]> Git Repo - J-linux.git/blob - arch/x86/events/intel/core.c
arch/x86: Fix typos
[J-linux.git] / arch / x86 / events / intel / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 #include <linux/kvm_host.h>
18
19 #include <asm/cpufeature.h>
20 #include <asm/hardirq.h>
21 #include <asm/intel-family.h>
22 #include <asm/intel_pt.h>
23 #include <asm/apic.h>
24 #include <asm/cpu_device_id.h>
25
26 #include "../perf_event.h"
27
28 /*
29  * Intel PerfMon, used on Core and later.
30  */
31 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
32 {
33         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
34         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
35         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
36         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
37         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
38         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
39         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
40         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
41 };
42
43 static struct event_constraint intel_core_event_constraints[] __read_mostly =
44 {
45         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
46         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
47         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
48         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
49         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
50         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
51         EVENT_CONSTRAINT_END
52 };
53
54 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
55 {
56         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
57         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
58         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
59         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
60         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
61         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
62         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
63         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
64         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
65         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
66         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
67         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
68         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
69         EVENT_CONSTRAINT_END
70 };
71
72 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
73 {
74         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
75         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
76         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
77         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
78         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
79         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
80         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
81         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
82         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
83         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
84         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
85         EVENT_CONSTRAINT_END
86 };
87
88 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
89 {
90         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
91         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
92         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
93         EVENT_EXTRA_END
94 };
95
96 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
97 {
98         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
99         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
100         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
101         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
102         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
103         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
104         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
105         EVENT_CONSTRAINT_END
106 };
107
108 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
109 {
110         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
111         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
112         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
113         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
114         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
115         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
117         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
118         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
119         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
120         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
121         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
122
123         /*
124          * When HT is off these events can only run on the bottom 4 counters
125          * When HT is on, they are impacted by the HT bug and require EXCL access
126          */
127         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
128         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
129         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
130         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
131
132         EVENT_CONSTRAINT_END
133 };
134
135 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
136 {
137         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
138         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
139         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
140         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
141         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
142         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
143         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
144         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
145         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
146         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
147         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
148         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
149         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
150
151         /*
152          * When HT is off these events can only run on the bottom 4 counters
153          * When HT is on, they are impacted by the HT bug and require EXCL access
154          */
155         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
156         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
157         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
158         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
159
160         EVENT_CONSTRAINT_END
161 };
162
163 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
164 {
165         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
166         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
167         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
168         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
169         EVENT_EXTRA_END
170 };
171
172 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
173 {
174         EVENT_CONSTRAINT_END
175 };
176
177 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
178 {
179         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
180         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
181         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
182         EVENT_CONSTRAINT_END
183 };
184
185 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
186 {
187         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
188         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
189         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
190         FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
191         FIXED_EVENT_CONSTRAINT(0x0500, 4),
192         FIXED_EVENT_CONSTRAINT(0x0600, 5),
193         FIXED_EVENT_CONSTRAINT(0x0700, 6),
194         FIXED_EVENT_CONSTRAINT(0x0800, 7),
195         FIXED_EVENT_CONSTRAINT(0x0900, 8),
196         FIXED_EVENT_CONSTRAINT(0x0a00, 9),
197         FIXED_EVENT_CONSTRAINT(0x0b00, 10),
198         FIXED_EVENT_CONSTRAINT(0x0c00, 11),
199         FIXED_EVENT_CONSTRAINT(0x0d00, 12),
200         FIXED_EVENT_CONSTRAINT(0x0e00, 13),
201         FIXED_EVENT_CONSTRAINT(0x0f00, 14),
202         FIXED_EVENT_CONSTRAINT(0x1000, 15),
203         EVENT_CONSTRAINT_END
204 };
205
206 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
207 {
208         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
209         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
210         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
211         EVENT_CONSTRAINT_END
212 };
213
214 static struct event_constraint intel_grt_event_constraints[] __read_mostly = {
215         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
216         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
217         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
218         FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
219         EVENT_CONSTRAINT_END
220 };
221
222 static struct event_constraint intel_skl_event_constraints[] = {
223         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
224         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
225         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
226         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
227
228         /*
229          * when HT is off, these can only run on the bottom 4 counters
230          */
231         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
232         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
233         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
234         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
235         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
236
237         EVENT_CONSTRAINT_END
238 };
239
240 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
241         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
242         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
243         EVENT_EXTRA_END
244 };
245
246 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
247         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
248         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
249         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
250         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
251         EVENT_EXTRA_END
252 };
253
254 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
255         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
256         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
257         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
258         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
259         EVENT_EXTRA_END
260 };
261
262 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
263         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
264         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
265         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
266         /*
267          * Note the low 8 bits eventsel code is not a continuous field, containing
268          * some #GPing bits. These are masked out.
269          */
270         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
271         EVENT_EXTRA_END
272 };
273
274 static struct event_constraint intel_icl_event_constraints[] = {
275         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
276         FIXED_EVENT_CONSTRAINT(0x01c0, 0),      /* old INST_RETIRED.PREC_DIST */
277         FIXED_EVENT_CONSTRAINT(0x0100, 0),      /* INST_RETIRED.PREC_DIST */
278         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
279         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
280         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
281         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
282         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
283         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
284         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
285         INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
286         INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
287         INTEL_EVENT_CONSTRAINT(0x32, 0xf),      /* SW_PREFETCH_ACCESS.* */
288         INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
289         INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
290         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
291         INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
292         INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
293         INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
294         INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
295         INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
296         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
297         INTEL_EVENT_CONSTRAINT(0xef, 0xf),
298         INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
299         EVENT_CONSTRAINT_END
300 };
301
302 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
303         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
304         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
305         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
306         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
307         EVENT_EXTRA_END
308 };
309
310 static struct extra_reg intel_glc_extra_regs[] __read_mostly = {
311         INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
312         INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
313         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
314         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
315         INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
316         INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
317         EVENT_EXTRA_END
318 };
319
320 static struct event_constraint intel_glc_event_constraints[] = {
321         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
322         FIXED_EVENT_CONSTRAINT(0x0100, 0),      /* INST_RETIRED.PREC_DIST */
323         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
324         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
325         FIXED_EVENT_CONSTRAINT(0x013c, 2),      /* CPU_CLK_UNHALTED.REF_TSC_P */
326         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
327         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
328         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
329         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
330         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
331         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
332         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
333         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
334         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
335
336         INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
337         INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
338         /*
339          * Generally event codes < 0x90 are restricted to counters 0-3.
340          * The 0x2E and 0x3C are exception, which has no restriction.
341          */
342         INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
343
344         INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
345         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
346         INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
347         INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
348         INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
349         INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
350         INTEL_EVENT_CONSTRAINT(0xce, 0x1),
351         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
352         /*
353          * Generally event codes >= 0x90 are likely to have no restrictions.
354          * The exception are defined as above.
355          */
356         INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
357
358         EVENT_CONSTRAINT_END
359 };
360
361 static struct extra_reg intel_rwc_extra_regs[] __read_mostly = {
362         INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
363         INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
364         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
365         INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
366         INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
367         INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
368         INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
369         EVENT_EXTRA_END
370 };
371
372 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
373 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
374 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
375
376 static struct attribute *nhm_mem_events_attrs[] = {
377         EVENT_PTR(mem_ld_nhm),
378         NULL,
379 };
380
381 /*
382  * topdown events for Intel Core CPUs.
383  *
384  * The events are all in slots, which is a free slot in a 4 wide
385  * pipeline. Some events are already reported in slots, for cycle
386  * events we multiply by the pipeline width (4).
387  *
388  * With Hyper Threading on, topdown metrics are either summed or averaged
389  * between the threads of a core: (count_t0 + count_t1).
390  *
391  * For the average case the metric is always scaled to pipeline width,
392  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
393  */
394
395 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
396         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
397         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
398 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
399 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
400         "event=0xe,umask=0x1");                 /* uops_issued.any */
401 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
402         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
403 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
404         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
405 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
406         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
407         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
408 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
409         "4", "2");
410
411 EVENT_ATTR_STR(slots,                   slots,                  "event=0x00,umask=0x4");
412 EVENT_ATTR_STR(topdown-retiring,        td_retiring,            "event=0x00,umask=0x80");
413 EVENT_ATTR_STR(topdown-bad-spec,        td_bad_spec,            "event=0x00,umask=0x81");
414 EVENT_ATTR_STR(topdown-fe-bound,        td_fe_bound,            "event=0x00,umask=0x82");
415 EVENT_ATTR_STR(topdown-be-bound,        td_be_bound,            "event=0x00,umask=0x83");
416 EVENT_ATTR_STR(topdown-heavy-ops,       td_heavy_ops,           "event=0x00,umask=0x84");
417 EVENT_ATTR_STR(topdown-br-mispredict,   td_br_mispredict,       "event=0x00,umask=0x85");
418 EVENT_ATTR_STR(topdown-fetch-lat,       td_fetch_lat,           "event=0x00,umask=0x86");
419 EVENT_ATTR_STR(topdown-mem-bound,       td_mem_bound,           "event=0x00,umask=0x87");
420
421 static struct attribute *snb_events_attrs[] = {
422         EVENT_PTR(td_slots_issued),
423         EVENT_PTR(td_slots_retired),
424         EVENT_PTR(td_fetch_bubbles),
425         EVENT_PTR(td_total_slots),
426         EVENT_PTR(td_total_slots_scale),
427         EVENT_PTR(td_recovery_bubbles),
428         EVENT_PTR(td_recovery_bubbles_scale),
429         NULL,
430 };
431
432 static struct attribute *snb_mem_events_attrs[] = {
433         EVENT_PTR(mem_ld_snb),
434         EVENT_PTR(mem_st_snb),
435         NULL,
436 };
437
438 static struct event_constraint intel_hsw_event_constraints[] = {
439         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
440         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
441         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
442         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
443         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
444         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
445         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
446         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
447         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
448         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
449         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
450         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
451
452         /*
453          * When HT is off these events can only run on the bottom 4 counters
454          * When HT is on, they are impacted by the HT bug and require EXCL access
455          */
456         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
457         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
458         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
459         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
460
461         EVENT_CONSTRAINT_END
462 };
463
464 static struct event_constraint intel_bdw_event_constraints[] = {
465         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
466         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
467         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
468         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
469         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
470         /*
471          * when HT is off, these can only run on the bottom 4 counters
472          */
473         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
474         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
475         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
476         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
477         EVENT_CONSTRAINT_END
478 };
479
480 static u64 intel_pmu_event_map(int hw_event)
481 {
482         return intel_perfmon_event_map[hw_event];
483 }
484
485 static __initconst const u64 glc_hw_cache_event_ids
486                                 [PERF_COUNT_HW_CACHE_MAX]
487                                 [PERF_COUNT_HW_CACHE_OP_MAX]
488                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
489 {
490  [ C(L1D ) ] = {
491         [ C(OP_READ) ] = {
492                 [ C(RESULT_ACCESS) ] = 0x81d0,
493                 [ C(RESULT_MISS)   ] = 0xe124,
494         },
495         [ C(OP_WRITE) ] = {
496                 [ C(RESULT_ACCESS) ] = 0x82d0,
497         },
498  },
499  [ C(L1I ) ] = {
500         [ C(OP_READ) ] = {
501                 [ C(RESULT_MISS)   ] = 0xe424,
502         },
503         [ C(OP_WRITE) ] = {
504                 [ C(RESULT_ACCESS) ] = -1,
505                 [ C(RESULT_MISS)   ] = -1,
506         },
507  },
508  [ C(LL  ) ] = {
509         [ C(OP_READ) ] = {
510                 [ C(RESULT_ACCESS) ] = 0x12a,
511                 [ C(RESULT_MISS)   ] = 0x12a,
512         },
513         [ C(OP_WRITE) ] = {
514                 [ C(RESULT_ACCESS) ] = 0x12a,
515                 [ C(RESULT_MISS)   ] = 0x12a,
516         },
517  },
518  [ C(DTLB) ] = {
519         [ C(OP_READ) ] = {
520                 [ C(RESULT_ACCESS) ] = 0x81d0,
521                 [ C(RESULT_MISS)   ] = 0xe12,
522         },
523         [ C(OP_WRITE) ] = {
524                 [ C(RESULT_ACCESS) ] = 0x82d0,
525                 [ C(RESULT_MISS)   ] = 0xe13,
526         },
527  },
528  [ C(ITLB) ] = {
529         [ C(OP_READ) ] = {
530                 [ C(RESULT_ACCESS) ] = -1,
531                 [ C(RESULT_MISS)   ] = 0xe11,
532         },
533         [ C(OP_WRITE) ] = {
534                 [ C(RESULT_ACCESS) ] = -1,
535                 [ C(RESULT_MISS)   ] = -1,
536         },
537         [ C(OP_PREFETCH) ] = {
538                 [ C(RESULT_ACCESS) ] = -1,
539                 [ C(RESULT_MISS)   ] = -1,
540         },
541  },
542  [ C(BPU ) ] = {
543         [ C(OP_READ) ] = {
544                 [ C(RESULT_ACCESS) ] = 0x4c4,
545                 [ C(RESULT_MISS)   ] = 0x4c5,
546         },
547         [ C(OP_WRITE) ] = {
548                 [ C(RESULT_ACCESS) ] = -1,
549                 [ C(RESULT_MISS)   ] = -1,
550         },
551         [ C(OP_PREFETCH) ] = {
552                 [ C(RESULT_ACCESS) ] = -1,
553                 [ C(RESULT_MISS)   ] = -1,
554         },
555  },
556  [ C(NODE) ] = {
557         [ C(OP_READ) ] = {
558                 [ C(RESULT_ACCESS) ] = 0x12a,
559                 [ C(RESULT_MISS)   ] = 0x12a,
560         },
561  },
562 };
563
564 static __initconst const u64 glc_hw_cache_extra_regs
565                                 [PERF_COUNT_HW_CACHE_MAX]
566                                 [PERF_COUNT_HW_CACHE_OP_MAX]
567                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
568 {
569  [ C(LL  ) ] = {
570         [ C(OP_READ) ] = {
571                 [ C(RESULT_ACCESS) ] = 0x10001,
572                 [ C(RESULT_MISS)   ] = 0x3fbfc00001,
573         },
574         [ C(OP_WRITE) ] = {
575                 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
576                 [ C(RESULT_MISS)   ] = 0x3f3fc00002,
577         },
578  },
579  [ C(NODE) ] = {
580         [ C(OP_READ) ] = {
581                 [ C(RESULT_ACCESS) ] = 0x10c000001,
582                 [ C(RESULT_MISS)   ] = 0x3fb3000001,
583         },
584  },
585 };
586
587 /*
588  * Notes on the events:
589  * - data reads do not include code reads (comparable to earlier tables)
590  * - data counts include speculative execution (except L1 write, dtlb, bpu)
591  * - remote node access includes remote memory, remote cache, remote mmio.
592  * - prefetches are not included in the counts.
593  * - icache miss does not include decoded icache
594  */
595
596 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
597 #define SKL_DEMAND_RFO                  BIT_ULL(1)
598 #define SKL_ANY_RESPONSE                BIT_ULL(16)
599 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
600 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
601 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
602 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
603 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
604 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
605                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
606                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
607                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
608 #define SKL_SPL_HIT                     BIT_ULL(30)
609 #define SKL_SNOOP_NONE                  BIT_ULL(31)
610 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
611 #define SKL_SNOOP_MISS                  BIT_ULL(33)
612 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
613 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
614 #define SKL_SNOOP_HITM                  BIT_ULL(36)
615 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
616 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
617                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
618                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
619                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
620 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
621 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
622                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
623                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
624                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
625 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
626 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
627 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
628                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
629                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
630
631 static __initconst const u64 skl_hw_cache_event_ids
632                                 [PERF_COUNT_HW_CACHE_MAX]
633                                 [PERF_COUNT_HW_CACHE_OP_MAX]
634                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
635 {
636  [ C(L1D ) ] = {
637         [ C(OP_READ) ] = {
638                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
639                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
640         },
641         [ C(OP_WRITE) ] = {
642                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
643                 [ C(RESULT_MISS)   ] = 0x0,
644         },
645         [ C(OP_PREFETCH) ] = {
646                 [ C(RESULT_ACCESS) ] = 0x0,
647                 [ C(RESULT_MISS)   ] = 0x0,
648         },
649  },
650  [ C(L1I ) ] = {
651         [ C(OP_READ) ] = {
652                 [ C(RESULT_ACCESS) ] = 0x0,
653                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
654         },
655         [ C(OP_WRITE) ] = {
656                 [ C(RESULT_ACCESS) ] = -1,
657                 [ C(RESULT_MISS)   ] = -1,
658         },
659         [ C(OP_PREFETCH) ] = {
660                 [ C(RESULT_ACCESS) ] = 0x0,
661                 [ C(RESULT_MISS)   ] = 0x0,
662         },
663  },
664  [ C(LL  ) ] = {
665         [ C(OP_READ) ] = {
666                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
667                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
668         },
669         [ C(OP_WRITE) ] = {
670                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
671                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
672         },
673         [ C(OP_PREFETCH) ] = {
674                 [ C(RESULT_ACCESS) ] = 0x0,
675                 [ C(RESULT_MISS)   ] = 0x0,
676         },
677  },
678  [ C(DTLB) ] = {
679         [ C(OP_READ) ] = {
680                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
681                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
682         },
683         [ C(OP_WRITE) ] = {
684                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
685                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
686         },
687         [ C(OP_PREFETCH) ] = {
688                 [ C(RESULT_ACCESS) ] = 0x0,
689                 [ C(RESULT_MISS)   ] = 0x0,
690         },
691  },
692  [ C(ITLB) ] = {
693         [ C(OP_READ) ] = {
694                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
695                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
696         },
697         [ C(OP_WRITE) ] = {
698                 [ C(RESULT_ACCESS) ] = -1,
699                 [ C(RESULT_MISS)   ] = -1,
700         },
701         [ C(OP_PREFETCH) ] = {
702                 [ C(RESULT_ACCESS) ] = -1,
703                 [ C(RESULT_MISS)   ] = -1,
704         },
705  },
706  [ C(BPU ) ] = {
707         [ C(OP_READ) ] = {
708                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
709                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
710         },
711         [ C(OP_WRITE) ] = {
712                 [ C(RESULT_ACCESS) ] = -1,
713                 [ C(RESULT_MISS)   ] = -1,
714         },
715         [ C(OP_PREFETCH) ] = {
716                 [ C(RESULT_ACCESS) ] = -1,
717                 [ C(RESULT_MISS)   ] = -1,
718         },
719  },
720  [ C(NODE) ] = {
721         [ C(OP_READ) ] = {
722                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
723                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
724         },
725         [ C(OP_WRITE) ] = {
726                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
727                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
728         },
729         [ C(OP_PREFETCH) ] = {
730                 [ C(RESULT_ACCESS) ] = 0x0,
731                 [ C(RESULT_MISS)   ] = 0x0,
732         },
733  },
734 };
735
736 static __initconst const u64 skl_hw_cache_extra_regs
737                                 [PERF_COUNT_HW_CACHE_MAX]
738                                 [PERF_COUNT_HW_CACHE_OP_MAX]
739                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
740 {
741  [ C(LL  ) ] = {
742         [ C(OP_READ) ] = {
743                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
744                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
745                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
746                                        SKL_L3_MISS|SKL_ANY_SNOOP|
747                                        SKL_SUPPLIER_NONE,
748         },
749         [ C(OP_WRITE) ] = {
750                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
751                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
752                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
753                                        SKL_L3_MISS|SKL_ANY_SNOOP|
754                                        SKL_SUPPLIER_NONE,
755         },
756         [ C(OP_PREFETCH) ] = {
757                 [ C(RESULT_ACCESS) ] = 0x0,
758                 [ C(RESULT_MISS)   ] = 0x0,
759         },
760  },
761  [ C(NODE) ] = {
762         [ C(OP_READ) ] = {
763                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
764                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
765                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
766                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
767         },
768         [ C(OP_WRITE) ] = {
769                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
770                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
771                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
772                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
773         },
774         [ C(OP_PREFETCH) ] = {
775                 [ C(RESULT_ACCESS) ] = 0x0,
776                 [ C(RESULT_MISS)   ] = 0x0,
777         },
778  },
779 };
780
781 #define SNB_DMND_DATA_RD        (1ULL << 0)
782 #define SNB_DMND_RFO            (1ULL << 1)
783 #define SNB_DMND_IFETCH         (1ULL << 2)
784 #define SNB_DMND_WB             (1ULL << 3)
785 #define SNB_PF_DATA_RD          (1ULL << 4)
786 #define SNB_PF_RFO              (1ULL << 5)
787 #define SNB_PF_IFETCH           (1ULL << 6)
788 #define SNB_LLC_DATA_RD         (1ULL << 7)
789 #define SNB_LLC_RFO             (1ULL << 8)
790 #define SNB_LLC_IFETCH          (1ULL << 9)
791 #define SNB_BUS_LOCKS           (1ULL << 10)
792 #define SNB_STRM_ST             (1ULL << 11)
793 #define SNB_OTHER               (1ULL << 15)
794 #define SNB_RESP_ANY            (1ULL << 16)
795 #define SNB_NO_SUPP             (1ULL << 17)
796 #define SNB_LLC_HITM            (1ULL << 18)
797 #define SNB_LLC_HITE            (1ULL << 19)
798 #define SNB_LLC_HITS            (1ULL << 20)
799 #define SNB_LLC_HITF            (1ULL << 21)
800 #define SNB_LOCAL               (1ULL << 22)
801 #define SNB_REMOTE              (0xffULL << 23)
802 #define SNB_SNP_NONE            (1ULL << 31)
803 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
804 #define SNB_SNP_MISS            (1ULL << 33)
805 #define SNB_NO_FWD              (1ULL << 34)
806 #define SNB_SNP_FWD             (1ULL << 35)
807 #define SNB_HITM                (1ULL << 36)
808 #define SNB_NON_DRAM            (1ULL << 37)
809
810 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
811 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
812 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
813
814 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
815                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
816                                  SNB_HITM)
817
818 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
819 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
820
821 #define SNB_L3_ACCESS           SNB_RESP_ANY
822 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
823
824 static __initconst const u64 snb_hw_cache_extra_regs
825                                 [PERF_COUNT_HW_CACHE_MAX]
826                                 [PERF_COUNT_HW_CACHE_OP_MAX]
827                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
828 {
829  [ C(LL  ) ] = {
830         [ C(OP_READ) ] = {
831                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
832                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
833         },
834         [ C(OP_WRITE) ] = {
835                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
836                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
837         },
838         [ C(OP_PREFETCH) ] = {
839                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
840                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
841         },
842  },
843  [ C(NODE) ] = {
844         [ C(OP_READ) ] = {
845                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
846                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
847         },
848         [ C(OP_WRITE) ] = {
849                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
850                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
851         },
852         [ C(OP_PREFETCH) ] = {
853                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
854                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
855         },
856  },
857 };
858
859 static __initconst const u64 snb_hw_cache_event_ids
860                                 [PERF_COUNT_HW_CACHE_MAX]
861                                 [PERF_COUNT_HW_CACHE_OP_MAX]
862                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
863 {
864  [ C(L1D) ] = {
865         [ C(OP_READ) ] = {
866                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
867                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
868         },
869         [ C(OP_WRITE) ] = {
870                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
871                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
872         },
873         [ C(OP_PREFETCH) ] = {
874                 [ C(RESULT_ACCESS) ] = 0x0,
875                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
876         },
877  },
878  [ C(L1I ) ] = {
879         [ C(OP_READ) ] = {
880                 [ C(RESULT_ACCESS) ] = 0x0,
881                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
882         },
883         [ C(OP_WRITE) ] = {
884                 [ C(RESULT_ACCESS) ] = -1,
885                 [ C(RESULT_MISS)   ] = -1,
886         },
887         [ C(OP_PREFETCH) ] = {
888                 [ C(RESULT_ACCESS) ] = 0x0,
889                 [ C(RESULT_MISS)   ] = 0x0,
890         },
891  },
892  [ C(LL  ) ] = {
893         [ C(OP_READ) ] = {
894                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
895                 [ C(RESULT_ACCESS) ] = 0x01b7,
896                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
897                 [ C(RESULT_MISS)   ] = 0x01b7,
898         },
899         [ C(OP_WRITE) ] = {
900                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
901                 [ C(RESULT_ACCESS) ] = 0x01b7,
902                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
903                 [ C(RESULT_MISS)   ] = 0x01b7,
904         },
905         [ C(OP_PREFETCH) ] = {
906                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
907                 [ C(RESULT_ACCESS) ] = 0x01b7,
908                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
909                 [ C(RESULT_MISS)   ] = 0x01b7,
910         },
911  },
912  [ C(DTLB) ] = {
913         [ C(OP_READ) ] = {
914                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
915                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
916         },
917         [ C(OP_WRITE) ] = {
918                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
919                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
920         },
921         [ C(OP_PREFETCH) ] = {
922                 [ C(RESULT_ACCESS) ] = 0x0,
923                 [ C(RESULT_MISS)   ] = 0x0,
924         },
925  },
926  [ C(ITLB) ] = {
927         [ C(OP_READ) ] = {
928                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
929                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
930         },
931         [ C(OP_WRITE) ] = {
932                 [ C(RESULT_ACCESS) ] = -1,
933                 [ C(RESULT_MISS)   ] = -1,
934         },
935         [ C(OP_PREFETCH) ] = {
936                 [ C(RESULT_ACCESS) ] = -1,
937                 [ C(RESULT_MISS)   ] = -1,
938         },
939  },
940  [ C(BPU ) ] = {
941         [ C(OP_READ) ] = {
942                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
943                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
944         },
945         [ C(OP_WRITE) ] = {
946                 [ C(RESULT_ACCESS) ] = -1,
947                 [ C(RESULT_MISS)   ] = -1,
948         },
949         [ C(OP_PREFETCH) ] = {
950                 [ C(RESULT_ACCESS) ] = -1,
951                 [ C(RESULT_MISS)   ] = -1,
952         },
953  },
954  [ C(NODE) ] = {
955         [ C(OP_READ) ] = {
956                 [ C(RESULT_ACCESS) ] = 0x01b7,
957                 [ C(RESULT_MISS)   ] = 0x01b7,
958         },
959         [ C(OP_WRITE) ] = {
960                 [ C(RESULT_ACCESS) ] = 0x01b7,
961                 [ C(RESULT_MISS)   ] = 0x01b7,
962         },
963         [ C(OP_PREFETCH) ] = {
964                 [ C(RESULT_ACCESS) ] = 0x01b7,
965                 [ C(RESULT_MISS)   ] = 0x01b7,
966         },
967  },
968
969 };
970
971 /*
972  * Notes on the events:
973  * - data reads do not include code reads (comparable to earlier tables)
974  * - data counts include speculative execution (except L1 write, dtlb, bpu)
975  * - remote node access includes remote memory, remote cache, remote mmio.
