]> Git Repo - J-linux.git/blob - drivers/gpu/drm/bridge/ti-sn65dsi86.c
Merge tag 'ovl-update-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs
[J-linux.git] / drivers / gpu / drm / bridge / ti-sn65dsi86.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5  */
6
7 #include <linux/atomic.h>
8 #include <linux/auxiliary_bus.h>
9 #include <linux/bitfield.h>
10 #include <linux/bits.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/gpio/driver.h>
15 #include <linux/i2c.h>
16 #include <linux/iopoll.h>
17 #include <linux/module.h>
18 #include <linux/of_graph.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/pwm.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
23
24 #include <asm/unaligned.h>
25
26 #include <drm/display/drm_dp_aux_bus.h>
27 #include <drm/display/drm_dp_helper.h>
28 #include <drm/drm_atomic.h>
29 #include <drm/drm_atomic_helper.h>
30 #include <drm/drm_bridge.h>
31 #include <drm/drm_bridge_connector.h>
32 #include <drm/drm_mipi_dsi.h>
33 #include <drm/drm_of.h>
34 #include <drm/drm_panel.h>
35 #include <drm/drm_print.h>
36 #include <drm/drm_probe_helper.h>
37
38 #define SN_DEVICE_REV_REG                       0x08
39 #define SN_DPPLL_SRC_REG                        0x0A
40 #define  DPPLL_CLK_SRC_DSICLK                   BIT(0)
41 #define  REFCLK_FREQ_MASK                       GENMASK(3, 1)
42 #define  REFCLK_FREQ(x)                         ((x) << 1)
43 #define  DPPLL_SRC_DP_PLL_LOCK                  BIT(7)
44 #define SN_PLL_ENABLE_REG                       0x0D
45 #define SN_DSI_LANES_REG                        0x10
46 #define  CHA_DSI_LANES_MASK                     GENMASK(4, 3)
47 #define  CHA_DSI_LANES(x)                       ((x) << 3)
48 #define SN_DSIA_CLK_FREQ_REG                    0x12
49 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG       0x20
50 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG    0x24
51 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG        0x2C
52 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG       0x2D
53 #define  CHA_HSYNC_POLARITY                     BIT(7)
54 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG        0x30
55 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG       0x31
56 #define  CHA_VSYNC_POLARITY                     BIT(7)
57 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG        0x34
58 #define SN_CHA_VERTICAL_BACK_PORCH_REG          0x36
59 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG       0x38
60 #define SN_CHA_VERTICAL_FRONT_PORCH_REG         0x3A
61 #define SN_LN_ASSIGN_REG                        0x59
62 #define  LN_ASSIGN_WIDTH                        2
63 #define SN_ENH_FRAME_REG                        0x5A
64 #define  VSTREAM_ENABLE                         BIT(3)
65 #define  LN_POLRS_OFFSET                        4
66 #define  LN_POLRS_MASK                          0xf0
67 #define SN_DATA_FORMAT_REG                      0x5B
68 #define  BPP_18_RGB                             BIT(0)
69 #define SN_HPD_DISABLE_REG                      0x5C
70 #define  HPD_DISABLE                            BIT(0)
71 #define SN_GPIO_IO_REG                          0x5E
72 #define  SN_GPIO_INPUT_SHIFT                    4
73 #define  SN_GPIO_OUTPUT_SHIFT                   0
74 #define SN_GPIO_CTRL_REG                        0x5F
75 #define  SN_GPIO_MUX_INPUT                      0
76 #define  SN_GPIO_MUX_OUTPUT                     1
77 #define  SN_GPIO_MUX_SPECIAL                    2
78 #define  SN_GPIO_MUX_MASK                       0x3
79 #define SN_AUX_WDATA_REG(x)                     (0x64 + (x))
80 #define SN_AUX_ADDR_19_16_REG                   0x74
81 #define SN_AUX_ADDR_15_8_REG                    0x75
82 #define SN_AUX_ADDR_7_0_REG                     0x76
83 #define SN_AUX_ADDR_MASK                        GENMASK(19, 0)
84 #define SN_AUX_LENGTH_REG                       0x77
85 #define SN_AUX_CMD_REG                          0x78
86 #define  AUX_CMD_SEND                           BIT(0)
87 #define  AUX_CMD_REQ(x)                         ((x) << 4)
88 #define SN_AUX_RDATA_REG(x)                     (0x79 + (x))
89 #define SN_SSC_CONFIG_REG                       0x93
90 #define  DP_NUM_LANES_MASK                      GENMASK(5, 4)
91 #define  DP_NUM_LANES(x)                        ((x) << 4)
92 #define SN_DATARATE_CONFIG_REG                  0x94
93 #define  DP_DATARATE_MASK                       GENMASK(7, 5)
94 #define  DP_DATARATE(x)                         ((x) << 5)
95 #define SN_ML_TX_MODE_REG                       0x96
96 #define  ML_TX_MAIN_LINK_OFF                    0
97 #define  ML_TX_NORMAL_MODE                      BIT(0)
98 #define SN_PWM_PRE_DIV_REG                      0xA0
99 #define SN_BACKLIGHT_SCALE_REG                  0xA1
100 #define  BACKLIGHT_SCALE_MAX                    0xFFFF
101 #define SN_BACKLIGHT_REG                        0xA3
102 #define SN_PWM_EN_INV_REG                       0xA5
103 #define  SN_PWM_INV_MASK                        BIT(0)
104 #define  SN_PWM_EN_MASK                         BIT(1)
105 #define SN_AUX_CMD_STATUS_REG                   0xF4
106 #define  AUX_IRQ_STATUS_AUX_RPLY_TOUT           BIT(3)
107 #define  AUX_IRQ_STATUS_AUX_SHORT               BIT(5)
108 #define  AUX_IRQ_STATUS_NAT_I2C_FAIL            BIT(6)
109
110 #define MIN_DSI_CLK_FREQ_MHZ    40
111
112 /* fudge factor required to account for 8b/10b encoding */
113 #define DP_CLK_FUDGE_NUM        10
114 #define DP_CLK_FUDGE_DEN        8
115
116 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
117 #define SN_AUX_MAX_PAYLOAD_BYTES        16
118
119 #define SN_REGULATOR_SUPPLY_NUM         4
120
121 #define SN_MAX_DP_LANES                 4
122 #define SN_NUM_GPIOS                    4
123 #define SN_GPIO_PHYSICAL_OFFSET         1
124
125 #define SN_LINK_TRAINING_TRIES          10
126
127 #define SN_PWM_GPIO_IDX                 3 /* 4th GPIO */
128
129 /**
130  * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
131  * @bridge_aux:   AUX-bus sub device for MIPI-to-eDP bridge functionality.
132  * @gpio_aux:     AUX-bus sub device for GPIO controller functionality.
133  * @aux_aux:      AUX-bus sub device for eDP AUX channel functionality.
134  * @pwm_aux:      AUX-bus sub device for PWM controller functionality.
135  *
136  * @dev:          Pointer to the top level (i2c) device.
137  * @regmap:       Regmap for accessing i2c.
138  * @aux:          Our aux channel.
139  * @bridge:       Our bridge.
140  * @connector:    Our connector.
141  * @host_node:    Remote DSI node.
142  * @dsi:          Our MIPI DSI source.
143  * @refclk:       Our reference clock.
144  * @next_bridge:  The bridge on the eDP side.
145  * @enable_gpio:  The GPIO we toggle to enable the bridge.
146  * @supplies:     Data for bulk enabling/disabling our regulators.
147  * @dp_lanes:     Count of dp_lanes we're using.
148  * @ln_assign:    Value to program to the LN_ASSIGN register.
149  * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
150  * @comms_enabled: If true then communication over the aux channel is enabled.
