptrs */
1189                 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1190                 if (bo->ttm == NULL)
1191                         return -ENOMEM;
1192         }
1193
1194         /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1195         bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1196
1197         gtt = (void *)bo->ttm;
1198         gtt->userptr = addr;
1199         gtt->userflags = flags;
1200
1201         if (gtt->usertask)
1202                 put_task_struct(gtt->usertask);
1203         gtt->usertask = current->group_leader;
1204         get_task_struct(gtt->usertask);
1205
1206         return 0;
1207 }
1208
1209 /*
1210  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1211  */
1212 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1213 {
1214         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1215
1216         if (gtt == NULL)
1217                 return NULL;
1218
1219         if (gtt->usertask == NULL)
1220                 return NULL;
1221
1222         return gtt->usertask->mm;
1223 }
1224
1225 /*
1226  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1227  * address range for the current task.
1228  *
1229  */
1230 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1231                                   unsigned long end, unsigned long *userptr)
1232 {
1233         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1234         unsigned long size;
1235
1236         if (gtt == NULL || !gtt->userptr)
1237                 return false;
1238
1239         /* Return false if no part of the ttm_tt object lies within
1240          * the range
1241          */
1242         size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1243         if (gtt->userptr > end || gtt->userptr + size <= start)
1244                 return false;
1245
1246         if (userptr)
1247                 *userptr = gtt->userptr;
1248         return true;
1249 }
1250
1251 /*
1252  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1253  */
1254 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1255 {
1256         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1257
1258         if (gtt == NULL || !gtt->userptr)
1259                 return false;
1260
1261         return true;
1262 }
1263
1264 /*
1265  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1266  */
1267 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1268 {
1269         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1270
1271         if (gtt == NULL)
1272                 return false;
1273
1274         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1275 }
1276
1277 /**
1278  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1279  *
1280  * @ttm: The ttm_tt object to compute the flags for
1281  * @mem: The memory registry backing this ttm_tt object
1282  *
1283  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1284  */
1285 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1286 {
1287         uint64_t flags = 0;
1288
1289         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1290                 flags |= AMDGPU_PTE_VALID;
1291
1292         if (mem && (mem->mem_type == TTM_PL_TT ||
1293                     mem->mem_type == AMDGPU_PL_PREEMPT)) {
1294                 flags |= AMDGPU_PTE_SYSTEM;
1295
1296                 if (ttm->caching == ttm_cached)
1297                         flags |= AMDGPU_PTE_SNOOPED;
1298         }
1299
1300         if (mem && mem->mem_type == TTM_PL_VRAM &&
1301                         mem->bus.caching == ttm_cached)
1302                 flags |= AMDGPU_PTE_SNOOPED;
1303
1304         return flags;
1305 }
1306
1307 /**
1308  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1309  *
1310  * @adev: amdgpu_device pointer
1311  * @ttm: The ttm_tt object to compute the flags for
1312  * @mem: The memory registry backing this ttm_tt object
1313  *
1314  * Figure out the flags to use for a VM PTE (Page Table Entry).
1315  */
1316 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1317                                  struct ttm_resource *mem)
1318 {
1319         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1320
1321         flags |= adev->gart.gart_pte_flags;
1322         flags |= AMDGPU_PTE_READABLE;
1323
1324         if (!amdgpu_ttm_tt_is_readonly(ttm))
1325                 flags |= AMDGPU_PTE_WRITEABLE;
1326
1327         return flags;
1328 }
1329
1330 /*
1331  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1332  * object.
1333  *
1334  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1335  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1336  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1337  * used to clean out a memory space.
1338  */
1339 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1340                                             const struct ttm_place *place)
1341 {
1342         unsigned long num_pages = bo->resource->num_pages;
1343         struct dma_resv_iter resv_cursor;
1344         struct amdgpu_res_cursor cursor;
1345         struct dma_fence *f;
1346
1347         /* Swapout? */
1348         if (bo->resource->mem_type == TTM_PL_SYSTEM)
1349                 return true;
1350
1351         if (bo->type == ttm_bo_type_kernel &&
1352             !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1353                 return false;
1354
1355         /* If bo is a KFD BO, check if the bo belongs to the current process.