976  * - prefetches are not included in the counts because they are not
977  *   reliably counted.
978  */
979
980 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
981 #define HSW_DEMAND_RFO                  BIT_ULL(1)
982 #define HSW_ANY_RESPONSE                BIT_ULL(16)
983 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
984 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
985 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
986 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
987 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
988 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
989                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
990                                          HSW_L3_MISS_REMOTE_HOP2P)
991 #define HSW_SNOOP_NONE                  BIT_ULL(31)
992 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
993 #define HSW_SNOOP_MISS                  BIT_ULL(33)
994 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
995 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
996 #define HSW_SNOOP_HITM                  BIT_ULL(36)
997 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
998 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
999                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
1000                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
1001                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
1002 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
1003 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
1004 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
1005 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
1006                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
1007 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
1008
1009 #define BDW_L3_MISS_LOCAL               BIT(26)
1010 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
1011                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1012                                          HSW_L3_MISS_REMOTE_HOP2P)
1013
1014
1015 static __initconst const u64 hsw_hw_cache_event_ids
1016                                 [PERF_COUNT_HW_CACHE_MAX]
1017                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1018                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1019 {
1020  [ C(L1D ) ] = {
1021         [ C(OP_READ) ] = {
1022                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1023                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
1024         },
1025         [ C(OP_WRITE) ] = {
1026                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1027                 [ C(RESULT_MISS)   ] = 0x0,
1028         },
1029         [ C(OP_PREFETCH) ] = {
1030                 [ C(RESULT_ACCESS) ] = 0x0,
1031                 [ C(RESULT_MISS)   ] = 0x0,
1032         },
1033  },
1034  [ C(L1I ) ] = {
1035         [ C(OP_READ) ] = {
1036                 [ C(RESULT_ACCESS) ] = 0x0,
1037                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
1038         },
1039         [ C(OP_WRITE) ] = {
1040                 [ C(RESULT_ACCESS) ] = -1,
1041                 [ C(RESULT_MISS)   ] = -1,
1042         },
1043         [ C(OP_PREFETCH) ] = {
1044                 [ C(RESULT_ACCESS) ] = 0x0,
1045                 [ C(RESULT_MISS)   ] = 0x0,
1046         },
1047  },
1048  [ C(LL  ) ] = {
1049         [ C(OP_READ) ] = {
1050                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1051                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1052         },
1053         [ C(OP_WRITE) ] = {
1054                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1055                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1056         },
1057         [ C(OP_PREFETCH) ] = {
1058                 [ C(RESULT_ACCESS) ] = 0x0,
1059                 [ C(RESULT_MISS)   ] = 0x0,
1060         },
1061  },
1062  [ C(DTLB) ] = {
1063         [ C(OP_READ) ] = {
1064                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1065                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1066         },
1067         [ C(OP_WRITE) ] = {
1068                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1069                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1070         },
1071         [ C(OP_PREFETCH) ] = {
1072                 [ C(RESULT_ACCESS) ] = 0x0,
1073                 [ C(RESULT_MISS)   ] = 0x0,
1074         },
1075  },
1076  [ C(ITLB) ] = {
1077         [ C(OP_READ) ] = {
1078                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
1079                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1080         },
1081         [ C(OP_WRITE) ] = {
1082                 [ C(RESULT_ACCESS) ] = -1,
1083                 [ C(RESULT_MISS)   ] = -1,
1084         },
1085         [ C(OP_PREFETCH) ] = {
1086                 [ C(RESULT_ACCESS) ] = -1,
1087                 [ C(RESULT_MISS)   ] = -1,
1088         },
1089  },
1090  [ C(BPU ) ] = {
1091         [ C(OP_READ) ] = {
1092                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
1093                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
1094         },
1095         [ C(OP_WRITE) ] = {
1096                 [ C(RESULT_ACCESS) ] = -1,
1097                 [ C(RESULT_MISS)   ] = -1,
1098         },
1099         [ C(OP_PREFETCH) ] = {
1100                 [ C(RESULT_ACCESS) ] = -1,
1101                 [ C(RESULT_MISS)   ] = -1,
1102         },
1103  },
1104  [ C(NODE) ] = {
1105         [ C(OP_READ) ] = {
1106                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1107                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1108         },
1109         [ C(OP_WRITE) ] = {
1110                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1111                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1112         },
1113         [ C(OP_PREFETCH) ] = {
1114                 [ C(RESULT_ACCESS) ] = 0x0,
1115                 [ C(RESULT_MISS)   ] = 0x0,
1116         },
1117  },
1118 };
1119
1120 static __initconst const u64 hsw_hw_cache_extra_regs
1121                                 [PERF_COUNT_HW_CACHE_MAX]
1122                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1123                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1124 {
1125  [ C(LL  ) ] = {
1126         [ C(OP_READ) ] = {
1127                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1128                                        HSW_LLC_ACCESS,
1129                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1130                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1131         },
1132         [ C(OP_WRITE) ] = {
1133                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1134                                        HSW_LLC_ACCESS,
1135                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1136                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1137         },
1138         [ C(OP_PREFETCH) ] = {
1139                 [ C(RESULT_ACCESS) ] = 0x0,
1140                 [ C(RESULT_MISS)   ] = 0x0,
1141         },
1142  },
1143  [ C(NODE) ] = {
1144         [ C(OP_READ) ] = {
1145                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1146                                        HSW_L3_MISS_LOCAL_DRAM|
1147                                        HSW_SNOOP_DRAM,
1148                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1149                                        HSW_L3_MISS_REMOTE|
1150                                        HSW_SNOOP_DRAM,
1151         },
1152         [ C(OP_WRITE) ] = {
1153                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1154                                        HSW_L3_MISS_LOCAL_DRAM|
1155                                        HSW_SNOOP_DRAM,
1156                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1157                                        HSW_L3_MISS_REMOTE|
1158                                        HSW_SNOOP_DRAM,
1159         },
1160         [ C(OP_PREFETCH) ] = {
1161                 [ C(RESULT_ACCESS) ] = 0x0,
1162                 [ C(RESULT_MISS)   ] = 0x0,
1163         },
1164  },
1165 };
1166
1167 static __initconst const u64 westmere_hw_cache_event_ids
1168                                 [PERF_COUNT_HW_CACHE_MAX]
1169                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1170                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1171 {
1172  [ C(L1D) ] = {
1173         [ C(OP_READ) ] = {
1174                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1175                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1176         },
1177         [ C(OP_WRITE) ] = {
1178                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1179                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1180         },
1181         [ C(OP_PREFETCH) ] = {
1182                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1183                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1184         },
1185  },
1186  [ C(L1I ) ] = {
1187         [ C(OP_READ) ] = {
1188                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1189                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1190         },
1191         [ C(OP_WRITE) ] = {
1192                 [ C(RESULT_ACCESS) ] = -1,
1193                 [ C(RESULT_MISS)   ] = -1,
1194         },
1195         [ C(OP_PREFETCH) ] = {
1196                 [ C(RESULT_ACCESS) ] = 0x0,
1197                 [ C(RESULT_MISS)   ] = 0x0,
1198         },
1199  },
1200  [ C(LL  ) ] = {
1201         [ C(OP_READ) ] = {
1202                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1203                 [ C(RESULT_ACCESS) ] = 0x01b7,
1204                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1205                 [ C(RESULT_MISS)   ] = 0x01b7,
1206         },
1207         /*
1208          * Use RFO, not WRITEBACK, because a write miss would typically occur
1209          * on RFO.
1210          */
1211         [ C(OP_WRITE) ] = {
1212                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1213                 [ C(RESULT_ACCESS) ] = 0x01b7,
1214                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1215                 [ C(RESULT_MISS)   ] = 0x01b7,
1216         },
1217         [ C(OP_PREFETCH) ] = {
1218                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1219                 [ C(RESULT_ACCESS) ] = 0x01b7,
1220                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1221                 [ C(RESULT_MISS)   ] = 0x01b7,
1222         },
1223  },
1224  [ C(DTLB) ] = {
1225         [ C(OP_READ) ] = {
1226                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1227                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1228         },
1229         [ C(OP_WRITE) ] = {
1230                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1231                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1232         },
1233         [ C(OP_PREFETCH) ] = {
1234                 [ C(RESULT_ACCESS) ] = 0x0,
1235                 [ C(RESULT_MISS)   ] = 0x0,
1236         },
1237  },
1238  [ C(ITLB) ] = {
1239         [ C(OP_READ) ] = {
1240                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1241                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1242         },
1243         [ C(OP_WRITE) ] = {
1244                 [ C(RESULT_ACCESS) ] = -1,
1245                 [ C(RESULT_MISS)   ] = -1,
1246         },
1247         [ C(OP_PREFETCH) ] = {
1248                 [ C(RESULT_ACCESS) ] = -1,
1249                 [ C(RESULT_MISS)   ] = -1,
1250         },
1251  },
1252  [ C(BPU ) ] = {
1253         [ C(OP_READ) ] = {
1254                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1255                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1256         },
1257         [ C(OP_WRITE) ] = {
1258                 [ C(RESULT_ACCESS) ] = -1,
1259                 [ C(RESULT_MISS)   ] = -1,
1260         },
1261         [ C(OP_PREFETCH) ] = {
1262                 [ C(RESULT_ACCESS) ] = -1,
1263                 [ C(RESULT_MISS)   ] = -1,
1264         },
1265  },
1266  [ C(NODE) ] = {
1267         [ C(OP_READ) ] = {
1268                 [ C(RESULT_ACCESS) ] = 0x01b7,
1269                 [ C(RESULT_MISS)   ] = 0x01b7,
1270         },
1271         [ C(OP_WRITE) ] = {
1272                 [ C(RESULT_ACCESS) ] = 0x01b7,
1273                 [ C(RESULT_MISS)   ] = 0x01b7,
1274         },
1275         [ C(OP_PREFETCH) ] = {
1276                 [ C(RESULT_ACCESS) ] = 0x01b7,
1277                 [ C(RESULT_MISS)   ] = 0x01b7,
1278         },
1279  },
1280 };
1281
1282 /*
1283  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1284  * See IA32 SDM Vol 3B 30.6.1.3
1285  */
1286
1287 #define NHM_DMND_DATA_RD        (1 << 0)
1288 #define NHM_DMND_RFO            (1 << 1)
1289 #define NHM_DMND_IFETCH         (1 << 2)
1290 #define NHM_DMND_WB             (1 << 3)
1291 #define NHM_PF_DATA_RD          (1 << 4)
1292 #define NHM_PF_DATA_RFO         (1 << 5)
1293 #define NHM_PF_IFETCH           (1 << 6)
1294 #define NHM_OFFCORE_OTHER       (1 << 7)
1295 #define NHM_UNCORE_HIT          (1 << 8)
1296 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1297 #define NHM_OTHER_CORE_HITM     (1 << 10)
1298                                 /* reserved */
1299 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1300 #define NHM_REMOTE_DRAM         (1 << 13)
1301 #define NHM_LOCAL_DRAM          (1 << 14)
1302 #define NHM_NON_DRAM            (1 << 15)
1303
1304 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1305 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1306
1307 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1308 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1309 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1310
1311 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1312 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1313 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1314
1315 static __initconst const u64 nehalem_hw_cache_extra_regs
1316                                 [PERF_COUNT_HW_CACHE_MAX]
1317                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1318                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1319 {
1320  [ C(LL  ) ] = {
1321         [ C(OP_READ) ] = {
1322                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1323                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1324         },
1325         [ C(OP_WRITE) ] = {
1326                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1327                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1328         },
1329         [ C(OP_PREFETCH) ] = {
1330                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1331                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1332         },
1333  },
1334  [ C(NODE) ] = {
1335         [ C(OP_READ) ] = {
1336                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1337                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1338         },
1339         [ C(OP_WRITE) ] = {
1340                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1341                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1342         },
1343         [ C(OP_PREFETCH) ] = {
1344                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1345                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1346         },
1347  },
1348 };
1349
1350 static __initconst const u64 nehalem_hw_cache_event_ids
1351                                 [PERF_COUNT_HW_CACHE_MAX]
1352                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1353                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1354 {
1355  [ C(L1D) ] = {
1356         [ C(OP_READ) ] = {
1357                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1358                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1359         },
1360         [ C(OP_WRITE) ] = {
1361                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1362                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1363         },
1364         [ C(OP_PREFETCH) ] = {
1365                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1366                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1367         },
1368  },
1369  [ C(L1I ) ] = {
1370         [ C(OP_READ) ] = {
1371                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1372                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1373         },
1374         [ C(OP_WRITE) ] = {
1375                 [ C(RESULT_ACCESS) ] = -1,
1376                 [ C(RESULT_MISS)   ] = -1,
1377         },
1378         [ C(OP_PREFETCH) ] = {
1379                 [ C(RESULT_ACCESS) ] = 0x0,
1380                 [ C(RESULT_MISS)   ] = 0x0,
1381         },
1382  },
1383  [ C(LL  ) ] = {
1384         [ C(OP_READ) ] = {
1385                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1386                 [ C(RESULT_ACCESS) ] = 0x01b7,
1387                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1388                 [ C(RESULT_MISS)   ] = 0x01b7,
1389         },
1390         /*
1391          * Use RFO, not WRITEBACK, because a write miss would typically occur
1392          * on RFO.
1393          */
1394         [ C(OP_WRITE) ] = {
1395                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1396                 [ C(RESULT_ACCESS) ] = 0x01b7,
1397                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1398                 [ C(RESULT_MISS)   ] = 0x01b7,
1399         },
1400         [ C(OP_PREFETCH) ] = {
1401                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1402                 [ C(RESULT_ACCESS) ] = 0x01b7,
1403                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1404                 [ C(RESULT_MISS)   ] = 0x01b7,
1405         },
1406  },
1407  [ C(DTLB) ] = {
1408         [ C(OP_READ) ] = {
1409                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1410                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1411         },
1412         [ C(OP_WRITE) ] = {
1413                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1414                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1415         },
1416         [ C(OP_PREFETCH) ] = {
1417                 [ C(RESULT_ACCESS) ] = 0x0,
1418                 [ C(RESULT_MISS)   ] = 0x0,
1419         },
1420  },
1421  [ C(ITLB) ] = {
1422         [ C(OP_READ) ] = {
1423                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1424                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1425         },
1426         [ C(OP_WRITE) ] = {
1427                 [ C(RESULT_ACCESS) ] = -1,
1428                 [ C(RESULT_MISS)   ] = -1,
1429         },
1430         [ C(OP_PREFETCH) ] = {
1431                 [ C(RESULT_ACCESS) ] = -1,
1432                 [ C(RESULT_MISS)   ] = -1,
1433         },
1434  },
1435  [ C(BPU ) ] = {
1436         [ C(OP_READ) ] = {
1437                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1438                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1439         },
1440         [ C(OP_WRITE) ] = {
1441                 [ C(RESULT_ACCESS) ] = -1,
1442                 [ C(RESULT_MISS)   ] = -1,
1443         },
1444         [ C(OP_PREFETCH) ] = {
1445                 [ C(RESULT_ACCESS) ] = -1,
1446                 [ C(RESULT_MISS)   ] = -1,
1447         },
1448  },
1449  [ C(NODE) ] = {
1450         [ C(OP_READ) ] = {
1451                 [ C(RESULT_ACCESS) ] = 0x01b7,
1452                 [ C(RESULT_MISS)   ] = 0x01b7,
1453         },
1454         [ C(OP_WRITE) ] = {
1455                 [ C(RESULT_ACCESS) ] = 0x01b7,
1456                 [ C(RESULT_MISS)   ] = 0x01b7,
1457         },
1458         [ C(OP_PREFETCH) ] = {
1459                 [ C(RESULT_ACCESS) ] = 0x01b7,
1460                 [ C(RESULT_MISS)   ] = 0x01b7,
1461         },
1462  },
1463 };
1464
1465 static __initconst const u64 core2_hw_cache_event_ids
1466                                 [PERF_COUNT_HW_CACHE_MAX]
1467                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1468                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1469 {
1470  [ C(L1D) ] = {
1471         [ C(OP_READ) ] = {
1472                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1473                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1474         },
1475         [ C(OP_WRITE) ] = {
1476                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1477                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1478         },
1479         [ C(OP_PREFETCH) ] = {
1480                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1481                 [ C(RESULT_MISS)   ] = 0,
1482         },
1483  },
1484  [ C(L1I ) ] = {
1485         [ C(OP_READ) ] = {
1486                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1487                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1488         },
1489         [ C(OP_WRITE) ] = {
1490                 [ C(RESULT_ACCESS) ] = -1,
1491                 [ C(RESULT_MISS)   ] = -1,
1492         },
1493         [ C(OP_PREFETCH) ] = {
1494                 [ C(RESULT_ACCESS) ] = 0,
1495                 [ C(RESULT_MISS)   ] = 0,
1496         },
1497  },
1498  [ C(LL  ) ] = {
1499         [ C(OP_READ) ] = {
1500                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1501                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1502         },
1503         [ C(OP_WRITE) ] = {
1504                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1505                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1506         },
1507         [ C(OP_PREFETCH) ] = {
1508                 [ C(RESULT_ACCESS) ] = 0,
1509                 [ C(RESULT_MISS)   ] = 0,
1510         },
1511  },
1512  [ C(DTLB) ] = {
1513         [ C(OP_READ) ] = {
1514                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1515                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1516         },
1517         [ C(OP_WRITE) ] = {
1518                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1519                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1520         },
1521         [ C(OP_PREFETCH) ] = {
1522                 [ C(RESULT_ACCESS) ] = 0,
1523                 [ C(RESULT_MISS)   ] = 0,
1524         },
1525  },
1526  [ C(ITLB) ] = {
1527         [ C(OP_READ) ] = {
1528                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1529                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1530         },
1531         [ C(OP_WRITE) ] = {
1532                 [ C(RESULT_ACCESS) ] = -1,
1533                 [ C(RESULT_MISS)   ] = -1,
1534         },
1535         [ C(OP_PREFETCH) ] = {
1536                 [ C(RESULT_ACCESS) ] = -1,
1537                 [ C(RESULT_MISS)   ] = -1,
1538         },
1539  },
1540  [ C(BPU ) ] = {
1541         [ C(OP_READ) ] = {
1542                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1543                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1544         },
1545         [ C(OP_WRITE) ] = {
1546                 [ C(RESULT_ACCESS) ] = -1,
1547                 [ C(RESULT_MISS)   ] = -1,
1548         },
1549         [ C(OP_PREFETCH) ] = {
1550                 [ C(RESULT_ACCESS) ] = -1,
1551                 [ C(RESULT_MISS)   ] = -1,
1552         },
1553  },
1554 };
1555
1556 static __initconst const u64 atom_hw_cache_event_ids
1557                                 [PERF_COUNT_HW_CACHE_MAX]
1558                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1559                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1560 {
1561  [ C(L1D) ] = {
1562         [ C(OP_READ) ] = {
1563                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1564                 [ C(RESULT_MISS)   ] = 0,
1565         },
1566         [ C(OP_WRITE) ] = {
1567                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1568                 [ C(RESULT_MISS)   ] = 0,
1569         },
1570         [ C(OP_PREFETCH) ] = {
1571                 [ C(RESULT_ACCESS) ] = 0x0,
1572                 [ C(RESULT_MISS)   ] = 0,
1573         },
1574  },
1575  [ C(L1I ) ] = {
1576         [ C(OP_READ) ] = {
1577                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1578                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1579         },
1580         [ C(OP_WRITE) ] = {
1581                 [ C(RESULT_ACCESS) ] = -1,
1582                 [ C(RESULT_MISS)   ] = -1,
1583         },
1584         [ C(OP_PREFETCH) ] = {
1585                 [ C(RESULT_ACCESS) ] = 0,
1586                 [ C(RESULT_MISS)   ] = 0,
1587         },
1588  },
1589  [ C(LL  ) ] = {
1590         [ C(OP_READ) ] = {
1591                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1592                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1593         },
1594         [ C(OP_WRITE) ] = {
1595                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1596                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1597         },
1598         [ C(OP_PREFETCH) ] = {
1599                 [ C(RESULT_ACCESS) ] = 0,
1600                 [ C(RESULT_MISS)   ] = 0,
1601         },
1602  },
1603  [ C(DTLB) ] = {
1604         [ C(OP_READ) ] = {
1605                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1606                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1607         },
1608         [ C(OP_WRITE) ] = {
1609                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1610                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1611         },
1612         [ C(OP_PREFETCH) ] = {
1613                 [ C(RESULT_ACCESS) ] = 0,
1614                 [ C(RESULT_MISS)   ] = 0,
1615         },
1616  },
1617  [ C(ITLB) ] = {
1618         [ C(OP_READ) ] = {
1619                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1620                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1621         },
1622         [ C(OP_WRITE) ] = {
1623                 [ C(RESULT_ACCESS) ] = -1,
1624                 [ C(RESULT_MISS)   ] = -1,
1625         },
1626         [ C(OP_PREFETCH) ] = {
1627                 [ C(RESULT_ACCESS) ] = -1,
1628                 [ C(RESULT_MISS)   ] = -1,
1629         },
1630  },
1631  [ C(BPU ) ] = {
1632         [ C(OP_READ) ] = {
1633                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1634                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1635         },
1636         [ C(OP_WRITE) ] = {
1637                 [ C(RESULT_ACCESS) ] = -1,
1638                 [ C(RESULT_MISS)   ] = -1,
1639         },
1640         [ C(OP_PREFETCH) ] = {
1641                 [ C(RESULT_ACCESS) ] = -1,
1642                 [ C(RESULT_MISS)   ] = -1,
1643         },
1644  },
1645 };
1646
1647 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1648 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1649 /* no_alloc_cycles.not_delivered */
1650 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1651                "event=0xca,umask=0x50");
1652 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1653 /* uops_retired.all */
1654 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1655                "event=0xc2,umask=0x10");
1656 /* uops_retired.all */
1657 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1658                "event=0xc2,umask=0x10");
1659
1660 static struct attribute *slm_events_attrs[] = {
1661         EVENT_PTR(td_total_slots_slm),
1662         EVENT_PTR(td_total_slots_scale_slm),
1663         EVENT_PTR(td_fetch_bubbles_slm),
1664         EVENT_PTR(td_fetch_bubbles_scale_slm),
1665         EVENT_PTR(td_slots_issued_slm),
1666         EVENT_PTR(td_slots_retired_slm),
1667         NULL
1668 };
1669
1670 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1671 {
1672         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1673         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1674         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1675         EVENT_EXTRA_END
1676 };
1677
1678 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1679 #define SLM_DMND_WRITE          SNB_DMND_RFO
1680 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1681
1682 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1683 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1684 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1685
1686 static __initconst const u64 slm_hw_cache_extra_regs
1687                                 [PERF_COUNT_HW_CACHE_MAX]
1688                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1689                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1690 {
1691  [ C(LL  ) ] = {
1692         [ C(OP_READ) ] = {
1693                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1694                 [ C(RESULT_MISS)   ] = 0,
1695         },
1696         [ C(OP_WRITE) ] = {
1697                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1698                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1699         },
1700         [ C(OP_PREFETCH) ] = {
1701                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1702                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1703         },
1704  },
1705 };
1706
1707 static __initconst const u64 slm_hw_cache_event_ids
1708                                 [PERF_COUNT_HW_CACHE_MAX]
1709                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1710                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1711 {
1712  [ C(L1D) ] = {
1713         [ C(OP_READ) ] = {
1714                 [ C(RESULT_ACCESS) ] = 0,
1715                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1716         },
1717         [ C(OP_WRITE) ] = {
1718                 [ C(RESULT_ACCESS) ] = 0,
1719                 [ C(RESULT_MISS)   ] = 0,
1720         },
1721         [ C(OP_PREFETCH) ] = {
1722                 [ C(RESULT_ACCESS) ] = 0,
1723                 [ C(RESULT_MISS)   ] = 0,
1724         },
1725  },
1726  [ C(L1I ) ] = {
1727         [ C(OP_READ) ] = {
1728                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1729                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1730         },
1731         [ C(OP_WRITE) ] = {
1732                 [ C(RESULT_ACCESS) ] = -1,
1733                 [ C(RESULT_MISS)   ] = -1,
1734         },
1735         [ C(OP_PREFETCH) ] = {
1736                 [ C(RESULT_ACCESS) ] = 0,
1737                 [ C(RESULT_MISS)   ] = 0,
1738         },
1739  },
1740  [ C(LL  ) ] = {
1741         [ C(OP_READ) ] = {
1742                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1743                 [ C(RESULT_ACCESS) ] = 0x01b7,
1744                 [ C(RESULT_MISS)   ] = 0,
1745         },
1746         [ C(OP_WRITE) ] = {
1747                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1748                 [ C(RESULT_ACCESS) ] = 0x01b7,
1749                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1750                 [ C(RESULT_MISS)   ] = 0x01b7,
1751         },
1752         [ C(OP_PREFETCH) ] = {
1753                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1754                 [ C(RESULT_ACCESS) ] = 0x01b7,
1755                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1756                 [ C(RESULT_MISS)   ] = 0x01b7,
1757         },
1758  },
1759  [ C(DTLB) ] = {
1760         [ C(OP_READ) ] = {
1761                 [ C(RESULT_ACCESS) ] = 0,
1762                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1763         },
1764         [ C(OP_WRITE) ] = {
1765                 [ C(RESULT_ACCESS) ] = 0,
1766                 [ C(RESULT_MISS)   ] = 0,
1767         },
1768         [ C(OP_PREFETCH) ] = {
1769                 [ C(RESULT_ACCESS) ] = 0,
1770                 [ C(RESULT_MISS)   ] = 0,
1771         },
1772  },
1773  [ C(ITLB) ] = {
1774         [ C(OP_READ) ] = {
1775                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1776                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1777         },
1778         [ C(OP_WRITE) ] = {
1779                 [ C(RESULT_ACCESS) ] = -1,
1780                 [ C(RESULT_MISS)   ] = -1,
1781         },
1782         [ C(OP_PREFETCH) ] = {
1783                 [ C(RESULT_ACCESS) ] = -1,
1784                 [ C(RESULT_MISS)   ] = -1,
1785         },
1786  },
1787  [ C(BPU ) ] = {
1788         [ C(OP_READ) ] = {
1789                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1790                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1791         },
1792         [ C(OP_WRITE) ] = {
1793                 [ C(RESULT_ACCESS) ] = -1,
1794                 [ C(RESULT_MISS)   ] = -1,
1795         },
1796         [ C(OP_PREFETCH) ] = {
1797                 [ C(RESULT_ACCESS) ] = -1,
1798                 [ C(RESULT_MISS)   ] = -1,
1799         },
1800  },
1801 };
1802
1803 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1804 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1805 /* UOPS_NOT_DELIVERED.ANY */
1806 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1807 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1808 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1809 /* UOPS_RETIRED.ANY */
1810 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1811 /* UOPS_ISSUED.ANY */
1812 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1813
1814 static struct attribute *glm_events_attrs[] = {
1815         EVENT_PTR(td_total_slots_glm),
1816         EVENT_PTR(td_total_slots_scale_glm),
1817         EVENT_PTR(td_fetch_bubbles_glm),
1818         EVENT_PTR(td_recovery_bubbles_glm),
1819         EVENT_PTR(td_slots_issued_glm),
1820         EVENT_PTR(td_slots_retired_glm),
1821         NULL
1822 };
1823
1824 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1825         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1826         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1827         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1828         EVENT_EXTRA_END
1829 };
1830
1831 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1832 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1833 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1834 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1835 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1836 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1837 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1838 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1839 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1840 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1841
