1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4 * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
7 #include <linux/atomic.h>
8 #include <linux/auxiliary_bus.h>
9 #include <linux/bitfield.h>
10 #include <linux/bits.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/gpio/driver.h>
15 #include <linux/i2c.h>
16 #include <linux/iopoll.h>
17 #include <linux/module.h>
18 #include <linux/of_graph.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/pwm.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
24 #include <asm/unaligned.h>
26 #include <drm/display/drm_dp_aux_bus.h>
27 #include <drm/display/drm_dp_helper.h>
28 #include <drm/drm_atomic.h>
29 #include <drm/drm_atomic_helper.h>
30 #include <drm/drm_bridge.h>
31 #include <drm/drm_bridge_connector.h>
32 #include <drm/drm_mipi_dsi.h>
33 #include <drm/drm_of.h>
34 #include <drm/drm_panel.h>
35 #include <drm/drm_print.h>
36 #include <drm/drm_probe_helper.h>
38 #define SN_DEVICE_REV_REG 0x08
39 #define SN_DPPLL_SRC_REG 0x0A
40 #define DPPLL_CLK_SRC_DSICLK BIT(0)
41 #define REFCLK_FREQ_MASK GENMASK(3, 1)
42 #define REFCLK_FREQ(x) ((x) << 1)
43 #define DPPLL_SRC_DP_PLL_LOCK BIT(7)
44 #define SN_PLL_ENABLE_REG 0x0D
45 #define SN_DSI_LANES_REG 0x10
46 #define CHA_DSI_LANES_MASK GENMASK(4, 3)
47 #define CHA_DSI_LANES(x) ((x) << 3)
48 #define SN_DSIA_CLK_FREQ_REG 0x12
49 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG 0x20
50 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG 0x24
51 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG 0x2C
52 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG 0x2D
53 #define CHA_HSYNC_POLARITY BIT(7)
54 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG 0x30
55 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG 0x31
56 #define CHA_VSYNC_POLARITY BIT(7)
57 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG 0x34
58 #define SN_CHA_VERTICAL_BACK_PORCH_REG 0x36
59 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG 0x38
60 #define SN_CHA_VERTICAL_FRONT_PORCH_REG 0x3A
61 #define SN_LN_ASSIGN_REG 0x59
62 #define LN_ASSIGN_WIDTH 2
63 #define SN_ENH_FRAME_REG 0x5A
64 #define VSTREAM_ENABLE BIT(3)
65 #define LN_POLRS_OFFSET 4
66 #define LN_POLRS_MASK 0xf0
67 #define SN_DATA_FORMAT_REG 0x5B
68 #define BPP_18_RGB BIT(0)
69 #define SN_HPD_DISABLE_REG 0x5C
70 #define HPD_DISABLE BIT(0)
71 #define SN_GPIO_IO_REG 0x5E
72 #define SN_GPIO_INPUT_SHIFT 4
73 #define SN_GPIO_OUTPUT_SHIFT 0
74 #define SN_GPIO_CTRL_REG 0x5F
75 #define SN_GPIO_MUX_INPUT 0
76 #define SN_GPIO_MUX_OUTPUT 1
77 #define SN_GPIO_MUX_SPECIAL 2
78 #define SN_GPIO_MUX_MASK 0x3
79 #define SN_AUX_WDATA_REG(x) (0x64 + (x))
80 #define SN_AUX_ADDR_19_16_REG 0x74
81 #define SN_AUX_ADDR_15_8_REG 0x75
82 #define SN_AUX_ADDR_7_0_REG 0x76
83 #define SN_AUX_ADDR_MASK GENMASK(19, 0)
84 #define SN_AUX_LENGTH_REG 0x77
85 #define SN_AUX_CMD_REG 0x78
86 #define AUX_CMD_SEND BIT(0)
87 #define AUX_CMD_REQ(x) ((x) << 4)
88 #define SN_AUX_RDATA_REG(x) (0x79 + (x))
89 #define SN_SSC_CONFIG_REG 0x93
90 #define DP_NUM_LANES_MASK GENMASK(5, 4)
91 #define DP_NUM_LANES(x) ((x) << 4)
92 #define SN_DATARATE_CONFIG_REG 0x94
93 #define DP_DATARATE_MASK GENMASK(7, 5)
94 #define DP_DATARATE(x) ((x) << 5)
95 #define SN_ML_TX_MODE_REG 0x96
96 #define ML_TX_MAIN_LINK_OFF 0
97 #define ML_TX_NORMAL_MODE BIT(0)
98 #define SN_PWM_PRE_DIV_REG 0xA0
99 #define SN_BACKLIGHT_SCALE_REG 0xA1
100 #define BACKLIGHT_SCALE_MAX 0xFFFF
101 #define SN_BACKLIGHT_REG 0xA3
102 #define SN_PWM_EN_INV_REG 0xA5
103 #define SN_PWM_INV_MASK BIT(0)
104 #define SN_PWM_EN_MASK BIT(1)
105 #define SN_AUX_CMD_STATUS_REG 0xF4
106 #define AUX_IRQ_STATUS_AUX_RPLY_TOUT BIT(3)
107 #define AUX_IRQ_STATUS_AUX_SHORT BIT(5)
108 #define AUX_IRQ_STATUS_NAT_I2C_FAIL BIT(6)
110 #define MIN_DSI_CLK_FREQ_MHZ 40
112 /* fudge factor required to account for 8b/10b encoding */
113 #define DP_CLK_FUDGE_NUM 10
114 #define DP_CLK_FUDGE_DEN 8
116 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
117 #define SN_AUX_MAX_PAYLOAD_BYTES 16
119 #define SN_REGULATOR_SUPPLY_NUM 4
121 #define SN_MAX_DP_LANES 4
122 #define SN_NUM_GPIOS 4
123 #define SN_GPIO_PHYSICAL_OFFSET 1
125 #define SN_LINK_TRAINING_TRIES 10
127 #define SN_PWM_GPIO_IDX 3 /* 4th GPIO */
130 * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
131 * @bridge_aux: AUX-bus sub device for MIPI-to-eDP bridge functionality.