1356          * If true, then return false as any KFD process needs all its BOs to
1357          * be resident to run successfully
1358          */
1359         dma_resv_for_each_fence(&resv_cursor, bo->base.resv, true, f) {
1360                 if (amdkfd_fence_check_mm(f, current->mm))
1361                         return false;
1362         }
1363
1364         switch (bo->resource->mem_type) {
1365         case AMDGPU_PL_PREEMPT:
1366                 /* Preemptible BOs don't own system resources managed by the
1367                  * driver (pages, VRAM, GART space). They point to resources
1368                  * owned by someone else (e.g. pageable memory in user mode
1369                  * or a DMABuf). They are used in a preemptible context so we
1370                  * can guarantee no deadlocks and good QoS in case of MMU
1371                  * notifiers or DMABuf move notifiers from the resource owner.
1372                  */
1373                 return false;
1374         case TTM_PL_TT:
1375                 if (amdgpu_bo_is_amdgpu_bo(bo) &&
1376                     amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1377                         return false;
1378                 return true;
1379
1380         case TTM_PL_VRAM:
1381                 /* Check each drm MM node individually */
1382                 amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1383                                  &cursor);
1384                 while (cursor.remaining) {
1385                         if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1386                             && !(place->lpfn &&
1387                                  place->lpfn <= PFN_DOWN(cursor.start)))
1388                                 return true;
1389
1390                         amdgpu_res_next(&cursor, cursor.size);
1391                 }
1392                 return false;
1393
1394         default:
1395                 break;
1396         }
1397
1398         return ttm_bo_eviction_valuable(bo, place);
1399 }
1400
1401 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1402                                       void *buf, size_t size, bool write)
1403 {
1404         while (size) {
1405                 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1406                 uint64_t bytes = 4 - (pos & 0x3);
1407                 uint32_t shift = (pos & 0x3) * 8;
1408                 uint32_t mask = 0xffffffff << shift;
1409                 uint32_t value = 0;
1410
1411                 if (size < bytes) {
1412                         mask &= 0xffffffff >> (bytes - size) * 8;
1413                         bytes = size;
1414                 }
1415
1416                 if (mask != 0xffffffff) {
1417                         amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1418                         if (write) {
1419                                 value &= ~mask;
1420                                 value |= (*(uint32_t *)buf << shift) & mask;
1421                                 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1422                         } else {
1423                                 value = (value & mask) >> shift;
1424                                 memcpy(buf, &value, bytes);
1425                         }
1426                 } else {
1427                         amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1428                 }
1429
1430                 pos += bytes;
1431                 buf += bytes;
1432                 size -= bytes;
1433         }
1434 }
1435
1436 /**
1437  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1438  *
1439  * @bo:  The buffer object to read/write
1440  * @offset:  Offset into buffer object
1441  * @buf:  Secondary buffer to write/read from
1442  * @len: Length in bytes of access
1443  * @write:  true if writing
1444  *
1445  * This is used to access VRAM that backs a buffer object via MMIO
1446  * access for debugging purposes.
1447  */
1448 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1449                                     unsigned long offset, void *buf, int len,
1450                                     int write)
1451 {
1452         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1453         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1454         struct amdgpu_res_cursor cursor;
1455         int ret = 0;
1456
1457         if (bo->resource->mem_type != TTM_PL_VRAM)
1458                 return -EIO;
1459
1460         amdgpu_res_first(bo->resource, offset, len, &cursor);
1461         while (cursor.remaining) {
1462                 size_t count, size = cursor.size;
1463                 loff_t pos = cursor.start;
1464
1465                 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1466                 size -= count;
1467                 if (size) {
1468                         /* using MM to access rest vram and handle un-aligned address */
1469                         pos += count;
1470                         buf += count;
1471                         amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1472                 }
1473
1474                 ret += cursor.size;
1475                 buf += cursor.size;
1476                 amdgpu_res_next(&cursor, cursor.size);
1477         }
1478
1479         return ret;
1480 }
1481
1482 static void
1483 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1484 {
1485         amdgpu_bo_move_notify(bo, false, NULL);
1486 }
1487
1488 static struct ttm_device_funcs amdgpu_bo_driver = {
1489         .ttm_tt_create = &amdgpu_ttm_tt_create,
1490         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1491         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1492         .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1493         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1494         .evict_flags = &amdgpu_evict_flags,
1495         .move = &amdgpu_bo_move,
1496         .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1497         .release_notify = &amdgpu_bo_release_notify,
1498         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1499         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1500         .access_memory = &amdgpu_ttm_access_memory,
1501 };
1502
1503 /*
1504  * Firmware Reservation functions
1505  */
1506 /**
1507  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1508  *
1509  * @adev: amdgpu_device pointer
1510  *
1511  * free fw reserved vram if it has been reserved.