1842 static __initconst const u64 glm_hw_cache_event_ids
1843                                 [PERF_COUNT_HW_CACHE_MAX]
1844                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1845                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1846         [C(L1D)] = {
1847                 [C(OP_READ)] = {
1848                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1849                         [C(RESULT_MISS)]        = 0x0,
1850                 },
1851                 [C(OP_WRITE)] = {
1852                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1853                         [C(RESULT_MISS)]        = 0x0,
1854                 },
1855                 [C(OP_PREFETCH)] = {
1856                         [C(RESULT_ACCESS)]      = 0x0,
1857                         [C(RESULT_MISS)]        = 0x0,
1858                 },
1859         },
1860         [C(L1I)] = {
1861                 [C(OP_READ)] = {
1862                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1863                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1864                 },
1865                 [C(OP_WRITE)] = {
1866                         [C(RESULT_ACCESS)]      = -1,
1867                         [C(RESULT_MISS)]        = -1,
1868                 },
1869                 [C(OP_PREFETCH)] = {
1870                         [C(RESULT_ACCESS)]      = 0x0,
1871                         [C(RESULT_MISS)]        = 0x0,
1872                 },
1873         },
1874         [C(LL)] = {
1875                 [C(OP_READ)] = {
1876                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1877                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1878                 },
1879                 [C(OP_WRITE)] = {
1880                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1881                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1882                 },
1883                 [C(OP_PREFETCH)] = {
1884                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1885                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1886                 },
1887         },
1888         [C(DTLB)] = {
1889                 [C(OP_READ)] = {
1890                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1891                         [C(RESULT_MISS)]        = 0x0,
1892                 },
1893                 [C(OP_WRITE)] = {
1894                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1895                         [C(RESULT_MISS)]        = 0x0,
1896                 },
1897                 [C(OP_PREFETCH)] = {
1898                         [C(RESULT_ACCESS)]      = 0x0,
1899                         [C(RESULT_MISS)]        = 0x0,
1900                 },
1901         },
1902         [C(ITLB)] = {
1903                 [C(OP_READ)] = {
1904                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1905                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1906                 },
1907                 [C(OP_WRITE)] = {
1908                         [C(RESULT_ACCESS)]      = -1,
1909                         [C(RESULT_MISS)]        = -1,
1910                 },
1911                 [C(OP_PREFETCH)] = {
1912                         [C(RESULT_ACCESS)]      = -1,
1913                         [C(RESULT_MISS)]        = -1,
1914                 },
1915         },
1916         [C(BPU)] = {
1917                 [C(OP_READ)] = {
1918                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1919                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1920                 },
1921                 [C(OP_WRITE)] = {
1922                         [C(RESULT_ACCESS)]      = -1,
1923                         [C(RESULT_MISS)]        = -1,
1924                 },
1925                 [C(OP_PREFETCH)] = {
1926                         [C(RESULT_ACCESS)]      = -1,
1927                         [C(RESULT_MISS)]        = -1,
1928                 },
1929         },
1930 };
1931
1932 static __initconst const u64 glm_hw_cache_extra_regs
1933                                 [PERF_COUNT_HW_CACHE_MAX]
1934                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1935                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1936         [C(LL)] = {
1937                 [C(OP_READ)] = {
1938                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1939                                                   GLM_LLC_ACCESS,
1940                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1941                                                   GLM_LLC_MISS,
1942                 },
1943                 [C(OP_WRITE)] = {
1944                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1945                                                   GLM_LLC_ACCESS,
1946                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1947                                                   GLM_LLC_MISS,
1948                 },
1949                 [C(OP_PREFETCH)] = {
1950                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1951                                                   GLM_LLC_ACCESS,
1952                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1953                                                   GLM_LLC_MISS,
1954                 },
1955         },
1956 };
1957
1958 static __initconst const u64 glp_hw_cache_event_ids
1959                                 [PERF_COUNT_HW_CACHE_MAX]
1960                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1961                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1962         [C(L1D)] = {
1963                 [C(OP_READ)] = {
1964                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1965                         [C(RESULT_MISS)]        = 0x0,
1966                 },
1967                 [C(OP_WRITE)] = {
1968                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1969                         [C(RESULT_MISS)]        = 0x0,
1970                 },
1971                 [C(OP_PREFETCH)] = {
1972                         [C(RESULT_ACCESS)]      = 0x0,
1973                         [C(RESULT_MISS)]        = 0x0,
1974                 },
1975         },
1976         [C(L1I)] = {
1977                 [C(OP_READ)] = {
1978                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1979                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1980                 },
1981                 [C(OP_WRITE)] = {
1982                         [C(RESULT_ACCESS)]      = -1,
1983                         [C(RESULT_MISS)]        = -1,
1984                 },
1985                 [C(OP_PREFETCH)] = {
1986                         [C(RESULT_ACCESS)]      = 0x0,
1987                         [C(RESULT_MISS)]        = 0x0,
1988                 },
1989         },
1990         [C(LL)] = {
1991                 [C(OP_READ)] = {
1992                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1993                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1994                 },
1995                 [C(OP_WRITE)] = {
1996                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1997                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1998                 },
1999                 [C(OP_PREFETCH)] = {
2000                         [C(RESULT_ACCESS)]      = 0x0,
2001                         [C(RESULT_MISS)]        = 0x0,
2002                 },
2003         },
2004         [C(DTLB)] = {
2005                 [C(OP_READ)] = {
2006                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
2007                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
2008                 },
2009                 [C(OP_WRITE)] = {
2010                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
2011                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
2012                 },
2013                 [C(OP_PREFETCH)] = {
2014                         [C(RESULT_ACCESS)]      = 0x0,
2015                         [C(RESULT_MISS)]        = 0x0,
2016                 },
2017         },
2018         [C(ITLB)] = {
2019                 [C(OP_READ)] = {
2020                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
2021                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
2022                 },
2023                 [C(OP_WRITE)] = {
2024                         [C(RESULT_ACCESS)]      = -1,
2025                         [C(RESULT_MISS)]        = -1,
2026                 },
2027                 [C(OP_PREFETCH)] = {
2028                         [C(RESULT_ACCESS)]      = -1,
2029                         [C(RESULT_MISS)]        = -1,
2030                 },
2031         },
2032         [C(BPU)] = {
2033                 [C(OP_READ)] = {
2034                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
2035                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
2036                 },
2037                 [C(OP_WRITE)] = {
2038                         [C(RESULT_ACCESS)]      = -1,
2039                         [C(RESULT_MISS)]        = -1,
2040                 },
2041                 [C(OP_PREFETCH)] = {
2042                         [C(RESULT_ACCESS)]      = -1,
2043                         [C(RESULT_MISS)]        = -1,
2044                 },
2045         },
2046 };
2047
2048 static __initconst const u64 glp_hw_cache_extra_regs
2049                                 [PERF_COUNT_HW_CACHE_MAX]
2050                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2051                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2052         [C(LL)] = {
2053                 [C(OP_READ)] = {
2054                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
2055                                                   GLM_LLC_ACCESS,
2056                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
2057                                                   GLM_LLC_MISS,
2058                 },
2059                 [C(OP_WRITE)] = {
2060                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
2061                                                   GLM_LLC_ACCESS,
2062                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
2063                                                   GLM_LLC_MISS,
2064                 },
2065                 [C(OP_PREFETCH)] = {
2066                         [C(RESULT_ACCESS)]      = 0x0,
2067                         [C(RESULT_MISS)]        = 0x0,
2068                 },
2069         },
2070 };
2071
2072 #define TNT_LOCAL_DRAM                  BIT_ULL(26)
2073 #define TNT_DEMAND_READ                 GLM_DEMAND_DATA_RD
2074 #define TNT_DEMAND_WRITE                GLM_DEMAND_RFO
2075 #define TNT_LLC_ACCESS                  GLM_ANY_RESPONSE
2076 #define TNT_SNP_ANY                     (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2077                                          SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2078 #define TNT_LLC_MISS                    (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2079
2080 static __initconst const u64 tnt_hw_cache_extra_regs
2081                                 [PERF_COUNT_HW_CACHE_MAX]
2082                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2083                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2084         [C(LL)] = {
2085                 [C(OP_READ)] = {
2086                         [C(RESULT_ACCESS)]      = TNT_DEMAND_READ|
2087                                                   TNT_LLC_ACCESS,
2088                         [C(RESULT_MISS)]        = TNT_DEMAND_READ|
2089                                                   TNT_LLC_MISS,
2090                 },
2091                 [C(OP_WRITE)] = {
2092                         [C(RESULT_ACCESS)]      = TNT_DEMAND_WRITE|
2093                                                   TNT_LLC_ACCESS,
2094                         [C(RESULT_MISS)]        = TNT_DEMAND_WRITE|
2095                                                   TNT_LLC_MISS,
2096                 },
2097                 [C(OP_PREFETCH)] = {
2098                         [C(RESULT_ACCESS)]      = 0x0,
2099                         [C(RESULT_MISS)]        = 0x0,
2100                 },
2101         },
2102 };
2103
2104 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2105 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2106 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2107 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2108
2109 static struct attribute *tnt_events_attrs[] = {
2110         EVENT_PTR(td_fe_bound_tnt),
2111         EVENT_PTR(td_retiring_tnt),
2112         EVENT_PTR(td_bad_spec_tnt),
2113         EVENT_PTR(td_be_bound_tnt),
2114         NULL,
2115 };
2116
2117 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2118         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2119         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2120         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2121         EVENT_EXTRA_END
2122 };
2123
2124 EVENT_ATTR_STR(mem-loads,       mem_ld_grt,     "event=0xd0,umask=0x5,ldlat=3");
2125 EVENT_ATTR_STR(mem-stores,      mem_st_grt,     "event=0xd0,umask=0x6");
2126
2127 static struct attribute *grt_mem_attrs[] = {
2128         EVENT_PTR(mem_ld_grt),
2129         EVENT_PTR(mem_st_grt),
2130         NULL
2131 };
2132
2133 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2134         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2135         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2136         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2137         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2138         EVENT_EXTRA_END
2139 };
2140
2141 EVENT_ATTR_STR(topdown-retiring,       td_retiring_cmt,        "event=0x72,umask=0x0");
2142 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_cmt,        "event=0x73,umask=0x0");
2143
2144 static struct attribute *cmt_events_attrs[] = {
2145         EVENT_PTR(td_fe_bound_tnt),
2146         EVENT_PTR(td_retiring_cmt),
2147         EVENT_PTR(td_bad_spec_cmt),
2148         EVENT_PTR(td_be_bound_tnt),
2149         NULL
2150 };
2151
2152 static struct extra_reg intel_cmt_extra_regs[] __read_mostly = {
2153         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2154         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0),
2155         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1),
2156         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2157         INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
2158         INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
2159         EVENT_EXTRA_END
2160 };
2161
2162 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
2163 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
2164 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
2165 #define KNL_MCDRAM_FAR          BIT_ULL(22)
2166 #define KNL_DDR_LOCAL           BIT_ULL(23)
2167 #define KNL_DDR_FAR             BIT_ULL(24)
2168 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2169                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
2170 #define KNL_L2_READ             SLM_DMND_READ
2171 #define KNL_L2_WRITE            SLM_DMND_WRITE
2172 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
2173 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
2174 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2175                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
2176                                                   SNB_NON_DRAM)
2177
2178 static __initconst const u64 knl_hw_cache_extra_regs
2179                                 [PERF_COUNT_HW_CACHE_MAX]
2180                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2181                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2182         [C(LL)] = {
2183                 [C(OP_READ)] = {
2184                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2185                         [C(RESULT_MISS)]   = 0,
2186                 },
2187                 [C(OP_WRITE)] = {
2188                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2189                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2190                 },
2191                 [C(OP_PREFETCH)] = {
2192                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2193                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2194                 },
2195         },
2196 };
2197
2198 /*
2199  * Used from PMIs where the LBRs are already disabled.
2200  *
2201  * This function could be called consecutively. It is required to remain in
2202  * disabled state if called consecutively.
2203  *
2204  * During consecutive calls, the same disable value will be written to related
2205  * registers, so the PMU state remains unchanged.
2206  *
2207  * intel_bts events don't coexist with intel PMU's BTS events because of
2208  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2209  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2210  *
2211  * Avoid PEBS_ENABLE MSR access in PMIs.
2212  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2213  * It doesn't matter if the PEBS is enabled or not.
2214  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2215  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2216  * However, there are some cases which may change PEBS status, e.g. PMI
2217  * throttle. The PEBS_ENABLE should be updated where the status changes.
2218  */
2219 static __always_inline void __intel_pmu_disable_all(bool bts)
2220 {
2221         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2222
2223         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2224
2225         if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2226                 intel_pmu_disable_bts();
2227 }
2228
2229 static __always_inline void intel_pmu_disable_all(void)
2230 {
2231         __intel_pmu_disable_all(true);
2232         intel_pmu_pebs_disable_all();
2233         intel_pmu_lbr_disable_all();
2234 }
2235
2236 static void __intel_pmu_enable_all(int added, bool pmi)
2237 {
2238         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2239         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2240
2241         intel_pmu_lbr_enable_all(pmi);
2242
2243         if (cpuc->fixed_ctrl_val != cpuc->active_fixed_ctrl_val) {
2244                 wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, cpuc->fixed_ctrl_val);
2245                 cpuc->active_fixed_ctrl_val = cpuc->fixed_ctrl_val;
2246         }
2247
2248         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2249                intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2250
2251         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2252                 struct perf_event *event =
2253                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2254
2255                 if (WARN_ON_ONCE(!event))
2256                         return;
2257
2258                 intel_pmu_enable_bts(event->hw.config);
2259         }
2260 }
2261
2262 static void intel_pmu_enable_all(int added)
2263 {
2264         intel_pmu_pebs_enable_all();
2265         __intel_pmu_enable_all(added, false);
2266 }
2267
2268 static noinline int
2269 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2270                                   unsigned int cnt, unsigned long flags)
2271 {
2272         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2273
2274         intel_pmu_lbr_read();
2275         cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2276
2277         memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2278         intel_pmu_enable_all(0);
2279         local_irq_restore(flags);
2280         return cnt;
2281 }
2282
2283 static int
2284 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2285 {
2286         unsigned long flags;
2287
2288         /* must not have branches... */
2289         local_irq_save(flags);
2290         __intel_pmu_disable_all(false); /* we don't care about BTS */
2291         __intel_pmu_lbr_disable();
2292         /*            ... until here */
2293         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2294 }
2295
2296 static int
2297 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2298 {
2299         unsigned long flags;
2300
2301         /* must not have branches... */
2302         local_irq_save(flags);
2303         __intel_pmu_disable_all(false); /* we don't care about BTS */
2304         __intel_pmu_arch_lbr_disable();
2305         /*            ... until here */
2306         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2307 }
2308
2309 /*
2310  * Workaround for:
2311  *   Intel Errata AAK100 (model 26)
2312  *   Intel Errata AAP53  (model 30)
2313  *   Intel Errata BD53   (model 44)
2314  *
2315  * The official story:
2316  *   These chips need to be 'reset' when adding counters by programming the
2317  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2318  *   in sequence on the same PMC or on different PMCs.
2319  *
2320  * In practice it appears some of these events do in fact count, and
2321  * we need to program all 4 events.
2322  */
2323 static void intel_pmu_nhm_workaround(void)
2324 {
2325         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2326         static const unsigned long nhm_magic[4] = {
2327                 0x4300B5,
2328                 0x4300D2,
2329                 0x4300B1,
2330                 0x4300B1
2331         };
2332         struct perf_event *event;
2333         int i;
2334
2335         /*
2336          * The Errata requires below steps:
2337          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2338          * 2) Configure 4 PERFEVTSELx with the magic events and clear
2339          *    the corresponding PMCx;
2340          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2341          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2342          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2343          */
2344
2345         /*
2346          * The real steps we choose are a little different from above.
2347          * A) To reduce MSR operations, we don't run step 1) as they
2348          *    are already cleared before this function is called;
2349          * B) Call x86_perf_event_update to save PMCx before configuring
2350          *    PERFEVTSELx with magic number;
2351          * C) With step 5), we do clear only when the PERFEVTSELx is
2352          *    not used currently.
2353          * D) Call x86_perf_event_set_period to restore PMCx;
2354          */
2355
2356         /* We always operate 4 pairs of PERF Counters */
2357         for (i = 0; i < 4; i++) {
2358                 event = cpuc->events[i];
2359                 if (event)
2360                         static_call(x86_pmu_update)(event);
2361         }
2362
2363         for (i = 0; i < 4; i++) {
2364                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2365                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2366         }
2367
2368         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2369         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2370
2371         for (i = 0; i < 4; i++) {
2372                 event = cpuc->events[i];
2373
2374                 if (event) {
2375                         static_call(x86_pmu_set_period)(event);
2376                         __x86_pmu_enable_event(&event->hw,
2377                                         ARCH_PERFMON_EVENTSEL_ENABLE);
2378                 } else
2379                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2380         }
2381 }
2382
2383 static void intel_pmu_nhm_enable_all(int added)
2384 {
2385         if (added)
2386                 intel_pmu_nhm_workaround();
2387         intel_pmu_enable_all(added);
2388 }
2389
2390 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2391 {
2392         u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2393
2394         if (cpuc->tfa_shadow != val) {
2395                 cpuc->tfa_shadow = val;
2396                 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2397         }
2398 }
2399
2400 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2401 {
2402         /*
2403          * We're going to use PMC3, make sure TFA is set before we touch it.
2404          */
2405         if (cntr == 3)
2406                 intel_set_tfa(cpuc, true);
2407 }
2408
2409 static void intel_tfa_pmu_enable_all(int added)
2410 {
2411         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2412
2413         /*
2414          * If we find PMC3 is no longer used when we enable the PMU, we can
2415          * clear TFA.
2416          */
2417         if (!test_bit(3, cpuc->active_mask))
2418                 intel_set_tfa(cpuc, false);
2419
2420         intel_pmu_enable_all(added);
2421 }
2422
2423 static inline u64 intel_pmu_get_status(void)
2424 {
2425         u64 status;
2426
2427         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2428
2429         return status;
2430 }
2431
2432 static inline void intel_pmu_ack_status(u64 ack)
2433 {
2434         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2435 }
2436
2437 static inline bool event_is_checkpointed(struct perf_event *event)
2438 {
2439         return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2440 }
2441
2442 static inline void intel_set_masks(struct perf_event *event, int idx)
2443 {
2444         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2445
2446         if (event->attr.exclude_host)
2447                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2448         if (event->attr.exclude_guest)
2449                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2450         if (event_is_checkpointed(event))
2451                 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2452 }
2453
2454 static inline void intel_clear_masks(struct perf_event *event, int idx)
2455 {
2456         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2457
2458         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2459         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2460         __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2461 }
2462
2463 static void intel_pmu_disable_fixed(struct perf_event *event)
2464 {
2465         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2466         struct hw_perf_event *hwc = &event->hw;
2467         int idx = hwc->idx;
2468         u64 mask;
2469
2470         if (is_topdown_idx(idx)) {
2471                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2472
2473                 /*
2474                  * When there are other active TopDown events,
2475                  * don't disable the fixed counter 3.
2476                  */
2477                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2478                         return;
2479                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2480         }
2481
2482         intel_clear_masks(event, idx);
2483
2484         mask = intel_fixed_bits_by_idx(idx - INTEL_PMC_IDX_FIXED, INTEL_FIXED_BITS_MASK);
2485         cpuc->fixed_ctrl_val &= ~mask;
2486 }
2487
2488 static void intel_pmu_disable_event(struct perf_event *event)
2489 {
2490         struct hw_perf_event *hwc = &event->hw;
2491         int idx = hwc->idx;
2492
2493         switch (idx) {
2494         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2495                 intel_clear_masks(event, idx);
2496                 x86_pmu_disable_event(event);
2497                 break;
2498         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2499         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2500                 intel_pmu_disable_fixed(event);
2501                 break;
2502         case INTEL_PMC_IDX_FIXED_BTS:
2503                 intel_pmu_disable_bts();
2504                 intel_pmu_drain_bts_buffer();
2505                 return;
2506         case INTEL_PMC_IDX_FIXED_VLBR:
2507                 intel_clear_masks(event, idx);
2508                 break;
2509         default:
2510                 intel_clear_masks(event, idx);
2511                 pr_warn("Failed to disable the event with invalid index %d\n",
2512                         idx);
2513                 return;
2514         }
2515
2516         /*
2517          * Needs to be called after x86_pmu_disable_event,
2518          * so we don't trigger the event without PEBS bit set.
2519          */
2520         if (unlikely(event->attr.precise_ip))
2521                 intel_pmu_pebs_disable(event);
2522 }
2523
2524 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2525 {
2526         if (is_pebs_pt(event))
2527                 perf_report_aux_output_id(event, idx);
2528 }
2529
2530 static void intel_pmu_del_event(struct perf_event *event)
2531 {
2532         if (needs_branch_stack(event))
2533                 intel_pmu_lbr_del(event);
2534         if (event->attr.precise_ip)
2535                 intel_pmu_pebs_del(event);
2536 }
2537
2538 static int icl_set_topdown_event_period(struct perf_event *event)
2539 {
2540         struct hw_perf_event *hwc = &event->hw;
2541         s64 left = local64_read(&hwc->period_left);
2542
2543         /*
2544          * The values in PERF_METRICS MSR are derived from fixed counter 3.
2545          * Software should start both registers, PERF_METRICS and fixed
2546          * counter 3, from zero.
2547          * Clear PERF_METRICS and Fixed counter 3 in initialization.
2548          * After that, both MSRs will be cleared for each read.
2549          * Don't need to clear them again.
2550          */
2551         if (left == x86_pmu.max_period) {
2552                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2553                 wrmsrl(MSR_PERF_METRICS, 0);
2554                 hwc->saved_slots = 0;
2555                 hwc->saved_metric = 0;
2556         }
2557
2558         if ((hwc->saved_slots) && is_slots_event(event)) {
2559                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2560                 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2561         }
2562
2563         perf_event_update_userpage(event);
2564
2565         return 0;
2566 }
2567
2568 DEFINE_STATIC_CALL(intel_pmu_set_topdown_event_period, x86_perf_event_set_period);
2569
2570 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2571 {
2572         u32 val;
2573
2574         /*
2575          * The metric is reported as an 8bit integer fraction
2576          * summing up to 0xff.
2577          * slots-in-metric = (Metric / 0xff) * slots
2578          */
2579         val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2580         return  mul_u64_u32_div(slots, val, 0xff);
2581 }
2582
2583 static u64 icl_get_topdown_value(struct perf_event *event,
2584                                        u64 slots, u64 metrics)
2585 {
2586         int idx = event->hw.idx;
2587         u64 delta;
2588
2589         if (is_metric_idx(idx))
2590                 delta = icl_get_metrics_event_value(metrics, slots, idx);
2591         else
2592                 delta = slots;
2593
2594         return delta;
2595 }
2596
2597 static void __icl_update_topdown_event(struct perf_event *event,
2598                                        u64 slots, u64 metrics,
2599                                        u64 last_slots, u64 last_metrics)
2600 {
2601         u64 delta, last = 0;
2602
2603         delta = icl_get_topdown_value(event, slots, metrics);
2604         if (last_slots)
2605                 last = icl_get_topdown_value(event, last_slots, last_metrics);
2606
2607         /*
2608          * The 8bit integer fraction of metric may be not accurate,
2609          * especially when the changes is very small.
2610          * For example, if only a few bad_spec happens, the fraction
2611          * may be reduced from 1 to 0. If so, the bad_spec event value
2612          * will be 0 which is definitely less than the last value.
2613          * Avoid update event->count for this case.
2614          */
2615         if (delta > last) {
2616                 delta -= last;
2617                 local64_add(delta, &event->count);
2618         }
2619 }
2620
2621 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2622                                       u64 metrics, int metric_end)
2623 {
2624         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2625         struct perf_event *other;
2626         int idx;
2627
2628         event->hw.saved_slots = slots;
2629         event->hw.saved_metric = metrics;
2630
2631         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2632                 if (!is_topdown_idx(idx))
2633                         continue;
2634                 other = cpuc->events[idx];
2635                 other->hw.saved_slots = slots;
2636                 other->hw.saved_metric = metrics;
2637         }
2638 }
2639
2640 /*
2641  * Update all active Topdown events.
2642  *
2643  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2644  * modify by a NMI. PMU has to be disabled before calling this function.
2645  */
2646
2647 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2648 {
2649         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2650         struct perf_event *other;
2651         u64 slots, metrics;
2652         bool reset = true;
2653         int idx;
2654
2655         /* read Fixed counter 3 */
2656         rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2657         if (!slots)
2658                 return 0;
2659
2660         /* read PERF_METRICS */
2661         rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2662
2663         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2664                 if (!is_topdown_idx(idx))
2665                         continue;
2666                 other = cpuc->events[idx];
2667                 __icl_update_topdown_event(other, slots, metrics,
2668                                            event ? event->hw.saved_slots : 0,
2669                                            event ? event->hw.saved_metric : 0);
2670         }
2671
2672         /*
2673          * Check and update this event, which may have been cleared
2674          * in active_mask e.g. x86_pmu_stop()
2675          */
2676         if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2677                 __icl_update_topdown_event(event, slots, metrics,
2678                                            event->hw.saved_slots,
2679                                            event->hw.saved_metric);
2680
2681                 /*
2682                  * In x86_pmu_stop(), the event is cleared in active_mask first,
2683                  * then drain the delta, which indicates context switch for
2684                  * counting.
2685                  * Save metric and slots for context switch.
2686                  * Don't need to reset the PERF_METRICS and Fixed counter 3.
2687                  * Because the values will be restored in next schedule in.
