]> Git Repo - J-linux.git/blob - arch/x86/kvm/x86.c
Merge tag 'loongarch-kvm-6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/chenh...
[J-linux.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <[email protected]>
14  *   Yaniv Kamay  <[email protected]>
15  *   Amit Shah    <[email protected]>
16  *   Ben-Ami Yassour <[email protected]>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94
95 /*
96  * Note, kvm_caps fields should *never* have default values, all fields must be
97  * recomputed from scratch during vendor module load, e.g. to account for a
98  * vendor module being reloaded with different module parameters.
99  */
100 struct kvm_caps kvm_caps __read_mostly;
101 EXPORT_SYMBOL_GPL(kvm_caps);
102
103 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
104
105 #define emul_to_vcpu(ctxt) \
106         ((struct kvm_vcpu *)(ctxt)->vcpu)
107
108 /* EFER defaults:
109  * - enable syscall per default because its emulated by KVM
110  * - enable LME and LMA per default on 64 bit KVM
111  */
112 #ifdef CONFIG_X86_64
113 static
114 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
115 #else
116 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
117 #endif
118
119 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
120
121 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
122
123 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
124
125 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
126                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
127
128 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
129 static void process_nmi(struct kvm_vcpu *vcpu);
130 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
131 static void store_regs(struct kvm_vcpu *vcpu);
132 static int sync_regs(struct kvm_vcpu *vcpu);
133 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
134
135 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
136 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
137
138 static DEFINE_MUTEX(vendor_module_lock);
139 struct kvm_x86_ops kvm_x86_ops __read_mostly;
140
141 #define KVM_X86_OP(func)                                             \
142         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
143                                 *(((struct kvm_x86_ops *)0)->func));
144 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
145 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
146 #include <asm/kvm-x86-ops.h>
147 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
148 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
149
150 static bool __read_mostly ignore_msrs = 0;
151 module_param(ignore_msrs, bool, 0644);
152
153 bool __read_mostly report_ignored_msrs = true;
154 module_param(report_ignored_msrs, bool, 0644);
155 EXPORT_SYMBOL_GPL(report_ignored_msrs);
156
157 unsigned int min_timer_period_us = 200;
158 module_param(min_timer_period_us, uint, 0644);
159
160 static bool __read_mostly kvmclock_periodic_sync = true;
161 module_param(kvmclock_periodic_sync, bool, 0444);
162
163 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
164 static u32 __read_mostly tsc_tolerance_ppm = 250;
165 module_param(tsc_tolerance_ppm, uint, 0644);
166
167 /*
168  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
169  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
170  * advancement entirely.  Any other value is used as-is and disables adaptive
171  * tuning, i.e. allows privileged userspace to set an exact advancement time.
172  */
173 static int __read_mostly lapic_timer_advance_ns = -1;
174 module_param(lapic_timer_advance_ns, int, 0644);
175
176 static bool __read_mostly vector_hashing = true;
177 module_param(vector_hashing, bool, 0444);
178
179 bool __read_mostly enable_vmware_backdoor = false;
180 module_param(enable_vmware_backdoor, bool, 0444);
181 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
182
183 /*
184  * Flags to manipulate forced emulation behavior (any non-zero value will
185  * enable forced emulation).
186  */
187 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
188 static int __read_mostly force_emulation_prefix;
189 module_param(force_emulation_prefix, int, 0644);
190
191 int __read_mostly pi_inject_timer = -1;
192 module_param(pi_inject_timer, bint, 0644);
193
194 /* Enable/disable PMU virtualization */
195 bool __read_mostly enable_pmu = true;
196 EXPORT_SYMBOL_GPL(enable_pmu);
197 module_param(enable_pmu, bool, 0444);
198
199 bool __read_mostly eager_page_split = true;
200 module_param(eager_page_split, bool, 0644);
201
202 /* Enable/disable SMT_RSB bug mitigation */
203 static bool __read_mostly mitigate_smt_rsb;
204 module_param(mitigate_smt_rsb, bool, 0444);
205
206 /*
207  * Restoring the host value for MSRs that are only consumed when running in
208  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
209  * returns to userspace, i.e. the kernel can run with the guest's value.