1512  */
1513 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1514 {
1515         amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1516                 NULL, &adev->mman.fw_vram_usage_va);
1517 }
1518
1519 /**
1520  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1521  *
1522  * @adev: amdgpu_device pointer
1523  *
1524  * create bo vram reservation from fw.
1525  */
1526 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1527 {
1528         uint64_t vram_size = adev->gmc.visible_vram_size;
1529
1530         adev->mman.fw_vram_usage_va = NULL;
1531         adev->mman.fw_vram_usage_reserved_bo = NULL;
1532
1533         if (adev->mman.fw_vram_usage_size == 0 ||
1534             adev->mman.fw_vram_usage_size > vram_size)
1535                 return 0;
1536
1537         return amdgpu_bo_create_kernel_at(adev,
1538                                           adev->mman.fw_vram_usage_start_offset,
1539                                           adev->mman.fw_vram_usage_size,
1540                                           AMDGPU_GEM_DOMAIN_VRAM,
1541                                           &adev->mman.fw_vram_usage_reserved_bo,
1542                                           &adev->mman.fw_vram_usage_va);
1543 }
1544
1545 /*
1546  * Memoy training reservation functions
1547  */
1548
1549 /**
1550  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1551  *
1552  * @adev: amdgpu_device pointer
1553  *
1554  * free memory training reserved vram if it has been reserved.
1555  */
1556 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1557 {
1558         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1559
1560         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1561         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1562         ctx->c2p_bo = NULL;
1563
1564         return 0;
1565 }
1566
1567 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1568 {
1569         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1570
1571         memset(ctx, 0, sizeof(*ctx));
1572
1573         ctx->c2p_train_data_offset =
1574                 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1575         ctx->p2c_train_data_offset =
1576                 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1577         ctx->train_data_size =
1578                 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1579
1580         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1581                         ctx->train_data_size,
1582                         ctx->p2c_train_data_offset,
1583                         ctx->c2p_train_data_offset);
1584 }
1585
1586 /*
1587  * reserve TMR memory at the top of VRAM which holds
1588  * IP Discovery data and is protected by PSP.
1589  */
1590 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1591 {
1592         int ret;
1593         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1594         bool mem_train_support = false;
1595
1596         if (!amdgpu_sriov_vf(adev)) {
1597                 if (amdgpu_atomfirmware_mem_training_supported(adev))
1598                         mem_train_support = true;
1599                 else
1600                         DRM_DEBUG("memory training does not support!\n");
1601         }
1602
1603         /*
1604          * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1605          * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1606          *
1607          * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1608          * discovery data and G6 memory training data respectively
1609          */
1610         adev->mman.discovery_tmr_size =
1611                 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1612         if (!adev->mman.discovery_tmr_size)
1613                 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1614
1615         if (mem_train_support) {
1616                 /* reserve vram for mem train according to TMR location */
1617                 amdgpu_ttm_training_data_block_init(adev);
1618                 ret = amdgpu_bo_create_kernel_at(adev,
1619                                          ctx->c2p_train_data_offset,
1620                                          ctx->train_data_size,
1621                                          AMDGPU_GEM_DOMAIN_VRAM,
1622                                          &ctx->c2p_bo,
1623                                          NULL);
1624                 if (ret) {
1625                         DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1626                         amdgpu_ttm_training_reserve_vram_fini(adev);
1627                         return ret;
1628                 }
1629                 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1630         }
1631
1632         ret = amdgpu_bo_create_kernel_at(adev,
1633                                 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1634                                 adev->mman.discovery_tmr_size,
1635                                 AMDGPU_GEM_DOMAIN_VRAM,
1636                                 &adev->mman.discovery_memory,
1637                                 NULL);
1638         if (ret) {
1639                 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1640                 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1641                 return ret;
1642         }
1643
1644         return 0;
1645 }
1646
1647 /*
1648  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1649  * gtt/vram related fields.