2688                  */
2689                 update_saved_topdown_regs(event, slots, metrics, metric_end);
2690                 reset = false;
2691         }
2692
2693         if (reset) {
2694                 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2695                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2696                 wrmsrl(MSR_PERF_METRICS, 0);
2697                 if (event)
2698                         update_saved_topdown_regs(event, 0, 0, metric_end);
2699         }
2700
2701         return slots;
2702 }
2703
2704 static u64 icl_update_topdown_event(struct perf_event *event)
2705 {
2706         return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2707                                                  x86_pmu.num_topdown_events - 1);
2708 }
2709
2710 DEFINE_STATIC_CALL(intel_pmu_update_topdown_event, x86_perf_event_update);
2711
2712 static void intel_pmu_read_topdown_event(struct perf_event *event)
2713 {
2714         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2715
2716         /* Only need to call update_topdown_event() once for group read. */
2717         if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2718             !is_slots_event(event))
2719                 return;
2720
2721         perf_pmu_disable(event->pmu);
2722         static_call(intel_pmu_update_topdown_event)(event);
2723         perf_pmu_enable(event->pmu);
2724 }
2725
2726 static void intel_pmu_read_event(struct perf_event *event)
2727 {
2728         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2729                 intel_pmu_auto_reload_read(event);
2730         else if (is_topdown_count(event))
2731                 intel_pmu_read_topdown_event(event);
2732         else
2733                 x86_perf_event_update(event);
2734 }
2735
2736 static void intel_pmu_enable_fixed(struct perf_event *event)
2737 {
2738         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2739         struct hw_perf_event *hwc = &event->hw;
2740         u64 mask, bits = 0;
2741         int idx = hwc->idx;
2742
2743         if (is_topdown_idx(idx)) {
2744                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2745                 /*
2746                  * When there are other active TopDown events,
2747                  * don't enable the fixed counter 3 again.
2748                  */
2749                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2750                         return;
2751
2752                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2753         }
2754
2755         intel_set_masks(event, idx);
2756
2757         /*
2758          * Enable IRQ generation (0x8), if not PEBS,
2759          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2760          * if requested:
2761          */
2762         if (!event->attr.precise_ip)
2763                 bits |= INTEL_FIXED_0_ENABLE_PMI;
2764         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2765                 bits |= INTEL_FIXED_0_USER;
2766         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2767                 bits |= INTEL_FIXED_0_KERNEL;
2768
2769         /*
2770          * ANY bit is supported in v3 and up
2771          */
2772         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2773                 bits |= INTEL_FIXED_0_ANYTHREAD;
2774
2775         idx -= INTEL_PMC_IDX_FIXED;
2776         bits = intel_fixed_bits_by_idx(idx, bits);
2777         mask = intel_fixed_bits_by_idx(idx, INTEL_FIXED_BITS_MASK);
2778
2779         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2780                 bits |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2781                 mask |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2782         }
2783
2784         cpuc->fixed_ctrl_val &= ~mask;
2785         cpuc->fixed_ctrl_val |= bits;
2786 }
2787
2788 static void intel_pmu_enable_event(struct perf_event *event)
2789 {
2790         struct hw_perf_event *hwc = &event->hw;
2791         int idx = hwc->idx;
2792
2793         if (unlikely(event->attr.precise_ip))
2794                 intel_pmu_pebs_enable(event);
2795
2796         switch (idx) {
2797         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2798                 intel_set_masks(event, idx);
2799                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2800                 break;
2801         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2802         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2803                 intel_pmu_enable_fixed(event);
2804                 break;
2805         case INTEL_PMC_IDX_FIXED_BTS:
2806                 if (!__this_cpu_read(cpu_hw_events.enabled))
2807                         return;
2808                 intel_pmu_enable_bts(hwc->config);
2809                 break;
2810         case INTEL_PMC_IDX_FIXED_VLBR:
2811                 intel_set_masks(event, idx);
2812                 break;
2813         default:
2814                 pr_warn("Failed to enable the event with invalid index %d\n",
2815                         idx);
2816         }
2817 }
2818
2819 static void intel_pmu_add_event(struct perf_event *event)
2820 {
2821         if (event->attr.precise_ip)
2822                 intel_pmu_pebs_add(event);
2823         if (needs_branch_stack(event))
2824                 intel_pmu_lbr_add(event);
2825 }
2826
2827 /*
2828  * Save and restart an expired event. Called by NMI contexts,
2829  * so it has to be careful about preempting normal event ops:
2830  */
2831 int intel_pmu_save_and_restart(struct perf_event *event)
2832 {
2833         static_call(x86_pmu_update)(event);
2834         /*
2835          * For a checkpointed counter always reset back to 0.  This
2836          * avoids a situation where the counter overflows, aborts the
2837          * transaction and is then set back to shortly before the
2838          * overflow, and overflows and aborts again.
2839          */
2840         if (unlikely(event_is_checkpointed(event))) {
2841                 /* No race with NMIs because the counter should not be armed */
2842                 wrmsrl(event->hw.event_base, 0);
2843                 local64_set(&event->hw.prev_count, 0);
2844         }
2845         return static_call(x86_pmu_set_period)(event);
2846 }
2847
2848 static int intel_pmu_set_period(struct perf_event *event)
2849 {
2850         if (unlikely(is_topdown_count(event)))
2851                 return static_call(intel_pmu_set_topdown_event_period)(event);
2852
2853         return x86_perf_event_set_period(event);
2854 }
2855
2856 static u64 intel_pmu_update(struct perf_event *event)
2857 {
2858         if (unlikely(is_topdown_count(event)))
2859                 return static_call(intel_pmu_update_topdown_event)(event);
2860
2861         return x86_perf_event_update(event);
2862 }
2863
2864 static void intel_pmu_reset(void)
2865 {
2866         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2867         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2868         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2869         int num_counters = hybrid(cpuc->pmu, num_counters);
2870         unsigned long flags;
2871         int idx;
2872
2873         if (!num_counters)
2874                 return;
2875
2876         local_irq_save(flags);
2877
2878         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2879
2880         for (idx = 0; idx < num_counters; idx++) {
2881                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2882                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2883         }
2884         for (idx = 0; idx < num_counters_fixed; idx++) {
2885                 if (fixed_counter_disabled(idx, cpuc->pmu))
2886                         continue;
2887                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2888         }
2889
2890         if (ds)
2891                 ds->bts_index = ds->bts_buffer_base;
2892
2893         /* Ack all overflows and disable fixed counters */
2894         if (x86_pmu.version >= 2) {
2895                 intel_pmu_ack_status(intel_pmu_get_status());
2896                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2897         }
2898
2899         /* Reset LBRs and LBR freezing */
2900         if (x86_pmu.lbr_nr) {
2901                 update_debugctlmsr(get_debugctlmsr() &
2902                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2903         }
2904
2905         local_irq_restore(flags);
2906 }
2907
2908 /*
2909  * We may be running with guest PEBS events created by KVM, and the
2910  * PEBS records are logged into the guest's DS and invisible to host.
2911  *
2912  * In the case of guest PEBS overflow, we only trigger a fake event
2913  * to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
2914  * The guest will then vm-entry and check the guest DS area to read
2915  * the guest PEBS records.
2916  *
2917  * The contents and other behavior of the guest event do not matter.
2918  */
2919 static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
2920                                       struct perf_sample_data *data)
2921 {
2922         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2923         u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
2924         struct perf_event *event = NULL;
2925         int bit;
2926
2927         if (!unlikely(perf_guest_state()))
2928                 return;
2929
2930         if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
2931             !guest_pebs_idxs)
2932                 return;
2933
2934         for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs,
2935                          INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed) {
2936                 event = cpuc->events[bit];
2937                 if (!event->attr.precise_ip)
2938                         continue;
2939
2940                 perf_sample_data_init(data, 0, event->hw.last_period);
2941                 if (perf_event_overflow(event, data, regs))
2942                         x86_pmu_stop(event, 0);
2943
2944                 /* Inject one fake event is enough. */
2945                 break;
2946         }
2947 }
2948
2949 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2950 {
2951         struct perf_sample_data data;
2952         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2953         int bit;
2954         int handled = 0;
2955         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2956
2957         inc_irq_stat(apic_perf_irqs);
2958
2959         /*
2960          * Ignore a range of extra bits in status that do not indicate
2961          * overflow by themselves.
2962          */
2963         status &= ~(GLOBAL_STATUS_COND_CHG |
2964                     GLOBAL_STATUS_ASIF |
2965                     GLOBAL_STATUS_LBRS_FROZEN);
2966         if (!status)
2967                 return 0;
2968         /*
2969          * In case multiple PEBS events are sampled at the same time,
2970          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2971          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2972          * having their bits set in the status register. This is a sign
2973          * that there was at least one PEBS record pending at the time
2974          * of the PMU interrupt. PEBS counters must only be processed
2975          * via the drain_pebs() calls and not via the regular sample
2976          * processing loop coming after that the function, otherwise
2977          * phony regular samples may be generated in the sampling buffer
2978          * not marked with the EXACT tag. Another possibility is to have
2979          * one PEBS event and at least one non-PEBS event which overflows
2980          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2981          * not be set, yet the overflow status bit for the PEBS counter will
2982          * be on Skylake.
2983          *
2984          * To avoid this problem, we systematically ignore the PEBS-enabled
2985          * counters from the GLOBAL_STATUS mask and we always process PEBS
2986          * events via drain_pebs().
2987          */
2988         status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
2989
2990         /*
2991          * PEBS overflow sets bit 62 in the global status register
2992          */
2993         if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2994                 u64 pebs_enabled = cpuc->pebs_enabled;
2995
2996                 handled++;
2997                 x86_pmu_handle_guest_pebs(regs, &data);
2998                 x86_pmu.drain_pebs(regs, &data);
2999                 status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
3000
3001                 /*
3002                  * PMI throttle may be triggered, which stops the PEBS event.
3003                  * Although cpuc->pebs_enabled is updated accordingly, the
3004                  * MSR_IA32_PEBS_ENABLE is not updated. Because the
3005                  * cpuc->enabled has been forced to 0 in PMI.
3006                  * Update the MSR if pebs_enabled is changed.
3007                  */
3008                 if (pebs_enabled != cpuc->pebs_enabled)
3009                         wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
3010         }
3011
3012         /*
3013          * Intel PT
3014          */
3015         if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
3016                 handled++;
3017                 if (!perf_guest_handle_intel_pt_intr())
3018                         intel_pt_interrupt();
3019         }
3020
3021         /*
3022          * Intel Perf metrics
3023          */
3024         if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
3025                 handled++;
3026                 static_call(intel_pmu_update_topdown_event)(NULL);
3027         }
3028
3029         /*
3030          * Checkpointed counters can lead to 'spurious' PMIs because the
3031          * rollback caused by the PMI will have cleared the overflow status
3032          * bit. Therefore always force probe these counters.
3033          */
3034         status |= cpuc->intel_cp_status;
3035
3036         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
3037                 struct perf_event *event = cpuc->events[bit];
3038
3039                 handled++;
3040
3041                 if (!test_bit(bit, cpuc->active_mask))
3042                         continue;
3043
3044                 if (!intel_pmu_save_and_restart(event))
3045                         continue;
3046
3047                 perf_sample_data_init(&data, 0, event->hw.last_period);
3048
3049                 if (has_branch_stack(event))
3050                         perf_sample_save_brstack(&data, event, &cpuc->lbr_stack);
3051
3052                 if (perf_event_overflow(event, &data, regs))
3053                         x86_pmu_stop(event, 0);
3054         }
3055
3056         return handled;
3057 }
3058
3059 /*
3060  * This handler is triggered by the local APIC, so the APIC IRQ handling
3061  * rules apply:
3062  */
3063 static int intel_pmu_handle_irq(struct pt_regs *regs)
3064 {
3065         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3066         bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3067         bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3068         int loops;
3069         u64 status;
3070         int handled;
3071         int pmu_enabled;
3072
3073         /*
3074          * Save the PMU state.
3075          * It needs to be restored when leaving the handler.
3076          */
3077         pmu_enabled = cpuc->enabled;
3078         /*
3079          * In general, the early ACK is only applied for old platforms.
3080          * For the big core starts from Haswell, the late ACK should be
3081          * applied.
3082          * For the small core after Tremont, we have to do the ACK right
3083          * before re-enabling counters, which is in the middle of the
3084          * NMI handler.
3085          */
3086         if (!late_ack && !mid_ack)
3087                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3088         intel_bts_disable_local();
3089         cpuc->enabled = 0;
3090         __intel_pmu_disable_all(true);
3091         handled = intel_pmu_drain_bts_buffer();
3092         handled += intel_bts_interrupt();
3093         status = intel_pmu_get_status();
3094         if (!status)
3095                 goto done;
3096
3097         loops = 0;
3098 again:
3099         intel_pmu_lbr_read();
3100         intel_pmu_ack_status(status);
3101         if (++loops > 100) {
3102                 static bool warned;
3103
3104                 if (!warned) {
3105                         WARN(1, "perfevents: irq loop stuck!\n");
3106                         perf_event_print_debug();
3107                         warned = true;
3108                 }
3109                 intel_pmu_reset();
3110                 goto done;
3111         }
3112
3113         handled += handle_pmi_common(regs, status);
3114
3115         /*
3116          * Repeat if there is more work to be done:
3117          */
3118         status = intel_pmu_get_status();
3119         if (status)
3120                 goto again;
3121
3122 done:
3123         if (mid_ack)
3124                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3125         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
3126         cpuc->enabled = pmu_enabled;
3127         if (pmu_enabled)
3128                 __intel_pmu_enable_all(0, true);
3129         intel_bts_enable_local();
3130
3131         /*
3132          * Only unmask the NMI after the overflow counters
3133          * have been reset. This avoids spurious NMIs on
3134          * Haswell CPUs.
3135          */
3136         if (late_ack)
3137                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3138         return handled;
3139 }
3140
3141 static struct event_constraint *
3142 intel_bts_constraints(struct perf_event *event)
3143 {
3144         if (unlikely(intel_pmu_has_bts(event)))
3145                 return &bts_constraint;
3146
3147         return NULL;
3148 }
3149
3150 /*
3151  * Note: matches a fake event, like Fixed2.
3152  */
3153 static struct event_constraint *
3154 intel_vlbr_constraints(struct perf_event *event)
3155 {
3156         struct event_constraint *c = &vlbr_constraint;
3157
3158         if (unlikely(constraint_match(c, event->hw.config))) {
3159                 event->hw.flags |= c->flags;
3160                 return c;
3161         }
3162
3163         return NULL;
3164 }
3165
3166 static int intel_alt_er(struct cpu_hw_events *cpuc,
3167                         int idx, u64 config)
3168 {
3169         struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3170         int alt_idx = idx;
3171
3172         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3173                 return idx;
3174
3175         if (idx == EXTRA_REG_RSP_0)
3176                 alt_idx = EXTRA_REG_RSP_1;
3177
3178         if (idx == EXTRA_REG_RSP_1)
3179                 alt_idx = EXTRA_REG_RSP_0;
3180
3181         if (config & ~extra_regs[alt_idx].valid_mask)
3182                 return idx;
3183
3184         return alt_idx;
3185 }
3186
3187 static void intel_fixup_er(struct perf_event *event, int idx)
3188 {
3189         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3190         event->hw.extra_reg.idx = idx;
3191
3192         if (idx == EXTRA_REG_RSP_0) {
3193                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3194                 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3195                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3196         } else if (idx == EXTRA_REG_RSP_1) {
3197                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3198                 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3199                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3200         }
3201 }
3202
3203 /*
3204  * manage allocation of shared extra msr for certain events
3205  *
3206  * sharing can be:
3207  * per-cpu: to be shared between the various events on a single PMU
3208  * per-core: per-cpu + shared by HT threads
3209  */
3210 static struct event_constraint *
3211 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3212                                    struct perf_event *event,
3213                                    struct hw_perf_event_extra *reg)
3214 {
3215         struct event_constraint *c = &emptyconstraint;
3216         struct er_account *era;
3217         unsigned long flags;
3218         int idx = reg->idx;
3219
3220         /*
3221          * reg->alloc can be set due to existing state, so for fake cpuc we
3222          * need to ignore this, otherwise we might fail to allocate proper fake
3223          * state for this extra reg constraint. Also see the comment below.
3224          */
3225         if (reg->alloc && !cpuc->is_fake)
3226                 return NULL; /* call x86_get_event_constraint() */
3227
3228 again:
3229         era = &cpuc->shared_regs->regs[idx];
3230         /*
3231          * we use spin_lock_irqsave() to avoid lockdep issues when
3232          * passing a fake cpuc
3233          */
3234         raw_spin_lock_irqsave(&era->lock, flags);
3235
3236         if (!atomic_read(&era->ref) || era->config == reg->config) {
3237
3238                 /*
3239                  * If its a fake cpuc -- as per validate_{group,event}() we
3240                  * shouldn't touch event state and we can avoid doing so
3241                  * since both will only call get_event_constraints() once
3242                  * on each event, this avoids the need for reg->alloc.
3243                  *
3244                  * Not doing the ER fixup will only result in era->reg being
3245                  * wrong, but since we won't actually try and program hardware
3246                  * this isn't a problem either.
3247                  */
3248                 if (!cpuc->is_fake) {
3249                         if (idx != reg->idx)
3250                                 intel_fixup_er(event, idx);
3251
3252                         /*
3253                          * x86_schedule_events() can call get_event_constraints()
3254                          * multiple times on events in the case of incremental
3255                          * scheduling(). reg->alloc ensures we only do the ER
3256                          * allocation once.
3257                          */
3258                         reg->alloc = 1;
3259                 }
3260
3261                 /* lock in msr value */
3262                 era->config = reg->config;
3263                 era->reg = reg->reg;
3264
3265                 /* one more user */
3266                 atomic_inc(&era->ref);
3267
3268                 /*
3269                  * need to call x86_get_event_constraint()
3270                  * to check if associated event has constraints
3271                  */
3272                 c = NULL;
3273         } else {
3274                 idx = intel_alt_er(cpuc, idx, reg->config);
3275                 if (idx != reg->idx) {
3276                         raw_spin_unlock_irqrestore(&era->lock, flags);
3277                         goto again;
3278                 }
3279         }
3280         raw_spin_unlock_irqrestore(&era->lock, flags);
3281
3282         return c;
3283 }
3284
3285 static void
3286 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3287                                    struct hw_perf_event_extra *reg)
3288 {
3289         struct er_account *era;
3290
3291         /*
3292          * Only put constraint if extra reg was actually allocated. Also takes
3293          * care of event which do not use an extra shared reg.
3294          *
3295          * Also, if this is a fake cpuc we shouldn't touch any event state
3296          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3297          * either since it'll be thrown out.
3298          */
3299         if (!reg->alloc || cpuc->is_fake)
3300                 return;
3301
3302         era = &cpuc->shared_regs->regs[reg->idx];
3303
3304         /* one fewer user */
3305         atomic_dec(&era->ref);
3306
3307         /* allocate again next time */
3308         reg->alloc = 0;
3309 }
3310
3311 static struct event_constraint *
3312 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3313                               struct perf_event *event)
3314 {
3315         struct event_constraint *c = NULL, *d;
3316         struct hw_perf_event_extra *xreg, *breg;
3317
3318         xreg = &event->hw.extra_reg;
3319         if (xreg->idx != EXTRA_REG_NONE) {
3320                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3321                 if (c == &emptyconstraint)
3322                         return c;
3323         }
3324         breg = &event->hw.branch_reg;
3325         if (breg->idx != EXTRA_REG_NONE) {
3326                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3327                 if (d == &emptyconstraint) {
3328                         __intel_shared_reg_put_constraints(cpuc, xreg);
3329                         c = d;
3330                 }
3331         }
3332         return c;
3333 }
3334
3335 struct event_constraint *
3336 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3337                           struct perf_event *event)
3338 {
3339         struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3340         struct event_constraint *c;
3341
3342         if (event_constraints) {
3343                 for_each_event_constraint(c, event_constraints) {
3344                         if (constraint_match(c, event->hw.config)) {
3345                                 event->hw.flags |= c->flags;
3346                                 return c;
3347                         }
3348                 }
3349         }
3350
3351         return &hybrid_var(cpuc->pmu, unconstrained);
3352 }
3353
3354 static struct event_constraint *
3355 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3356                             struct perf_event *event)
3357 {
3358         struct event_constraint *c;
3359
3360         c = intel_vlbr_constraints(event);
3361         if (c)
3362                 return c;
3363
3364         c = intel_bts_constraints(event);
3365         if (c)
3366                 return c;
3367
3368         c = intel_shared_regs_constraints(cpuc, event);
3369         if (c)
3370                 return c;
3371
3372         c = intel_pebs_constraints(event);
3373         if (c)
3374                 return c;
3375
3376         return x86_get_event_constraints(cpuc, idx, event);
3377 }
3378
3379 static void
3380 intel_start_scheduling(struct cpu_hw_events *cpuc)
3381 {
3382         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3383         struct intel_excl_states *xl;
3384         int tid = cpuc->excl_thread_id;
3385
3386         /*
3387          * nothing needed if in group validation mode
3388          */
3389         if (cpuc->is_fake || !is_ht_workaround_enabled())
3390                 return;
3391
3392         /*
3393          * no exclusion needed
3394          */
3395         if (WARN_ON_ONCE(!excl_cntrs))
3396                 return;
3397
3398         xl = &excl_cntrs->states[tid];
3399
3400         xl->sched_started = true;
3401         /*
3402          * lock shared state until we are done scheduling
3403          * in stop_event_scheduling()
3404          * makes scheduling appear as a transaction
3405          */
3406         raw_spin_lock(&excl_cntrs->lock);
3407 }
3408
3409 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3410 {
3411         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3412         struct event_constraint *c = cpuc->event_constraint[idx];
3413         struct intel_excl_states *xl;
3414         int tid = cpuc->excl_thread_id;
3415
3416         if (cpuc->is_fake || !is_ht_workaround_enabled())
3417                 return;
3418
3419         if (WARN_ON_ONCE(!excl_cntrs))
3420                 return;
3421
3422         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3423                 return;
3424
3425         xl = &excl_cntrs->states[tid];
3426
3427         lockdep_assert_held(&excl_cntrs->lock);
3428
3429         if (c->flags & PERF_X86_EVENT_EXCL)
3430                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3431         else
3432                 xl->state[cntr] = INTEL_EXCL_SHARED;
3433 }
3434
3435 static void
3436 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3437 {
3438         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3439         struct intel_excl_states *xl;
3440         int tid = cpuc->excl_thread_id;
3441
3442         /*
3443          * nothing needed if in group validation mode
3444          */
3445         if (cpuc->is_fake || !is_ht_workaround_enabled())
3446                 return;
3447         /*
3448          * no exclusion needed
3449          */
3450         if (WARN_ON_ONCE(!excl_cntrs))
3451                 return;
3452
3453         xl = &excl_cntrs->states[tid];
3454
3455         xl->sched_started = false;
3456         /*
3457          * release shared state lock (acquired in intel_start_scheduling())
3458          */
3459         raw_spin_unlock(&excl_cntrs->lock);
3460 }
3461
3462 static struct event_constraint *
3463 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3464 {
3465         WARN_ON_ONCE(!cpuc->constraint_list);
3466
3467         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3468                 struct event_constraint *cx;
3469
3470                 /*
3471                  * grab pre-allocated constraint entry
3472                  */
3473                 cx = &cpuc->constraint_list[idx];
3474
3475                 /*
3476                  * initialize dynamic constraint
3477                  * with static constraint
3478                  */
3479                 *cx = *c;
3480
3481                 /*
3482                  * mark constraint as dynamic
3483                  */
3484                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3485                 c = cx;
3486         }
3487
3488         return c;
3489 }
3490
3491 static struct event_constraint *
3492 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3493                            int idx, struct event_constraint *c)
3494 {
3495         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3496         struct intel_excl_states *xlo;
3497         int tid = cpuc->excl_thread_id;
3498         int is_excl, i, w;
3499
3500         /*
3501          * validating a group does not require
3502          * enforcing cross-thread  exclusion
3503          */
3504         if (cpuc->is_fake || !is_ht_workaround_enabled())
3505                 return c;
3506
3507         /*
3508          * no exclusion needed
3509          */
3510         if (WARN_ON_ONCE(!excl_cntrs))
3511                 return c;
3512
3513         /*
3514          * because we modify the constraint, we need
3515          * to make a copy. Static constraints come
3516          * from static const tables.
3517          *
3518          * only needed when constraint has not yet
3519          * been cloned (marked dynamic)
3520          */
3521         c = dyn_constraint(cpuc, c, idx);
3522
3523         /*
3524          * From here on, the constraint is dynamic.
3525          * Either it was just allocated above, or it
3526          * was allocated during a earlier invocation
3527          * of this function
3528          */
3529
3530         /*
3531          * state of sibling HT
3532          */
3533         xlo = &excl_cntrs->states[tid ^ 1];
3534
3535         /*
3536          * event requires exclusive counter access
3537          * across HT threads
3538          */
3539         is_excl = c->flags & PERF_X86_EVENT_EXCL;
3540         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3541                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3542                 if (!cpuc->n_excl++)
3543                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3544         }
3545
3546         /*
3547          * Modify static constraint with current dynamic
3548          * state of thread
3549          *
3550          * EXCLUSIVE: sibling counter measuring exclusive event
3551          * SHARED   : sibling counter measuring non-exclusive event
3552          * UNUSED   : sibling counter unused
3553          */
3554         w = c->weight;
3555         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3556                 /*
3557                  * exclusive event in sibling counter
3558                  * our corresponding counter cannot be used
3559                  * regardless of our event
3560                  */
3561                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3562                         __clear_bit(i, c->idxmsk);
3563                         w--;
3564                         continue;
3565                 }
3566                 /*
3567                  * if measuring an exclusive event, sibling
3568                  * measuring non-exclusive, then counter cannot
3569                  * be used
3570                  */
3571                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3572                         __clear_bit(i, c->idxmsk);
3573                         w--;
3574                         continue;
3575                 }
3576         }
3577
3578         /*
3579          * if we return an empty mask, then switch
3580          * back to static empty constraint to avoid
3581          * the cost of freeing later on
3582          */
3583         if (!w)
3584                 c = &emptyconstraint;
3585
3586         c->weight = w;
3587
3588         return c;
3589 }
3590
3591 static struct event_constraint *
3592 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3593                             struct perf_event *event)
3594 {
3595         struct event_constraint *c1, *c2;
3596
3597         c1 = cpuc->event_constraint[idx];
3598
3599         /*
3600          * first time only
3601          * - static constraint: no change across incremental scheduling calls
3602          * - dynamic constraint: handled by intel_get_excl_constraints()
3603          */
3604         c2 = __intel_get_event_constraints(cpuc, idx, event);
3605         if (c1) {
3606                 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3607                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3608                 c1->weight = c2->weight;
3609                 c2 = c1;
3610         }
3611
3612         if (cpuc->excl_cntrs)
3613                 return intel_get_excl_constraints(cpuc, event, idx, c2);
3614
3615         return c2;
3616 }
3617
3618 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3619                 struct perf_event *event)
3620 {
3621         struct hw_perf_event *hwc = &event->hw;
3622         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3623         int tid = cpuc->excl_thread_id;
3624         struct intel_excl_states *xl;
3625
3626         /*
3627          * nothing needed if in group validation mode
3628          */
3629         if (cpuc->is_fake)
3630                 return;
3631
3632         if (WARN_ON_ONCE(!excl_cntrs))
3633                 return;
3634
3635         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3636                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3637                 if (!--cpuc->n_excl)
3638                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3639         }
3640
3641         /*
3642          * If event was actually assigned, then mark the counter state as
3643          * unused now.