132 * @gpio_aux: AUX-bus sub device for GPIO controller functionality.
133 * @aux_aux: AUX-bus sub device for eDP AUX channel functionality.
134 * @pwm_aux: AUX-bus sub device for PWM controller functionality.
136 * @dev: Pointer to the top level (i2c) device.
137 * @regmap: Regmap for accessing i2c.
138 * @aux: Our aux channel.
139 * @bridge: Our bridge.
140 * @connector: Our connector.
141 * @host_node: Remote DSI node.
142 * @dsi: Our MIPI DSI source.
143 * @refclk: Our reference clock.
144 * @next_bridge: The bridge on the eDP side.
145 * @enable_gpio: The GPIO we toggle to enable the bridge.
146 * @supplies: Data for bulk enabling/disabling our regulators.
147 * @dp_lanes: Count of dp_lanes we're using.
148 * @ln_assign: Value to program to the LN_ASSIGN register.
149 * @ln_polrs: Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
150 * @comms_enabled: If true then communication over the aux channel is enabled.
151 * @comms_mutex: Protects modification of comms_enabled.
153 * @gchip: If we expose our GPIOs, this is used.
154 * @gchip_output: A cache of whether we've set GPIOs to output. This
155 * serves double-duty of keeping track of the direction and
156 * also keeping track of whether we've incremented the
157 * pm_runtime reference count for this pin, which we do
158 * whenever a pin is configured as an output. This is a
159 * bitmap so we can do atomic ops on it without an extra
160 * lock so concurrent users of our 4 GPIOs don't stomp on
161 * each other's read-modify-write.
163 * @pchip: pwm_chip if the PWM is exposed.
164 * @pwm_enabled: Used to track if the PWM signal is currently enabled.
165 * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
166 * @pwm_refclk_freq: Cache for the reference clock input to the PWM.
168 struct ti_sn65dsi86 {
169 struct auxiliary_device bridge_aux;
170 struct auxiliary_device gpio_aux;
171 struct auxiliary_device aux_aux;
172 struct auxiliary_device pwm_aux;
175 struct regmap *regmap;
176 struct drm_dp_aux aux;
177 struct drm_bridge bridge;
178 struct drm_connector *connector;
179 struct device_node *host_node;
180 struct mipi_dsi_device *dsi;
182 struct drm_bridge *next_bridge;
183 struct gpio_desc *enable_gpio;
184 struct regulator_bulk_data supplies[SN_REGULATOR_SUPPLY_NUM];
189 struct mutex comms_mutex;
191 #if defined(CONFIG_OF_GPIO)
192 struct gpio_chip gchip;
193 DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
195 #if defined(CONFIG_PWM)
196 struct pwm_chip pchip;
198 atomic_t pwm_pin_busy;
200 unsigned int pwm_refclk_freq;
203 static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
204 { .range_min = 0, .range_max = 0xFF },
207 static const struct regmap_access_table ti_sn_bridge_volatile_table = {
208 .yes_ranges = ti_sn65dsi86_volatile_ranges,
209 .n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
212 static const struct regmap_config ti_sn65dsi86_regmap_config = {
215 .volatile_table = &ti_sn_bridge_volatile_table,
216 .cache_type = REGCACHE_NONE,
217 .max_register = 0xFF,
220 static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
221 unsigned int reg, u16 *val)
226 ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
230 *val = buf[0] | (buf[1] << 8);
235 static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
236 unsigned int reg, u16 val)
238 u8 buf[2] = { val & 0xff, val >> 8 };
240 regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
243 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata)
245 u32 bit_rate_khz, clk_freq_khz;
246 struct drm_display_mode *mode =
247 &pdata->bridge.encoder->crtc->state->adjusted_mode;
249 bit_rate_khz = mode->clock *
250 mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
251 clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
256 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
257 static const u32 ti_sn_bridge_refclk_lut[] = {
265 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
266 static const u32 ti_sn_bridge_dsiclk_lut[] = {
274 static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
278 const u32 *refclk_lut;
279 size_t refclk_lut_size;
282 refclk_rate = clk_get_rate(pdata->refclk);
283 refclk_lut = ti_sn_bridge_refclk_lut;
284 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
285 clk_prepare_enable(pdata->refclk);
287 refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
288 refclk_lut = ti_sn_bridge_dsiclk_lut;
289 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
292 /* for i equals to refclk_lut_size means default frequency */
293 for (i = 0; i < refclk_lut_size; i++)
294 if (refclk_lut[i] == refclk_rate)
297 regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
301 * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
302 * regardless of its actual sourcing.
304 pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
307 static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
309 mutex_lock(&pdata->comms_mutex);
311 /* configure bridge ref_clk */
312 ti_sn_bridge_set_refclk_freq(pdata);
315 * HPD on this bridge chip is a bit useless. This is an eDP bridge
316 * so the HPD is an internal signal that's only there to signal that
317 * the panel is done powering up. ...but the bridge chip debounces
318 * this signal by between 100 ms and 400 ms (depending on process,
319 * voltage, and temperate--I measured it at about 200 ms). One
320 * particular panel asserted HPD 84 ms after it was powered on meaning
321 * that we saw HPD 284 ms after power on. ...but the same panel said
322 * that instead of looking at HPD you could just hardcode a delay of
323 * 200 ms. We'll assume that the panel driver will have the hardcoded
324 * delay in its prepare and always disable HPD.