1650  *
1651  * This initializes all of the memory space pools that the TTM layer
1652  * will need such as the GTT space (system memory mapped to the device),
1653  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1654  * can be mapped per VMID.
1655  */
1656 int amdgpu_ttm_init(struct amdgpu_device *adev)
1657 {
1658         uint64_t gtt_size;
1659         int r;
1660         u64 vis_vram_limit;
1661
1662         mutex_init(&adev->mman.gtt_window_lock);
1663
1664         /* No others user of address space so set it to 0 */
1665         r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1666                                adev_to_drm(adev)->anon_inode->i_mapping,
1667                                adev_to_drm(adev)->vma_offset_manager,
1668                                adev->need_swiotlb,
1669                                dma_addressing_limited(adev->dev));
1670         if (r) {
1671                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1672                 return r;
1673         }
1674         adev->mman.initialized = true;
1675
1676         /* Initialize VRAM pool with all of VRAM divided into pages */
1677         r = amdgpu_vram_mgr_init(adev);
1678         if (r) {
1679                 DRM_ERROR("Failed initializing VRAM heap.\n");
1680                 return r;
1681         }
1682
1683         /* Reduce size of CPU-visible VRAM if requested */
1684         vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1685         if (amdgpu_vis_vram_limit > 0 &&
1686             vis_vram_limit <= adev->gmc.visible_vram_size)
1687                 adev->gmc.visible_vram_size = vis_vram_limit;
1688
1689         /* Change the size here instead of the init above so only lpfn is affected */
1690         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1691 #ifdef CONFIG_64BIT
1692 #ifdef CONFIG_X86
1693         if (adev->gmc.xgmi.connected_to_cpu)
1694                 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1695                                 adev->gmc.visible_vram_size);
1696
1697         else
1698 #endif
1699                 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1700                                 adev->gmc.visible_vram_size);
1701 #endif
1702
1703         /*
1704          *The reserved vram for firmware must be pinned to the specified
1705          *place on the VRAM, so reserve it early.
1706          */
1707         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1708         if (r) {
1709                 return r;
1710         }
1711
1712         /*
1713          * only NAVI10 and onwards ASIC support for IP discovery.
1714          * If IP discovery enabled, a block of memory should be
1715          * reserved for IP discovey.
1716          */
1717         if (adev->mman.discovery_bin) {
1718                 r = amdgpu_ttm_reserve_tmr(adev);
1719                 if (r)
1720                         return r;
1721         }
1722
1723         /* allocate memory as required for VGA
1724          * This is used for VGA emulation and pre-OS scanout buffers to
1725          * avoid display artifacts while transitioning between pre-OS
1726          * and driver.  */
1727         r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1728                                        AMDGPU_GEM_DOMAIN_VRAM,
1729                                        &adev->mman.stolen_vga_memory,
1730                                        NULL);
1731         if (r)
1732                 return r;
1733         r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1734                                        adev->mman.stolen_extended_size,
1735                                        AMDGPU_GEM_DOMAIN_VRAM,
1736                                        &adev->mman.stolen_extended_memory,
1737                                        NULL);
1738         if (r)
1739                 return r;
1740         r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1741                                        adev->mman.stolen_reserved_size,
1742                                        AMDGPU_GEM_DOMAIN_VRAM,
1743                                        &adev->mman.stolen_reserved_memory,
1744                                        NULL);
1745         if (r)
1746                 return r;
1747
1748         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1749                  (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1750
1751         /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1752          * or whatever the user passed on module init */
1753         if (amdgpu_gtt_size == -1) {
1754                 struct sysinfo si;
1755
1756                 si_meminfo(&si);
1757                 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1758                                adev->gmc.mc_vram_size),
1759                                ((uint64_t)si.totalram * si.mem_unit * 3/4));
1760         }
1761         else
1762                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1763
1764         /* Initialize GTT memory pool */
1765         r = amdgpu_gtt_mgr_init(adev, gtt_size);
1766         if (r) {
1767                 DRM_ERROR("Failed initializing GTT heap.\n");
1768                 return r;
1769         }
1770         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1771                  (unsigned)(gtt_size / (1024 * 1024)));
1772
1773         /* Initialize preemptible memory pool */
1774         r = amdgpu_preempt_mgr_init(adev);