151  * @comms_mutex:   Protects modification of comms_enabled.
152  *
153  * @gchip:        If we expose our GPIOs, this is used.
154  * @gchip_output: A cache of whether we've set GPIOs to output.  This
155  *                serves double-duty of keeping track of the direction and
156  *                also keeping track of whether we've incremented the
157  *                pm_runtime reference count for this pin, which we do
158  *                whenever a pin is configured as an output.  This is a
159  *                bitmap so we can do atomic ops on it without an extra
160  *                lock so concurrent users of our 4 GPIOs don't stomp on
161  *                each other's read-modify-write.
162  *
163  * @pchip:        pwm_chip if the PWM is exposed.
164  * @pwm_enabled:  Used to track if the PWM signal is currently enabled.
165  * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
166  * @pwm_refclk_freq: Cache for the reference clock input to the PWM.
167  */
168 struct ti_sn65dsi86 {
169         struct auxiliary_device         bridge_aux;
170         struct auxiliary_device         gpio_aux;
171         struct auxiliary_device         aux_aux;
172         struct auxiliary_device         pwm_aux;
173
174         struct device                   *dev;
175         struct regmap                   *regmap;
176         struct drm_dp_aux               aux;
177         struct drm_bridge               bridge;
178         struct drm_connector            *connector;
179         struct device_node              *host_node;
180         struct mipi_dsi_device          *dsi;
181         struct clk                      *refclk;
182         struct drm_bridge               *next_bridge;
183         struct gpio_desc                *enable_gpio;
184         struct regulator_bulk_data      supplies[SN_REGULATOR_SUPPLY_NUM];
185         int                             dp_lanes;
186         u8                              ln_assign;
187         u8                              ln_polrs;
188         bool                            comms_enabled;
189         struct mutex                    comms_mutex;
190
191 #if defined(CONFIG_OF_GPIO)
192         struct gpio_chip                gchip;
193         DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
194 #endif
195 #if defined(CONFIG_PWM)
196         struct pwm_chip                 pchip;
197         bool                            pwm_enabled;
198         atomic_t                        pwm_pin_busy;
199 #endif
200         unsigned int                    pwm_refclk_freq;
201 };
202
203 static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
204         { .range_min = 0, .range_max = 0xFF },
205 };
206
207 static const struct regmap_access_table ti_sn_bridge_volatile_table = {
208         .yes_ranges = ti_sn65dsi86_volatile_ranges,
209         .n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
210 };
211
212 static const struct regmap_config ti_sn65dsi86_regmap_config = {
213         .reg_bits = 8,
214         .val_bits = 8,
215         .volatile_table = &ti_sn_bridge_volatile_table,
216         .cache_type = REGCACHE_NONE,
217         .max_register = 0xFF,
218 };
219
220 static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
221                                                 unsigned int reg, u16 *val)
222 {
223         u8 buf[2];
224         int ret;
225
226         ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
227         if (ret)
228                 return ret;
229
230         *val = buf[0] | (buf[1] << 8);
231
232         return 0;
233 }
234
235 static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
236                                    unsigned int reg, u16 val)
237 {
238         u8 buf[2] = { val & 0xff, val >> 8 };
239
240         regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
241 }
242
243 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata)
244 {
245         u32 bit_rate_khz, clk_freq_khz;
246         struct drm_display_mode *mode =
247                 &pdata->bridge.encoder->crtc->state->adjusted_mode;
248
249         bit_rate_khz = mode->clock *
250                         mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
251         clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
252
253         return clk_freq_khz;
254 }
255
256 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
257 static const u32 ti_sn_bridge_refclk_lut[] = {
258         12000000,
259         19200000,
260         26000000,
261         27000000,
262         38400000,
263 };
264
265 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
266 static const u32 ti_sn_bridge_dsiclk_lut[] = {
267         468000000,
268         384000000,
269         416000000,
270         486000000,
271         460800000,
272 };
273
274 static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
275 {
276         int i;
277         u32 refclk_rate;
278         const u32 *refclk_lut;
279         size_t refclk_lut_size;
280
281         if (pdata->refclk) {
282                 refclk_rate = clk_get_rate(pdata->refclk);
283                 refclk_lut = ti_sn_bridge_refclk_lut;
284                 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
285                 clk_prepare_enable(pdata->refclk);
286         } else {
287                 refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
288                 refclk_lut = ti_sn_bridge_dsiclk_lut;
289                 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
290         }
291
292         /* for i equals to refclk_lut_size means default frequency */
293         for (i = 0; i < refclk_lut_size; i++)
294                 if (refclk_lut[i] == refclk_rate)
295                         break;
296
297         regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
298                            REFCLK_FREQ(i));
299
300         /*
301          * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
302          * regardless of its actual sourcing.
303          */
304         pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
305 }
306
307 static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
308 {
309         mutex_lock(&pdata->comms_mutex);
310
311         /* configure bridge ref_clk */
312         ti_sn_bridge_set_refclk_freq(pdata);
313
314         /*
315          * HPD on this bridge chip is a bit useless.  This is an eDP bridge
316          * so the HPD is an internal signal that's only there to signal that
317          * the panel is done powering up.  ...but the bridge chip debounces
318          * this signal by between 100 ms and 400 ms (depending on process,
319          * voltage, and temperate--I measured it at about 200 ms).  One
320          * particular panel asserted HPD 84 ms after it was powered on meaning
321          * that we saw HPD 284 ms after power on.  ...but the same panel said
322          * that instead of looking at HPD you could just hardcode a delay of
323          * 200 ms.  We'll assume that the panel driver will have the hardcoded
324          * delay in its prepare and always disable HPD.
325          *
326          * If HPD somehow makes sense on some future panel we'll have to
327          * change this to be conditional on someone specifying that HPD should
328          * be used.
329          */
330         regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
331                            HPD_DISABLE);
332
333         pdata->comms_enabled = true;
334
335         mutex_unlock(&pdata->comms_mutex);
336 }
337
338 static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
339 {
340         mutex_lock(&pdata->comms_mutex);
341
342         pdata->comms_enabled = false;
343         clk_disable_unprepare(pdata->refclk);
344
345         mutex_unlock(&pdata->comms_mutex);
346 }
347
348 static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
349 {
350         struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
351         int ret;
352
353         ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
354         if (ret) {
355                 DRM_ERROR("failed to enable supplies %d\n", ret);
356                 return ret;
357         }
358
359         /* td2: min 100 us after regulators before enabling the GPIO */
360         usleep_range(100, 110);
361
362         gpiod_set_value(pdata->enable_gpio, 1);
363
364         /*
365          * If we have a reference clock we can enable communication w/ the
366          * panel (including the aux channel) w/out any need for an input clock
367          * so we can do it in resume which lets us read the EDID before
368          * pre_enable(). Without a reference clock we need the MIPI reference
369          * clock so reading early doesn't work.