326 * If HPD somehow makes sense on some future panel we'll have to
327 * change this to be conditional on someone specifying that HPD should
330 regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
333 pdata->comms_enabled = true;
335 mutex_unlock(&pdata->comms_mutex);
338 static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
340 mutex_lock(&pdata->comms_mutex);
342 pdata->comms_enabled = false;
343 clk_disable_unprepare(pdata->refclk);
345 mutex_unlock(&pdata->comms_mutex);
348 static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
350 struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
353 ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
355 DRM_ERROR("failed to enable supplies %d\n", ret);
359 /* td2: min 100 us after regulators before enabling the GPIO */
360 usleep_range(100, 110);
362 gpiod_set_value(pdata->enable_gpio, 1);
365 * If we have a reference clock we can enable communication w/ the
366 * panel (including the aux channel) w/out any need for an input clock
367 * so we can do it in resume which lets us read the EDID before
368 * pre_enable(). Without a reference clock we need the MIPI reference
369 * clock so reading early doesn't work.
372 ti_sn65dsi86_enable_comms(pdata);
377 static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
379 struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
383 ti_sn65dsi86_disable_comms(pdata);
385 gpiod_set_value(pdata->enable_gpio, 0);
387 ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
389 DRM_ERROR("failed to disable supplies %d\n", ret);
394 static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
395 SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
396 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
397 pm_runtime_force_resume)
400 static int status_show(struct seq_file *s, void *data)
402 struct ti_sn65dsi86 *pdata = s->private;
403 unsigned int reg, val;
405 seq_puts(s, "STATUS REGISTERS:\n");
407 pm_runtime_get_sync(pdata->dev);
409 /* IRQ Status Registers, see Table 31 in datasheet */
410 for (reg = 0xf0; reg <= 0xf8; reg++) {
411 regmap_read(pdata->regmap, reg, &val);
412 seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
415 pm_runtime_put_autosuspend(pdata->dev);
420 DEFINE_SHOW_ATTRIBUTE(status);
422 static void ti_sn65dsi86_debugfs_remove(void *data)
424 debugfs_remove_recursive(data);
427 static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata)
429 struct device *dev = pdata->dev;
430 struct dentry *debugfs;
433 debugfs = debugfs_create_dir(dev_name(dev), NULL);
436 * We might get an error back if debugfs wasn't enabled in the kernel
437 * so let's just silently return upon failure.
439 if (IS_ERR_OR_NULL(debugfs))
442 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs);
446 debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
449 /* -----------------------------------------------------------------------------
450 * Auxiliary Devices (*not* AUX)
453 static void ti_sn65dsi86_uninit_aux(void *data)
455 auxiliary_device_uninit(data);
458 static void ti_sn65dsi86_delete_aux(void *data)
460 auxiliary_device_delete(data);
464 * AUX bus docs say that a non-NULL release is mandatory, but it makes no
465 * sense for the model used here where all of the aux devices are allocated
466 * in the single shared structure. We'll use this noop as a workaround.
468 static void ti_sn65dsi86_noop(struct device *dev) {}
470 static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
471 struct auxiliary_device *aux,
474 struct device *dev = pdata->dev;
478 aux->dev.parent = dev;
479 aux->dev.release = ti_sn65dsi86_noop;
480 device_set_of_node_from_dev(&aux->dev, dev);
481 ret = auxiliary_device_init(aux);
484 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux);
488 ret = auxiliary_device_add(aux);
491 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux);
496 /* -----------------------------------------------------------------------------
500 static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
502 return container_of(aux, struct ti_sn65dsi86, aux);
505 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
506 struct drm_dp_aux_msg *msg)
508 struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
509 u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
510 u32 request_val = AUX_CMD_REQ(msg->request);
511 u8 *buf = msg->buffer;
512 unsigned int len = msg->size;
515 u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
517 if (len > SN_AUX_MAX_PAYLOAD_BYTES)
520 pm_runtime_get_sync(pdata->dev);
521 mutex_lock(&pdata->comms_mutex);
524 * If someone tries to do a DDC over AUX transaction before pre_enable()
525 * on a device without a dedicated reference clock then we just can't
526 * do it. Fail right away. This prevents non-refclk users from reading
527 * the EDID before enabling the panel but such is life.
529 if (!pdata->comms_enabled) {
535 case DP_AUX_NATIVE_WRITE:
536 case DP_AUX_I2C_WRITE:
537 case DP_AUX_NATIVE_READ:
538 case DP_AUX_I2C_READ:
539 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
540 /* Assume it's good */
548 BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
549 put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
551 regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
552 ARRAY_SIZE(addr_len));
554 if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
555 regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
557 /* Clear old status bits before start so we don't get confused */
558 regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
559 AUX_IRQ_STATUS_NAT_I2C_FAIL |
560 AUX_IRQ_STATUS_AUX_RPLY_TOUT |
561 AUX_IRQ_STATUS_AUX_SHORT);
563 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
565 /* Zero delay loop because i2c transactions are slow already */
566 ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
567 !(val & AUX_CMD_SEND), 0, 50 * 1000);
571 ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
575 if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
577 * The hardware tried the message seven times per the DP spec
578 * but it hit a timeout. We ignore defers here because they're
579 * handled in hardware.
585 if (val & AUX_IRQ_STATUS_AUX_SHORT) {
586 ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len);
589 } else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
591 case DP_AUX_I2C_WRITE:
592 case DP_AUX_I2C_READ:
593 msg->reply |= DP_AUX_I2C_REPLY_NACK;
595 case DP_AUX_NATIVE_READ:
596 case DP_AUX_NATIVE_WRITE:
597 msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
604 if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
605 ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
608 mutex_unlock(&pdata->comms_mutex);
609 pm_runtime_mark_last_busy(pdata->dev);
610 pm_runtime_put_autosuspend(pdata->dev);
617 static int ti_sn_aux_probe(struct auxiliary_device *adev,
618 const struct auxiliary_device_id *id)
620 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
623 pdata->aux.name = "ti-sn65dsi86-aux";
624 pdata->aux.dev = &adev->dev;
625 pdata->aux.transfer = ti_sn_aux_transfer;
626 drm_dp_aux_init(&pdata->aux);
628 ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
633 * The eDP to MIPI bridge parts don't work until the AUX channel is
634 * setup so we don't add it in the main driver probe, we add it now.