3644          */
3645         if (hwc->idx >= 0) {
3646                 xl = &excl_cntrs->states[tid];
3647
3648                 /*
3649                  * put_constraint may be called from x86_schedule_events()
3650                  * which already has the lock held so here make locking
3651                  * conditional.
3652                  */
3653                 if (!xl->sched_started)
3654                         raw_spin_lock(&excl_cntrs->lock);
3655
3656                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3657
3658                 if (!xl->sched_started)
3659                         raw_spin_unlock(&excl_cntrs->lock);
3660         }
3661 }
3662
3663 static void
3664 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3665                                         struct perf_event *event)
3666 {
3667         struct hw_perf_event_extra *reg;
3668
3669         reg = &event->hw.extra_reg;
3670         if (reg->idx != EXTRA_REG_NONE)
3671                 __intel_shared_reg_put_constraints(cpuc, reg);
3672
3673         reg = &event->hw.branch_reg;
3674         if (reg->idx != EXTRA_REG_NONE)
3675                 __intel_shared_reg_put_constraints(cpuc, reg);
3676 }
3677
3678 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3679                                         struct perf_event *event)
3680 {
3681         intel_put_shared_regs_event_constraints(cpuc, event);
3682
3683         /*
3684          * is PMU has exclusive counter restrictions, then
3685          * all events are subject to and must call the
3686          * put_excl_constraints() routine
3687          */
3688         if (cpuc->excl_cntrs)
3689                 intel_put_excl_constraints(cpuc, event);
3690 }
3691
3692 static void intel_pebs_aliases_core2(struct perf_event *event)
3693 {
3694         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3695                 /*
3696                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3697                  * (0x003c) so that we can use it with PEBS.
3698                  *
3699                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3700                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3701                  * (0x00c0), which is a PEBS capable event, to get the same
3702                  * count.
3703                  *
3704                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3705                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3706                  * larger than the maximum number of instructions that can be
3707                  * retired per cycle (4) and then inverting the condition, we
3708                  * count all cycles that retire 16 or less instructions, which
3709                  * is every cycle.
3710                  *
3711                  * Thereby we gain a PEBS capable cycle counter.
3712                  */
3713                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3714
3715                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3716                 event->hw.config = alt_config;
3717         }
3718 }
3719
3720 static void intel_pebs_aliases_snb(struct perf_event *event)
3721 {
3722         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3723                 /*
3724                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3725                  * (0x003c) so that we can use it with PEBS.
3726                  *
3727                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3728                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3729                  * (0x01c2), which is a PEBS capable event, to get the same
3730                  * count.
3731                  *
3732                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3733                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3734                  * larger than the maximum number of micro-ops that can be
3735                  * retired per cycle (4) and then inverting the condition, we
3736                  * count all cycles that retire 16 or less micro-ops, which
3737                  * is every cycle.
3738                  *
3739                  * Thereby we gain a PEBS capable cycle counter.
3740                  */
3741                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3742
3743                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3744                 event->hw.config = alt_config;
3745         }
3746 }
3747
3748 static void intel_pebs_aliases_precdist(struct perf_event *event)
3749 {
3750         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3751                 /*
3752                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3753                  * (0x003c) so that we can use it with PEBS.
3754                  *
3755                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3756                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3757                  * (0x01c0), which is a PEBS capable event, to get the same
3758                  * count.
3759                  *
3760                  * The PREC_DIST event has special support to minimize sample
3761                  * shadowing effects. One drawback is that it can be
3762                  * only programmed on counter 1, but that seems like an
3763                  * acceptable trade off.
3764                  */
3765                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3766
3767                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3768                 event->hw.config = alt_config;
3769         }
3770 }
3771
3772 static void intel_pebs_aliases_ivb(struct perf_event *event)
3773 {
3774         if (event->attr.precise_ip < 3)
3775                 return intel_pebs_aliases_snb(event);
3776         return intel_pebs_aliases_precdist(event);
3777 }
3778
3779 static void intel_pebs_aliases_skl(struct perf_event *event)
3780 {
3781         if (event->attr.precise_ip < 3)
3782                 return intel_pebs_aliases_core2(event);
3783         return intel_pebs_aliases_precdist(event);
3784 }
3785
3786 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3787 {
3788         unsigned long flags = x86_pmu.large_pebs_flags;
3789
3790         if (event->attr.use_clockid)
3791                 flags &= ~PERF_SAMPLE_TIME;
3792         if (!event->attr.exclude_kernel)
3793                 flags &= ~PERF_SAMPLE_REGS_USER;
3794         if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3795                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3796         return flags;
3797 }
3798
3799 static int intel_pmu_bts_config(struct perf_event *event)
3800 {
3801         struct perf_event_attr *attr = &event->attr;
3802
3803         if (unlikely(intel_pmu_has_bts(event))) {
3804                 /* BTS is not supported by this architecture. */
3805                 if (!x86_pmu.bts_active)
3806                         return -EOPNOTSUPP;
3807
3808                 /* BTS is currently only allowed for user-mode. */
3809                 if (!attr->exclude_kernel)
3810                         return -EOPNOTSUPP;
3811
3812                 /* BTS is not allowed for precise events. */
3813                 if (attr->precise_ip)
3814                         return -EOPNOTSUPP;
3815
3816                 /* disallow bts if conflicting events are present */
3817                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3818                         return -EBUSY;
3819
3820                 event->destroy = hw_perf_lbr_event_destroy;
3821         }
3822
3823         return 0;
3824 }
3825
3826 static int core_pmu_hw_config(struct perf_event *event)
3827 {
3828         int ret = x86_pmu_hw_config(event);
3829
3830         if (ret)
3831                 return ret;
3832
3833         return intel_pmu_bts_config(event);
3834 }
3835
3836 #define INTEL_TD_METRIC_AVAILABLE_MAX   (INTEL_TD_METRIC_RETIRING + \
3837                                          ((x86_pmu.num_topdown_events - 1) << 8))
3838
3839 static bool is_available_metric_event(struct perf_event *event)
3840 {
3841         return is_metric_event(event) &&
3842                 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3843 }
3844
3845 static inline bool is_mem_loads_event(struct perf_event *event)
3846 {
3847         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3848 }
3849
3850 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3851 {
3852         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3853 }
3854
3855 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3856 {
3857         if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3858                 return false;
3859
3860         if (is_hybrid())
3861                 return hybrid_pmu(event->pmu)->pmu_type == hybrid_big;
3862
3863         return true;
3864 }
3865
3866 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3867 {
3868         union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3869
3870         return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3871 }
3872
3873 static int intel_pmu_hw_config(struct perf_event *event)
3874 {
3875         int ret = x86_pmu_hw_config(event);
3876
3877         if (ret)
3878                 return ret;
3879
3880         ret = intel_pmu_bts_config(event);
3881         if (ret)
3882                 return ret;
3883
3884         if (event->attr.precise_ip) {
3885                 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3886                         return -EINVAL;
3887
3888                 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3889                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3890                         if (!(event->attr.sample_type &
3891                               ~intel_pmu_large_pebs_flags(event))) {
3892                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3893                                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3894                         }
3895                 }
3896                 if (x86_pmu.pebs_aliases)
3897                         x86_pmu.pebs_aliases(event);
3898         }
3899
3900         if (needs_branch_stack(event)) {
3901                 ret = intel_pmu_setup_lbr_filter(event);
3902                 if (ret)
3903                         return ret;
3904                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3905
3906                 /*
3907                  * BTS is set up earlier in this path, so don't account twice
3908                  */
3909                 if (!unlikely(intel_pmu_has_bts(event))) {
3910                         /* disallow lbr if conflicting events are present */
3911                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3912                                 return -EBUSY;
3913
3914                         event->destroy = hw_perf_lbr_event_destroy;
3915                 }
3916         }
3917
3918         if (event->attr.aux_output) {
3919                 if (!event->attr.precise_ip)
3920                         return -EINVAL;
3921
3922                 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3923         }
3924
3925         if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3926             (event->attr.type == PERF_TYPE_HW_CACHE))
3927                 return 0;
3928
3929         /*
3930          * Config Topdown slots and metric events
3931          *
3932          * The slots event on Fixed Counter 3 can support sampling,
3933          * which will be handled normally in x86_perf_event_update().
3934          *
3935          * Metric events don't support sampling and require being paired
3936          * with a slots event as group leader. When the slots event
3937          * is used in a metrics group, it too cannot support sampling.
3938          */
3939         if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3940                 if (event->attr.config1 || event->attr.config2)
3941                         return -EINVAL;
3942
3943                 /*
3944                  * The TopDown metrics events and slots event don't
3945                  * support any filters.
3946                  */
3947                 if (event->attr.config & X86_ALL_EVENT_FLAGS)
3948                         return -EINVAL;
3949
3950                 if (is_available_metric_event(event)) {
3951                         struct perf_event *leader = event->group_leader;
3952
3953                         /* The metric events don't support sampling. */
3954                         if (is_sampling_event(event))
3955                                 return -EINVAL;
3956
3957                         /* The metric events require a slots group leader. */
3958                         if (!is_slots_event(leader))
3959                                 return -EINVAL;
3960
3961                         /*
3962                          * The leader/SLOTS must not be a sampling event for
3963                          * metric use; hardware requires it starts at 0 when used
3964                          * in conjunction with MSR_PERF_METRICS.
3965                          */
3966                         if (is_sampling_event(leader))
3967                                 return -EINVAL;
3968
3969                         event->event_caps |= PERF_EV_CAP_SIBLING;
3970                         /*
3971                          * Only once we have a METRICs sibling do we
3972                          * need TopDown magic.
3973                          */
3974                         leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3975                         event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3976                 }
3977         }
3978
3979         /*
3980          * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3981          * doesn't function quite right. As a work-around it needs to always be
3982          * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3983          * The actual count of this second event is irrelevant it just needs
3984          * to be active to make the first event function correctly.
3985          *
3986          * In a group, the auxiliary event must be in front of the load latency
3987          * event. The rule is to simplify the implementation of the check.
3988          * That's because perf cannot have a complete group at the moment.
3989          */
3990         if (require_mem_loads_aux_event(event) &&
3991             (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3992             is_mem_loads_event(event)) {
3993                 struct perf_event *leader = event->group_leader;
3994                 struct perf_event *sibling = NULL;
3995
3996                 /*
3997                  * When this memload event is also the first event (no group
3998                  * exists yet), then there is no aux event before it.
3999                  */
4000                 if (leader == event)
4001                         return -ENODATA;
4002
4003                 if (!is_mem_loads_aux_event(leader)) {
4004                         for_each_sibling_event(sibling, leader) {
4005                                 if (is_mem_loads_aux_event(sibling))
4006                                         break;
4007                         }
4008                         if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
4009                                 return -ENODATA;
4010                 }
4011         }
4012
4013         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
4014                 return 0;
4015
4016         if (x86_pmu.version < 3)
4017                 return -EINVAL;
4018
4019         ret = perf_allow_cpu(&event->attr);
4020         if (ret)
4021                 return ret;
4022
4023         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
4024
4025         return 0;
4026 }
4027
4028 /*
4029  * Currently, the only caller of this function is the atomic_switch_perf_msrs().
4030  * The host perf context helps to prepare the values of the real hardware for
4031  * a set of msrs that need to be switched atomically in a vmx transaction.
4032  *
4033  * For example, the pseudocode needed to add a new msr should look like:
4034  *
4035  * arr[(*nr)++] = (struct perf_guest_switch_msr){
4036  *      .msr = the hardware msr address,
4037  *      .host = the value the hardware has when it doesn't run a guest,
4038  *      .guest = the value the hardware has when it runs a guest,
4039  * };
4040  *
4041  * These values have nothing to do with the emulated values the guest sees
4042  * when it uses {RD,WR}MSR, which should be handled by the KVM context,
4043  * specifically in the intel_pmu_{get,set}_msr().
4044  */
4045 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
4046 {
4047         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4048         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4049         struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
4050         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
4051         u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
4052         int global_ctrl, pebs_enable;
4053
4054         *nr = 0;
4055         global_ctrl = (*nr)++;
4056         arr[global_ctrl] = (struct perf_guest_switch_msr){
4057                 .msr = MSR_CORE_PERF_GLOBAL_CTRL,
4058                 .host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
4059                 .guest = intel_ctrl & (~cpuc->intel_ctrl_host_mask | ~pebs_mask),
4060         };
4061
4062         if (!x86_pmu.pebs)
4063                 return arr;
4064
4065         /*
4066          * If PMU counter has PEBS enabled it is not enough to
4067          * disable counter on a guest entry since PEBS memory
4068          * write can overshoot guest entry and corrupt guest
4069          * memory. Disabling PEBS solves the problem.
4070          *
4071          * Don't do this if the CPU already enforces it.
4072          */
4073         if (x86_pmu.pebs_no_isolation) {
4074                 arr[(*nr)++] = (struct perf_guest_switch_msr){
4075                         .msr = MSR_IA32_PEBS_ENABLE,
4076                         .host = cpuc->pebs_enabled,
4077                         .guest = 0,
4078                 };
4079                 return arr;
4080         }
4081
4082         if (!kvm_pmu || !x86_pmu.pebs_ept)
4083                 return arr;
4084
4085         arr[(*nr)++] = (struct perf_guest_switch_msr){
4086                 .msr = MSR_IA32_DS_AREA,
4087                 .host = (unsigned long)cpuc->ds,
4088                 .guest = kvm_pmu->ds_area,
4089         };
4090
4091         if (x86_pmu.intel_cap.pebs_baseline) {
4092                 arr[(*nr)++] = (struct perf_guest_switch_msr){
4093                         .msr = MSR_PEBS_DATA_CFG,
4094                         .host = cpuc->active_pebs_data_cfg,
4095                         .guest = kvm_pmu->pebs_data_cfg,
4096                 };
4097         }
4098
4099         pebs_enable = (*nr)++;
4100         arr[pebs_enable] = (struct perf_guest_switch_msr){
4101                 .msr = MSR_IA32_PEBS_ENABLE,
4102                 .host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
4103                 .guest = pebs_mask & ~cpuc->intel_ctrl_host_mask,
4104         };
4105
4106         if (arr[pebs_enable].host) {
4107                 /* Disable guest PEBS if host PEBS is enabled. */
4108                 arr[pebs_enable].guest = 0;
4109         } else {
4110                 /* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
4111                 arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
4112                 arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
4113                 /* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
4114                 arr[global_ctrl].guest |= arr[pebs_enable].guest;
4115         }
4116
4117         return arr;
4118 }
4119
4120 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
4121 {
4122         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4123         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4124         int idx;
4125
4126         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
4127                 struct perf_event *event = cpuc->events[idx];
4128
4129                 arr[idx].msr = x86_pmu_config_addr(idx);
4130                 arr[idx].host = arr[idx].guest = 0;
4131
4132                 if (!test_bit(idx, cpuc->active_mask))
4133                         continue;
4134
4135                 arr[idx].host = arr[idx].guest =
4136                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
4137
4138                 if (event->attr.exclude_host)
4139                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4140                 else if (event->attr.exclude_guest)
4141                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4142         }
4143
4144         *nr = x86_pmu.num_counters;
4145         return arr;
4146 }
4147
4148 static void core_pmu_enable_event(struct perf_event *event)
4149 {
4150         if (!event->attr.exclude_host)
4151                 x86_pmu_enable_event(event);
4152 }
4153
4154 static void core_pmu_enable_all(int added)
4155 {
4156         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4157         int idx;
4158
4159         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
4160                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4161
4162                 if (!test_bit(idx, cpuc->active_mask) ||
4163                                 cpuc->events[idx]->attr.exclude_host)
4164                         continue;
4165
4166                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4167         }
4168 }
4169
4170 static int hsw_hw_config(struct perf_event *event)
4171 {
4172         int ret = intel_pmu_hw_config(event);
4173
4174         if (ret)
4175                 return ret;
4176         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4177                 return 0;
4178         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4179
4180         /*
4181          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4182          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4183          * this combination.
4184          */
4185         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4186              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4187               event->attr.precise_ip > 0))
4188                 return -EOPNOTSUPP;
4189
4190         if (event_is_checkpointed(event)) {
4191                 /*
4192                  * Sampling of checkpointed events can cause situations where
4193                  * the CPU constantly aborts because of a overflow, which is
4194                  * then checkpointed back and ignored. Forbid checkpointing
4195                  * for sampling.
4196                  *
4197                  * But still allow a long sampling period, so that perf stat
4198                  * from KVM works.
4199                  */
4200                 if (event->attr.sample_period > 0 &&
4201                     event->attr.sample_period < 0x7fffffff)
4202                         return -EOPNOTSUPP;
4203         }
4204         return 0;
4205 }
4206
4207 static struct event_constraint counter0_constraint =
4208                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4209
4210 static struct event_constraint counter1_constraint =
4211                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x2);
4212
4213 static struct event_constraint counter0_1_constraint =
4214                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x3);
4215
4216 static struct event_constraint counter2_constraint =
4217                         EVENT_CONSTRAINT(0, 0x4, 0);
4218
4219 static struct event_constraint fixed0_constraint =
4220                         FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4221
4222 static struct event_constraint fixed0_counter0_constraint =
4223                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4224
4225 static struct event_constraint fixed0_counter0_1_constraint =
4226                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL);
4227
4228 static struct event_constraint counters_1_7_constraint =
4229                         INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL);
4230
4231 static struct event_constraint *
4232 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4233                           struct perf_event *event)
4234 {
4235         struct event_constraint *c;
4236
4237         c = intel_get_event_constraints(cpuc, idx, event);
4238
4239         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
4240         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4241                 if (c->idxmsk64 & (1U << 2))
4242                         return &counter2_constraint;
4243                 return &emptyconstraint;
4244         }
4245
4246         return c;
4247 }
4248
4249 static struct event_constraint *
4250 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4251                           struct perf_event *event)
4252 {
4253         /*
4254          * Fixed counter 0 has less skid.
4255          * Force instruction:ppp in Fixed counter 0
4256          */
4257         if ((event->attr.precise_ip == 3) &&
4258             constraint_match(&fixed0_constraint, event->hw.config))
4259                 return &fixed0_constraint;
4260
4261         return hsw_get_event_constraints(cpuc, idx, event);
4262 }
4263
4264 static struct event_constraint *
4265 glc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4266                           struct perf_event *event)
4267 {
4268         struct event_constraint *c;
4269
4270         c = icl_get_event_constraints(cpuc, idx, event);
4271
4272         /*
4273          * The :ppp indicates the Precise Distribution (PDist) facility, which
4274          * is only supported on the GP counter 0. If a :ppp event which is not
4275          * available on the GP counter 0, error out.
4276          * Exception: Instruction PDIR is only available on the fixed counter 0.
4277          */
4278         if ((event->attr.precise_ip == 3) &&
4279             !constraint_match(&fixed0_constraint, event->hw.config)) {
4280                 if (c->idxmsk64 & BIT_ULL(0))
4281                         return &counter0_constraint;
4282
4283                 return &emptyconstraint;
4284         }
4285
4286         return c;
4287 }
4288
4289 static struct event_constraint *
4290 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4291                           struct perf_event *event)
4292 {
4293         struct event_constraint *c;
4294
4295         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
4296         if (event->attr.precise_ip == 3)
4297                 return &counter0_constraint;
4298
4299         c = intel_get_event_constraints(cpuc, idx, event);
4300
4301         return c;
4302 }
4303
4304 static struct event_constraint *
4305 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4306                           struct perf_event *event)
4307 {
4308         struct event_constraint *c;
4309
4310         c = intel_get_event_constraints(cpuc, idx, event);
4311
4312         /*
4313          * :ppp means to do reduced skid PEBS,
4314          * which is available on PMC0 and fixed counter 0.
4315          */
4316         if (event->attr.precise_ip == 3) {
4317                 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
4318                 if (constraint_match(&fixed0_constraint, event->hw.config))
4319                         return &fixed0_counter0_constraint;
4320
4321                 return &counter0_constraint;
4322         }
4323
4324         return c;
4325 }
4326
4327 static bool allow_tsx_force_abort = true;
4328
4329 static struct event_constraint *
4330 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4331                           struct perf_event *event)
4332 {
4333         struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4334
4335         /*
4336          * Without TFA we must not use PMC3.
4337          */
4338         if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4339                 c = dyn_constraint(cpuc, c, idx);
4340                 c->idxmsk64 &= ~(1ULL << 3);
4341                 c->weight--;
4342         }
4343
4344         return c;
4345 }
4346
4347 static struct event_constraint *
4348 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4349                           struct perf_event *event)
4350 {
4351         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4352
4353         if (pmu->pmu_type == hybrid_big)
4354                 return glc_get_event_constraints(cpuc, idx, event);
4355         else if (pmu->pmu_type == hybrid_small)
4356                 return tnt_get_event_constraints(cpuc, idx, event);
4357
4358         WARN_ON(1);
4359         return &emptyconstraint;
4360 }
4361
4362 static struct event_constraint *
4363 cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4364                           struct perf_event *event)
4365 {
4366         struct event_constraint *c;
4367
4368         c = intel_get_event_constraints(cpuc, idx, event);
4369
4370         /*
4371          * The :ppp indicates the Precise Distribution (PDist) facility, which
4372          * is only supported on the GP counter 0 & 1 and Fixed counter 0.
4373          * If a :ppp event which is not available on the above eligible counters,
4374          * error out.
4375          */
4376         if (event->attr.precise_ip == 3) {
4377                 /* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */
4378                 if (constraint_match(&fixed0_constraint, event->hw.config))
4379                         return &fixed0_counter0_1_constraint;
4380
4381                 switch (c->idxmsk64 & 0x3ull) {
4382                 case 0x1:
4383                         return &counter0_constraint;
4384                 case 0x2:
4385                         return &counter1_constraint;
4386                 case 0x3:
4387                         return &counter0_1_constraint;
4388                 }
4389                 return &emptyconstraint;
4390         }
4391
4392         return c;
4393 }
4394
4395 static struct event_constraint *
4396 rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4397                           struct perf_event *event)
4398 {
4399         struct event_constraint *c;
4400
4401         c = glc_get_event_constraints(cpuc, idx, event);
4402
4403         /* The Retire Latency is not supported by the fixed counter 0. */
4404         if (event->attr.precise_ip &&
4405             (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
4406             constraint_match(&fixed0_constraint, event->hw.config)) {
4407                 /*
4408                  * The Instruction PDIR is only available
4409                  * on the fixed counter 0. Error out for this case.
4410                  */
4411                 if (event->attr.precise_ip == 3)
4412                         return &emptyconstraint;
4413                 return &counters_1_7_constraint;
4414         }
4415
4416         return c;
4417 }
4418
4419 static struct event_constraint *
4420 mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4421                           struct perf_event *event)
4422 {
4423         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4424
4425         if (pmu->pmu_type == hybrid_big)
4426                 return rwc_get_event_constraints(cpuc, idx, event);
4427         if (pmu->pmu_type == hybrid_small)
4428                 return cmt_get_event_constraints(cpuc, idx, event);
4429
4430         WARN_ON(1);
4431         return &emptyconstraint;
4432 }
4433
4434 static int adl_hw_config(struct perf_event *event)
4435 {
4436         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4437
4438         if (pmu->pmu_type == hybrid_big)
4439                 return hsw_hw_config(event);
4440         else if (pmu->pmu_type == hybrid_small)
4441                 return intel_pmu_hw_config(event);
4442
4443         WARN_ON(1);
4444         return -EOPNOTSUPP;
4445 }
4446
4447 static enum hybrid_cpu_type adl_get_hybrid_cpu_type(void)
4448 {
4449         return HYBRID_INTEL_CORE;
4450 }
4451
4452 /*
4453  * Broadwell:
4454  *
4455  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4456  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4457  * the two to enforce a minimum period of 128 (the smallest value that has bits
4458  * 0-5 cleared and >= 100).
4459  *
4460  * Because of how the code in x86_perf_event_set_period() works, the truncation
4461  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4462  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4463  *
4464  * Therefore the effective (average) period matches the requested period,
4465  * despite coarser hardware granularity.