370          */
371         if (pdata->refclk)
372                 ti_sn65dsi86_enable_comms(pdata);
373
374         return ret;
375 }
376
377 static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
378 {
379         struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
380         int ret;
381
382         if (pdata->refclk)
383                 ti_sn65dsi86_disable_comms(pdata);
384
385         gpiod_set_value(pdata->enable_gpio, 0);
386
387         ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
388         if (ret)
389                 DRM_ERROR("failed to disable supplies %d\n", ret);
390
391         return ret;
392 }
393
394 static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
395         SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
396         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
397                                 pm_runtime_force_resume)
398 };
399
400 static int status_show(struct seq_file *s, void *data)
401 {
402         struct ti_sn65dsi86 *pdata = s->private;
403         unsigned int reg, val;
404
405         seq_puts(s, "STATUS REGISTERS:\n");
406
407         pm_runtime_get_sync(pdata->dev);
408
409         /* IRQ Status Registers, see Table 31 in datasheet */
410         for (reg = 0xf0; reg <= 0xf8; reg++) {
411                 regmap_read(pdata->regmap, reg, &val);
412                 seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
413         }
414
415         pm_runtime_put_autosuspend(pdata->dev);
416
417         return 0;
418 }
419
420 DEFINE_SHOW_ATTRIBUTE(status);
421
422 static void ti_sn65dsi86_debugfs_remove(void *data)
423 {
424         debugfs_remove_recursive(data);
425 }
426
427 static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata)
428 {
429         struct device *dev = pdata->dev;
430         struct dentry *debugfs;
431         int ret;
432
433         debugfs = debugfs_create_dir(dev_name(dev), NULL);
434
435         /*
436          * We might get an error back if debugfs wasn't enabled in the kernel
437          * so let's just silently return upon failure.
438          */
439         if (IS_ERR_OR_NULL(debugfs))
440                 return;
441
442         ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs);
443         if (ret)
444                 return;
445
446         debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
447 }
448
449 /* -----------------------------------------------------------------------------
450  * Auxiliary Devices (*not* AUX)
451  */
452
453 static void ti_sn65dsi86_uninit_aux(void *data)
454 {
455         auxiliary_device_uninit(data);
456 }
457
458 static void ti_sn65dsi86_delete_aux(void *data)
459 {
460         auxiliary_device_delete(data);
461 }
462
463 /*
464  * AUX bus docs say that a non-NULL release is mandatory, but it makes no
465  * sense for the model used here where all of the aux devices are allocated
466  * in the single shared structure. We'll use this noop as a workaround.
467  */
468 static void ti_sn65dsi86_noop(struct device *dev) {}
469
470 static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
471                                        struct auxiliary_device *aux,
472                                        const char *name)
473 {
474         struct device *dev = pdata->dev;
475         int ret;
476
477         aux->name = name;
478         aux->dev.parent = dev;
479         aux->dev.release = ti_sn65dsi86_noop;
480         device_set_of_node_from_dev(&aux->dev, dev);
481         ret = auxiliary_device_init(aux);
482         if (ret)
483                 return ret;
484         ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux);
485         if (ret)
486                 return ret;
487
488         ret = auxiliary_device_add(aux);
489         if (ret)
490                 return ret;
491         ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux);
492
493         return ret;
494 }
495
496 /* -----------------------------------------------------------------------------
497  * AUX Adapter
498  */
499
500 static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
501 {
502         return container_of(aux, struct ti_sn65dsi86, aux);
503 }
504
505 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
506                                   struct drm_dp_aux_msg *msg)
507 {
508         struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
509         u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
510         u32 request_val = AUX_CMD_REQ(msg->request);
511         u8 *buf = msg->buffer;
512         unsigned int len = msg->size;
513         unsigned int val;
514         int ret;
515         u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
516
517         if (len > SN_AUX_MAX_PAYLOAD_BYTES)
518                 return -EINVAL;
519
520         pm_runtime_get_sync(pdata->dev);
521         mutex_lock(&pdata->comms_mutex);
522
523         /*
524          * If someone tries to do a DDC over AUX transaction before pre_enable()
525          * on a device without a dedicated reference clock then we just can't
526          * do it. Fail right away. This prevents non-refclk users from reading
527          * the EDID before enabling the panel but such is life.
528          */
529         if (!pdata->comms_enabled) {
530                 ret = -EIO;
531                 goto exit;
532         }
533
534         switch (request) {
535         case DP_AUX_NATIVE_WRITE:
536         case DP_AUX_I2C_WRITE:
537         case DP_AUX_NATIVE_READ:
538         case DP_AUX_I2C_READ:
539                 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
540                 /* Assume it's good */
541                 msg->reply = 0;
542                 break;
543         default:
544                 ret = -EINVAL;
545                 goto exit;
546         }
547
548         BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
549         put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
550                            addr_len);
551         regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
552                           ARRAY_SIZE(addr_len));
553
554         if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
555                 regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
556
557         /* Clear old status bits before start so we don't get confused */
558         regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
559                      AUX_IRQ_STATUS_NAT_I2C_FAIL |
560                      AUX_IRQ_STATUS_AUX_RPLY_TOUT |
561                      AUX_IRQ_STATUS_AUX_SHORT);
562
563         regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
564
565         /* Zero delay loop because i2c transactions are slow already */
566         ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
567                                        !(val & AUX_CMD_SEND), 0, 50 * 1000);
568         if (ret)
569                 goto exit;
570
571         ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
572         if (ret)
573                 goto exit;
574
575         if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
576                 /*
577                  * The hardware tried the message seven times per the DP spec
578                  * but it hit a timeout. We ignore defers here because they're
579                  * handled in hardware.
580                  */
581                 ret = -ETIMEDOUT;
582                 goto exit;
583         }
584
585         if (val & AUX_IRQ_STATUS_AUX_SHORT) {
586                 ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len);
587                 if (ret)
588                         goto exit;
589         } else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
590                 switch (request) {
591                 case DP_AUX_I2C_WRITE:
592                 case DP_AUX_I2C_READ:
593                         msg->reply |= DP_AUX_I2C_REPLY_NACK;
594                         break;
595                 case DP_AUX_NATIVE_READ:
596                 case DP_AUX_NATIVE_WRITE:
597                         msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
598                         break;
599                 }
600                 len = 0;
601                 goto exit;
602         }
603
604         if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
605                 ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
606
607 exit:
608         mutex_unlock(&pdata->comms_mutex);
609         pm_runtime_mark_last_busy(pdata->dev);
610         pm_runtime_put_autosuspend(pdata->dev);
611
612         if (ret)
613                 return ret;
614         return len;
615 }
616
617 static int ti_sn_aux_probe(struct auxiliary_device *adev,
618                            const struct auxiliary_device_id *id)
619 {
620         struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
621         int ret;
622
623         pdata->aux.name = "ti-sn65dsi86-aux";
624         pdata->aux.dev = &adev->dev;
625         pdata->aux.transfer = ti_sn_aux_transfer;
626         drm_dp_aux_init(&pdata->aux);
627
628         ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
629         if (ret)
630                 return ret;
631
632         /*
633          * The eDP to MIPI bridge parts don't work until the AUX channel is
634          * setup so we don't add it in the main driver probe, we add it now.