636 return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
639 static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
640 { .name = "ti_sn65dsi86.aux", },
644 static struct auxiliary_driver ti_sn_aux_driver = {
646 .probe = ti_sn_aux_probe,
647 .id_table = ti_sn_aux_id_table,
650 /*------------------------------------------------------------------------------
654 static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
656 return container_of(bridge, struct ti_sn65dsi86, bridge);
659 static int ti_sn_attach_host(struct ti_sn65dsi86 *pdata)
662 struct mipi_dsi_host *host;
663 struct mipi_dsi_device *dsi;
664 struct device *dev = pdata->dev;
665 const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
670 host = of_find_mipi_dsi_host_by_node(pdata->host_node);
672 return -EPROBE_DEFER;
674 dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
678 /* TODO: setting to 4 MIPI lanes always for now */
680 dsi->format = MIPI_DSI_FMT_RGB888;
681 dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
683 /* check if continuous dsi clock is required or not */
684 pm_runtime_get_sync(dev);
685 regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
686 pm_runtime_put_autosuspend(dev);
687 if (!(val & DPPLL_CLK_SRC_DSICLK))
688 dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
692 return devm_mipi_dsi_attach(dev, dsi);
695 static int ti_sn_bridge_attach(struct drm_bridge *bridge,
696 enum drm_bridge_attach_flags flags)
698 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
701 if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
702 DRM_ERROR("Fix bridge driver to make connector optional!");
706 pdata->aux.drm_dev = bridge->dev;
707 ret = drm_dp_aux_register(&pdata->aux);
709 drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
713 /* We never want the next bridge to *also* create a connector: */
714 flags |= DRM_BRIDGE_ATTACH_NO_CONNECTOR;
716 /* Attach the next bridge */
717 ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge,
718 &pdata->bridge, flags);
720 goto err_initted_aux;
722 pdata->connector = drm_bridge_connector_init(pdata->bridge.dev,
723 pdata->bridge.encoder);
724 if (IS_ERR(pdata->connector)) {
725 ret = PTR_ERR(pdata->connector);
726 goto err_initted_aux;
729 drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder);
734 drm_dp_aux_unregister(&pdata->aux);
738 static void ti_sn_bridge_detach(struct drm_bridge *bridge)
740 drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
743 static enum drm_mode_status
744 ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
745 const struct drm_display_info *info,
746 const struct drm_display_mode *mode)
748 /* maximum supported resolution is 4K at 60 fps */
749 if (mode->clock > 594000)
750 return MODE_CLOCK_HIGH;
755 static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge,
756 struct drm_bridge_state *old_bridge_state)
758 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
760 /* disable video stream */
761 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
764 static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata)
766 unsigned int bit_rate_mhz, clk_freq_mhz;
768 struct drm_display_mode *mode =
769 &pdata->bridge.encoder->crtc->state->adjusted_mode;
771 /* set DSIA clk frequency */
772 bit_rate_mhz = (mode->clock / 1000) *
773 mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
774 clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
776 /* for each increment in val, frequency increases by 5MHz */
777 val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
778 (((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
779 regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
782 static unsigned int ti_sn_bridge_get_bpp(struct ti_sn65dsi86 *pdata)
784 if (pdata->connector->display_info.bpc <= 6)
791 * LUT index corresponds to register value and
792 * LUT values corresponds to dp data rate supported
793 * by the bridge in Mbps unit.
795 static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
796 0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
799 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata)
801 unsigned int bit_rate_khz, dp_rate_mhz;
803 struct drm_display_mode *mode =
804 &pdata->bridge.encoder->crtc->state->adjusted_mode;
806 /* Calculate minimum bit rate based on our pixel clock. */
807 bit_rate_khz = mode->clock * ti_sn_bridge_get_bpp(pdata);
809 /* Calculate minimum DP data rate, taking 80% as per DP spec */
810 dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
811 1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
813 for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
814 if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
820 static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
822 unsigned int valid_rates = 0;
823 unsigned int rate_per_200khz;
824 unsigned int rate_mhz;
829 ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
831 DRM_DEV_ERROR(pdata->dev,
832 "Can't read eDP rev (%d), assuming 1.1\n", ret);
833 dpcd_val = DP_EDP_11;
836 if (dpcd_val >= DP_EDP_14) {
837 /* eDP 1.4 devices must provide a custom table */
838 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
840 ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
841 sink_rates, sizeof(sink_rates));
843 if (ret != sizeof(sink_rates)) {
844 DRM_DEV_ERROR(pdata->dev,
845 "Can't read supported rate table (%d)\n", ret);
847 /* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
848 memset(sink_rates, 0, sizeof(sink_rates));
851 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
852 rate_per_200khz = le16_to_cpu(sink_rates[i]);
854 if (!rate_per_200khz)
857 rate_mhz = rate_per_200khz * 200 / 1000;
859 j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
861 if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
862 valid_rates |= BIT(j);
866 for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
867 if (valid_rates & BIT(i))
870 DRM_DEV_ERROR(pdata->dev,
871 "No matching eDP rates in table; falling back\n");
874 /* On older versions best we can do is use DP_MAX_LINK_RATE */
875 ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
877 DRM_DEV_ERROR(pdata->dev,
878 "Can't read max rate (%d); assuming 5.4 GHz\n",
880 dpcd_val = DP_LINK_BW_5_4;
885 DRM_DEV_ERROR(pdata->dev,
886 "Unexpected max rate (%#x); assuming 5.4 GHz\n",
890 valid_rates |= BIT(7);
893 valid_rates |= BIT(4);
895 case DP_LINK_BW_1_62:
896 valid_rates |= BIT(1);
903 static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata)
905 struct drm_display_mode *mode =
906 &pdata->bridge.encoder->crtc->state->adjusted_mode;
907 u8 hsync_polarity = 0, vsync_polarity = 0;
909 if (mode->flags & DRM_MODE_FLAG_PHSYNC)
910 hsync_polarity = CHA_HSYNC_POLARITY;
911 if (mode->flags & DRM_MODE_FLAG_PVSYNC)
912 vsync_polarity = CHA_VSYNC_POLARITY;
914 ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
916 ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
918 regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
919 (mode->hsync_end - mode->hsync_start) & 0xFF);
920 regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
921 (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
923 regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
924 (mode->vsync_end - mode->vsync_start) & 0xFF);
925 regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
926 (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
929 regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
930 (mode->htotal - mode->hsync_end) & 0xFF);
931 regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
932 (mode->vtotal - mode->vsync_end) & 0xFF);
934 regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
935 (mode->hsync_start - mode->hdisplay) & 0xFF);
936 regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
937 (mode->vsync_start - mode->vdisplay) & 0xFF);
939 usleep_range(10000, 10500); /* 10ms delay recommended by spec */
942 static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
947 ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
949 DRM_DEV_ERROR(pdata->dev,
950 "Can't read lane count (%d); assuming 4\n", ret);
954 return data & DP_LANE_COUNT_MASK;
957 static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
958 const char **last_err_str)
964 /* set dp clk frequency value */
965 regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
966 DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
969 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
971 ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
972 val & DPPLL_SRC_DP_PLL_LOCK, 1000,
975 *last_err_str = "DP_PLL_LOCK polling failed";
980 * We'll try to link train several times. As part of link training
981 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER. If
982 * the panel isn't ready quite it might respond NAK here which means
983 * we need to try again.