210  */
211 #define KVM_MAX_NR_USER_RETURN_MSRS 16
212
213 struct kvm_user_return_msrs {
214         struct user_return_notifier urn;
215         bool registered;
216         struct kvm_user_return_msr_values {
217                 u64 host;
218                 u64 curr;
219         } values[KVM_MAX_NR_USER_RETURN_MSRS];
220 };
221
222 u32 __read_mostly kvm_nr_uret_msrs;
223 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
224 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
225 static struct kvm_user_return_msrs __percpu *user_return_msrs;
226
227 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
228                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
229                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
230                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
231
232 u64 __read_mostly host_efer;
233 EXPORT_SYMBOL_GPL(host_efer);
234
235 bool __read_mostly allow_smaller_maxphyaddr = 0;
236 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
237
238 bool __read_mostly enable_apicv = true;
239 EXPORT_SYMBOL_GPL(enable_apicv);
240
241 u64 __read_mostly host_xss;
242 EXPORT_SYMBOL_GPL(host_xss);
243
244 u64 __read_mostly host_arch_capabilities;
245 EXPORT_SYMBOL_GPL(host_arch_capabilities);
246
247 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
248         KVM_GENERIC_VM_STATS(),
249         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
250         STATS_DESC_COUNTER(VM, mmu_pte_write),
251         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
252         STATS_DESC_COUNTER(VM, mmu_flooded),
253         STATS_DESC_COUNTER(VM, mmu_recycled),
254         STATS_DESC_COUNTER(VM, mmu_cache_miss),
255         STATS_DESC_ICOUNTER(VM, mmu_unsync),
256         STATS_DESC_ICOUNTER(VM, pages_4k),
257         STATS_DESC_ICOUNTER(VM, pages_2m),
258         STATS_DESC_ICOUNTER(VM, pages_1g),
259         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
260         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
261         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
262 };
263
264 const struct kvm_stats_header kvm_vm_stats_header = {
265         .name_size = KVM_STATS_NAME_SIZE,
266         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
267         .id_offset = sizeof(struct kvm_stats_header),
268         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
269         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
270                        sizeof(kvm_vm_stats_desc),
271 };
272
273 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
274         KVM_GENERIC_VCPU_STATS(),
275         STATS_DESC_COUNTER(VCPU, pf_taken),
276         STATS_DESC_COUNTER(VCPU, pf_fixed),
277         STATS_DESC_COUNTER(VCPU, pf_emulate),
278         STATS_DESC_COUNTER(VCPU, pf_spurious),
279         STATS_DESC_COUNTER(VCPU, pf_fast),
280         STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
281         STATS_DESC_COUNTER(VCPU, pf_guest),
282         STATS_DESC_COUNTER(VCPU, tlb_flush),
283         STATS_DESC_COUNTER(VCPU, invlpg),
284         STATS_DESC_COUNTER(VCPU, exits),
285         STATS_DESC_COUNTER(VCPU, io_exits),
286         STATS_DESC_COUNTER(VCPU, mmio_exits),
287         STATS_DESC_COUNTER(VCPU, signal_exits),
288         STATS_DESC_COUNTER(VCPU, irq_window_exits),
289         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
290         STATS_DESC_COUNTER(VCPU, l1d_flush),
291         STATS_DESC_COUNTER(VCPU, halt_exits),
292         STATS_DESC_COUNTER(VCPU, request_irq_exits),
293         STATS_DESC_COUNTER(VCPU, irq_exits),
294         STATS_DESC_COUNTER(VCPU, host_state_reload),
295         STATS_DESC_COUNTER(VCPU, fpu_reload),
296         STATS_DESC_COUNTER(VCPU, insn_emulation),
297         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
298         STATS_DESC_COUNTER(VCPU, hypercalls),
299         STATS_DESC_COUNTER(VCPU, irq_injections),
300         STATS_DESC_COUNTER(VCPU, nmi_injections),
301         STATS_DESC_COUNTER(VCPU, req_event),
302         STATS_DESC_COUNTER(VCPU, nested_run),
303         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
304         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
305         STATS_DESC_COUNTER(VCPU, preemption_reported),
306         STATS_DESC_COUNTER(VCPU, preemption_other),
307         STATS_DESC_IBOOLEAN(VCPU, guest_mode),
308         STATS_DESC_COUNTER(VCPU, notify_window_exits),
309 };
310
311 const struct kvm_stats_header kvm_vcpu_stats_header = {
312         .name_size = KVM_STATS_NAME_SIZE,
313         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
314         .id_offset = sizeof(struct kvm_stats_header),
315         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
316         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
317                        sizeof(kvm_vcpu_stats_desc),
318 };
319
320 u64 __read_mostly host_xcr0;
321
322 static struct kmem_cache *x86_emulator_cache;
323
324 /*
325  * When called, it means the previous get/set msr reached an invalid msr.