4466  */
4467 static void bdw_limit_period(struct perf_event *event, s64 *left)
4468 {
4469         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4470                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
4471                 if (*left < 128)
4472                         *left = 128;
4473                 *left &= ~0x3fULL;
4474         }
4475 }
4476
4477 static void nhm_limit_period(struct perf_event *event, s64 *left)
4478 {
4479         *left = max(*left, 32LL);
4480 }
4481
4482 static void glc_limit_period(struct perf_event *event, s64 *left)
4483 {
4484         if (event->attr.precise_ip == 3)
4485                 *left = max(*left, 128LL);
4486 }
4487
4488 PMU_FORMAT_ATTR(event,  "config:0-7"    );
4489 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
4490 PMU_FORMAT_ATTR(edge,   "config:18"     );
4491 PMU_FORMAT_ATTR(pc,     "config:19"     );
4492 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
4493 PMU_FORMAT_ATTR(inv,    "config:23"     );
4494 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
4495 PMU_FORMAT_ATTR(in_tx,  "config:32");
4496 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4497
4498 static struct attribute *intel_arch_formats_attr[] = {
4499         &format_attr_event.attr,
4500         &format_attr_umask.attr,
4501         &format_attr_edge.attr,
4502         &format_attr_pc.attr,
4503         &format_attr_inv.attr,
4504         &format_attr_cmask.attr,
4505         NULL,
4506 };
4507
4508 ssize_t intel_event_sysfs_show(char *page, u64 config)
4509 {
4510         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4511
4512         return x86_event_sysfs_show(page, config, event);
4513 }
4514
4515 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4516 {
4517         struct intel_shared_regs *regs;
4518         int i;
4519
4520         regs = kzalloc_node(sizeof(struct intel_shared_regs),
4521                             GFP_KERNEL, cpu_to_node(cpu));
4522         if (regs) {
4523                 /*
4524                  * initialize the locks to keep lockdep happy
4525                  */
4526                 for (i = 0; i < EXTRA_REG_MAX; i++)
4527                         raw_spin_lock_init(&regs->regs[i].lock);
4528
4529                 regs->core_id = -1;
4530         }
4531         return regs;
4532 }
4533
4534 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4535 {
4536         struct intel_excl_cntrs *c;
4537
4538         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4539                          GFP_KERNEL, cpu_to_node(cpu));
4540         if (c) {
4541                 raw_spin_lock_init(&c->lock);
4542                 c->core_id = -1;
4543         }
4544         return c;
4545 }
4546
4547
4548 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4549 {
4550         cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4551
4552         if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4553                 cpuc->shared_regs = allocate_shared_regs(cpu);
4554                 if (!cpuc->shared_regs)
4555                         goto err;
4556         }
4557
4558         if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4559                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4560
4561                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4562                 if (!cpuc->constraint_list)
4563                         goto err_shared_regs;
4564         }
4565
4566         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4567                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4568                 if (!cpuc->excl_cntrs)
4569                         goto err_constraint_list;
4570
4571                 cpuc->excl_thread_id = 0;
4572         }
4573
4574         return 0;
4575
4576 err_constraint_list:
4577         kfree(cpuc->constraint_list);
4578         cpuc->constraint_list = NULL;
4579
4580 err_shared_regs:
4581         kfree(cpuc->shared_regs);
4582         cpuc->shared_regs = NULL;
4583
4584 err:
4585         return -ENOMEM;
4586 }
4587
4588 static int intel_pmu_cpu_prepare(int cpu)
4589 {
4590         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4591 }
4592
4593 static void flip_smm_bit(void *data)
4594 {
4595         unsigned long set = *(unsigned long *)data;
4596
4597         if (set > 0) {
4598                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4599                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4600         } else {
4601                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4602                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4603         }
4604 }
4605
4606 static void intel_pmu_check_num_counters(int *num_counters,
4607                                          int *num_counters_fixed,
4608                                          u64 *intel_ctrl, u64 fixed_mask);
4609
4610 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
4611                                               int num_counters,
4612                                               int num_counters_fixed,
4613                                               u64 intel_ctrl);
4614
4615 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs);
4616
4617 static inline bool intel_pmu_broken_perf_cap(void)
4618 {
4619         /* The Perf Metric (Bit 15) is always cleared */
4620         if ((boot_cpu_data.x86_model == INTEL_FAM6_METEORLAKE) ||
4621             (boot_cpu_data.x86_model == INTEL_FAM6_METEORLAKE_L))
4622                 return true;
4623
4624         return false;
4625 }
4626
4627 static void update_pmu_cap(struct x86_hybrid_pmu *pmu)
4628 {
4629         unsigned int sub_bitmaps = cpuid_eax(ARCH_PERFMON_EXT_LEAF);
4630         unsigned int eax, ebx, ecx, edx;
4631
4632         if (sub_bitmaps & ARCH_PERFMON_NUM_COUNTER_LEAF_BIT) {
4633                 cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF,
4634                             &eax, &ebx, &ecx, &edx);
4635                 pmu->num_counters = fls(eax);
4636                 pmu->num_counters_fixed = fls(ebx);
4637         }
4638
4639
4640         if (!intel_pmu_broken_perf_cap()) {
4641                 /* Perf Metric (Bit 15) and PEBS via PT (Bit 16) are hybrid enumeration */
4642                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, pmu->intel_cap.capabilities);
4643         }
4644 }
4645
4646 static void intel_pmu_check_hybrid_pmus(struct x86_hybrid_pmu *pmu)
4647 {
4648         intel_pmu_check_num_counters(&pmu->num_counters, &pmu->num_counters_fixed,
4649                                      &pmu->intel_ctrl, (1ULL << pmu->num_counters_fixed) - 1);
4650         pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
4651         pmu->unconstrained = (struct event_constraint)
4652                              __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
4653                                                 0, pmu->num_counters, 0, 0);
4654
4655         if (pmu->intel_cap.perf_metrics)
4656                 pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
4657         else
4658                 pmu->intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4659
4660         if (pmu->intel_cap.pebs_output_pt_available)
4661                 pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
4662         else
4663                 pmu->pmu.capabilities |= ~PERF_PMU_CAP_AUX_OUTPUT;
4664
4665         intel_pmu_check_event_constraints(pmu->event_constraints,
4666                                           pmu->num_counters,
4667                                           pmu->num_counters_fixed,
4668                                           pmu->intel_ctrl);
4669
4670         intel_pmu_check_extra_regs(pmu->extra_regs);
4671 }
4672
4673 static struct x86_hybrid_pmu *find_hybrid_pmu_for_cpu(void)
4674 {
4675         u8 cpu_type = get_this_hybrid_cpu_type();
4676         int i;
4677
4678         /*
4679          * This is running on a CPU model that is known to have hybrid
4680          * configurations. But the CPU told us it is not hybrid, shame
4681          * on it. There should be a fixup function provided for these
4682          * troublesome CPUs (->get_hybrid_cpu_type).
4683          */
4684         if (cpu_type == HYBRID_INTEL_NONE) {
4685                 if (x86_pmu.get_hybrid_cpu_type)
4686                         cpu_type = x86_pmu.get_hybrid_cpu_type();
4687                 else
4688                         return NULL;
4689         }
4690
4691         /*
4692          * This essentially just maps between the 'hybrid_cpu_type'
4693          * and 'hybrid_pmu_type' enums:
4694          */
4695         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4696                 enum hybrid_pmu_type pmu_type = x86_pmu.hybrid_pmu[i].pmu_type;
4697
4698                 if (cpu_type == HYBRID_INTEL_CORE &&
4699                     pmu_type == hybrid_big)
4700                         return &x86_pmu.hybrid_pmu[i];
4701                 if (cpu_type == HYBRID_INTEL_ATOM &&
4702                     pmu_type == hybrid_small)
4703                         return &x86_pmu.hybrid_pmu[i];
4704         }
4705
4706         return NULL;
4707 }
4708
4709 static bool init_hybrid_pmu(int cpu)
4710 {
4711         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4712         struct x86_hybrid_pmu *pmu = find_hybrid_pmu_for_cpu();
4713
4714         if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4715                 cpuc->pmu = NULL;
4716                 return false;
4717         }
4718
4719         /* Only check and dump the PMU information for the first CPU */
4720         if (!cpumask_empty(&pmu->supported_cpus))
4721                 goto end;
4722
4723         if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
4724                 update_pmu_cap(pmu);
4725
4726         intel_pmu_check_hybrid_pmus(pmu);
4727
4728         if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4729                 return false;
4730
4731         pr_info("%s PMU driver: ", pmu->name);
4732
4733         if (pmu->intel_cap.pebs_output_pt_available)
4734                 pr_cont("PEBS-via-PT ");
4735
4736         pr_cont("\n");
4737
4738         x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4739                              pmu->intel_ctrl);
4740
4741 end:
4742         cpumask_set_cpu(cpu, &pmu->supported_cpus);
4743         cpuc->pmu = &pmu->pmu;
4744
4745         return true;
4746 }
4747
4748 static void intel_pmu_cpu_starting(int cpu)
4749 {
4750         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4751         int core_id = topology_core_id(cpu);
4752         int i;
4753
4754         if (is_hybrid() && !init_hybrid_pmu(cpu))
4755                 return;
4756
4757         init_debug_store_on_cpu(cpu);
4758         /*
4759          * Deal with CPUs that don't clear their LBRs on power-up.
4760          */
4761         intel_pmu_lbr_reset();
4762
4763         cpuc->lbr_sel = NULL;
4764
4765         if (x86_pmu.flags & PMU_FL_TFA) {
4766                 WARN_ON_ONCE(cpuc->tfa_shadow);
4767                 cpuc->tfa_shadow = ~0ULL;
4768                 intel_set_tfa(cpuc, false);
4769         }
4770
4771         if (x86_pmu.version > 1)
4772                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4773
4774         /*
4775          * Disable perf metrics if any added CPU doesn't support it.
4776          *
4777          * Turn off the check for a hybrid architecture, because the
4778          * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4779          * the architecture features. The perf metrics is a model-specific
4780          * feature for now. The corresponding bit should always be 0 on
4781          * a hybrid platform, e.g., Alder Lake.
4782          */
4783         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4784                 union perf_capabilities perf_cap;
4785
4786                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4787                 if (!perf_cap.perf_metrics) {
4788                         x86_pmu.intel_cap.perf_metrics = 0;
4789                         x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4790                 }
4791         }
4792
4793         if (!cpuc->shared_regs)
4794                 return;
4795
4796         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4797                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4798                         struct intel_shared_regs *pc;
4799
4800                         pc = per_cpu(cpu_hw_events, i).shared_regs;
4801                         if (pc && pc->core_id == core_id) {
4802                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
4803                                 cpuc->shared_regs = pc;
4804                                 break;
4805                         }
4806                 }
4807                 cpuc->shared_regs->core_id = core_id;
4808                 cpuc->shared_regs->refcnt++;
4809         }
4810
4811         if (x86_pmu.lbr_sel_map)
4812                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4813
4814         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4815                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4816                         struct cpu_hw_events *sibling;
4817                         struct intel_excl_cntrs *c;
4818
4819                         sibling = &per_cpu(cpu_hw_events, i);
4820                         c = sibling->excl_cntrs;
4821                         if (c && c->core_id == core_id) {
4822                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4823                                 cpuc->excl_cntrs = c;
4824                                 if (!sibling->excl_thread_id)
4825                                         cpuc->excl_thread_id = 1;
4826                                 break;
4827                         }
4828                 }
4829                 cpuc->excl_cntrs->core_id = core_id;
4830                 cpuc->excl_cntrs->refcnt++;
4831         }
4832 }
4833
4834 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4835 {
4836         struct intel_excl_cntrs *c;
4837
4838         c = cpuc->excl_cntrs;
4839         if (c) {
4840                 if (c->core_id == -1 || --c->refcnt == 0)
4841                         kfree(c);
4842                 cpuc->excl_cntrs = NULL;
4843         }
4844
4845         kfree(cpuc->constraint_list);
4846         cpuc->constraint_list = NULL;
4847 }
4848
4849 static void intel_pmu_cpu_dying(int cpu)
4850 {
4851         fini_debug_store_on_cpu(cpu);
4852 }
4853
4854 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4855 {
4856         struct intel_shared_regs *pc;
4857
4858         pc = cpuc->shared_regs;
4859         if (pc) {
4860                 if (pc->core_id == -1 || --pc->refcnt == 0)
4861                         kfree(pc);
4862                 cpuc->shared_regs = NULL;
4863         }
4864
4865         free_excl_cntrs(cpuc);
4866 }
4867
4868 static void intel_pmu_cpu_dead(int cpu)
4869 {
4870         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4871
4872         intel_cpuc_finish(cpuc);
4873
4874         if (is_hybrid() && cpuc->pmu)
4875                 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4876 }
4877
4878 static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
4879                                  bool sched_in)
4880 {
4881         intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
4882         intel_pmu_lbr_sched_task(pmu_ctx, sched_in);
4883 }
4884
4885 static void intel_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
4886                                     struct perf_event_pmu_context *next_epc)
4887 {
4888         intel_pmu_lbr_swap_task_ctx(prev_epc, next_epc);
4889 }
4890
4891 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4892 {
4893         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4894 }
4895
4896 static void intel_aux_output_init(void)
4897 {
4898         /* Refer also intel_pmu_aux_output_match() */
4899         if (x86_pmu.intel_cap.pebs_output_pt_available)
4900                 x86_pmu.assign = intel_pmu_assign_event;
4901 }
4902
4903 static int intel_pmu_aux_output_match(struct perf_event *event)
4904 {
4905         /* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
4906         if (!x86_pmu.intel_cap.pebs_output_pt_available)
4907                 return 0;
4908
4909         return is_intel_pt_event(event);
4910 }
4911
4912 static void intel_pmu_filter(struct pmu *pmu, int cpu, bool *ret)
4913 {
4914         struct x86_hybrid_pmu *hpmu = hybrid_pmu(pmu);
4915
4916         *ret = !cpumask_test_cpu(cpu, &hpmu->supported_cpus);
4917 }
4918
4919 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4920
4921 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4922
4923 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4924
4925 PMU_FORMAT_ATTR(snoop_rsp, "config1:0-63");
4926
4927 static struct attribute *intel_arch3_formats_attr[] = {
4928         &format_attr_event.attr,
4929         &format_attr_umask.attr,
4930         &format_attr_edge.attr,
4931         &format_attr_pc.attr,
4932         &format_attr_any.attr,
4933         &format_attr_inv.attr,
4934         &format_attr_cmask.attr,
4935         NULL,
4936 };
4937
4938 static struct attribute *hsw_format_attr[] = {
4939         &format_attr_in_tx.attr,
4940         &format_attr_in_tx_cp.attr,
4941         &format_attr_offcore_rsp.attr,
4942         &format_attr_ldlat.attr,
4943         NULL
4944 };
4945
4946 static struct attribute *nhm_format_attr[] = {
4947         &format_attr_offcore_rsp.attr,
4948         &format_attr_ldlat.attr,
4949         NULL
4950 };
4951
4952 static struct attribute *slm_format_attr[] = {
4953         &format_attr_offcore_rsp.attr,
4954         NULL
4955 };
4956
4957 static struct attribute *cmt_format_attr[] = {
4958         &format_attr_offcore_rsp.attr,
4959         &format_attr_ldlat.attr,
4960         &format_attr_snoop_rsp.attr,
4961         NULL
4962 };
4963
4964 static struct attribute *skl_format_attr[] = {
4965         &format_attr_frontend.attr,
4966         NULL,
4967 };
4968
4969 static __initconst const struct x86_pmu core_pmu = {
4970         .name                   = "core",
4971         .handle_irq             = x86_pmu_handle_irq,
4972         .disable_all            = x86_pmu_disable_all,
4973         .enable_all             = core_pmu_enable_all,
4974         .enable                 = core_pmu_enable_event,
4975         .disable                = x86_pmu_disable_event,
4976         .hw_config              = core_pmu_hw_config,
4977         .schedule_events        = x86_schedule_events,
4978         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4979         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4980         .event_map              = intel_pmu_event_map,
4981         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4982         .apic                   = 1,
4983         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4984
4985         /*
4986          * Intel PMCs cannot be accessed sanely above 32-bit width,
4987          * so we install an artificial 1<<31 period regardless of
4988          * the generic event period:
4989          */
4990         .max_period             = (1ULL<<31) - 1,
4991         .get_event_constraints  = intel_get_event_constraints,
4992         .put_event_constraints  = intel_put_event_constraints,
4993         .event_constraints      = intel_core_event_constraints,
4994         .guest_get_msrs         = core_guest_get_msrs,
4995         .format_attrs           = intel_arch_formats_attr,
4996         .events_sysfs_show      = intel_event_sysfs_show,
4997
4998         /*
4999          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
5000          * together with PMU version 1 and thus be using core_pmu with
5001          * shared_regs. We need following callbacks here to allocate
5002          * it properly.
5003          */
5004         .cpu_prepare            = intel_pmu_cpu_prepare,
5005         .cpu_starting           = intel_pmu_cpu_starting,
5006         .cpu_dying              = intel_pmu_cpu_dying,
5007         .cpu_dead               = intel_pmu_cpu_dead,
5008
5009         .check_period           = intel_pmu_check_period,
5010
5011         .lbr_reset              = intel_pmu_lbr_reset_64,
5012         .lbr_read               = intel_pmu_lbr_read_64,
5013         .lbr_save               = intel_pmu_lbr_save,
5014         .lbr_restore            = intel_pmu_lbr_restore,
5015 };
5016
5017 static __initconst const struct x86_pmu intel_pmu = {
5018         .name                   = "Intel",
5019         .handle_irq             = intel_pmu_handle_irq,
5020         .disable_all            = intel_pmu_disable_all,
5021         .enable_all             = intel_pmu_enable_all,
5022         .enable                 = intel_pmu_enable_event,
5023         .disable                = intel_pmu_disable_event,
5024         .add                    = intel_pmu_add_event,
5025         .del                    = intel_pmu_del_event,
5026         .read                   = intel_pmu_read_event,
5027         .set_period             = intel_pmu_set_period,
5028         .update                 = intel_pmu_update,
5029         .hw_config              = intel_pmu_hw_config,
5030         .schedule_events        = x86_schedule_events,
5031         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
5032         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
5033         .event_map              = intel_pmu_event_map,
5034         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
5035         .apic                   = 1,
5036         .large_pebs_flags       = LARGE_PEBS_FLAGS,
5037         /*
5038          * Intel PMCs cannot be accessed sanely above 32 bit width,
5039          * so we install an artificial 1<<31 period regardless of
5040          * the generic event period:
5041          */
5042         .max_period             = (1ULL << 31) - 1,
5043         .get_event_constraints  = intel_get_event_constraints,
5044         .put_event_constraints  = intel_put_event_constraints,
5045         .pebs_aliases           = intel_pebs_aliases_core2,
5046
5047         .format_attrs           = intel_arch3_formats_attr,
5048         .events_sysfs_show      = intel_event_sysfs_show,
5049
5050         .cpu_prepare            = intel_pmu_cpu_prepare,
5051         .cpu_starting           = intel_pmu_cpu_starting,
5052         .cpu_dying              = intel_pmu_cpu_dying,
5053         .cpu_dead               = intel_pmu_cpu_dead,
5054
5055         .guest_get_msrs         = intel_guest_get_msrs,
5056         .sched_task             = intel_pmu_sched_task,
5057         .swap_task_ctx          = intel_pmu_swap_task_ctx,
5058
5059         .check_period           = intel_pmu_check_period,
5060
5061         .aux_output_match       = intel_pmu_aux_output_match,
5062
5063         .lbr_reset              = intel_pmu_lbr_reset_64,
5064         .lbr_read               = intel_pmu_lbr_read_64,
5065         .lbr_save               = intel_pmu_lbr_save,
5066         .lbr_restore            = intel_pmu_lbr_restore,
5067
5068         /*
5069          * SMM has access to all 4 rings and while traditionally SMM code only
5070          * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
5071          *
5072          * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
5073          * between SMM or not, this results in what should be pure userspace
5074          * counters including SMM data.
5075          *
5076          * This is a clear privilege issue, therefore globally disable
5077          * counting SMM by default.
5078          */
5079         .attr_freeze_on_smi     = 1,
5080 };
5081
5082 static __init void intel_clovertown_quirk(void)
5083 {
5084         /*
5085          * PEBS is unreliable due to:
5086          *
5087          *   AJ67  - PEBS may experience CPL leaks
5088          *   AJ68  - PEBS PMI may be delayed by one event
5089          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
5090          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
5091          *
5092          * AJ67 could be worked around by restricting the OS/USR flags.
5093          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
5094          *
5095          * AJ106 could possibly be worked around by not allowing LBR
5096          *       usage from PEBS, including the fixup.
5097          * AJ68  could possibly be worked around by always programming
5098          *       a pebs_event_reset[0] value and coping with the lost events.
5099          *
5100          * But taken together it might just make sense to not enable PEBS on
5101          * these chips.
5102          */
5103         pr_warn("PEBS disabled due to CPU errata\n");
5104         x86_pmu.pebs = 0;
5105         x86_pmu.pebs_constraints = NULL;
5106 }
5107
5108 static const struct x86_cpu_desc isolation_ucodes[] = {
5109         INTEL_CPU_DESC(INTEL_FAM6_HASWELL,               3, 0x0000001f),
5110         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,             1, 0x0000001e),
5111         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,             1, 0x00000015),
5112         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             2, 0x00000037),
5113         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             4, 0x0000000a),
5114         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,             4, 0x00000023),
5115         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,           1, 0x00000014),
5116         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           2, 0x00000010),
5117         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           3, 0x07000009),
5118         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           4, 0x0f000009),
5119         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           5, 0x0e000002),
5120         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,           1, 0x0b000014),
5121         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             3, 0x00000021),
5122         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             4, 0x00000000),
5123         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             5, 0x00000000),
5124         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             6, 0x00000000),
5125         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             7, 0x00000000),
5126         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,            11, 0x00000000),
5127         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,             3, 0x0000007c),
5128         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,               3, 0x0000007c),
5129         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,              9, 0x0000004e),
5130         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,            9, 0x0000004e),
5131         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           10, 0x0000004e),
5132         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           11, 0x0000004e),
5133         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           12, 0x0000004e),
5134         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             10, 0x0000004e),
5135         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             11, 0x0000004e),
5136         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             12, 0x0000004e),
5137         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             13, 0x0000004e),
5138         {}
5139 };
5140
5141 static void intel_check_pebs_isolation(void)
5142 {
5143         x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
5144 }
5145
5146 static __init void intel_pebs_isolation_quirk(void)
5147 {
5148         WARN_ON_ONCE(x86_pmu.check_microcode);
5149         x86_pmu.check_microcode = intel_check_pebs_isolation;
5150         intel_check_pebs_isolation();
5151 }
5152
5153 static const struct x86_cpu_desc pebs_ucodes[] = {
5154         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,          7, 0x00000028),
5155         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        6, 0x00000618),
5156         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        7, 0x0000070c),
5157         {}
5158 };
5159
5160 static bool intel_snb_pebs_broken(void)
5161 {
5162         return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
5163 }
5164
5165 static void intel_snb_check_microcode(void)
5166 {
5167         if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
5168                 return;
5169
5170         /*
5171          * Serialized by the microcode lock..
5172          */
5173         if (x86_pmu.pebs_broken) {
5174                 pr_info("PEBS enabled due to microcode update\n");
5175                 x86_pmu.pebs_broken = 0;
5176         } else {
5177                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
5178                 x86_pmu.pebs_broken = 1;
5179         }
5180 }
5181
5182 static bool is_lbr_from(unsigned long msr)
5183 {
5184         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
5185
5186         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
5187 }
5188
5189 /*
5190  * Under certain circumstances, access certain MSR may cause #GP.
5191  * The function tests if the input MSR can be safely accessed.
5192  */
5193 static bool check_msr(unsigned long msr, u64 mask)
5194 {
5195         u64 val_old, val_new, val_tmp;
5196
5197         /*
5198          * Disable the check for real HW, so we don't
5199          * mess with potentially enabled registers:
5200          */
5201         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
5202                 return true;
5203
5204         /*
5205          * Read the current value, change it and read it back to see if it
5206          * matches, this is needed to detect certain hardware emulators
5207          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
5208          */
5209         if (rdmsrl_safe(msr, &val_old))
5210                 return false;
5211
5212         /*
5213          * Only change the bits which can be updated by wrmsrl.
5214          */
5215         val_tmp = val_old ^ mask;
5216
5217         if (is_lbr_from(msr))
5218                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
5219
5220         if (wrmsrl_safe(msr, val_tmp) ||
5221             rdmsrl_safe(msr, &val_new))
5222                 return false;
5223
5224         /*
5225          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
5226          * should equal rdmsrl()'s even with the quirk.
5227          */
5228         if (val_new != val_tmp)
5229                 return false;
5230
5231         if (is_lbr_from(msr))
5232                 val_old = lbr_from_signext_quirk_wr(val_old);
5233
5234         /* Here it's sure that the MSR can be safely accessed.
5235          * Restore the old value and return.