985 for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
986 /* Semi auto link training mode */
987 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
988 ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
989 val == ML_TX_MAIN_LINK_OFF ||
990 val == ML_TX_NORMAL_MODE, 1000,
993 *last_err_str = "Training complete polling failed";
994 } else if (val == ML_TX_MAIN_LINK_OFF) {
995 *last_err_str = "Link training failed, link is off";
1003 /* If we saw quite a few retries, add a note about it */
1004 if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
1005 DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
1008 /* Disable the PLL if we failed */
1010 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1015 static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge,
1016 struct drm_bridge_state *old_bridge_state)
1018 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1019 const char *last_err_str = "No supported DP rate";
1020 unsigned int valid_rates;
1026 max_dp_lanes = ti_sn_get_max_lanes(pdata);
1027 pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
1029 /* DSI_A lane config */
1030 val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
1031 regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
1032 CHA_DSI_LANES_MASK, val);
1034 regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
1035 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
1036 pdata->ln_polrs << LN_POLRS_OFFSET);
1038 /* set dsi clk frequency value */
1039 ti_sn_bridge_set_dsi_rate(pdata);
1042 * The SN65DSI86 only supports ASSR Display Authentication method and
1043 * this method is enabled by default. An eDP panel must support this
1044 * authentication method. We need to enable this method in the eDP panel
1045 * at DisplayPort address 0x0010A prior to link training.
1047 drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
1048 DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
1050 /* Set the DP output format (18 bpp or 24 bpp) */
1051 val = (ti_sn_bridge_get_bpp(pdata) == 18) ? BPP_18_RGB : 0;
1052 regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
1054 /* DP lane config */
1055 val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
1056 regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
1059 valid_rates = ti_sn_bridge_read_valid_rates(pdata);
1061 /* Train until we run out of rates */
1062 for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata);
1063 dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
1065 if (!(valid_rates & BIT(dp_rate_idx)))
1068 ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
1073 DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
1077 /* config video parameters */
1078 ti_sn_bridge_set_video_timings(pdata);
1080 /* enable video stream */
1081 regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
1085 static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge,
1086 struct drm_bridge_state *old_bridge_state)
1088 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1090 pm_runtime_get_sync(pdata->dev);
1093 ti_sn65dsi86_enable_comms(pdata);
1095 /* td7: min 100 us after enable before DSI data */
1096 usleep_range(100, 110);
1099 static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge,
1100 struct drm_bridge_state *old_bridge_state)
1102 struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1104 /* semi auto link training mode OFF */
1105 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
1106 /* Num lanes to 0 as per power sequencing in data sheet */
1107 regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
1108 /* disable DP PLL */
1109 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1112 ti_sn65dsi86_disable_comms(pdata);
1114 pm_runtime_put_sync(pdata->dev);
1117 static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
1118 .attach = ti_sn_bridge_attach,
1119 .detach = ti_sn_bridge_detach,
1120 .mode_valid = ti_sn_bridge_mode_valid,
1121 .atomic_pre_enable = ti_sn_bridge_atomic_pre_enable,
1122 .atomic_enable = ti_sn_bridge_atomic_enable,
1123 .atomic_disable = ti_sn_bridge_atomic_disable,
1124 .atomic_post_disable = ti_sn_bridge_atomic_post_disable,
1125 .atomic_reset = drm_atomic_helper_bridge_reset,
1126 .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1127 .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1130 static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1131 struct device_node *np)
1133 u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1134 u32 lane_polarities[SN_MAX_DP_LANES] = { };
1135 struct device_node *endpoint;
1142 * Read config from the device tree about lane remapping and lane
1143 * polarities. These are optional and we assume identity map and
1144 * normal polarity if nothing is specified. It's OK to specify just
1145 * data-lanes but not lane-polarities but not vice versa.
1147 * Error checking is light (we just make sure we don't crash or
1148 * buffer overrun) and we assume dts is well formed and specifying
1149 * mappings that the hardware supports.
1151 endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1152 dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES);
1154 of_property_read_u32_array(endpoint, "data-lanes",
1155 lane_assignments, dp_lanes);
1156 of_property_read_u32_array(endpoint, "lane-polarities",
1157 lane_polarities, dp_lanes);
1159 dp_lanes = SN_MAX_DP_LANES;
1161 of_node_put(endpoint);
1164 * Convert into register format. Loop over all lanes even if
1165 * data-lanes had fewer elements so that we nicely initialize
1166 * the LN_ASSIGN register.