326  * Return true if we want to ignore/silent this failed msr access.
327  */
328 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
329 {
330         const char *op = write ? "wrmsr" : "rdmsr";
331
332         if (ignore_msrs) {
333                 if (report_ignored_msrs)
334                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
335                                       op, msr, data);
336                 /* Mask the error */
337                 return true;
338         } else {
339                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
340                                       op, msr, data);
341                 return false;
342         }
343 }
344
345 static struct kmem_cache *kvm_alloc_emulator_cache(void)
346 {
347         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
348         unsigned int size = sizeof(struct x86_emulate_ctxt);
349
350         return kmem_cache_create_usercopy("x86_emulator", size,
351                                           __alignof__(struct x86_emulate_ctxt),
352                                           SLAB_ACCOUNT, useroffset,
353                                           size - useroffset, NULL);
354 }
355
356 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
357
358 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
359 {
360         int i;
361         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
362                 vcpu->arch.apf.gfns[i] = ~0;
363 }
364
365 static void kvm_on_user_return(struct user_return_notifier *urn)
366 {
367         unsigned slot;
368         struct kvm_user_return_msrs *msrs
369                 = container_of(urn, struct kvm_user_return_msrs, urn);
370         struct kvm_user_return_msr_values *values;
371         unsigned long flags;
372
373         /*
374          * Disabling irqs at this point since the following code could be
375          * interrupted and executed through kvm_arch_hardware_disable()
376          */
377         local_irq_save(flags);
378         if (msrs->registered) {
379                 msrs->registered = false;
380                 user_return_notifier_unregister(urn);
381         }
382         local_irq_restore(flags);
383         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
384                 values = &msrs->values[slot];
385                 if (values->host != values->curr) {
386                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
387                         values->curr = values->host;
388                 }
389         }
390 }
391
392 static int kvm_probe_user_return_msr(u32 msr)
393 {
394         u64 val;
395         int ret;
396
397         preempt_disable();
398         ret = rdmsrl_safe(msr, &val);
399         if (ret)
400                 goto out;
401         ret = wrmsrl_safe(msr, val);
402 out:
403         preempt_enable();
404         return ret;
405 }
406
407 int kvm_add_user_return_msr(u32 msr)
408 {
409         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
410
411         if (kvm_probe_user_return_msr(msr))
412                 return -1;
413
414         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
415         return kvm_nr_uret_msrs++;
416 }
417 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
418
419 int kvm_find_user_return_msr(u32 msr)
420 {
421         int i;
422
423         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
424                 if (kvm_uret_msrs_list[i] == msr)
425                         return i;
426         }
427         return -1;
428 }
429 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
430
431 static void kvm_user_return_msr_cpu_online(void)
432 {
433         unsigned int cpu = smp_processor_id();
434         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
435         u64 value;
436         int i;
437
438         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
439                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
440                 msrs->values[i].host = value;
441                 msrs->values[i].curr = value;
442         }
443 }
444
445 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
446 {
447         unsigned int cpu = smp_processor_id();
448         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
449         int err;
450
451         value = (value & mask) | (msrs->values[slot].host & ~mask);
452         if (value == msrs->values[slot].curr)
453                 return 0;
454         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
455         if (err)
456                 return 1;
457
458         msrs->values[slot].curr = value;
459         if (!msrs->registered) {
460                 msrs->urn.on_user_return = kvm_on_user_return;
461                 user_return_notifier_register(&msrs->urn);
462                 msrs->registered = true;
463         }
464         return 0;
465 }
466 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
467
468 static void drop_user_return_notifiers(void)
469 {
470         unsigned int cpu = smp_processor_id();
471         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
472
473         if (msrs->registered)
474                 kvm_on_user_return(&msrs->urn);
475 }
476
477 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
478 {
479         return vcpu->arch.apic_base;
480 }
481
482 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
483 {
484         return kvm_apic_mode(kvm_get_apic_base(vcpu));
485 }
486 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
487
488 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
489 {
490         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
491         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
492         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
493                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
494
495         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
496                 return 1;
497         if (!msr_info->host_initiated) {
498                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
499                         return 1;
500                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
501                         return 1;
502         }
503
504         kvm_lapic_set_base(vcpu, msr_info->data);
505         kvm_recalculate_apic_map(vcpu->kvm);
506         return 0;
507 }
508
509 /*
510  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
511  *
512  * Hardware virtualization extension instructions may fault if a reboot turns
513  * off virtualization while processes are running.  Usually after catching the
514  * fault we just panic; during reboot instead the instruction is ignored.