635          */
636         return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
637 }
638
639 static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
640         { .name = "ti_sn65dsi86.aux", },
641         {},
642 };
643
644 static struct auxiliary_driver ti_sn_aux_driver = {
645         .name = "aux",
646         .probe = ti_sn_aux_probe,
647         .id_table = ti_sn_aux_id_table,
648 };
649
650 /*------------------------------------------------------------------------------
651  * DRM Bridge
652  */
653
654 static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
655 {
656         return container_of(bridge, struct ti_sn65dsi86, bridge);
657 }
658
659 static int ti_sn_attach_host(struct ti_sn65dsi86 *pdata)
660 {
661         int val;
662         struct mipi_dsi_host *host;
663         struct mipi_dsi_device *dsi;
664         struct device *dev = pdata->dev;
665         const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
666                                                    .channel = 0,
667                                                    .node = NULL,
668         };
669
670         host = of_find_mipi_dsi_host_by_node(pdata->host_node);
671         if (!host)
672                 return -EPROBE_DEFER;
673
674         dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
675         if (IS_ERR(dsi))
676                 return PTR_ERR(dsi);
677
678         /* TODO: setting to 4 MIPI lanes always for now */
679         dsi->lanes = 4;
680         dsi->format = MIPI_DSI_FMT_RGB888;
681         dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
682
683         /* check if continuous dsi clock is required or not */
684         pm_runtime_get_sync(dev);
685         regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
686         pm_runtime_put_autosuspend(dev);
687         if (!(val & DPPLL_CLK_SRC_DSICLK))
688                 dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
689
690         pdata->dsi = dsi;
691
692         return devm_mipi_dsi_attach(dev, dsi);
693 }
694
695 static int ti_sn_bridge_attach(struct drm_bridge *bridge,
696                                enum drm_bridge_attach_flags flags)
697 {
698         struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
699         int ret;
700
701         if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
702                 DRM_ERROR("Fix bridge driver to make connector optional!");
703                 return -EINVAL;
704         }
705
706         pdata->aux.drm_dev = bridge->dev;
707         ret = drm_dp_aux_register(&pdata->aux);
708         if (ret < 0) {
709                 drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
710                 return ret;
711         }
712
713         /* We never want the next bridge to *also* create a connector: */
714         flags |= DRM_BRIDGE_ATTACH_NO_CONNECTOR;
715
716         /* Attach the next bridge */
717         ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge,
718                                 &pdata->bridge, flags);
719         if (ret < 0)
720                 goto err_initted_aux;
721
722         pdata->connector = drm_bridge_connector_init(pdata->bridge.dev,
723                                                      pdata->bridge.encoder);
724         if (IS_ERR(pdata->connector)) {
725                 ret = PTR_ERR(pdata->connector);
726                 goto err_initted_aux;
727         }
728
729         drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder);
730
731         return 0;
732
733 err_initted_aux:
734         drm_dp_aux_unregister(&pdata->aux);
735         return ret;
736 }
737
738 static void ti_sn_bridge_detach(struct drm_bridge *bridge)
739 {
740         drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
741 }
742
743 static enum drm_mode_status
744 ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
745                         const struct drm_display_info *info,
746                         const struct drm_display_mode *mode)
747 {
748         /* maximum supported resolution is 4K at 60 fps */
749         if (mode->clock > 594000)
750                 return MODE_CLOCK_HIGH;
751
752         return MODE_OK;
753 }
754
755 static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge,
756                                         struct drm_bridge_state *old_bridge_state)
757 {
758         struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
759
760         /* disable video stream */
761         regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
762 }
763
764 static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata)
765 {
766         unsigned int bit_rate_mhz, clk_freq_mhz;
767         unsigned int val;
768         struct drm_display_mode *mode =
769                 &pdata->bridge.encoder->crtc->state->adjusted_mode;
770
771         /* set DSIA clk frequency */
772         bit_rate_mhz = (mode->clock / 1000) *
773                         mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
774         clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
775
776         /* for each increment in val, frequency increases by 5MHz */
777         val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
778                 (((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
779         regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
780 }
781
782 static unsigned int ti_sn_bridge_get_bpp(struct ti_sn65dsi86 *pdata)
783 {
784         if (pdata->connector->display_info.bpc <= 6)
785                 return 18;
786         else
787                 return 24;
788 }
789
790 /*
791  * LUT index corresponds to register value and
792  * LUT values corresponds to dp data rate supported
793  * by the bridge in Mbps unit.
794  */
795 static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
796         0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
797 };
798
799 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata)
800 {
801         unsigned int bit_rate_khz, dp_rate_mhz;
802         unsigned int i;
803         struct drm_display_mode *mode =
804                 &pdata->bridge.encoder->crtc->state->adjusted_mode;
805
806         /* Calculate minimum bit rate based on our pixel clock. */
807         bit_rate_khz = mode->clock * ti_sn_bridge_get_bpp(pdata);
808
809         /* Calculate minimum DP data rate, taking 80% as per DP spec */
810         dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
811                                    1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
812
813         for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
814                 if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
815                         break;
816
817         return i;
818 }
819
820 static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
821 {
822         unsigned int valid_rates = 0;
823         unsigned int rate_per_200khz;
824         unsigned int rate_mhz;
825         u8 dpcd_val;
826         int ret;
827         int i, j;
828
829         ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
830         if (ret != 1) {
831                 DRM_DEV_ERROR(pdata->dev,
832                               "Can't read eDP rev (%d), assuming 1.1\n", ret);
833                 dpcd_val = DP_EDP_11;
834         }
835
836         if (dpcd_val >= DP_EDP_14) {
837                 /* eDP 1.4 devices must provide a custom table */
838                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
839
840                 ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
841                                        sink_rates, sizeof(sink_rates));
842
843                 if (ret != sizeof(sink_rates)) {
844                         DRM_DEV_ERROR(pdata->dev,
845                                 "Can't read supported rate table (%d)\n", ret);
846
847                         /* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
848                         memset(sink_rates, 0, sizeof(sink_rates));
849                 }
850
851                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
852                         rate_per_200khz = le16_to_cpu(sink_rates[i]);
853
854                         if (!rate_per_200khz)
855                                 break;
856
857                         rate_mhz = rate_per_200khz * 200 / 1000;
858                         for (j = 0;
859                              j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
860                              j++) {
861                                 if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
862                                         valid_rates |= BIT(j);
863                         }
864                 }
865
866                 for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
867                         if (valid_rates & BIT(i))
868                                 return valid_rates;
869                 }
870                 DRM_DEV_ERROR(pdata->dev,
871                               "No matching eDP rates in table; falling back\n");
872         }
873
874         /* On older versions best we can do is use DP_MAX_LINK_RATE */
875         ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
876         if (ret != 1) {
877                 DRM_DEV_ERROR(pdata->dev,
878                               "Can't read max rate (%d); assuming 5.4 GHz\n",
879                               ret);
880                 dpcd_val = DP_LINK_BW_5_4;
881         }
882
883         switch (dpcd_val) {
884         default:
885                 DRM_DEV_ERROR(pdata->dev,
886                               "Unexpected max rate (%#x); assuming 5.4 GHz\n",
887                               (int)dpcd_val);
888                 fallthrough;
889         case DP_LINK_BW_5_4:
890                 valid_rates |= BIT(7);
891                 fallthrough;
892         case DP_LINK_BW_2_7:
893                 valid_rates |= BIT(4);
894                 fallthrough;
895         case DP_LINK_BW_1_62:
896                 valid_rates |= BIT(1);
897                 break;
898         }
899
900         return valid_rates;
901 }
902
903 static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata)
904 {
905         struct drm_display_mode *mode =
906                 &pdata->bridge.encoder->crtc->state->adjusted_mode;
907         u8 hsync_polarity = 0, vsync_polarity = 0;
908
909         if (mode->flags & DRM_MODE_FLAG_PHSYNC)
910                 hsync_polarity = CHA_HSYNC_POLARITY;
911         if (mode->flags & DRM_MODE_FLAG_PVSYNC)
912                 vsync_polarity = CHA_VSYNC_POLARITY;
913
914         ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
915                                mode->hdisplay);
916         ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
917                                mode->vdisplay);
918         regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
919                      (mode->hsync_end - mode->hsync_start) & 0xFF);
920         regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
921                      (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
922                      hsync_polarity);
923         regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
924                      (mode->vsync_end - mode->vsync_start) & 0xFF);
925         regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
926                      (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
927                      vsync_polarity);
928
929         regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
930                      (mode->htotal - mode->hsync_end) & 0xFF);
931         regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
932                      (mode->vtotal - mode->vsync_end) & 0xFF);
933
934         regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
935                      (mode->hsync_start - mode->hdisplay) & 0xFF);
936         regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
937                      (mode->vsync_start - mode->vdisplay) & 0xFF);
938
939         usleep_range(10000, 10500); /* 10ms delay recommended by spec */
940 }
941
942 static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
943 {
944         u8 data;
945         int ret;
946
947         ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
948         if (ret != 1) {
949                 DRM_DEV_ERROR(pdata->dev,
950                               "Can't read lane count (%d); assuming 4\n", ret);
951                 return 4;
952         }
953
954         return data & DP_LANE_COUNT_MASK;
955 }
956
957 static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
958                                const char **last_err_str)
959 {
960         unsigned int val;
961         int ret;
962         int i;
963
964         /* set dp clk frequency value */
965         regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
966                            DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
967
968         /* enable DP PLL */
969         regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
970
971         ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
972                                        val & DPPLL_SRC_DP_PLL_LOCK, 1000,
973                                        50 * 1000);
974         if (ret) {
975                 *last_err_str = "DP_PLL_LOCK polling failed";
976                 goto exit;
977         }
978
979         /*
980          * We'll try to link train several times.  As part of link training
981          * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER.  If
982          * the panel isn't ready quite it might respond NAK here which means
983          * we need to try again.