1168 for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1169 ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1170 ln_polrs = ln_polrs << 1 | lane_polarities[i];
1173 /* Stash in our struct for when we power on */
1174 pdata->dp_lanes = dp_lanes;
1175 pdata->ln_assign = ln_assign;
1176 pdata->ln_polrs = ln_polrs;
1179 static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1181 struct device_node *np = pdata->dev->of_node;
1183 pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1185 if (!pdata->host_node) {
1186 DRM_ERROR("remote dsi host node not found\n");
1193 static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1194 const struct auxiliary_device_id *id)
1196 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1197 struct device_node *np = pdata->dev->of_node;
1200 pdata->next_bridge = devm_drm_of_get_bridge(pdata->dev, np, 1, 0);
1201 if (IS_ERR(pdata->next_bridge)) {
1202 DRM_ERROR("failed to create panel bridge\n");
1203 return PTR_ERR(pdata->next_bridge);
1206 ti_sn_bridge_parse_lanes(pdata, np);
1208 ret = ti_sn_bridge_parse_dsi_host(pdata);
1212 pdata->bridge.funcs = &ti_sn_bridge_funcs;
1213 pdata->bridge.of_node = np;
1215 drm_bridge_add(&pdata->bridge);
1217 ret = ti_sn_attach_host(pdata);
1219 dev_err_probe(pdata->dev, ret, "failed to attach dsi host\n");
1220 goto err_remove_bridge;
1226 drm_bridge_remove(&pdata->bridge);
1230 static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1232 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1237 drm_bridge_remove(&pdata->bridge);
1239 of_node_put(pdata->host_node);
1242 static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1243 { .name = "ti_sn65dsi86.bridge", },
1247 static struct auxiliary_driver ti_sn_bridge_driver = {
1249 .probe = ti_sn_bridge_probe,
1250 .remove = ti_sn_bridge_remove,
1251 .id_table = ti_sn_bridge_id_table,
1254 /* -----------------------------------------------------------------------------
1257 #if defined(CONFIG_PWM)
1258 static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
1260 return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
1263 static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
1265 atomic_set(&pdata->pwm_pin_busy, 0);
1268 static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
1270 return container_of(chip, struct ti_sn65dsi86, pchip);
1273 static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
1275 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1277 return ti_sn_pwm_pin_request(pdata);
1280 static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
1282 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1284 ti_sn_pwm_pin_release(pdata);
1289 * - The PWM signal is not driven when the chip is powered down, or in its
1290 * reset state and the driver does not implement the "suspend state"
1291 * described in the documentation. In order to save power, state->enabled is
1292 * interpreted as denoting if the signal is expected to be valid, and is used
1293 * to determine if the chip needs to be kept powered.
1294 * - Changing both period and duty_cycle is not done atomically, neither is the
1295 * multi-byte register updates, so the output might briefly be undefined
1298 static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1299 const struct pwm_state *state)
1301 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1302 unsigned int pwm_en_inv;
1303 unsigned int backlight;
1304 unsigned int pre_div;
1310 if (!pdata->pwm_enabled) {
1311 ret = pm_runtime_get_sync(pdata->dev);
1313 pm_runtime_put_sync(pdata->dev);
1318 if (state->enabled) {
1319 if (!pdata->pwm_enabled) {
1321 * The chip might have been powered down while we
1322 * didn't hold a PM runtime reference, so mux in the
1323 * PWM function on the GPIO pin again.
1325 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1326 SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
1327 SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
1329 dev_err(pdata->dev, "failed to mux in PWM function\n");
1335 * Per the datasheet the PWM frequency is given by:
1338 * PWM_FREQ = -----------------------------------
1339 * PWM_PRE_DIV * BACKLIGHT_SCALE + 1
1341 * However, after careful review the author is convinced that
1342 * the documentation has lost some parenthesis around
1343 * "BACKLIGHT_SCALE + 1".
1345 * With the period T_pwm = 1/PWM_FREQ this can be written:
1347 * T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1)
1349 * In order to keep BACKLIGHT_SCALE within its 16 bits,
1350 * PWM_PRE_DIV must be:
1352 * T_pwm * REFCLK_FREQ
1353 * PWM_PRE_DIV >= -------------------------
1354 * BACKLIGHT_SCALE_MAX + 1
1356 * To simplify the search and to favour higher resolution of
1357 * the duty cycle over accuracy of the period, the lowest
1358 * possible PWM_PRE_DIV is used. Finally the scale is
1361 * T_pwm * REFCLK_FREQ
1362 * BACKLIGHT_SCALE = ---------------------- - 1
1365 * Here T_pwm is represented in seconds, so appropriate scaling
1366 * to nanoseconds is necessary.