515  */
516 noinstr void kvm_spurious_fault(void)
517 {
518         /* Fault while not rebooting.  We want the trace. */
519         BUG_ON(!kvm_rebooting);
520 }
521 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
522
523 #define EXCPT_BENIGN            0
524 #define EXCPT_CONTRIBUTORY      1
525 #define EXCPT_PF                2
526
527 static int exception_class(int vector)
528 {
529         switch (vector) {
530         case PF_VECTOR:
531                 return EXCPT_PF;
532         case DE_VECTOR:
533         case TS_VECTOR:
534         case NP_VECTOR:
535         case SS_VECTOR:
536         case GP_VECTOR:
537                 return EXCPT_CONTRIBUTORY;
538         default:
539                 break;
540         }
541         return EXCPT_BENIGN;
542 }
543
544 #define EXCPT_FAULT             0
545 #define EXCPT_TRAP              1
546 #define EXCPT_ABORT             2
547 #define EXCPT_INTERRUPT         3
548 #define EXCPT_DB                4
549
550 static int exception_type(int vector)
551 {
552         unsigned int mask;
553
554         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
555                 return EXCPT_INTERRUPT;
556
557         mask = 1 << vector;
558
559         /*
560          * #DBs can be trap-like or fault-like, the caller must check other CPU
561          * state, e.g. DR6, to determine whether a #DB is a trap or fault.
562          */
563         if (mask & (1 << DB_VECTOR))
564                 return EXCPT_DB;
565
566         if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
567                 return EXCPT_TRAP;
568
569         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
570                 return EXCPT_ABORT;
571
572         /* Reserved exceptions will result in fault */
573         return EXCPT_FAULT;
574 }
575
576 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
577                                    struct kvm_queued_exception *ex)
578 {
579         if (!ex->has_payload)
580                 return;
581
582         switch (ex->vector) {
583         case DB_VECTOR:
584                 /*
585                  * "Certain debug exceptions may clear bit 0-3.  The
586                  * remaining contents of the DR6 register are never
587                  * cleared by the processor".
588                  */
589                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
590                 /*
591                  * In order to reflect the #DB exception payload in guest
592                  * dr6, three components need to be considered: active low
593                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
594                  * DR6_BS and DR6_BT)
595                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
596                  * In the target guest dr6:
597                  * FIXED_1 bits should always be set.
598                  * Active low bits should be cleared if 1-setting in payload.
599                  * Active high bits should be set if 1-setting in payload.
600                  *
601                  * Note, the payload is compatible with the pending debug
602                  * exceptions/exit qualification under VMX, that active_low bits
603                  * are active high in payload.
604                  * So they need to be flipped for DR6.
605                  */
606                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
607                 vcpu->arch.dr6 |= ex->payload;
608                 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
609
610                 /*
611                  * The #DB payload is defined as compatible with the 'pending
612                  * debug exceptions' field under VMX, not DR6. While bit 12 is
613                  * defined in the 'pending debug exceptions' field (enabled
614                  * breakpoint), it is reserved and must be zero in DR6.
615                  */
616                 vcpu->arch.dr6 &= ~BIT(12);
617                 break;
618         case PF_VECTOR:
619                 vcpu->arch.cr2 = ex->payload;
620                 break;
621         }
622
623         ex->has_payload = false;
624         ex->payload = 0;
625 }
626 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
627
628 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
629                                        bool has_error_code, u32 error_code,
630                                        bool has_payload, unsigned long payload)
631 {
632         struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
633
634         ex->vector = vector;
635         ex->injected = false;
636         ex->pending = true;
637         ex->has_error_code = has_error_code;
638         ex->error_code = error_code;
639         ex->has_payload = has_payload;
640         ex->payload = payload;
641 }
642
643 /* Forcibly leave the nested mode in cases like a vCPU reset */
644 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
645 {
646         kvm_x86_ops.nested_ops->leave_nested(vcpu);
647 }
648
649 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
650                 unsigned nr, bool has_error, u32 error_code,
651                 bool has_payload, unsigned long payload, bool reinject)
652 {
653         u32 prev_nr;
654         int class1, class2;
655
656         kvm_make_request(KVM_REQ_EVENT, vcpu);
657
658         /*
659          * If the exception is destined for L2 and isn't being reinjected,
660          * morph it to a VM-Exit if L1 wants to intercept the exception.  A
661          * previously injected exception is not checked because it was checked
662          * when it was original queued, and re-checking is incorrect if _L1_
663          * injected the exception, in which case it's exempt from interception.