1775         if (r) {
1776                 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1777                 return r;
1778         }
1779
1780         /* Initialize various on-chip memory pools */
1781         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1782         if (r) {
1783                 DRM_ERROR("Failed initializing GDS heap.\n");
1784                 return r;
1785         }
1786
1787         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1788         if (r) {
1789                 DRM_ERROR("Failed initializing gws heap.\n");
1790                 return r;
1791         }
1792
1793         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1794         if (r) {
1795                 DRM_ERROR("Failed initializing oa heap.\n");
1796                 return r;
1797         }
1798
1799         return 0;
1800 }
1801
1802 /*
1803  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1804  */
1805 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1806 {
1807         int idx;
1808         if (!adev->mman.initialized)
1809                 return;
1810
1811         amdgpu_ttm_training_reserve_vram_fini(adev);
1812         /* return the stolen vga memory back to VRAM */
1813         amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1814         amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1815         /* return the IP Discovery TMR memory back to VRAM */
1816         amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1817         if (adev->mman.stolen_reserved_size)
1818                 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1819                                       NULL, NULL);
1820         amdgpu_ttm_fw_reserve_vram_fini(adev);
1821
1822         if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1823
1824                 if (adev->mman.aper_base_kaddr)
1825                         iounmap(adev->mman.aper_base_kaddr);
1826                 adev->mman.aper_base_kaddr = NULL;
1827
1828                 drm_dev_exit(idx);
1829         }
1830
1831         amdgpu_vram_mgr_fini(adev);
1832         amdgpu_gtt_mgr_fini(adev);
1833         amdgpu_preempt_mgr_fini(adev);
1834         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1835         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1836         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1837         ttm_device_fini(&adev->mman.bdev);
1838         adev->mman.initialized = false;
1839         DRM_INFO("amdgpu: ttm finalized\n");
1840 }
1841
1842 /**
1843  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1844  *
1845  * @adev: amdgpu_device pointer
1846  * @enable: true when we can use buffer functions.
1847  *
1848  * Enable/disable use of buffer functions during suspend/resume. This should
1849  * only be called at bootup or when userspace isn't running.
1850  */
1851 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1852 {
1853         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1854         uint64_t size;
1855         int r;
1856
1857         if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1858             adev->mman.buffer_funcs_enabled == enable)
1859                 return;
1860
1861         if (enable) {
1862                 struct amdgpu_ring *ring;
1863                 struct drm_gpu_scheduler *sched;
1864
1865                 ring = adev->mman.buffer_funcs_ring;
1866                 sched = &ring->sched;
1867                 r = drm_sched_entity_init(&adev->mman.entity,
1868                                           DRM_SCHED_PRIORITY_KERNEL, &sched,
1869                                           1, NULL);
1870                 if (r) {
1871                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1872                                   r);
1873                         return;
1874                 }
1875         } else {
1876                 drm_sched_entity_destroy(&adev->mman.entity);
1877                 dma_fence_put(man->move);
1878                 man->move = NULL;
1879         }
1880
1881         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1882         if (enable)
1883                 size = adev->gmc.real_vram_size;
1884         else
1885                 size = adev->gmc.visible_vram_size;
1886         man->size = size;
1887         adev->mman.buffer_funcs_enabled = enable;
1888 }
1889
1890 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1891                        uint64_t dst_offset, uint32_t byte_count,
1892                        struct dma_resv *resv,
1893                        struct dma_fence **fence, bool direct_submit,
1894                        bool vm_needs_flush, bool tmz)
1895 {
1896         enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1897                 AMDGPU_IB_POOL_DELAYED;
1898         struct amdgpu_device *adev = ring->adev;
1899         struct amdgpu_job *job;
1900
1901         uint32_t max_bytes;
1902         unsigned num_loops, num_dw;
1903         unsigned i;
1904         int r;
1905
1906         if (direct_submit && !ring->sched.ready) {
1907                 DRM_ERROR("Trying to move memory with ring turned off.\n");
1908                 return -EINVAL;
1909         }
1910
1911         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1912         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1913         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1914
1915         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1916         if (r)