1369 /* Minimum T_pwm is 1 / REFCLK_FREQ */
1370 if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) {
1376 * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ
1377 * Limit period to this to avoid overflows
1379 period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1),
1380 pdata->pwm_refclk_freq);
1381 period = min(state->period, period_max);
1383 pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq,
1384 (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1));
1385 scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1;
1388 * The documentation has the duty ratio given as:
1391 * ------- = ---------------------
1392 * period BACKLIGHT_SCALE + 1
1394 * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according
1395 * to definition above and adjusting for nanosecond
1396 * representation of duty cycle gives us:
1398 backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq,
1399 (u64)NSEC_PER_SEC * pre_div);
1400 if (backlight > scale)
1403 ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
1405 dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n");
1409 ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
1410 ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
1413 pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) |
1414 FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
1415 ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
1417 dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n");
1421 pdata->pwm_enabled = state->enabled;
1424 if (!pdata->pwm_enabled)
1425 pm_runtime_put_sync(pdata->dev);
1430 static void ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1431 struct pwm_state *state)
1433 struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1434 unsigned int pwm_en_inv;
1435 unsigned int pre_div;
1440 ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
1444 ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
1448 ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
1452 ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
1456 state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
1457 if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
1458 state->polarity = PWM_POLARITY_INVERSED;
1460 state->polarity = PWM_POLARITY_NORMAL;
1462 state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1),
1463 pdata->pwm_refclk_freq);
1464 state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight,
1465 pdata->pwm_refclk_freq);
1467 if (state->duty_cycle > state->period)
1468 state->duty_cycle = state->period;
1471 static const struct pwm_ops ti_sn_pwm_ops = {
1472 .request = ti_sn_pwm_request,
1473 .free = ti_sn_pwm_free,
1474 .apply = ti_sn_pwm_apply,
1475 .get_state = ti_sn_pwm_get_state,
1476 .owner = THIS_MODULE,
1479 static int ti_sn_pwm_probe(struct auxiliary_device *adev,
1480 const struct auxiliary_device_id *id)
1482 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1484 pdata->pchip.dev = pdata->dev;
1485 pdata->pchip.ops = &ti_sn_pwm_ops;
1486 pdata->pchip.npwm = 1;
1487 pdata->pchip.of_xlate = of_pwm_single_xlate;
1488 pdata->pchip.of_pwm_n_cells = 1;
1490 return pwmchip_add(&pdata->pchip);
1493 static void ti_sn_pwm_remove(struct auxiliary_device *adev)
1495 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1497 pwmchip_remove(&pdata->pchip);
1499 if (pdata->pwm_enabled)
1500 pm_runtime_put_sync(pdata->dev);
1503 static const struct auxiliary_device_id ti_sn_pwm_id_table[] = {
1504 { .name = "ti_sn65dsi86.pwm", },
1508 static struct auxiliary_driver ti_sn_pwm_driver = {
1510 .probe = ti_sn_pwm_probe,
1511 .remove = ti_sn_pwm_remove,
1512 .id_table = ti_sn_pwm_id_table,
1515 static int __init ti_sn_pwm_register(void)
1517 return auxiliary_driver_register(&ti_sn_pwm_driver);
1520 static void ti_sn_pwm_unregister(void)
1522 auxiliary_driver_unregister(&ti_sn_pwm_driver);
1526 static inline int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; }
1527 static inline void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {}
1529 static inline int ti_sn_pwm_register(void) { return 0; }
1530 static inline void ti_sn_pwm_unregister(void) {}
1533 /* -----------------------------------------------------------------------------
1536 #if defined(CONFIG_OF_GPIO)
1538 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1539 const struct of_phandle_args *gpiospec,
1542 if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1545 if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1549 *flags = gpiospec->args[1];
1551 return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1554 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1555 unsigned int offset)
1557 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1560 * We already have to keep track of the direction because we use
1561 * that to figure out whether we've powered the device. We can
1562 * just return that rather than (maybe) powering up the device
1563 * to ask its direction.
1565 return test_bit(offset, pdata->gchip_output) ?
1566 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1569 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1571 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1576 * When the pin is an input we don't forcibly keep the bridge
1577 * powered--we just power it on to read the pin. NOTE: part of
1578 * the reason this works is that the bridge defaults (when
1579 * powered back on) to all 4 GPIOs being configured as GPIO input.
1580 * Also note that if something else is keeping the chip powered the
1581 * pm_runtime functions are lightweight increments of a refcount.
1583 pm_runtime_get_sync(pdata->dev);
1584 ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1585 pm_runtime_put_autosuspend(pdata->dev);
1590 return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1593 static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1596 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1599 if (!test_bit(offset, pdata->gchip_output)) {
1600 dev_err(pdata->dev, "Ignoring GPIO set while input\n");
1605 ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1606 BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1607 val << (SN_GPIO_OUTPUT_SHIFT + offset));
1609 dev_warn(pdata->dev,
1610 "Failed to set bridge GPIO %u: %d\n", offset, ret);
1613 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1614 unsigned int offset)
1616 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1617 int shift = offset * 2;
1620 if (!test_and_clear_bit(offset, pdata->gchip_output))
1623 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1624 SN_GPIO_MUX_MASK << shift,
1625 SN_GPIO_MUX_INPUT << shift);
1627 set_bit(offset, pdata->gchip_output);
1632 * NOTE: if nobody else is powering the device this may fully power
1633 * it off and when it comes back it will have lost all state, but
1634 * that's OK because the default is input and we're now an input.
1636 pm_runtime_put_autosuspend(pdata->dev);
1641 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1642 unsigned int offset, int val)
1644 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1645 int shift = offset * 2;
1648 if (test_and_set_bit(offset, pdata->gchip_output))
1651 pm_runtime_get_sync(pdata->dev);
1653 /* Set value first to avoid glitching */
1654 ti_sn_bridge_gpio_set(chip, offset, val);