664          */
665         if (!reinject && is_guest_mode(vcpu) &&
666             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
667                 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
668                                            has_payload, payload);
669                 return;
670         }
671
672         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
673         queue:
674                 if (reinject) {
675                         /*
676                          * On VM-Entry, an exception can be pending if and only
677                          * if event injection was blocked by nested_run_pending.
678                          * In that case, however, vcpu_enter_guest() requests an
679                          * immediate exit, and the guest shouldn't proceed far
680                          * enough to need reinjection.
681                          */
682                         WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
683                         vcpu->arch.exception.injected = true;
684                         if (WARN_ON_ONCE(has_payload)) {
685                                 /*
686                                  * A reinjected event has already
687                                  * delivered its payload.
688                                  */
689                                 has_payload = false;
690                                 payload = 0;
691                         }
692                 } else {
693                         vcpu->arch.exception.pending = true;
694                         vcpu->arch.exception.injected = false;
695                 }
696                 vcpu->arch.exception.has_error_code = has_error;
697                 vcpu->arch.exception.vector = nr;
698                 vcpu->arch.exception.error_code = error_code;
699                 vcpu->arch.exception.has_payload = has_payload;
700                 vcpu->arch.exception.payload = payload;
701                 if (!is_guest_mode(vcpu))
702                         kvm_deliver_exception_payload(vcpu,
703                                                       &vcpu->arch.exception);
704                 return;
705         }
706
707         /* to check exception */
708         prev_nr = vcpu->arch.exception.vector;
709         if (prev_nr == DF_VECTOR) {
710                 /* triple fault -> shutdown */
711                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
712                 return;
713         }
714         class1 = exception_class(prev_nr);
715         class2 = exception_class(nr);
716         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
717             (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
718                 /*
719                  * Synthesize #DF.  Clear the previously injected or pending
720                  * exception so as not to incorrectly trigger shutdown.
721                  */
722                 vcpu->arch.exception.injected = false;
723                 vcpu->arch.exception.pending = false;
724
725                 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
726         } else {
727                 /* replace previous exception with a new one in a hope
728                    that instruction re-execution will regenerate lost
729                    exception */
730                 goto queue;
731         }
732 }
733
734 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
735 {
736         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
737 }
738 EXPORT_SYMBOL_GPL(kvm_queue_exception);
739
740 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
741 {
742         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
743 }
744 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
745
746 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
747                            unsigned long payload)
748 {
749         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
750 }
751 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
752
753 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
754                                     u32 error_code, unsigned long payload)
755 {
756         kvm_multiple_exception(vcpu, nr, true, error_code,
757                                true, payload, false);
758 }
759
760 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
761 {
762         if (err)
763                 kvm_inject_gp(vcpu, 0);
764         else
765                 return kvm_skip_emulated_instruction(vcpu);
766
767         return 1;
768 }
769 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
770
771 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
772 {
773         if (err) {
774                 kvm_inject_gp(vcpu, 0);
775                 return 1;
776         }
777
778         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
779                                        EMULTYPE_COMPLETE_USER_EXIT);
780 }
781
782 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
783 {
784         ++vcpu->stat.pf_guest;
785
786         /*
787          * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
788          * whether or not L1 wants to intercept "regular" #PF.
789          */
790         if (is_guest_mode(vcpu) && fault->async_page_fault)
791                 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
792                                            true, fault->error_code,
793                                            true, fault->address);
794         else
795                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
796                                         fault->address);
797 }
798
799 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
800                                     struct x86_exception *fault)
801 {
802         struct kvm_mmu *fault_mmu;
803         WARN_ON_ONCE(fault->vector != PF_VECTOR);
804
805         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
806                                                vcpu->arch.walk_mmu;
807
808         /*
809          * Invalidate the TLB entry for the faulting address, if it exists,
810          * else the access will fault indefinitely (and to emulate hardware).