984          */
985         for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
986                 /* Semi auto link training mode */
987                 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
988                 ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
989                                                val == ML_TX_MAIN_LINK_OFF ||
990                                                val == ML_TX_NORMAL_MODE, 1000,
991                                                500 * 1000);
992                 if (ret) {
993                         *last_err_str = "Training complete polling failed";
994                 } else if (val == ML_TX_MAIN_LINK_OFF) {
995                         *last_err_str = "Link training failed, link is off";
996                         ret = -EIO;
997                         continue;
998                 }
999
1000                 break;
1001         }
1002
1003         /* If we saw quite a few retries, add a note about it */
1004         if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
1005                 DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
1006
1007 exit:
1008         /* Disable the PLL if we failed */
1009         if (ret)
1010                 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1011
1012         return ret;
1013 }
1014
1015 static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge,
1016                                        struct drm_bridge_state *old_bridge_state)
1017 {
1018         struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1019         const char *last_err_str = "No supported DP rate";
1020         unsigned int valid_rates;
1021         int dp_rate_idx;
1022         unsigned int val;
1023         int ret = -EINVAL;
1024         int max_dp_lanes;
1025
1026         max_dp_lanes = ti_sn_get_max_lanes(pdata);
1027         pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
1028
1029         /* DSI_A lane config */
1030         val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
1031         regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
1032                            CHA_DSI_LANES_MASK, val);
1033
1034         regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
1035         regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
1036                            pdata->ln_polrs << LN_POLRS_OFFSET);
1037
1038         /* set dsi clk frequency value */
1039         ti_sn_bridge_set_dsi_rate(pdata);
1040
1041         /*
1042          * The SN65DSI86 only supports ASSR Display Authentication method and
1043          * this method is enabled by default. An eDP panel must support this
1044          * authentication method. We need to enable this method in the eDP panel
1045          * at DisplayPort address 0x0010A prior to link training.
1046          */
1047         drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
1048                            DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
1049
1050         /* Set the DP output format (18 bpp or 24 bpp) */
1051         val = (ti_sn_bridge_get_bpp(pdata) == 18) ? BPP_18_RGB : 0;
1052         regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
1053
1054         /* DP lane config */
1055         val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
1056         regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
1057                            val);
1058
1059         valid_rates = ti_sn_bridge_read_valid_rates(pdata);
1060
1061         /* Train until we run out of rates */
1062         for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata);
1063              dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
1064              dp_rate_idx++) {
1065                 if (!(valid_rates & BIT(dp_rate_idx)))
1066                         continue;
1067
1068                 ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
1069                 if (!ret)
1070                         break;
1071         }
1072         if (ret) {
1073                 DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
1074                 return;
1075         }
1076
1077         /* config video parameters */
1078         ti_sn_bridge_set_video_timings(pdata);
1079
1080         /* enable video stream */
1081         regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
1082                            VSTREAM_ENABLE);
1083 }
1084
1085 static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge,
1086                                            struct drm_bridge_state *old_bridge_state)
1087 {
1088         struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1089
1090         pm_runtime_get_sync(pdata->dev);
1091
1092         if (!pdata->refclk)
1093                 ti_sn65dsi86_enable_comms(pdata);
1094
1095         /* td7: min 100 us after enable before DSI data */
1096         usleep_range(100, 110);
1097 }
1098
1099 static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge,
1100                                              struct drm_bridge_state *old_bridge_state)
1101 {
1102         struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1103
1104         /* semi auto link training mode OFF */
1105         regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
1106         /* Num lanes to 0 as per power sequencing in data sheet */
1107         regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
1108         /* disable DP PLL */
1109         regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1110
1111         if (!pdata->refclk)
1112                 ti_sn65dsi86_disable_comms(pdata);
1113
1114         pm_runtime_put_sync(pdata->dev);
1115 }
1116
1117 static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
1118         .attach = ti_sn_bridge_attach,
1119         .detach = ti_sn_bridge_detach,
1120         .mode_valid = ti_sn_bridge_mode_valid,
1121         .atomic_pre_enable = ti_sn_bridge_atomic_pre_enable,
1122         .atomic_enable = ti_sn_bridge_atomic_enable,
1123         .atomic_disable = ti_sn_bridge_atomic_disable,
1124         .atomic_post_disable = ti_sn_bridge_atomic_post_disable,
1125         .atomic_reset = drm_atomic_helper_bridge_reset,
1126         .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1127         .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1128 };
1129
1130 static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1131                                      struct device_node *np)
1132 {
1133         u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1134         u32 lane_polarities[SN_MAX_DP_LANES] = { };
1135         struct device_node *endpoint;
1136         u8 ln_assign = 0;
1137         u8 ln_polrs = 0;
1138         int dp_lanes;
1139         int i;
1140
1141         /*
1142          * Read config from the device tree about lane remapping and lane
1143          * polarities.  These are optional and we assume identity map and
1144          * normal polarity if nothing is specified.  It's OK to specify just
1145          * data-lanes but not lane-polarities but not vice versa.
1146          *
1147          * Error checking is light (we just make sure we don't crash or
1148          * buffer overrun) and we assume dts is well formed and specifying
1149          * mappings that the hardware supports.
1150          */
1151         endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1152         dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES);
1153         if (dp_lanes > 0) {
1154                 of_property_read_u32_array(endpoint, "data-lanes",
1155                                            lane_assignments, dp_lanes);
1156                 of_property_read_u32_array(endpoint, "lane-polarities",
1157                                            lane_polarities, dp_lanes);
1158         } else {
1159                 dp_lanes = SN_MAX_DP_LANES;
1160         }
1161         of_node_put(endpoint);
1162
1163         /*
1164          * Convert into register format.  Loop over all lanes even if
1165          * data-lanes had fewer elements so that we nicely initialize
1166          * the LN_ASSIGN register.