1917                 return r;
1918
1919         if (vm_needs_flush) {
1920                 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1921                                         adev->gmc.pdb0_bo : adev->gart.bo);
1922                 job->vm_needs_flush = true;
1923         }
1924         if (resv) {
1925                 r = amdgpu_sync_resv(adev, &job->sync, resv,
1926                                      AMDGPU_SYNC_ALWAYS,
1927                                      AMDGPU_FENCE_OWNER_UNDEFINED);
1928                 if (r) {
1929                         DRM_ERROR("sync failed (%d).\n", r);
1930                         goto error_free;
1931                 }
1932         }
1933
1934         for (i = 0; i < num_loops; i++) {
1935                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1936
1937                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1938                                         dst_offset, cur_size_in_bytes, tmz);
1939
1940                 src_offset += cur_size_in_bytes;
1941                 dst_offset += cur_size_in_bytes;
1942                 byte_count -= cur_size_in_bytes;
1943         }
1944
1945         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1946         WARN_ON(job->ibs[0].length_dw > num_dw);
1947         if (direct_submit)
1948                 r = amdgpu_job_submit_direct(job, ring, fence);
1949         else
1950                 r = amdgpu_job_submit(job, &adev->mman.entity,
1951                                       AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1952         if (r)
1953                 goto error_free;
1954
1955         return r;
1956
1957 error_free:
1958         amdgpu_job_free(job);
1959         DRM_ERROR("Error scheduling IBs (%d)\n", r);
1960         return r;
1961 }
1962
1963 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
1964                        uint32_t src_data,
1965                        struct dma_resv *resv,
1966                        struct dma_fence **fence)
1967 {
1968         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
1969         uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
1970         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
1971
1972         struct amdgpu_res_cursor cursor;
1973         unsigned int num_loops, num_dw;
1974         uint64_t num_bytes;
1975
1976         struct amdgpu_job *job;
1977         int r;
1978
1979         if (!adev->mman.buffer_funcs_enabled) {
1980                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
1981                 return -EINVAL;
1982         }
1983
1984         if (bo->tbo.resource->mem_type == AMDGPU_PL_PREEMPT) {
1985                 DRM_ERROR("Trying to clear preemptible memory.\n");
1986                 return -EINVAL;
1987         }
1988
1989         if (bo->tbo.resource->mem_type == TTM_PL_TT) {
1990                 r = amdgpu_ttm_alloc_gart(&bo->tbo);
1991                 if (r)
1992                         return r;
1993         }
1994
1995         num_bytes = bo->tbo.resource->num_pages << PAGE_SHIFT;
1996         num_loops = 0;
1997
1998         amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
1999         while (cursor.remaining) {
2000                 num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
2001                 amdgpu_res_next(&cursor, cursor.size);
2002         }
2003         num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2004
2005         /* for IB padding */
2006         num_dw += 64;
2007
2008         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2009                                      &job);
2010         if (r)
2011                 return r;
2012
2013         if (resv) {
2014                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2015                                      AMDGPU_SYNC_ALWAYS,
2016                                      AMDGPU_FENCE_OWNER_UNDEFINED);
2017                 if (r) {
2018                         DRM_ERROR("sync failed (%d).\n", r);
2019                         goto error_free;
2020                 }
2021         }
2022
2023         amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
2024         while (cursor.remaining) {
2025                 uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
2026                 uint64_t dst_addr = cursor.start;
2027
2028                 dst_addr += amdgpu_ttm_domain_start(adev,
2029                                                     bo->tbo.resource->mem_type);
2030                 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2031                                         cur_size);
2032
2033                 amdgpu_res_next(&cursor, cur_size);
2034         }
2035
2036         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2037         WARN_ON(job->ibs[0].length_dw > num_dw);
2038         r = amdgpu_job_submit(job, &adev->mman.entity,
2039                               AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2040         if (r)
2041                 goto error_free;
2042
2043         return 0;
2044
2045 error_free:
2046         amdgpu_job_free(job);
2047         return r;
2048 }
2049
2050 /**
2051  * amdgpu_ttm_evict_resources - evict memory buffers
2052  * @adev: amdgpu device object
2053  * @mem_type: evicted BO's memory type
2054  *
2055  * Evicts all @mem_type buffers on the lru list of the memory type.
2056  *
2057  * Returns:
2058  * 0 for success or a negative error code on failure.