811          */
812         if ((fault->error_code & PFERR_PRESENT_MASK) &&
813             !(fault->error_code & PFERR_RSVD_MASK))
814                 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
815                                         KVM_MMU_ROOT_CURRENT);
816
817         fault_mmu->inject_page_fault(vcpu, fault);
818 }
819 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
820
821 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
822 {
823         atomic_inc(&vcpu->arch.nmi_queued);
824         kvm_make_request(KVM_REQ_NMI, vcpu);
825 }
826
827 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
828 {
829         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
830 }
831 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
832
833 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
834 {
835         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
836 }
837 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
838
839 /*
840  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
841  * a #GP and return false.
842  */
843 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
844 {
845         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
846                 return true;
847         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
848         return false;
849 }
850
851 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
852 {
853         if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
854                 return true;
855
856         kvm_queue_exception(vcpu, UD_VECTOR);
857         return false;
858 }
859 EXPORT_SYMBOL_GPL(kvm_require_dr);
860
861 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
862 {
863         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
864 }
865
866 /*
867  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
868  */
869 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
870 {
871         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
872         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
873         gpa_t real_gpa;
874         int i;
875         int ret;
876         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
877
878         /*
879          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
880          * to an L1 GPA.
881          */
882         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
883                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
884         if (real_gpa == INVALID_GPA)
885                 return 0;
886
887         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
888         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
889                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
890         if (ret < 0)
891                 return 0;
892
893         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
894                 if ((pdpte[i] & PT_PRESENT_MASK) &&
895                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
896                         return 0;
897                 }
898         }
899
900         /*
901          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
902          * Shadow page roots need to be reconstructed instead.
903          */
904         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
905                 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
906
907         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
908         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
909         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
910         vcpu->arch.pdptrs_from_userspace = false;
911
912         return 1;
913 }
914 EXPORT_SYMBOL_GPL(load_pdptrs);
915
916 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
917 {
918 #ifdef CONFIG_X86_64
919         if (cr0 & 0xffffffff00000000UL)
920                 return false;
921 #endif
922
923         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
924                 return false;
925
926         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
927                 return false;
928
929         return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
930 }
931
932 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
933 {
934         /*
935          * CR0.WP is incorporated into the MMU role, but only for non-nested,
936          * indirect shadow MMUs.  If paging is disabled, no updates are needed
937          * as there are no permission bits to emulate.  If TDP is enabled, the
938          * MMU's metadata needs to be updated, e.g. so that emulating guest
939          * translations does the right thing, but there's no need to unload the
940          * root as CR0.WP doesn't affect SPTEs.
941          */
942         if ((cr0 ^ old_cr0) == X86_CR0_WP) {
943                 if (!(cr0 & X86_CR0_PG))
944                         return;
945
946                 if (tdp_enabled) {
947                         kvm_init_mmu(vcpu);
948                         return;
949                 }
950         }
951
952         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
953                 kvm_clear_async_pf_completion_queue(vcpu);
954                 kvm_async_pf_hash_reset(vcpu);
955
956                 /*
957                  * Clearing CR0.PG is defined to flush the TLB from the guest's
958                  * perspective.