1167          */
1168         for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1169                 ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1170                 ln_polrs = ln_polrs << 1 | lane_polarities[i];
1171         }
1172
1173         /* Stash in our struct for when we power on */
1174         pdata->dp_lanes = dp_lanes;
1175         pdata->ln_assign = ln_assign;
1176         pdata->ln_polrs = ln_polrs;
1177 }
1178
1179 static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1180 {
1181         struct device_node *np = pdata->dev->of_node;
1182
1183         pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1184
1185         if (!pdata->host_node) {
1186                 DRM_ERROR("remote dsi host node not found\n");
1187                 return -ENODEV;
1188         }
1189
1190         return 0;
1191 }
1192
1193 static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1194                               const struct auxiliary_device_id *id)
1195 {
1196         struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1197         struct device_node *np = pdata->dev->of_node;
1198         int ret;
1199
1200         pdata->next_bridge = devm_drm_of_get_bridge(pdata->dev, np, 1, 0);
1201         if (IS_ERR(pdata->next_bridge)) {
1202                 DRM_ERROR("failed to create panel bridge\n");
1203                 return PTR_ERR(pdata->next_bridge);
1204         }
1205
1206         ti_sn_bridge_parse_lanes(pdata, np);
1207
1208         ret = ti_sn_bridge_parse_dsi_host(pdata);
1209         if (ret)
1210                 return ret;
1211
1212         pdata->bridge.funcs = &ti_sn_bridge_funcs;
1213         pdata->bridge.of_node = np;
1214
1215         drm_bridge_add(&pdata->bridge);
1216
1217         ret = ti_sn_attach_host(pdata);
1218         if (ret) {
1219                 dev_err_probe(pdata->dev, ret, "failed to attach dsi host\n");
1220                 goto err_remove_bridge;
1221         }
1222
1223         return 0;
1224
1225 err_remove_bridge:
1226         drm_bridge_remove(&pdata->bridge);
1227         return ret;
1228 }
1229
1230 static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1231 {
1232         struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1233
1234         if (!pdata)
1235                 return;
1236
1237         drm_bridge_remove(&pdata->bridge);
1238
1239         of_node_put(pdata->host_node);
1240 }
1241
1242 static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1243         { .name = "ti_sn65dsi86.bridge", },
1244         {},
1245 };
1246
1247 static struct auxiliary_driver ti_sn_bridge_driver = {
1248         .name = "bridge",
1249         .probe = ti_sn_bridge_probe,
1250         .remove = ti_sn_bridge_remove,
1251         .id_table = ti_sn_bridge_id_table,
1252 };
1253
1254 /* -----------------------------------------------------------------------------
1255  * PWM Controller
1256  */
1257 #if defined(CONFIG_PWM)
1258 static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
1259 {
1260         return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
1261 }
1262
1263 static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
1264 {
1265         atomic_set(&pdata->pwm_pin_busy, 0);
1266 }
1267
1268 static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
1269 {
1270         return container_of(chip, struct ti_sn65dsi86, pchip);
1271 }
1272
1273 static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
1274 {
1275         struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1276
1277         return ti_sn_pwm_pin_request(pdata);
1278 }
1279
1280 static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
1281 {
1282         struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1283
1284         ti_sn_pwm_pin_release(pdata);
1285 }
1286
1287 /*
1288  * Limitations:
1289  * - The PWM signal is not driven when the chip is powered down, or in its
1290  *   reset state and the driver does not implement the "suspend state"
1291  *   described in the documentation. In order to save power, state->enabled is
1292  *   interpreted as denoting if the signal is expected to be valid, and is used
1293  *   to determine if the chip needs to be kept powered.
1294  * - Changing both period and duty_cycle is not done atomically, neither is the
1295  *   multi-byte register updates, so the output might briefly be undefined
1296  *   during update.
1297  */
1298 static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1299                            const struct pwm_state *state)
1300 {
1301         struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1302         unsigned int pwm_en_inv;
1303         unsigned int backlight;
1304         unsigned int pre_div;
1305         unsigned int scale;
1306         u64 period_max;
1307         u64 period;
1308         int ret;
1309
1310         if (!pdata->pwm_enabled) {
1311                 ret = pm_runtime_get_sync(pdata->dev);
1312                 if (ret < 0) {
1313                         pm_runtime_put_sync(pdata->dev);
1314                         return ret;
1315                 }
1316         }
1317
1318         if (state->enabled) {
1319                 if (!pdata->pwm_enabled) {
1320                         /*
1321                          * The chip might have been powered down while we
1322                          * didn't hold a PM runtime reference, so mux in the
1323                          * PWM function on the GPIO pin again.
1324                          */
1325                         ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1326                                                  SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
1327                                                  SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
1328                         if (ret) {
1329                                 dev_err(pdata->dev, "failed to mux in PWM function\n");
1330                                 goto out;
1331                         }
1332                 }
1333
1334                 /*
1335                  * Per the datasheet the PWM frequency is given by:
1336                  *
1337                  *                          REFCLK_FREQ
1338                  *   PWM_FREQ = -----------------------------------
1339                  *               PWM_PRE_DIV * BACKLIGHT_SCALE + 1
1340                  *
1341                  * However, after careful review the author is convinced that
1342                  * the documentation has lost some parenthesis around
1343                  * "BACKLIGHT_SCALE + 1".
1344                  *
1345                  * With the period T_pwm = 1/PWM_FREQ this can be written:
1346                  *
1347                  *   T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1)
1348                  *
1349                  * In order to keep BACKLIGHT_SCALE within its 16 bits,
1350                  * PWM_PRE_DIV must be:
1351                  *
1352                  *                     T_pwm * REFCLK_FREQ
1353                  *   PWM_PRE_DIV >= -------------------------
1354                  *                   BACKLIGHT_SCALE_MAX + 1
1355                  *
1356                  * To simplify the search and to favour higher resolution of
1357                  * the duty cycle over accuracy of the period, the lowest
1358                  * possible PWM_PRE_DIV is used. Finally the scale is
1359                  * calculated as:
1360                  *
1361                  *                      T_pwm * REFCLK_FREQ
1362                  *   BACKLIGHT_SCALE = ---------------------- - 1
1363                  *                          PWM_PRE_DIV
1364                  *
1365                  * Here T_pwm is represented in seconds, so appropriate scaling
1366                  * to nanoseconds is necessary.