2059  */
2060 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2061 {
2062         struct ttm_resource_manager *man;
2063
2064         switch (mem_type) {
2065         case TTM_PL_VRAM:
2066         case TTM_PL_TT:
2067         case AMDGPU_PL_GWS:
2068         case AMDGPU_PL_GDS:
2069         case AMDGPU_PL_OA:
2070                 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2071                 break;
2072         default:
2073                 DRM_ERROR("Trying to evict invalid memory type\n");
2074                 return -EINVAL;
2075         }
2076
2077         return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2078 }
2079
2080 #if defined(CONFIG_DEBUG_FS)
2081
2082 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2083 {
2084         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2085         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2086                                                             TTM_PL_VRAM);
2087         struct drm_printer p = drm_seq_file_printer(m);
2088
2089         ttm_resource_manager_debug(man, &p);
2090         return 0;
2091 }
2092
2093 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2094 {
2095         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2096
2097         return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2098 }
2099
2100 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2101 {
2102         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2103         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2104                                                             TTM_PL_TT);
2105         struct drm_printer p = drm_seq_file_printer(m);
2106
2107         ttm_resource_manager_debug(man, &p);
2108         return 0;
2109 }
2110
2111 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2112 {
2113         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2114         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2115                                                             AMDGPU_PL_GDS);
2116         struct drm_printer p = drm_seq_file_printer(m);
2117
2118         ttm_resource_manager_debug(man, &p);
2119         return 0;
2120 }
2121
2122 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2123 {
2124         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2125         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2126                                                             AMDGPU_PL_GWS);
2127         struct drm_printer p = drm_seq_file_printer(m);
2128
2129         ttm_resource_manager_debug(man, &p);
2130         return 0;
2131 }
2132
2133 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2134 {
2135         struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2136         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2137                                                             AMDGPU_PL_OA);
2138         struct drm_printer p = drm_seq_file_printer(m);
2139
2140         ttm_resource_manager_debug(man, &p);
2141         return 0;
2142 }
2143
2144 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2145 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2146 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2147 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2148 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2149 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2150
2151 /*
2152  * amdgpu_ttm_vram_read - Linear read access to VRAM
2153  *
2154  * Accesses VRAM via MMIO for debugging purposes.
2155  */
2156 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2157                                     size_t size, loff_t *pos)
2158 {
2159         struct amdgpu_device *adev = file_inode(f)->i_private;
2160         ssize_t result = 0;
2161
2162         if (size & 0x3 || *pos & 0x3)
2163                 return -EINVAL;
2164
2165         if (*pos >= adev->gmc.mc_vram_size)
2166                 return -ENXIO;
2167
2168         size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2169         while (size) {
2170                 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2171                 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2172
2173                 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2174                 if (copy_to_user(buf, value, bytes))
2175                         return -EFAULT;
2176
2177                 result += bytes;
2178                 buf += bytes;
2179                 *pos += bytes;
2180                 size -= bytes;
2181         }
2182
2183         return result;
2184 }
2185
2186 /*
2187  * amdgpu_ttm_vram_write - Linear write access to VRAM
2188  *
2189  * Accesses VRAM via MMIO for debugging purposes.
2190  */
2191 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2192                                     size_t size, loff_t *pos)
2193 {
2194         struct amdgpu_device *adev = file_inode(f)->i_private;
2195         ssize_t result = 0;
2196         int r;
2197
2198         if (size & 0x3 || *pos & 0x3)
2199                 return -EINVAL;
2200
2201         if (*pos >= adev->gmc.mc_vram_size)
2202                 return -ENXIO;
2203
2204         while (size) {
2205                 uint32_t value;
2206
2207                 if (*pos >= adev->gmc.mc_vram_size)
2208                         return result;
2209
2210                 r = get_user(value, (uint32_t *)buf);
2211                 if (r)
2212                         return r;
2213
2214                 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2215
2216                 result += 4;
2217                 buf += 4;
2218                 *pos += 4;
2219                 size -= 4;
2220         }
2221
2222         return result;