5236          */
5237         wrmsrl(msr, val_old);
5238
5239         return true;
5240 }
5241
5242 static __init void intel_sandybridge_quirk(void)
5243 {
5244         x86_pmu.check_microcode = intel_snb_check_microcode;
5245         cpus_read_lock();
5246         intel_snb_check_microcode();
5247         cpus_read_unlock();
5248 }
5249
5250 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
5251         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
5252         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
5253         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
5254         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
5255         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
5256         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
5257         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
5258 };
5259
5260 static __init void intel_arch_events_quirk(void)
5261 {
5262         int bit;
5263
5264         /* disable event that reported as not present by cpuid */
5265         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
5266                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
5267                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
5268                         intel_arch_events_map[bit].name);
5269         }
5270 }
5271
5272 static __init void intel_nehalem_quirk(void)
5273 {
5274         union cpuid10_ebx ebx;
5275
5276         ebx.full = x86_pmu.events_maskl;
5277         if (ebx.split.no_branch_misses_retired) {
5278                 /*
5279                  * Erratum AAJ80 detected, we work it around by using
5280                  * the BR_MISP_EXEC.ANY event. This will over-count
5281                  * branch-misses, but it's still much better than the
5282                  * architectural event which is often completely bogus:
5283                  */
5284                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
5285                 ebx.split.no_branch_misses_retired = 0;
5286                 x86_pmu.events_maskl = ebx.full;
5287                 pr_info("CPU erratum AAJ80 worked around\n");
5288         }
5289 }
5290
5291 /*
5292  * enable software workaround for errata:
5293  * SNB: BJ122
5294  * IVB: BV98
5295  * HSW: HSD29
5296  *
5297  * Only needed when HT is enabled. However detecting
5298  * if HT is enabled is difficult (model specific). So instead,
5299  * we enable the workaround in the early boot, and verify if
5300  * it is needed in a later initcall phase once we have valid
5301  * topology information to check if HT is actually enabled
5302  */
5303 static __init void intel_ht_bug(void)
5304 {
5305         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
5306
5307         x86_pmu.start_scheduling = intel_start_scheduling;
5308         x86_pmu.commit_scheduling = intel_commit_scheduling;
5309         x86_pmu.stop_scheduling = intel_stop_scheduling;
5310 }
5311
5312 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
5313 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
5314
5315 /* Haswell special events */
5316 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
5317 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
5318 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
5319 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
5320 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
5321 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
5322 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
5323 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
5324 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
5325 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
5326 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
5327 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
5328
5329 static struct attribute *hsw_events_attrs[] = {
5330         EVENT_PTR(td_slots_issued),
5331         EVENT_PTR(td_slots_retired),
5332         EVENT_PTR(td_fetch_bubbles),
5333         EVENT_PTR(td_total_slots),
5334         EVENT_PTR(td_total_slots_scale),
5335         EVENT_PTR(td_recovery_bubbles),
5336         EVENT_PTR(td_recovery_bubbles_scale),
5337         NULL
5338 };
5339
5340 static struct attribute *hsw_mem_events_attrs[] = {
5341         EVENT_PTR(mem_ld_hsw),
5342         EVENT_PTR(mem_st_hsw),
5343         NULL,
5344 };
5345
5346 static struct attribute *hsw_tsx_events_attrs[] = {
5347         EVENT_PTR(tx_start),
5348         EVENT_PTR(tx_commit),
5349         EVENT_PTR(tx_abort),
5350         EVENT_PTR(tx_capacity),
5351         EVENT_PTR(tx_conflict),
5352         EVENT_PTR(el_start),
5353         EVENT_PTR(el_commit),
5354         EVENT_PTR(el_abort),
5355         EVENT_PTR(el_capacity),
5356         EVENT_PTR(el_conflict),
5357         EVENT_PTR(cycles_t),
5358         EVENT_PTR(cycles_ct),
5359         NULL
5360 };
5361
5362 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
5363 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
5364 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
5365 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
5366
5367 static struct attribute *icl_events_attrs[] = {
5368         EVENT_PTR(mem_ld_hsw),
5369         EVENT_PTR(mem_st_hsw),
5370         NULL,
5371 };
5372
5373 static struct attribute *icl_td_events_attrs[] = {
5374         EVENT_PTR(slots),
5375         EVENT_PTR(td_retiring),
5376         EVENT_PTR(td_bad_spec),
5377         EVENT_PTR(td_fe_bound),
5378         EVENT_PTR(td_be_bound),
5379         NULL,
5380 };
5381
5382 static struct attribute *icl_tsx_events_attrs[] = {
5383         EVENT_PTR(tx_start),
5384         EVENT_PTR(tx_abort),
5385         EVENT_PTR(tx_commit),
5386         EVENT_PTR(tx_capacity_read),
5387         EVENT_PTR(tx_capacity_write),
5388         EVENT_PTR(tx_conflict),
5389         EVENT_PTR(el_start),
5390         EVENT_PTR(el_abort),
5391         EVENT_PTR(el_commit),
5392         EVENT_PTR(el_capacity_read),
5393         EVENT_PTR(el_capacity_write),
5394         EVENT_PTR(el_conflict),
5395         EVENT_PTR(cycles_t),
5396         EVENT_PTR(cycles_ct),
5397         NULL,
5398 };
5399
5400
5401 EVENT_ATTR_STR(mem-stores,      mem_st_spr,     "event=0xcd,umask=0x2");
5402 EVENT_ATTR_STR(mem-loads-aux,   mem_ld_aux,     "event=0x03,umask=0x82");
5403
5404 static struct attribute *glc_events_attrs[] = {
5405         EVENT_PTR(mem_ld_hsw),
5406         EVENT_PTR(mem_st_spr),
5407         EVENT_PTR(mem_ld_aux),
5408         NULL,
5409 };
5410
5411 static struct attribute *glc_td_events_attrs[] = {
5412         EVENT_PTR(slots),
5413         EVENT_PTR(td_retiring),
5414         EVENT_PTR(td_bad_spec),
5415         EVENT_PTR(td_fe_bound),
5416         EVENT_PTR(td_be_bound),
5417         EVENT_PTR(td_heavy_ops),
5418         EVENT_PTR(td_br_mispredict),
5419         EVENT_PTR(td_fetch_lat),
5420         EVENT_PTR(td_mem_bound),
5421         NULL,
5422 };
5423
5424 static struct attribute *glc_tsx_events_attrs[] = {
5425         EVENT_PTR(tx_start),
5426         EVENT_PTR(tx_abort),
5427         EVENT_PTR(tx_commit),
5428         EVENT_PTR(tx_capacity_read),
5429         EVENT_PTR(tx_capacity_write),
5430         EVENT_PTR(tx_conflict),
5431         EVENT_PTR(cycles_t),
5432         EVENT_PTR(cycles_ct),
5433         NULL,
5434 };
5435
5436 static ssize_t freeze_on_smi_show(struct device *cdev,
5437                                   struct device_attribute *attr,
5438                                   char *buf)
5439 {
5440         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5441 }
5442
5443 static DEFINE_MUTEX(freeze_on_smi_mutex);
5444
5445 static ssize_t freeze_on_smi_store(struct device *cdev,
5446                                    struct device_attribute *attr,
5447                                    const char *buf, size_t count)
5448 {
5449         unsigned long val;
5450         ssize_t ret;
5451
5452         ret = kstrtoul(buf, 0, &val);
5453         if (ret)
5454                 return ret;
5455
5456         if (val > 1)
5457                 return -EINVAL;
5458
5459         mutex_lock(&freeze_on_smi_mutex);
5460
5461         if (x86_pmu.attr_freeze_on_smi == val)
5462                 goto done;
5463
5464         x86_pmu.attr_freeze_on_smi = val;
5465
5466         cpus_read_lock();
5467         on_each_cpu(flip_smm_bit, &val, 1);
5468         cpus_read_unlock();
5469 done:
5470         mutex_unlock(&freeze_on_smi_mutex);
5471
5472         return count;
5473 }
5474
5475 static void update_tfa_sched(void *ignored)
5476 {
5477         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5478
5479         /*
5480          * check if PMC3 is used
5481          * and if so force schedule out for all event types all contexts
5482          */
5483         if (test_bit(3, cpuc->active_mask))
5484                 perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5485 }
5486
5487 static ssize_t show_sysctl_tfa(struct device *cdev,
5488                               struct device_attribute *attr,
5489                               char *buf)
5490 {
5491         return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5492 }
5493
5494 static ssize_t set_sysctl_tfa(struct device *cdev,
5495                               struct device_attribute *attr,
5496                               const char *buf, size_t count)
5497 {
5498         bool val;
5499         ssize_t ret;
5500
5501         ret = kstrtobool(buf, &val);
5502         if (ret)
5503                 return ret;
5504
5505         /* no change */
5506         if (val == allow_tsx_force_abort)
5507                 return count;
5508
5509         allow_tsx_force_abort = val;
5510
5511         cpus_read_lock();
5512         on_each_cpu(update_tfa_sched, NULL, 1);
5513         cpus_read_unlock();
5514
5515         return count;
5516 }
5517
5518
5519 static DEVICE_ATTR_RW(freeze_on_smi);
5520
5521 static ssize_t branches_show(struct device *cdev,
5522                              struct device_attribute *attr,
5523                              char *buf)
5524 {
5525         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5526 }
5527
5528 static DEVICE_ATTR_RO(branches);
5529
5530 static struct attribute *lbr_attrs[] = {
5531         &dev_attr_branches.attr,
5532         NULL
5533 };
5534
5535 static char pmu_name_str[30];
5536
5537 static ssize_t pmu_name_show(struct device *cdev,
5538                              struct device_attribute *attr,
5539                              char *buf)
5540 {
5541         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5542 }
5543
5544 static DEVICE_ATTR_RO(pmu_name);
5545
5546 static struct attribute *intel_pmu_caps_attrs[] = {
5547        &dev_attr_pmu_name.attr,
5548        NULL
5549 };
5550
5551 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5552                    show_sysctl_tfa,
5553                    set_sysctl_tfa);
5554
5555 static struct attribute *intel_pmu_attrs[] = {
5556         &dev_attr_freeze_on_smi.attr,
5557         &dev_attr_allow_tsx_force_abort.attr,
5558         NULL,
5559 };
5560
5561 static umode_t
5562 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5563 {
5564         return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5565 }
5566
5567 static umode_t
5568 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5569 {
5570         return x86_pmu.pebs ? attr->mode : 0;
5571 }
5572
5573 static umode_t
5574 mem_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5575 {
5576         if (attr == &event_attr_mem_ld_aux.attr.attr)
5577                 return x86_pmu.flags & PMU_FL_MEM_LOADS_AUX ? attr->mode : 0;
5578
5579         return pebs_is_visible(kobj, attr, i);
5580 }
5581
5582 static umode_t
5583 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5584 {
5585         return x86_pmu.lbr_nr ? attr->mode : 0;
5586 }
5587
5588 static umode_t
5589 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5590 {
5591         return x86_pmu.version >= 2 ? attr->mode : 0;
5592 }
5593
5594 static umode_t
5595 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5596 {
5597         if (attr == &dev_attr_allow_tsx_force_abort.attr)
5598                 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5599
5600         return attr->mode;
5601 }
5602
5603 static struct attribute_group group_events_td  = {
5604         .name = "events",
5605 };
5606
5607 static struct attribute_group group_events_mem = {
5608         .name       = "events",
5609         .is_visible = mem_is_visible,
5610 };
5611
5612 static struct attribute_group group_events_tsx = {
5613         .name       = "events",
5614         .is_visible = tsx_is_visible,
5615 };
5616
5617 static struct attribute_group group_caps_gen = {
5618         .name  = "caps",
5619         .attrs = intel_pmu_caps_attrs,
5620 };
5621
5622 static struct attribute_group group_caps_lbr = {
5623         .name       = "caps",
5624         .attrs      = lbr_attrs,
5625         .is_visible = lbr_is_visible,
5626 };
5627
5628 static struct attribute_group group_format_extra = {
5629         .name       = "format",
5630         .is_visible = exra_is_visible,
5631 };
5632
5633 static struct attribute_group group_format_extra_skl = {
5634         .name       = "format",
5635         .is_visible = exra_is_visible,
5636 };
5637
5638 static struct attribute_group group_default = {
5639         .attrs      = intel_pmu_attrs,
5640         .is_visible = default_is_visible,
5641 };
5642
5643 static const struct attribute_group *attr_update[] = {
5644         &group_events_td,
5645         &group_events_mem,
5646         &group_events_tsx,
5647         &group_caps_gen,
5648         &group_caps_lbr,
5649         &group_format_extra,
5650         &group_format_extra_skl,
5651         &group_default,
5652         NULL,
5653 };
5654
5655 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5656 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5657 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5658 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5659 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5660 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5661 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5662 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5663 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5664
5665 static struct attribute *adl_hybrid_events_attrs[] = {
5666         EVENT_PTR(slots_adl),
5667         EVENT_PTR(td_retiring_adl),
5668         EVENT_PTR(td_bad_spec_adl),
5669         EVENT_PTR(td_fe_bound_adl),
5670         EVENT_PTR(td_be_bound_adl),
5671         EVENT_PTR(td_heavy_ops_adl),
5672         EVENT_PTR(td_br_mis_adl),
5673         EVENT_PTR(td_fetch_lat_adl),
5674         EVENT_PTR(td_mem_bound_adl),
5675         NULL,
5676 };
5677
5678 /* Must be in IDX order */
5679 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5680 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5681 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5682
5683 static struct attribute *adl_hybrid_mem_attrs[] = {
5684         EVENT_PTR(mem_ld_adl),
5685         EVENT_PTR(mem_st_adl),
5686         EVENT_PTR(mem_ld_aux_adl),
5687         NULL,
5688 };
5689
5690 static struct attribute *mtl_hybrid_mem_attrs[] = {
5691         EVENT_PTR(mem_ld_adl),
5692         EVENT_PTR(mem_st_adl),
5693         NULL
5694 };
5695
5696 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5697 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5698 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5699 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5700 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5701 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5702 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5703 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5704
5705 static struct attribute *adl_hybrid_tsx_attrs[] = {
5706         EVENT_PTR(tx_start_adl),
5707         EVENT_PTR(tx_abort_adl),
5708         EVENT_PTR(tx_commit_adl),
5709         EVENT_PTR(tx_capacity_read_adl),
5710         EVENT_PTR(tx_capacity_write_adl),
5711         EVENT_PTR(tx_conflict_adl),
5712         EVENT_PTR(cycles_t_adl),
5713         EVENT_PTR(cycles_ct_adl),
5714         NULL,
5715 };
5716
5717 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5718 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5719 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5720 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5721 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5722
5723 #define ADL_HYBRID_RTM_FORMAT_ATTR      \
5724         FORMAT_HYBRID_PTR(in_tx),       \
5725         FORMAT_HYBRID_PTR(in_tx_cp)
5726
5727 #define ADL_HYBRID_FORMAT_ATTR          \
5728         FORMAT_HYBRID_PTR(offcore_rsp), \
5729         FORMAT_HYBRID_PTR(ldlat),       \
5730         FORMAT_HYBRID_PTR(frontend)
5731
5732 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5733         ADL_HYBRID_RTM_FORMAT_ATTR,
5734         ADL_HYBRID_FORMAT_ATTR,
5735         NULL
5736 };
5737
5738 static struct attribute *adl_hybrid_extra_attr[] = {
5739         ADL_HYBRID_FORMAT_ATTR,
5740         NULL
5741 };
5742
5743 FORMAT_ATTR_HYBRID(snoop_rsp,   hybrid_small);
5744
5745 static struct attribute *mtl_hybrid_extra_attr_rtm[] = {
5746         ADL_HYBRID_RTM_FORMAT_ATTR,
5747         ADL_HYBRID_FORMAT_ATTR,
5748         FORMAT_HYBRID_PTR(snoop_rsp),
5749         NULL
5750 };
5751
5752 static struct attribute *mtl_hybrid_extra_attr[] = {
5753         ADL_HYBRID_FORMAT_ATTR,
5754         FORMAT_HYBRID_PTR(snoop_rsp),
5755         NULL
5756 };
5757
5758 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5759 {
5760         struct device *dev = kobj_to_dev(kobj);
5761         struct x86_hybrid_pmu *pmu =
5762                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5763         struct perf_pmu_events_hybrid_attr *pmu_attr =
5764                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5765
5766         return pmu->pmu_type & pmu_attr->pmu_type;
5767 }
5768
5769 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5770                                         struct attribute *attr, int i)
5771 {
5772         return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5773 }
5774
5775 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5776 {
5777         int cpu = cpumask_first(&pmu->supported_cpus);
5778
5779         return (cpu >= nr_cpu_ids) ? -1 : cpu;
5780 }
5781
5782 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5783                                      struct attribute *attr, int i)
5784 {
5785         struct device *dev = kobj_to_dev(kobj);
5786         struct x86_hybrid_pmu *pmu =
5787                  container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5788         int cpu = hybrid_find_supported_cpu(pmu);
5789
5790         return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5791 }
5792
5793 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5794                                         struct attribute *attr, int i)
5795 {
5796         struct device *dev = kobj_to_dev(kobj);
5797         struct x86_hybrid_pmu *pmu =
5798                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5799         struct perf_pmu_format_hybrid_attr *pmu_attr =
5800                 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5801         int cpu = hybrid_find_supported_cpu(pmu);
5802
5803         return (cpu >= 0) && (pmu->pmu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5804 }
5805
5806 static struct attribute_group hybrid_group_events_td  = {
5807         .name           = "events",
5808         .is_visible     = hybrid_events_is_visible,
5809 };
5810
5811 static struct attribute_group hybrid_group_events_mem = {
5812         .name           = "events",
5813         .is_visible     = hybrid_events_is_visible,
5814 };
5815
5816 static struct attribute_group hybrid_group_events_tsx = {
5817         .name           = "events",
5818         .is_visible     = hybrid_tsx_is_visible,
5819 };
5820
5821 static struct attribute_group hybrid_group_format_extra = {
5822         .name           = "format",
5823         .is_visible     = hybrid_format_is_visible,
5824 };
5825
5826 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5827                                           struct device_attribute *attr,
5828                                           char *buf)
5829 {
5830         struct x86_hybrid_pmu *pmu =
5831                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5832
5833         return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5834 }
5835
5836 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5837 static struct attribute *intel_hybrid_cpus_attrs[] = {
5838         &dev_attr_cpus.attr,
5839         NULL,
5840 };
5841
5842 static struct attribute_group hybrid_group_cpus = {
5843         .attrs          = intel_hybrid_cpus_attrs,
5844 };
5845
5846 static const struct attribute_group *hybrid_attr_update[] = {
5847         &hybrid_group_events_td,
5848         &hybrid_group_events_mem,
5849         &hybrid_group_events_tsx,
5850         &group_caps_gen,
5851         &group_caps_lbr,
5852         &hybrid_group_format_extra,
5853         &group_default,
5854         &hybrid_group_cpus,
5855         NULL,
5856 };
5857
5858 static struct attribute *empty_attrs;
5859
5860 static void intel_pmu_check_num_counters(int *num_counters,
5861                                          int *num_counters_fixed,
5862                                          u64 *intel_ctrl, u64 fixed_mask)
5863 {
5864         if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5865                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5866                      *num_counters, INTEL_PMC_MAX_GENERIC);
5867                 *num_counters = INTEL_PMC_MAX_GENERIC;
5868         }
5869         *intel_ctrl = (1ULL << *num_counters) - 1;
5870
5871         if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5872                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5873                      *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5874                 *num_counters_fixed = INTEL_PMC_MAX_FIXED;
5875         }
5876
5877         *intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5878 }
5879
5880 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5881                                               int num_counters,
5882                                               int num_counters_fixed,
5883                                               u64 intel_ctrl)
5884 {
5885         struct event_constraint *c;
5886
5887         if (!event_constraints)
5888                 return;
5889
5890         /*
5891          * event on fixed counter2 (REF_CYCLES) only works on this
5892          * counter, so do not extend mask to generic counters
5893          */
5894         for_each_event_constraint(c, event_constraints) {
5895                 /*
5896                  * Don't extend the topdown slots and metrics
5897                  * events to the generic counters.
5898                  */
5899                 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5900                         /*
5901                          * Disable topdown slots and metrics events,
5902                          * if slots event is not in CPUID.
5903                          */
5904                         if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5905                                 c->idxmsk64 = 0;
5906                         c->weight = hweight64(c->idxmsk64);
5907                         continue;
5908                 }
5909
5910                 if (c->cmask == FIXED_EVENT_FLAGS) {
5911                         /* Disabled fixed counters which are not in CPUID */
5912                         c->idxmsk64 &= intel_ctrl;
5913
5914                         /*
5915                          * Don't extend the pseudo-encoding to the
5916                          * generic counters
5917                          */
5918                         if (!use_fixed_pseudo_encoding(c->code))
5919                                 c->idxmsk64 |= (1ULL << num_counters) - 1;
5920                 }
5921                 c->idxmsk64 &=
5922                         ~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5923                 c->weight = hweight64(c->idxmsk64);
5924         }
5925 }
5926
5927 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5928 {
5929         struct extra_reg *er;
5930
5931         /*
5932          * Access extra MSR may cause #GP under certain circumstances.
5933          * E.g. KVM doesn't support offcore event
5934          * Check all extra_regs here.
5935          */
5936         if (!extra_regs)
5937                 return;
5938
5939         for (er = extra_regs; er->msr; er++) {
5940                 er->extra_msr_access = check_msr(er->msr, 0x11UL);
5941                 /* Disable LBR select mapping */
5942                 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5943                         x86_pmu.lbr_sel_map = NULL;
5944         }
5945 }
5946
5947 static const struct { enum hybrid_pmu_type id; char *name; } intel_hybrid_pmu_type_map[] __initconst = {
5948         { hybrid_small, "cpu_atom" },
5949         { hybrid_big, "cpu_core" },
5950 };
5951
5952 static __always_inline int intel_pmu_init_hybrid(enum hybrid_pmu_type pmus)
5953 {
5954         unsigned long pmus_mask = pmus;
5955         struct x86_hybrid_pmu *pmu;
5956         int idx = 0, bit;
5957
5958         x86_pmu.num_hybrid_pmus = hweight_long(pmus_mask);
5959         x86_pmu.hybrid_pmu = kcalloc(x86_pmu.num_hybrid_pmus,
5960                                      sizeof(struct x86_hybrid_pmu),
5961                                      GFP_KERNEL);
5962         if (!x86_pmu.hybrid_pmu)
5963                 return -ENOMEM;
5964
5965         static_branch_enable(&perf_is_hybrid);
5966         x86_pmu.filter = intel_pmu_filter;
5967
5968         for_each_set_bit(bit, &pmus_mask, ARRAY_SIZE(intel_hybrid_pmu_type_map)) {
5969                 pmu = &x86_pmu.hybrid_pmu[idx++];
5970                 pmu->pmu_type = intel_hybrid_pmu_type_map[bit].id;
5971                 pmu->name = intel_hybrid_pmu_type_map[bit].name;
5972
5973                 pmu->num_counters = x86_pmu.num_counters;
5974                 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
5975                 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
5976                 pmu->unconstrained = (struct event_constraint)
5977                                      __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
5978                                                         0, pmu->num_counters, 0, 0);
5979
5980                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
5981                 if (pmu->pmu_type & hybrid_small) {
5982                         pmu->intel_cap.perf_metrics = 0;
5983                         pmu->intel_cap.pebs_output_pt_available = 1;
5984                         pmu->mid_ack = true;
5985                 } else if (pmu->pmu_type & hybrid_big) {
5986                         pmu->intel_cap.perf_metrics = 1;
5987                         pmu->intel_cap.pebs_output_pt_available = 0;
5988                         pmu->late_ack = true;
5989                 }
5990         }
5991
5992         return 0;
5993 }
5994
5995 static __always_inline void intel_pmu_ref_cycles_ext(void)
5996 {
5997         if (!(x86_pmu.events_maskl & (INTEL_PMC_MSK_FIXED_REF_CYCLES >> INTEL_PMC_IDX_FIXED)))
5998                 intel_perfmon_event_map[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x013c;
5999 }
6000
6001 static __always_inline void intel_pmu_init_glc(struct pmu *pmu)
6002 {
6003         x86_pmu.late_ack = true;
6004         x86_pmu.limit_period = glc_limit_period;
6005         x86_pmu.pebs_aliases = NULL;
6006         x86_pmu.pebs_prec_dist = true;
6007         x86_pmu.pebs_block = true;
6008         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6009         x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6010         x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6011         x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6012         x86_pmu.lbr_pt_coexist = true;
6013         x86_pmu.num_topdown_events = 8;
6014         static_call_update(intel_pmu_update_topdown_event,
6015                            &icl_update_topdown_event);
6016         static_call_update(intel_pmu_set_topdown_event_period,
6017                            &icl_set_topdown_event_period);
6018
6019         memcpy(hybrid_var(pmu, hw_cache_event_ids), glc_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6020         memcpy(hybrid_var(pmu, hw_cache_extra_regs), glc_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6021         hybrid(pmu, event_constraints) = intel_glc_event_constraints;
6022         hybrid(pmu, pebs_constraints) = intel_glc_pebs_event_constraints;
6023
6024         intel_pmu_ref_cycles_ext();
6025 }
6026
6027 static __always_inline void intel_pmu_init_grt(struct pmu *pmu)
6028 {
6029         x86_pmu.mid_ack = true;
6030         x86_pmu.limit_period = glc_limit_period;
6031         x86_pmu.pebs_aliases = NULL;
6032         x86_pmu.pebs_prec_dist = true;
6033         x86_pmu.pebs_block = true;
6034         x86_pmu.lbr_pt_coexist = true;
6035         x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6036         x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6037
6038         memcpy(hybrid_var(pmu, hw_cache_event_ids), glp_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6039         memcpy(hybrid_var(pmu, hw_cache_extra_regs), tnt_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6040         hybrid_var(pmu, hw_cache_event_ids)[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6041         hybrid(pmu, event_constraints) = intel_grt_event_constraints;
6042         hybrid(pmu, pebs_constraints) = intel_grt_pebs_event_constraints;
6043         hybrid(pmu, extra_regs) = intel_grt_extra_regs;
6044
6045         intel_pmu_ref_cycles_ext();
6046 }
6047
6048 __init int intel_pmu_init(void)
6049 {
6050         struct attribute **extra_skl_attr = &empty_attrs;
6051         struct attribute **extra_attr = &empty_attrs;
6052         struct attribute **td_attr    = &empty_attrs;
6053         struct attribute **mem_attr   = &empty_attrs;
6054         struct attribute **tsx_attr   = &empty_attrs;
6055         union cpuid10_edx edx;
6056         union cpuid10_eax eax;
6057         union cpuid10_ebx ebx;
6058         unsigned int fixed_mask;
6059         bool pmem = false;
6060         int version, i;
6061         char *name;
6062         struct x86_hybrid_pmu *pmu;
6063
6064         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
6065                 switch (boot_cpu_data.x86) {
6066                 case 0x6:
6067                         return p6_pmu_init();
6068                 case 0xb:
6069                         return knc_pmu_init();
6070                 case 0xf:
6071                         return p4_pmu_init();
6072                 }
6073                 return -ENODEV;
6074         }
6075
6076         /*
6077          * Check whether the Architectural PerfMon supports
6078          * Branch Misses Retired hw_event or not.
6079          */
6080         cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
6081         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
6082                 return -ENODEV;
6083
6084         version = eax.split.version_id;
6085         if (version < 2)
6086                 x86_pmu = core_pmu;
6087         else
6088                 x86_pmu = intel_pmu;
6089
6090         x86_pmu.version                 = version;
6091         x86_pmu.num_counters            = eax.split.num_counters;
6092         x86_pmu.cntval_bits             = eax.split.bit_width;
6093         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
6094
6095         x86_pmu.events_maskl            = ebx.full;
6096         x86_pmu.events_mask_len         = eax.split.mask_length;
6097
6098         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
6099         x86_pmu.pebs_capable            = PEBS_COUNTER_MASK;
6100
6101         /*
6102          * Quirk: v2 perfmon does not report fixed-purpose events, so
6103          * assume at least 3 events, when not running in a hypervisor:
6104          */
6105         if (version > 1 && version < 5) {
6106                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
6107
6108                 x86_pmu.num_counters_fixed =
6109                         max((int)edx.split.num_counters_fixed, assume);
6110
6111                 fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
6112         } else if (version >= 5)
6113                 x86_pmu.num_counters_fixed = fls(fixed_mask);
6114
6115         if (boot_cpu_has(X86_FEATURE_PDCM)) {
6116                 u64 capabilities;
6117
6118                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
6119                 x86_pmu.intel_cap.capabilities = capabilities;
6120         }
6121
6122         if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
6123                 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
6124                 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
6125         }
6126
6127         if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
6128                 intel_pmu_arch_lbr_init();
6129
6130         intel_ds_init();
6131
6132         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
6133
6134         if (version >= 5) {
6135                 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
6136                 if (x86_pmu.intel_cap.anythread_deprecated)
6137                         pr_cont(" AnyThread deprecated, ");
6138         }
6139
6140         /*
6141          * Install the hw-cache-events table:
6142          */
6143         switch (boot_cpu_data.x86_model) {
6144         case INTEL_FAM6_CORE_YONAH:
6145                 pr_cont("Core events, ");
6146                 name = "core";
6147                 break;
6148
6149         case INTEL_FAM6_CORE2_MEROM:
6150                 x86_add_quirk(intel_clovertown_quirk);
6151                 fallthrough;
6152
6153         case INTEL_FAM6_CORE2_MEROM_L:
6154         case INTEL_FAM6_CORE2_PENRYN:
6155         case INTEL_FAM6_CORE2_DUNNINGTON:
6156                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
6157                        sizeof(hw_cache_event_ids));
6158
6159                 intel_pmu_lbr_init_core();
6160
6161                 x86_pmu.event_constraints = intel_core2_event_constraints;
6162                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
6163                 pr_cont("Core2 events, ");
6164                 name = "core2";
6165                 break;
6166
6167         case INTEL_FAM6_NEHALEM:
6168         case INTEL_FAM6_NEHALEM_EP:
6169         case INTEL_FAM6_NEHALEM_EX:
6170                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
6171                        sizeof(hw_cache_event_ids));
6172                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6173                        sizeof(hw_cache_extra_regs));
6174
6175                 intel_pmu_lbr_init_nhm();
6176
6177                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
6178                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
6179                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6180                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
6181                 x86_pmu.limit_period = nhm_limit_period;
6182
6183                 mem_attr = nhm_mem_events_attrs;
6184
6185                 /* UOPS_ISSUED.STALLED_CYCLES */
6186                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6187                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6188                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6189                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6190                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6191
6192                 intel_pmu_pebs_data_source_nhm();
6193                 x86_add_quirk(intel_nehalem_quirk);
6194                 x86_pmu.pebs_no_tlb = 1;
6195                 extra_attr = nhm_format_attr;
6196
6197                 pr_cont("Nehalem events, ");
6198                 name = "nehalem";
6199                 break;
6200
6201         case INTEL_FAM6_ATOM_BONNELL:
6202         case INTEL_FAM6_ATOM_BONNELL_MID:
6203         case INTEL_FAM6_ATOM_SALTWELL:
6204         case INTEL_FAM6_ATOM_SALTWELL_MID:
6205         case INTEL_FAM6_ATOM_SALTWELL_TABLET:
6206                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
6207                        sizeof(hw_cache_event_ids));
6208
6209                 intel_pmu_lbr_init_atom();
6210
6211                 x86_pmu.event_constraints = intel_gen_event_constraints;
6212                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
6213                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
6214                 pr_cont("Atom events, ");
6215                 name = "bonnell";
6216                 break;
6217
6218         case INTEL_FAM6_ATOM_SILVERMONT:
6219         case INTEL_FAM6_ATOM_SILVERMONT_D:
6220         case INTEL_FAM6_ATOM_SILVERMONT_MID:
6221         case INTEL_FAM6_ATOM_AIRMONT:
6222         case INTEL_FAM6_ATOM_AIRMONT_MID:
6223                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
6224                         sizeof(hw_cache_event_ids));
6225                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
6226                        sizeof(hw_cache_extra_regs));
6227
6228                 intel_pmu_lbr_init_slm();
6229
6230                 x86_pmu.event_constraints = intel_slm_event_constraints;
6231                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6232                 x86_pmu.extra_regs = intel_slm_extra_regs;
6233                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6234                 td_attr = slm_events_attrs;
6235                 extra_attr = slm_format_attr;
6236                 pr_cont("Silvermont events, ");
6237                 name = "silvermont";
6238                 break;
6239
6240         case INTEL_FAM6_ATOM_GOLDMONT:
6241         case INTEL_FAM6_ATOM_GOLDMONT_D:
6242                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
6243                        sizeof(hw_cache_event_ids));
6244                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
6245                        sizeof(hw_cache_extra_regs));
6246
6247                 intel_pmu_lbr_init_skl();
6248
6249                 x86_pmu.event_constraints = intel_slm_event_constraints;
6250                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
6251                 x86_pmu.extra_regs = intel_glm_extra_regs;
6252                 /*
6253                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6254                  * for precise cycles.