1367                  */
1368
1369                 /* Minimum T_pwm is 1 / REFCLK_FREQ */
1370                 if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) {
1371                         ret = -EINVAL;
1372                         goto out;
1373                 }
1374
1375                 /*
1376                  * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ
1377                  * Limit period to this to avoid overflows
1378                  */
1379                 period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1),
1380                                      pdata->pwm_refclk_freq);
1381                 period = min(state->period, period_max);
1382
1383                 pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq,
1384                                              (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1));
1385                 scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1;
1386
1387                 /*
1388                  * The documentation has the duty ratio given as:
1389                  *
1390                  *     duty          BACKLIGHT
1391                  *   ------- = ---------------------
1392                  *    period    BACKLIGHT_SCALE + 1
1393                  *
1394                  * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according
1395                  * to definition above and adjusting for nanosecond
1396                  * representation of duty cycle gives us:
1397                  */
1398                 backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq,
1399                                       (u64)NSEC_PER_SEC * pre_div);
1400                 if (backlight > scale)
1401                         backlight = scale;
1402
1403                 ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
1404                 if (ret) {
1405                         dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n");
1406                         goto out;
1407                 }
1408
1409                 ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
1410                 ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
1411         }
1412
1413         pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) |
1414                      FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
1415         ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
1416         if (ret) {
1417                 dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n");
1418                 goto out;
1419         }
1420
1421         pdata->pwm_enabled = state->enabled;
1422 out:
1423
1424         if (!pdata->pwm_enabled)
1425                 pm_runtime_put_sync(pdata->dev);
1426
1427         return ret;
1428 }
1429
1430 static void ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1431                                 struct pwm_state *state)
1432 {
1433         struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1434         unsigned int pwm_en_inv;
1435         unsigned int pre_div;
1436         u16 backlight;
1437         u16 scale;
1438         int ret;
1439
1440         ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
1441         if (ret)
1442                 return;
1443
1444         ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
1445         if (ret)
1446                 return;
1447
1448         ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
1449         if (ret)
1450                 return;
1451
1452         ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
1453         if (ret)
1454                 return;
1455
1456         state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
1457         if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
1458                 state->polarity = PWM_POLARITY_INVERSED;
1459         else
1460                 state->polarity = PWM_POLARITY_NORMAL;
1461
1462         state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1),
1463                                          pdata->pwm_refclk_freq);
1464         state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight,
1465                                              pdata->pwm_refclk_freq);
1466
1467         if (state->duty_cycle > state->period)
1468                 state->duty_cycle = state->period;
1469 }
1470
1471 static const struct pwm_ops ti_sn_pwm_ops = {
1472         .request = ti_sn_pwm_request,
1473         .free = ti_sn_pwm_free,
1474         .apply = ti_sn_pwm_apply,
1475         .get_state = ti_sn_pwm_get_state,
1476         .owner = THIS_MODULE,
1477 };
1478
1479 static int ti_sn_pwm_probe(struct auxiliary_device *adev,
1480                            const struct auxiliary_device_id *id)
1481 {
1482         struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1483
1484         pdata->pchip.dev = pdata->dev;
1485         pdata->pchip.ops = &ti_sn_pwm_ops;
1486         pdata->pchip.npwm = 1;
1487         pdata->pchip.of_xlate = of_pwm_single_xlate;
1488         pdata->pchip.of_pwm_n_cells = 1;
1489
1490         return pwmchip_add(&pdata->pchip);
1491 }
1492
1493 static void ti_sn_pwm_remove(struct auxiliary_device *adev)
1494 {
1495         struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1496
1497         pwmchip_remove(&pdata->pchip);
1498
1499         if (pdata->pwm_enabled)
1500                 pm_runtime_put_sync(pdata->dev);
1501 }
1502
1503 static const struct auxiliary_device_id ti_sn_pwm_id_table[] = {
1504         { .name = "ti_sn65dsi86.pwm", },
1505         {},
1506 };
1507
1508 static struct auxiliary_driver ti_sn_pwm_driver = {
1509         .name = "pwm",
1510         .probe = ti_sn_pwm_probe,
1511         .remove = ti_sn_pwm_remove,
1512         .id_table = ti_sn_pwm_id_table,
1513 };
1514
1515 static int __init ti_sn_pwm_register(void)
1516 {
1517         return auxiliary_driver_register(&ti_sn_pwm_driver);
1518 }
1519
1520 static void ti_sn_pwm_unregister(void)
1521 {
1522         auxiliary_driver_unregister(&ti_sn_pwm_driver);
1523 }
1524
1525 #else
1526 static inline int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; }
1527 static inline void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {}
1528
1529 static inline int ti_sn_pwm_register(void) { return 0; }
1530 static inline void ti_sn_pwm_unregister(void) {}
1531 #endif
1532
1533 /* -----------------------------------------------------------------------------
1534  * GPIO Controller
1535  */
1536 #if defined(CONFIG_OF_GPIO)
1537
1538 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1539                                  const struct of_phandle_args *gpiospec,
1540                                  u32 *flags)
1541 {
1542         if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1543                 return -EINVAL;
1544
1545         if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1546                 return -EINVAL;
1547
1548         if (flags)
1549                 *flags = gpiospec->args[1];
1550
1551         return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1552 }
1553
1554 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1555                                            unsigned int offset)
1556 {
1557         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1558
1559         /*
1560          * We already have to keep track of the direction because we use
1561          * that to figure out whether we've powered the device.  We can
1562          * just return that rather than (maybe) powering up the device
1563          * to ask its direction.
1564          */
1565         return test_bit(offset, pdata->gchip_output) ?
1566                 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1567 }
1568
1569 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1570 {
1571         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1572         unsigned int val;
1573         int ret;
1574
1575         /*
1576          * When the pin is an input we don't forcibly keep the bridge
1577          * powered--we just power it on to read the pin.  NOTE: part of
1578          * the reason this works is that the bridge defaults (when
1579          * powered back on) to all 4 GPIOs being configured as GPIO input.
1580          * Also note that if something else is keeping the chip powered the
1581          * pm_runtime functions are lightweight increments of a refcount.
1582          */
1583         pm_runtime_get_sync(pdata->dev);
1584         ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1585         pm_runtime_put_autosuspend(pdata->dev);
1586
1587         if (ret)
1588                 return ret;
1589
1590         return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1591 }
1592
1593 static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1594                                   int val)
1595 {
1596         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1597         int ret;
1598
1599         if (!test_bit(offset, pdata->gchip_output)) {
1600                 dev_err(pdata->dev, "Ignoring GPIO set while input\n");
1601                 return;
1602         }
1603
1604         val &= 1;
1605         ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1606                                  BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1607                                  val << (SN_GPIO_OUTPUT_SHIFT + offset));
1608         if (ret)
1609                 dev_warn(pdata->dev,
1610                          "Failed to set bridge GPIO %u: %d\n", offset, ret);
1611 }
1612
1613 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1614                                              unsigned int offset)
1615 {
1616         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1617         int shift = offset * 2;
1618         int ret;
1619
1620         if (!test_and_clear_bit(offset, pdata->gchip_output))
1621                 return 0;
1622
1623         ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1624                                  SN_GPIO_MUX_MASK << shift,
1625                                  SN_GPIO_MUX_INPUT << shift);
1626         if (ret) {
1627                 set_bit(offset, pdata->gchip_output);
1628                 return ret;
1629         }
1630
1631         /*
1632          * NOTE: if nobody else is powering the device this may fully power
1633          * it off and when it comes back it will have lost all state, but
1634          * that's OK because the default is input and we're now an input.