2223 }
2224
2225 static const struct file_operations amdgpu_ttm_vram_fops = {
2226         .owner = THIS_MODULE,
2227         .read = amdgpu_ttm_vram_read,
2228         .write = amdgpu_ttm_vram_write,
2229         .llseek = default_llseek,
2230 };
2231
2232 /*
2233  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2234  *
2235  * This function is used to read memory that has been mapped to the
2236  * GPU and the known addresses are not physical addresses but instead
2237  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2238  */
2239 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2240                                  size_t size, loff_t *pos)
2241 {
2242         struct amdgpu_device *adev = file_inode(f)->i_private;
2243         struct iommu_domain *dom;
2244         ssize_t result = 0;
2245         int r;
2246
2247         /* retrieve the IOMMU domain if any for this device */
2248         dom = iommu_get_domain_for_dev(adev->dev);
2249
2250         while (size) {
2251                 phys_addr_t addr = *pos & PAGE_MASK;
2252                 loff_t off = *pos & ~PAGE_MASK;
2253                 size_t bytes = PAGE_SIZE - off;
2254                 unsigned long pfn;
2255                 struct page *p;
2256                 void *ptr;
2257
2258                 bytes = bytes < size ? bytes : size;
2259
2260                 /* Translate the bus address to a physical address.  If
2261                  * the domain is NULL it means there is no IOMMU active
2262                  * and the address translation is the identity
2263                  */
2264                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2265
2266                 pfn = addr >> PAGE_SHIFT;
2267                 if (!pfn_valid(pfn))
2268                         return -EPERM;
2269
2270                 p = pfn_to_page(pfn);
2271                 if (p->mapping != adev->mman.bdev.dev_mapping)
2272                         return -EPERM;
2273
2274                 ptr = kmap(p);
2275                 r = copy_to_user(buf, ptr + off, bytes);
2276                 kunmap(p);
2277                 if (r)
2278                         return -EFAULT;
2279
2280                 size -= bytes;
2281                 *pos += bytes;
2282                 result += bytes;
2283         }
2284
2285         return result;
2286 }
2287
2288 /*
2289  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2290  *
2291  * This function is used to write memory that has been mapped to the
2292  * GPU and the known addresses are not physical addresses but instead
2293  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2294  */
2295 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2296                                  size_t size, loff_t *pos)
2297 {
2298         struct amdgpu_device *adev = file_inode(f)->i_private;
2299         struct iommu_domain *dom;
2300         ssize_t result = 0;
2301         int r;
2302
2303         dom = iommu_get_domain_for_dev(adev->dev);
2304
2305         while (size) {
2306                 phys_addr_t addr = *pos & PAGE_MASK;
2307                 loff_t off = *pos & ~PAGE_MASK;
2308                 size_t bytes = PAGE_SIZE - off;
2309                 unsigned long pfn;
2310                 struct page *p;
2311                 void *ptr;
2312
2313                 bytes = bytes < size ? bytes : size;
2314
2315                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2316
2317                 pfn = addr >> PAGE_SHIFT;
2318                 if (!pfn_valid(pfn))
2319                         return -EPERM;
2320
2321                 p = pfn_to_page(pfn);
2322                 if (p->mapping != adev->mman.bdev.dev_mapping)
2323                         return -EPERM;
2324
2325                 ptr = kmap(p);
2326                 r = copy_from_user(ptr + off, buf, bytes);
2327                 kunmap(p);
2328                 if (r)
2329                         return -EFAULT;
2330
2331                 size -= bytes;
2332                 *pos += bytes;
2333                 result += bytes;
2334         }
2335
2336         return result;
2337 }
2338
2339 static const struct file_operations amdgpu_ttm_iomem_fops = {
2340         .owner = THIS_MODULE,
2341         .read = amdgpu_iomem_read,
2342         .write = amdgpu_iomem_write,
2343         .llseek = default_llseek
2344 };
2345
2346 #endif
2347
2348 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2349 {
2350 #if defined(CONFIG_DEBUG_FS)
2351         struct drm_minor *minor = adev_to_drm(adev)->primary;
2352         struct dentry *root = minor->debugfs_root;
2353
2354         debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2355                                  &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2356         debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2357                             &amdgpu_ttm_iomem_fops);
2358         debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2359                             &amdgpu_mm_vram_table_fops);
2360         debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2361                             &amdgpu_mm_tt_table_fops);
2362         debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2363                             &amdgpu_mm_gds_table_fops);
2364         debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2365                             &amdgpu_mm_gws_table_fops);
2366         debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2367                             &amdgpu_mm_oa_table_fops);
2368         debugfs_create_file("ttm_page_pool", 0444, root, adev,
2369                             &amdgpu_ttm_page_pool_fops);
2370 #endif
2371 }
This page took 0.169585 seconds and 4 git commands to generate.