1657 ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1658 SN_GPIO_MUX_MASK << shift,
1659 SN_GPIO_MUX_OUTPUT << shift);
1661 clear_bit(offset, pdata->gchip_output);
1662 pm_runtime_put_autosuspend(pdata->dev);
1668 static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset)
1670 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1672 if (offset == SN_PWM_GPIO_IDX)
1673 return ti_sn_pwm_pin_request(pdata);
1678 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1680 struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1682 /* We won't keep pm_runtime if we're input, so switch there on free */
1683 ti_sn_bridge_gpio_direction_input(chip, offset);
1685 if (offset == SN_PWM_GPIO_IDX)
1686 ti_sn_pwm_pin_release(pdata);
1689 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1690 "GPIO1", "GPIO2", "GPIO3", "GPIO4"
1693 static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1694 const struct auxiliary_device_id *id)
1696 struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1699 /* Only init if someone is going to use us as a GPIO controller */
1700 if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1703 pdata->gchip.label = dev_name(pdata->dev);
1704 pdata->gchip.parent = pdata->dev;
1705 pdata->gchip.owner = THIS_MODULE;
1706 pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1707 pdata->gchip.of_gpio_n_cells = 2;
1708 pdata->gchip.request = ti_sn_bridge_gpio_request;
1709 pdata->gchip.free = ti_sn_bridge_gpio_free;
1710 pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1711 pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1712 pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1713 pdata->gchip.get = ti_sn_bridge_gpio_get;
1714 pdata->gchip.set = ti_sn_bridge_gpio_set;
1715 pdata->gchip.can_sleep = true;
1716 pdata->gchip.names = ti_sn_bridge_gpio_names;
1717 pdata->gchip.ngpio = SN_NUM_GPIOS;
1718 pdata->gchip.base = -1;
1719 ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1721 dev_err(pdata->dev, "can't add gpio chip\n");
1726 static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1727 { .name = "ti_sn65dsi86.gpio", },
1731 MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1733 static struct auxiliary_driver ti_sn_gpio_driver = {
1735 .probe = ti_sn_gpio_probe,
1736 .id_table = ti_sn_gpio_id_table,
1739 static int __init ti_sn_gpio_register(void)
1741 return auxiliary_driver_register(&ti_sn_gpio_driver);
1744 static void ti_sn_gpio_unregister(void)
1746 auxiliary_driver_unregister(&ti_sn_gpio_driver);
1751 static inline int ti_sn_gpio_register(void) { return 0; }
1752 static inline void ti_sn_gpio_unregister(void) {}
1756 /* -----------------------------------------------------------------------------
1760 static void ti_sn65dsi86_runtime_disable(void *data)
1762 pm_runtime_dont_use_autosuspend(data);
1763 pm_runtime_disable(data);
1766 static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
1769 const char * const ti_sn_bridge_supply_names[] = {
1770 "vcca", "vcc", "vccio", "vpll",
1773 for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
1774 pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
1776 return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
1780 static int ti_sn65dsi86_probe(struct i2c_client *client,
1781 const struct i2c_device_id *id)
1783 struct device *dev = &client->dev;
1784 struct ti_sn65dsi86 *pdata;
1787 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1788 DRM_ERROR("device doesn't support I2C\n");
1792 pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL);
1795 dev_set_drvdata(dev, pdata);
1798 mutex_init(&pdata->comms_mutex);
1800 pdata->regmap = devm_regmap_init_i2c(client,
1801 &ti_sn65dsi86_regmap_config);
1802 if (IS_ERR(pdata->regmap))
1803 return dev_err_probe(dev, PTR_ERR(pdata->regmap),
1804 "regmap i2c init failed\n");
1806 pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
1808 if (IS_ERR(pdata->enable_gpio))
1809 return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
1810 "failed to get enable gpio from DT\n");
1812 ret = ti_sn65dsi86_parse_regulators(pdata);
1814 return dev_err_probe(dev, ret, "failed to parse regulators\n");
1816 pdata->refclk = devm_clk_get_optional(dev, "refclk");
1817 if (IS_ERR(pdata->refclk))
1818 return dev_err_probe(dev, PTR_ERR(pdata->refclk),
1819 "failed to get reference clock\n");
1821 pm_runtime_enable(dev);
1822 pm_runtime_set_autosuspend_delay(pdata->dev, 500);
1823 pm_runtime_use_autosuspend(pdata->dev);
1824 ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
1828 ti_sn65dsi86_debugfs_init(pdata);
1831 * Break ourselves up into a collection of aux devices. The only real
1832 * motiviation here is to solve the chicken-and-egg problem of probe
1833 * ordering. The bridge wants the panel to be there when it probes.
1834 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
1835 * when it probes. The panel and maybe backlight might want the DDC
1836 * bus or the pwm_chip. Having sub-devices allows the some sub devices
1837 * to finish probing even if others return -EPROBE_DEFER and gets us
1838 * around the problems.
1841 if (IS_ENABLED(CONFIG_OF_GPIO)) {
1842 ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
1847 if (IS_ENABLED(CONFIG_PWM)) {
1848 ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm");
1854 * NOTE: At the end of the AUX channel probe we'll add the aux device
1855 * for the bridge. This is because the bridge can't be used until the
1856 * AUX channel is there and this is a very simple solution to the
1857 * dependency problem.
1859 return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
1862 static struct i2c_device_id ti_sn65dsi86_id[] = {
1863 { "ti,sn65dsi86", 0},
1866 MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
1868 static const struct of_device_id ti_sn65dsi86_match_table[] = {
1869 {.compatible = "ti,sn65dsi86"},
1872 MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
1874 static struct i2c_driver ti_sn65dsi86_driver = {
1876 .name = "ti_sn65dsi86",
1877 .of_match_table = ti_sn65dsi86_match_table,
1878 .pm = &ti_sn65dsi86_pm_ops,
1880 .probe = ti_sn65dsi86_probe,
1881 .id_table = ti_sn65dsi86_id,
1884 static int __init ti_sn65dsi86_init(void)
1888 ret = i2c_add_driver(&ti_sn65dsi86_driver);
1892 ret = ti_sn_gpio_register();
1894 goto err_main_was_registered;
1896 ret = ti_sn_pwm_register();
1898 goto err_gpio_was_registered;
1900 ret = auxiliary_driver_register(&ti_sn_aux_driver);
1902 goto err_pwm_was_registered;
1904 ret = auxiliary_driver_register(&ti_sn_bridge_driver);
1906 goto err_aux_was_registered;
1910 err_aux_was_registered:
1911 auxiliary_driver_unregister(&ti_sn_aux_driver);
1912 err_pwm_was_registered:
1913 ti_sn_pwm_unregister();
1914 err_gpio_was_registered:
1915 ti_sn_gpio_unregister();
1916 err_main_was_registered:
1917 i2c_del_driver(&ti_sn65dsi86_driver);
1921 module_init(ti_sn65dsi86_init);
1923 static void __exit ti_sn65dsi86_exit(void)
1925 auxiliary_driver_unregister(&ti_sn_bridge_driver);
1926 auxiliary_driver_unregister(&ti_sn_aux_driver);
1927 ti_sn_pwm_unregister();
1928 ti_sn_gpio_unregister();
1929 i2c_del_driver(&ti_sn65dsi86_driver);
1931 module_exit(ti_sn65dsi86_exit);
1934 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
1935 MODULE_LICENSE("GPL v2");