1635          */
1636         pm_runtime_put_autosuspend(pdata->dev);
1637
1638         return 0;
1639 }
1640
1641 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1642                                               unsigned int offset, int val)
1643 {
1644         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1645         int shift = offset * 2;
1646         int ret;
1647
1648         if (test_and_set_bit(offset, pdata->gchip_output))
1649                 return 0;
1650
1651         pm_runtime_get_sync(pdata->dev);
1652
1653         /* Set value first to avoid glitching */
1654         ti_sn_bridge_gpio_set(chip, offset, val);
1655
1656         /* Set direction */
1657         ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1658                                  SN_GPIO_MUX_MASK << shift,
1659                                  SN_GPIO_MUX_OUTPUT << shift);
1660         if (ret) {
1661                 clear_bit(offset, pdata->gchip_output);
1662                 pm_runtime_put_autosuspend(pdata->dev);
1663         }
1664
1665         return ret;
1666 }
1667
1668 static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset)
1669 {
1670         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1671
1672         if (offset == SN_PWM_GPIO_IDX)
1673                 return ti_sn_pwm_pin_request(pdata);
1674
1675         return 0;
1676 }
1677
1678 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1679 {
1680         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1681
1682         /* We won't keep pm_runtime if we're input, so switch there on free */
1683         ti_sn_bridge_gpio_direction_input(chip, offset);
1684
1685         if (offset == SN_PWM_GPIO_IDX)
1686                 ti_sn_pwm_pin_release(pdata);
1687 }
1688
1689 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1690         "GPIO1", "GPIO2", "GPIO3", "GPIO4"
1691 };
1692
1693 static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1694                             const struct auxiliary_device_id *id)
1695 {
1696         struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1697         int ret;
1698
1699         /* Only init if someone is going to use us as a GPIO controller */
1700         if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1701                 return 0;
1702
1703         pdata->gchip.label = dev_name(pdata->dev);
1704         pdata->gchip.parent = pdata->dev;
1705         pdata->gchip.owner = THIS_MODULE;
1706         pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1707         pdata->gchip.of_gpio_n_cells = 2;
1708         pdata->gchip.request = ti_sn_bridge_gpio_request;
1709         pdata->gchip.free = ti_sn_bridge_gpio_free;
1710         pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1711         pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1712         pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1713         pdata->gchip.get = ti_sn_bridge_gpio_get;
1714         pdata->gchip.set = ti_sn_bridge_gpio_set;
1715         pdata->gchip.can_sleep = true;
1716         pdata->gchip.names = ti_sn_bridge_gpio_names;
1717         pdata->gchip.ngpio = SN_NUM_GPIOS;
1718         pdata->gchip.base = -1;
1719         ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1720         if (ret)
1721                 dev_err(pdata->dev, "can't add gpio chip\n");
1722
1723         return ret;
1724 }
1725
1726 static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1727         { .name = "ti_sn65dsi86.gpio", },
1728         {},
1729 };
1730
1731 MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1732
1733 static struct auxiliary_driver ti_sn_gpio_driver = {
1734         .name = "gpio",
1735         .probe = ti_sn_gpio_probe,
1736         .id_table = ti_sn_gpio_id_table,
1737 };
1738
1739 static int __init ti_sn_gpio_register(void)
1740 {
1741         return auxiliary_driver_register(&ti_sn_gpio_driver);
1742 }
1743
1744 static void ti_sn_gpio_unregister(void)
1745 {
1746         auxiliary_driver_unregister(&ti_sn_gpio_driver);
1747 }
1748
1749 #else
1750
1751 static inline int ti_sn_gpio_register(void) { return 0; }
1752 static inline void ti_sn_gpio_unregister(void) {}
1753
1754 #endif
1755
1756 /* -----------------------------------------------------------------------------
1757  * Probe & Remove
1758  */
1759
1760 static void ti_sn65dsi86_runtime_disable(void *data)
1761 {
1762         pm_runtime_dont_use_autosuspend(data);
1763         pm_runtime_disable(data);
1764 }
1765
1766 static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
1767 {
1768         unsigned int i;
1769         const char * const ti_sn_bridge_supply_names[] = {
1770                 "vcca", "vcc", "vccio", "vpll",
1771         };
1772
1773         for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
1774                 pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
1775
1776         return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
1777                                        pdata->supplies);
1778 }
1779
1780 static int ti_sn65dsi86_probe(struct i2c_client *client,
1781                               const struct i2c_device_id *id)
1782 {
1783         struct device *dev = &client->dev;
1784         struct ti_sn65dsi86 *pdata;
1785         int ret;
1786
1787         if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1788                 DRM_ERROR("device doesn't support I2C\n");
1789                 return -ENODEV;
1790         }
1791
1792         pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL);
1793         if (!pdata)
1794                 return -ENOMEM;
1795         dev_set_drvdata(dev, pdata);
1796         pdata->dev = dev;
1797
1798         mutex_init(&pdata->comms_mutex);
1799
1800         pdata->regmap = devm_regmap_init_i2c(client,
1801                                              &ti_sn65dsi86_regmap_config);
1802         if (IS_ERR(pdata->regmap))
1803                 return dev_err_probe(dev, PTR_ERR(pdata->regmap),
1804                                      "regmap i2c init failed\n");
1805
1806         pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
1807                                                      GPIOD_OUT_LOW);
1808         if (IS_ERR(pdata->enable_gpio))
1809                 return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
1810                                      "failed to get enable gpio from DT\n");
1811
1812         ret = ti_sn65dsi86_parse_regulators(pdata);
1813         if (ret)
1814                 return dev_err_probe(dev, ret, "failed to parse regulators\n");
1815
1816         pdata->refclk = devm_clk_get_optional(dev, "refclk");
1817         if (IS_ERR(pdata->refclk))
1818                 return dev_err_probe(dev, PTR_ERR(pdata->refclk),
1819                                      "failed to get reference clock\n");
1820
1821         pm_runtime_enable(dev);
1822         pm_runtime_set_autosuspend_delay(pdata->dev, 500);
1823         pm_runtime_use_autosuspend(pdata->dev);
1824         ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
1825         if (ret)
1826                 return ret;
1827
1828         ti_sn65dsi86_debugfs_init(pdata);
1829
1830         /*
1831          * Break ourselves up into a collection of aux devices. The only real
1832          * motiviation here is to solve the chicken-and-egg problem of probe
1833          * ordering. The bridge wants the panel to be there when it probes.
1834          * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
1835          * when it probes. The panel and maybe backlight might want the DDC
1836          * bus or the pwm_chip. Having sub-devices allows the some sub devices
1837          * to finish probing even if others return -EPROBE_DEFER and gets us
1838          * around the problems.
1839          */
1840
1841         if (IS_ENABLED(CONFIG_OF_GPIO)) {
1842                 ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
1843                 if (ret)
1844                         return ret;
1845         }
1846
1847         if (IS_ENABLED(CONFIG_PWM)) {
1848                 ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm");
1849                 if (ret)
1850                         return ret;
1851         }
1852
1853         /*
1854          * NOTE: At the end of the AUX channel probe we'll add the aux device
1855          * for the bridge. This is because the bridge can't be used until the
1856          * AUX channel is there and this is a very simple solution to the
1857          * dependency problem.
1858          */
1859         return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
1860 }
1861
1862 static struct i2c_device_id ti_sn65dsi86_id[] = {
1863         { "ti,sn65dsi86", 0},
1864         {},
1865 };
1866 MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
1867
1868 static const struct of_device_id ti_sn65dsi86_match_table[] = {
1869         {.compatible = "ti,sn65dsi86"},
1870         {},
1871 };
1872 MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
1873
1874 static struct i2c_driver ti_sn65dsi86_driver = {
1875         .driver = {
1876                 .name = "ti_sn65dsi86",
1877                 .of_match_table = ti_sn65dsi86_match_table,
1878                 .pm = &ti_sn65dsi86_pm_ops,
1879         },
1880         .probe = ti_sn65dsi86_probe,
1881         .id_table = ti_sn65dsi86_id,
1882 };
1883
1884 static int __init ti_sn65dsi86_init(void)
1885 {
1886         int ret;
1887
1888         ret = i2c_add_driver(&ti_sn65dsi86_driver);
1889         if (ret)
1890                 return ret;
1891
1892         ret = ti_sn_gpio_register();
1893         if (ret)
1894                 goto err_main_was_registered;
1895
1896         ret = ti_sn_pwm_register();
1897         if (ret)
1898                 goto err_gpio_was_registered;
1899
1900         ret = auxiliary_driver_register(&ti_sn_aux_driver);
1901         if (ret)
1902                 goto err_pwm_was_registered;
1903
1904         ret = auxiliary_driver_register(&ti_sn_bridge_driver);
1905         if (ret)
1906                 goto err_aux_was_registered;
1907
1908         return 0;
1909
1910 err_aux_was_registered:
1911         auxiliary_driver_unregister(&ti_sn_aux_driver);
1912 err_pwm_was_registered:
1913         ti_sn_pwm_unregister();
1914 err_gpio_was_registered:
1915         ti_sn_gpio_unregister();
1916 err_main_was_registered:
1917         i2c_del_driver(&ti_sn65dsi86_driver);
1918
1919         return ret;
1920 }
1921 module_init(ti_sn65dsi86_init);
1922
1923 static void __exit ti_sn65dsi86_exit(void)
1924 {
1925         auxiliary_driver_unregister(&ti_sn_bridge_driver);
1926         auxiliary_driver_unregister(&ti_sn_aux_driver);
1927         ti_sn_pwm_unregister();
1928         ti_sn_gpio_unregister();
1929         i2c_del_driver(&ti_sn65dsi86_driver);
1930 }
1931 module_exit(ti_sn65dsi86_exit);
1932
1933 MODULE_AUTHOR("Sandeep Panda <[email protected]>");
1934 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
1935 MODULE_LICENSE("GPL v2");
This page took 0.147684 seconds and 4 git commands to generate.