6255                  * :pp is identical to :ppp
6256                  */
6257                 x86_pmu.pebs_aliases = NULL;
6258                 x86_pmu.pebs_prec_dist = true;
6259                 x86_pmu.lbr_pt_coexist = true;
6260                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6261                 td_attr = glm_events_attrs;
6262                 extra_attr = slm_format_attr;
6263                 pr_cont("Goldmont events, ");
6264                 name = "goldmont";
6265                 break;
6266
6267         case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
6268                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6269                        sizeof(hw_cache_event_ids));
6270                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
6271                        sizeof(hw_cache_extra_regs));
6272
6273                 intel_pmu_lbr_init_skl();
6274
6275                 x86_pmu.event_constraints = intel_slm_event_constraints;
6276                 x86_pmu.extra_regs = intel_glm_extra_regs;
6277                 /*
6278                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6279                  * for precise cycles.
6280                  */
6281                 x86_pmu.pebs_aliases = NULL;
6282                 x86_pmu.pebs_prec_dist = true;
6283                 x86_pmu.lbr_pt_coexist = true;
6284                 x86_pmu.pebs_capable = ~0ULL;
6285                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6286                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6287                 x86_pmu.get_event_constraints = glp_get_event_constraints;
6288                 td_attr = glm_events_attrs;
6289                 /* Goldmont Plus has 4-wide pipeline */
6290                 event_attr_td_total_slots_scale_glm.event_str = "4";
6291                 extra_attr = slm_format_attr;
6292                 pr_cont("Goldmont plus events, ");
6293                 name = "goldmont_plus";
6294                 break;
6295
6296         case INTEL_FAM6_ATOM_TREMONT_D:
6297         case INTEL_FAM6_ATOM_TREMONT:
6298         case INTEL_FAM6_ATOM_TREMONT_L:
6299                 x86_pmu.late_ack = true;
6300                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6301                        sizeof(hw_cache_event_ids));
6302                 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
6303                        sizeof(hw_cache_extra_regs));
6304                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6305
6306                 intel_pmu_lbr_init_skl();
6307
6308                 x86_pmu.event_constraints = intel_slm_event_constraints;
6309                 x86_pmu.extra_regs = intel_tnt_extra_regs;
6310                 /*
6311                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6312                  * for precise cycles.
6313                  */
6314                 x86_pmu.pebs_aliases = NULL;
6315                 x86_pmu.pebs_prec_dist = true;
6316                 x86_pmu.lbr_pt_coexist = true;
6317                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6318                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
6319                 td_attr = tnt_events_attrs;
6320                 extra_attr = slm_format_attr;
6321                 pr_cont("Tremont events, ");
6322                 name = "Tremont";
6323                 break;
6324
6325         case INTEL_FAM6_ATOM_GRACEMONT:
6326                 intel_pmu_init_grt(NULL);
6327                 intel_pmu_pebs_data_source_grt();
6328                 x86_pmu.pebs_latency_data = adl_latency_data_small;
6329                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
6330                 td_attr = tnt_events_attrs;
6331                 mem_attr = grt_mem_attrs;
6332                 extra_attr = nhm_format_attr;
6333                 pr_cont("Gracemont events, ");
6334                 name = "gracemont";
6335                 break;
6336
6337         case INTEL_FAM6_ATOM_CRESTMONT:
6338         case INTEL_FAM6_ATOM_CRESTMONT_X:
6339                 intel_pmu_init_grt(NULL);
6340                 x86_pmu.extra_regs = intel_cmt_extra_regs;
6341                 intel_pmu_pebs_data_source_cmt();
6342                 x86_pmu.pebs_latency_data = mtl_latency_data_small;
6343                 x86_pmu.get_event_constraints = cmt_get_event_constraints;
6344                 td_attr = cmt_events_attrs;
6345                 mem_attr = grt_mem_attrs;
6346                 extra_attr = cmt_format_attr;
6347                 pr_cont("Crestmont events, ");
6348                 name = "crestmont";
6349                 break;
6350
6351         case INTEL_FAM6_WESTMERE:
6352         case INTEL_FAM6_WESTMERE_EP:
6353         case INTEL_FAM6_WESTMERE_EX:
6354                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
6355                        sizeof(hw_cache_event_ids));
6356                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6357                        sizeof(hw_cache_extra_regs));
6358
6359                 intel_pmu_lbr_init_nhm();
6360
6361                 x86_pmu.event_constraints = intel_westmere_event_constraints;
6362                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6363                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
6364                 x86_pmu.extra_regs = intel_westmere_extra_regs;
6365                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6366
6367                 mem_attr = nhm_mem_events_attrs;
6368
6369                 /* UOPS_ISSUED.STALLED_CYCLES */
6370                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6371                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6372                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6373                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6374                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6375
6376                 intel_pmu_pebs_data_source_nhm();
6377                 extra_attr = nhm_format_attr;
6378                 pr_cont("Westmere events, ");
6379                 name = "westmere";
6380                 break;
6381
6382         case INTEL_FAM6_SANDYBRIDGE:
6383         case INTEL_FAM6_SANDYBRIDGE_X:
6384                 x86_add_quirk(intel_sandybridge_quirk);
6385                 x86_add_quirk(intel_ht_bug);
6386                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6387                        sizeof(hw_cache_event_ids));
6388                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6389                        sizeof(hw_cache_extra_regs));
6390
6391                 intel_pmu_lbr_init_snb();
6392
6393                 x86_pmu.event_constraints = intel_snb_event_constraints;
6394                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
6395                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
6396                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
6397                         x86_pmu.extra_regs = intel_snbep_extra_regs;
6398                 else
6399                         x86_pmu.extra_regs = intel_snb_extra_regs;
6400
6401
6402                 /* all extra regs are per-cpu when HT is on */
6403                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6404                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6405
6406                 td_attr  = snb_events_attrs;
6407                 mem_attr = snb_mem_events_attrs;
6408
6409                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6410                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6411                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6412                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
6413                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6414                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
6415
6416                 extra_attr = nhm_format_attr;
6417
6418                 pr_cont("SandyBridge events, ");
6419                 name = "sandybridge";
6420                 break;
6421
6422         case INTEL_FAM6_IVYBRIDGE:
6423         case INTEL_FAM6_IVYBRIDGE_X:
6424                 x86_add_quirk(intel_ht_bug);
6425                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6426                        sizeof(hw_cache_event_ids));
6427                 /* dTLB-load-misses on IVB is different than SNB */
6428                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
6429
6430                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6431                        sizeof(hw_cache_extra_regs));
6432
6433                 intel_pmu_lbr_init_snb();
6434
6435                 x86_pmu.event_constraints = intel_ivb_event_constraints;
6436                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
6437                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6438                 x86_pmu.pebs_prec_dist = true;
6439                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
6440                         x86_pmu.extra_regs = intel_snbep_extra_regs;
6441                 else
6442                         x86_pmu.extra_regs = intel_snb_extra_regs;
6443                 /* all extra regs are per-cpu when HT is on */
6444                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6445                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6446
6447                 td_attr  = snb_events_attrs;
6448                 mem_attr = snb_mem_events_attrs;
6449
6450                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6451                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6452                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6453
6454                 extra_attr = nhm_format_attr;
6455
6456                 pr_cont("IvyBridge events, ");
6457                 name = "ivybridge";
6458                 break;
6459
6460
6461         case INTEL_FAM6_HASWELL:
6462         case INTEL_FAM6_HASWELL_X:
6463         case INTEL_FAM6_HASWELL_L:
6464         case INTEL_FAM6_HASWELL_G:
6465                 x86_add_quirk(intel_ht_bug);
6466                 x86_add_quirk(intel_pebs_isolation_quirk);
6467                 x86_pmu.late_ack = true;
6468                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6469                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6470
6471                 intel_pmu_lbr_init_hsw();
6472
6473                 x86_pmu.event_constraints = intel_hsw_event_constraints;
6474                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
6475                 x86_pmu.extra_regs = intel_snbep_extra_regs;
6476                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6477                 x86_pmu.pebs_prec_dist = true;
6478                 /* all extra regs are per-cpu when HT is on */
6479                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6480                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6481
6482                 x86_pmu.hw_config = hsw_hw_config;
6483                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6484                 x86_pmu.lbr_double_abort = true;
6485                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6486                         hsw_format_attr : nhm_format_attr;
6487                 td_attr  = hsw_events_attrs;
6488                 mem_attr = hsw_mem_events_attrs;
6489                 tsx_attr = hsw_tsx_events_attrs;
6490                 pr_cont("Haswell events, ");
6491                 name = "haswell";
6492                 break;
6493
6494         case INTEL_FAM6_BROADWELL:
6495         case INTEL_FAM6_BROADWELL_D:
6496         case INTEL_FAM6_BROADWELL_G:
6497         case INTEL_FAM6_BROADWELL_X:
6498                 x86_add_quirk(intel_pebs_isolation_quirk);
6499                 x86_pmu.late_ack = true;
6500                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6501                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6502
6503                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
6504                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
6505                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
6506                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
6507                                                                           HSW_SNOOP_DRAM;
6508                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
6509                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6510                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
6511                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6512
6513                 intel_pmu_lbr_init_hsw();
6514
6515                 x86_pmu.event_constraints = intel_bdw_event_constraints;
6516                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
6517                 x86_pmu.extra_regs = intel_snbep_extra_regs;
6518                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6519                 x86_pmu.pebs_prec_dist = true;
6520                 /* all extra regs are per-cpu when HT is on */
6521                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6522                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6523
6524                 x86_pmu.hw_config = hsw_hw_config;
6525                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6526                 x86_pmu.limit_period = bdw_limit_period;
6527                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6528                         hsw_format_attr : nhm_format_attr;
6529                 td_attr  = hsw_events_attrs;
6530                 mem_attr = hsw_mem_events_attrs;
6531                 tsx_attr = hsw_tsx_events_attrs;
6532                 pr_cont("Broadwell events, ");
6533                 name = "broadwell";
6534                 break;
6535
6536         case INTEL_FAM6_XEON_PHI_KNL:
6537         case INTEL_FAM6_XEON_PHI_KNM:
6538                 memcpy(hw_cache_event_ids,
6539                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6540                 memcpy(hw_cache_extra_regs,
6541                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6542                 intel_pmu_lbr_init_knl();
6543
6544                 x86_pmu.event_constraints = intel_slm_event_constraints;
6545                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6546                 x86_pmu.extra_regs = intel_knl_extra_regs;
6547
6548                 /* all extra regs are per-cpu when HT is on */
6549                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6550                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6551                 extra_attr = slm_format_attr;
6552                 pr_cont("Knights Landing/Mill events, ");
6553                 name = "knights-landing";
6554                 break;
6555
6556         case INTEL_FAM6_SKYLAKE_X:
6557                 pmem = true;
6558                 fallthrough;
6559         case INTEL_FAM6_SKYLAKE_L:
6560         case INTEL_FAM6_SKYLAKE:
6561         case INTEL_FAM6_KABYLAKE_L:
6562         case INTEL_FAM6_KABYLAKE:
6563         case INTEL_FAM6_COMETLAKE_L:
6564         case INTEL_FAM6_COMETLAKE:
6565                 x86_add_quirk(intel_pebs_isolation_quirk);
6566                 x86_pmu.late_ack = true;
6567                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6568                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6569                 intel_pmu_lbr_init_skl();
6570
6571                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6572                 event_attr_td_recovery_bubbles.event_str_noht =
6573                         "event=0xd,umask=0x1,cmask=1";
6574                 event_attr_td_recovery_bubbles.event_str_ht =
6575                         "event=0xd,umask=0x1,cmask=1,any=1";
6576
6577                 x86_pmu.event_constraints = intel_skl_event_constraints;
6578                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6579                 x86_pmu.extra_regs = intel_skl_extra_regs;
6580                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6581                 x86_pmu.pebs_prec_dist = true;
6582                 /* all extra regs are per-cpu when HT is on */
6583                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6584                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6585
6586                 x86_pmu.hw_config = hsw_hw_config;
6587                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6588                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6589                         hsw_format_attr : nhm_format_attr;
6590                 extra_skl_attr = skl_format_attr;
6591                 td_attr  = hsw_events_attrs;
6592                 mem_attr = hsw_mem_events_attrs;
6593                 tsx_attr = hsw_tsx_events_attrs;
6594                 intel_pmu_pebs_data_source_skl(pmem);
6595
6596                 /*
6597                  * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6598                  * TSX force abort hooks are not required on these systems. Only deploy
6599                  * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6600                  */
6601                 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6602                    !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6603                         x86_pmu.flags |= PMU_FL_TFA;
6604                         x86_pmu.get_event_constraints = tfa_get_event_constraints;
6605                         x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6606                         x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6607                 }
6608
6609                 pr_cont("Skylake events, ");
6610                 name = "skylake";
6611                 break;
6612
6613         case INTEL_FAM6_ICELAKE_X:
6614         case INTEL_FAM6_ICELAKE_D:
6615                 x86_pmu.pebs_ept = 1;
6616                 pmem = true;
6617                 fallthrough;
6618         case INTEL_FAM6_ICELAKE_L:
6619         case INTEL_FAM6_ICELAKE:
6620         case INTEL_FAM6_TIGERLAKE_L:
6621         case INTEL_FAM6_TIGERLAKE:
6622         case INTEL_FAM6_ROCKETLAKE:
6623                 x86_pmu.late_ack = true;
6624                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6625                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6626                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6627                 intel_pmu_lbr_init_skl();
6628
6629                 x86_pmu.event_constraints = intel_icl_event_constraints;
6630                 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6631                 x86_pmu.extra_regs = intel_icl_extra_regs;
6632                 x86_pmu.pebs_aliases = NULL;
6633                 x86_pmu.pebs_prec_dist = true;
6634                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6635                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6636
6637                 x86_pmu.hw_config = hsw_hw_config;
6638                 x86_pmu.get_event_constraints = icl_get_event_constraints;
6639                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6640                         hsw_format_attr : nhm_format_attr;
6641                 extra_skl_attr = skl_format_attr;
6642                 mem_attr = icl_events_attrs;
6643                 td_attr = icl_td_events_attrs;
6644                 tsx_attr = icl_tsx_events_attrs;
6645                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6646                 x86_pmu.lbr_pt_coexist = true;
6647                 intel_pmu_pebs_data_source_skl(pmem);
6648                 x86_pmu.num_topdown_events = 4;
6649                 static_call_update(intel_pmu_update_topdown_event,
6650                                    &icl_update_topdown_event);
6651                 static_call_update(intel_pmu_set_topdown_event_period,
6652                                    &icl_set_topdown_event_period);
6653                 pr_cont("Icelake events, ");
6654                 name = "icelake";
6655                 break;
6656
6657         case INTEL_FAM6_SAPPHIRERAPIDS_X:
6658         case INTEL_FAM6_EMERALDRAPIDS_X:
6659                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6660                 x86_pmu.extra_regs = intel_glc_extra_regs;
6661                 fallthrough;
6662         case INTEL_FAM6_GRANITERAPIDS_X:
6663         case INTEL_FAM6_GRANITERAPIDS_D:
6664                 intel_pmu_init_glc(NULL);
6665                 if (!x86_pmu.extra_regs)
6666                         x86_pmu.extra_regs = intel_rwc_extra_regs;
6667                 x86_pmu.pebs_ept = 1;
6668                 x86_pmu.hw_config = hsw_hw_config;
6669                 x86_pmu.get_event_constraints = glc_get_event_constraints;
6670                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6671                         hsw_format_attr : nhm_format_attr;
6672                 extra_skl_attr = skl_format_attr;
6673                 mem_attr = glc_events_attrs;
6674                 td_attr = glc_td_events_attrs;
6675                 tsx_attr = glc_tsx_events_attrs;
6676                 intel_pmu_pebs_data_source_skl(true);
6677                 pr_cont("Sapphire Rapids events, ");
6678                 name = "sapphire_rapids";
6679                 break;
6680
6681         case INTEL_FAM6_ALDERLAKE:
6682         case INTEL_FAM6_ALDERLAKE_L:
6683         case INTEL_FAM6_RAPTORLAKE:
6684         case INTEL_FAM6_RAPTORLAKE_P:
6685         case INTEL_FAM6_RAPTORLAKE_S:
6686                 /*
6687                  * Alder Lake has 2 types of CPU, core and atom.
6688                  *
6689                  * Initialize the common PerfMon capabilities here.
6690                  */
6691                 intel_pmu_init_hybrid(hybrid_big_small);
6692
6693                 x86_pmu.pebs_latency_data = adl_latency_data_small;
6694                 x86_pmu.get_event_constraints = adl_get_event_constraints;
6695                 x86_pmu.hw_config = adl_hw_config;
6696                 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6697
6698                 td_attr = adl_hybrid_events_attrs;
6699                 mem_attr = adl_hybrid_mem_attrs;
6700                 tsx_attr = adl_hybrid_tsx_attrs;
6701                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6702                         adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6703
6704                 /* Initialize big core specific PerfMon capabilities.*/
6705                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6706                 intel_pmu_init_glc(&pmu->pmu);
6707                 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6708                         pmu->num_counters = x86_pmu.num_counters + 2;
6709                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6710                 } else {
6711                         pmu->num_counters = x86_pmu.num_counters;
6712                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6713                 }
6714
6715                 /*
6716                  * Quirk: For some Alder Lake machine, when all E-cores are disabled in
6717                  * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
6718                  * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
6719                  * mistakenly add extra counters for P-cores. Correct the number of
6720                  * counters here.
6721                  */
6722                 if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
6723                         pmu->num_counters = x86_pmu.num_counters;
6724                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6725                 }
6726
6727                 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6728                 pmu->unconstrained = (struct event_constraint)
6729                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6730                                                            0, pmu->num_counters, 0, 0);
6731                 pmu->extra_regs = intel_glc_extra_regs;
6732
6733                 /* Initialize Atom core specific PerfMon capabilities.*/
6734                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6735                 intel_pmu_init_grt(&pmu->pmu);
6736
6737                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6738                 intel_pmu_pebs_data_source_adl();
6739                 pr_cont("Alderlake Hybrid events, ");
6740                 name = "alderlake_hybrid";
6741                 break;
6742
6743         case INTEL_FAM6_METEORLAKE:
6744         case INTEL_FAM6_METEORLAKE_L:
6745                 intel_pmu_init_hybrid(hybrid_big_small);
6746
6747                 x86_pmu.pebs_latency_data = mtl_latency_data_small;
6748                 x86_pmu.get_event_constraints = mtl_get_event_constraints;
6749                 x86_pmu.hw_config = adl_hw_config;
6750
6751                 td_attr = adl_hybrid_events_attrs;
6752                 mem_attr = mtl_hybrid_mem_attrs;
6753                 tsx_attr = adl_hybrid_tsx_attrs;
6754                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6755                         mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
6756
6757                 /* Initialize big core specific PerfMon capabilities.*/
6758                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6759                 intel_pmu_init_glc(&pmu->pmu);
6760                 pmu->extra_regs = intel_rwc_extra_regs;
6761
6762                 /* Initialize Atom core specific PerfMon capabilities.*/
6763                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6764                 intel_pmu_init_grt(&pmu->pmu);
6765                 pmu->extra_regs = intel_cmt_extra_regs;
6766
6767                 intel_pmu_pebs_data_source_mtl();
6768                 pr_cont("Meteorlake Hybrid events, ");
6769                 name = "meteorlake_hybrid";
6770                 break;
6771
6772         default:
6773                 switch (x86_pmu.version) {
6774                 case 1:
6775                         x86_pmu.event_constraints = intel_v1_event_constraints;
6776                         pr_cont("generic architected perfmon v1, ");
6777                         name = "generic_arch_v1";
6778                         break;
6779                 case 2:
6780                 case 3:
6781                 case 4:
6782                         /*
6783                          * default constraints for v2 and up
6784                          */
6785                         x86_pmu.event_constraints = intel_gen_event_constraints;
6786                         pr_cont("generic architected perfmon, ");
6787                         name = "generic_arch_v2+";
6788                         break;
6789                 default:
6790                         /*
6791                          * The default constraints for v5 and up can support up to
6792                          * 16 fixed counters. For the fixed counters 4 and later,
6793                          * the pseudo-encoding is applied.
6794                          * The constraints may be cut according to the CPUID enumeration
6795                          * by inserting the EVENT_CONSTRAINT_END.
6796                          */
6797                         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED)
6798                                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
6799                         intel_v5_gen_event_constraints[x86_pmu.num_counters_fixed].weight = -1;
6800                         x86_pmu.event_constraints = intel_v5_gen_event_constraints;
6801                         pr_cont("generic architected perfmon, ");
6802                         name = "generic_arch_v5+";
6803                         break;
6804                 }
6805         }
6806
6807         snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6808
6809         if (!is_hybrid()) {
6810                 group_events_td.attrs  = td_attr;
6811                 group_events_mem.attrs = mem_attr;
6812                 group_events_tsx.attrs = tsx_attr;
6813                 group_format_extra.attrs = extra_attr;
6814                 group_format_extra_skl.attrs = extra_skl_attr;
6815
6816                 x86_pmu.attr_update = attr_update;
6817         } else {
6818                 hybrid_group_events_td.attrs  = td_attr;
6819                 hybrid_group_events_mem.attrs = mem_attr;
6820                 hybrid_group_events_tsx.attrs = tsx_attr;
6821                 hybrid_group_format_extra.attrs = extra_attr;
6822
6823                 x86_pmu.attr_update = hybrid_attr_update;
6824         }
6825
6826         intel_pmu_check_num_counters(&x86_pmu.num_counters,
6827                                      &x86_pmu.num_counters_fixed,
6828                                      &x86_pmu.intel_ctrl,
6829                                      (u64)fixed_mask);
6830
6831         /* AnyThread may be deprecated on arch perfmon v5 or later */
6832         if (x86_pmu.intel_cap.anythread_deprecated)
6833                 x86_pmu.format_attrs = intel_arch_formats_attr;
6834
6835         intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6836                                           x86_pmu.num_counters,
6837                                           x86_pmu.num_counters_fixed,
6838                                           x86_pmu.intel_ctrl);
6839         /*
6840          * Access LBR MSR may cause #GP under certain circumstances.
6841          * Check all LBR MSR here.
6842          * Disable LBR access if any LBR MSRs can not be accessed.
6843          */
6844         if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6845                 x86_pmu.lbr_nr = 0;
6846         for (i = 0; i < x86_pmu.lbr_nr; i++) {
6847                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6848                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6849                         x86_pmu.lbr_nr = 0;
6850         }
6851
6852         if (x86_pmu.lbr_nr) {
6853                 intel_pmu_lbr_init();
6854
6855                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6856
6857                 /* only support branch_stack snapshot for perfmon >= v2 */
6858                 if (x86_pmu.disable_all == intel_pmu_disable_all) {
6859                         if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
6860                                 static_call_update(perf_snapshot_branch_stack,
6861                                                    intel_pmu_snapshot_arch_branch_stack);
6862                         } else {
6863                                 static_call_update(perf_snapshot_branch_stack,
6864                                                    intel_pmu_snapshot_branch_stack);
6865                         }
6866                 }
6867         }
6868
6869         intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6870
6871         /* Support full width counters using alternative MSR range */
6872         if (x86_pmu.intel_cap.full_width_write) {
6873                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6874                 x86_pmu.perfctr = MSR_IA32_PMC0;
6875                 pr_cont("full-width counters, ");
6876         }
6877
6878         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6879                 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6880
6881         if (x86_pmu.intel_cap.pebs_timing_info)
6882                 x86_pmu.flags |= PMU_FL_RETIRE_LATENCY;
6883
6884         intel_aux_output_init();
6885
6886         return 0;
6887 }
6888
6889 /*
6890  * HT bug: phase 2 init
6891  * Called once we have valid topology information to check
6892  * whether or not HT is enabled
6893  * If HT is off, then we disable the workaround
6894  */
6895 static __init int fixup_ht_bug(void)
6896 {
6897         int c;
6898         /*
6899          * problem not present on this CPU model, nothing to do
6900          */
6901         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6902                 return 0;
6903
6904         if (topology_max_smt_threads() > 1) {
6905                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6906                 return 0;
6907         }
6908
6909         cpus_read_lock();
6910
6911         hardlockup_detector_perf_stop();
6912
6913         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6914
6915         x86_pmu.start_scheduling = NULL;
6916         x86_pmu.commit_scheduling = NULL;
6917         x86_pmu.stop_scheduling = NULL;
6918
6919         hardlockup_detector_perf_restart();
6920
6921         for_each_online_cpu(c)
6922                 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6923
6924         cpus_read_unlock();
6925         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6926         return 0;
6927 }
6928 subsys_initcall(fixup_ht_bug)
This page took 0.460783 seconds and 4 git commands to generate.