959                  */
960                 if (!(cr0 & X86_CR0_PG))
961                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
962         }
963
964         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
965                 kvm_mmu_reset_context(vcpu);
966
967         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
968             kvm_mmu_honors_guest_mtrrs(vcpu->kvm) &&
969             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
970                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
971 }
972 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
973
974 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
975 {
976         unsigned long old_cr0 = kvm_read_cr0(vcpu);
977
978         if (!kvm_is_valid_cr0(vcpu, cr0))
979                 return 1;
980
981         cr0 |= X86_CR0_ET;
982
983         /* Write to CR0 reserved bits are ignored, even on Intel. */
984         cr0 &= ~CR0_RESERVED_BITS;
985
986 #ifdef CONFIG_X86_64
987         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
988             (cr0 & X86_CR0_PG)) {
989                 int cs_db, cs_l;
990
991                 if (!is_pae(vcpu))
992                         return 1;
993                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
994                 if (cs_l)
995                         return 1;
996         }
997 #endif
998         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
999             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1000             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1001                 return 1;
1002
1003         if (!(cr0 & X86_CR0_PG) &&
1004             (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1005                 return 1;
1006
1007         static_call(kvm_x86_set_cr0)(vcpu, cr0);
1008
1009         kvm_post_set_cr0(vcpu, old_cr0, cr0);
1010
1011         return 0;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1014
1015 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1016 {
1017         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1018 }
1019 EXPORT_SYMBOL_GPL(kvm_lmsw);
1020
1021 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1022 {
1023         if (vcpu->arch.guest_state_protected)
1024                 return;
1025
1026         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1027
1028                 if (vcpu->arch.xcr0 != host_xcr0)
1029                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1030
1031                 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1032                     vcpu->arch.ia32_xss != host_xss)
1033                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1034         }
1035
1036         if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1037             vcpu->arch.pkru != vcpu->arch.host_pkru &&
1038             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1039              kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1040                 write_pkru(vcpu->arch.pkru);
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1043
1044 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1045 {
1046         if (vcpu->arch.guest_state_protected)
1047                 return;
1048
1049         if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1050             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1051              kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1052                 vcpu->arch.pkru = rdpkru();
1053                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1054                         write_pkru(vcpu->arch.host_pkru);
1055         }
1056
1057         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1058
1059                 if (vcpu->arch.xcr0 != host_xcr0)
1060                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1061
1062                 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1063                     vcpu->arch.ia32_xss != host_xss)
1064                         wrmsrl(MSR_IA32_XSS, host_xss);
1065         }
1066
1067 }
1068 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1069
1070 #ifdef CONFIG_X86_64
1071 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1072 {
1073         return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1074 }
1075 #endif
1076
1077 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1078 {
1079         u64 xcr0 = xcr;
1080         u64 old_xcr0 = vcpu->arch.xcr0;
1081         u64 valid_bits;
1082
1083         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1084         if (index != XCR_XFEATURE_ENABLED_MASK)
1085                 return 1;
1086         if (!(xcr0 & XFEATURE_MASK_FP))
1087                 return 1;
1088         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1089                 return 1;
1090
1091         /*
1092          * Do not allow the guest to set bits that we do not support
1093          * saving.  However, xcr0 bit 0 is always set, even if the
1094          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1095          */
1096         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1097         if (xcr0 & ~valid_bits)
1098                 return 1;
1099
1100         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1101             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1102                 return 1;
1103
1104         if (xcr0 & XFEATURE_MASK_AVX512) {
1105                 if (!(xcr0 & XFEATURE_MASK_YMM))
1106                         return 1;
1107                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1108                         return 1;
1109         }
1110
1111         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1112             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1113                 return 1;
1114
1115         vcpu->arch.xcr0 = xcr0;
1116
1117         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1118                 kvm_update_cpuid_runtime(vcpu);
1119         return 0;
1120 }
1121
1122 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1123 {
1124         /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1125         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1126             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1127                 kvm_inject_gp(vcpu, 0);
1128                 return 1;
1129         }
1130
1131         return kvm_skip_emulated_instruction(vcpu);
1132 }
1133 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1134
1135 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1136 {
1137         if (cr4 & cr4_reserved_bits)
1138                 return false;
1139
1140         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1141                 return false;
1142
1143         return true;
1144 }
1145 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1146
1147 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1148 {
1149         return __kvm_is_valid_cr4(vcpu, cr4) &&
1150                static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1151 }
1152
1153 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1154 {
1155         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1156                 kvm_mmu_reset_context(vcpu);
1157
1158         /*
1159          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1160          * according to the SDM; however, stale prev_roots could be reused
1161          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1162          * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1163          * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1164          * so fall through.
1165          */
1166         if (!tdp_enabled &&
1167             (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1168                 kvm_mmu_unload(vcpu);
1169
1170         /*
1171          * The TLB has to be flushed for all PCIDs if any of the following
1172          * (architecturally required) changes happen:
1173          * - CR4.PCIDE is changed from 1 to 0
1174          * - CR4.PGE is toggled
1175          *
1176          * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1177          */
1178         if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1179             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1180                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1181
1182         /*
1183          * The TLB has to be flushed for the current PCID if any of the
1184          * following (architecturally required) changes happen:
1185          * - CR4.SMEP is changed from 0 to 1
1186          * - CR4.PAE is toggled
1187          */
1188         else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1189                  ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1190                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1191
1192 }
1193 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1194
1195 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1196 {
1197         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1198
1199         if (!kvm_is_valid_cr4(vcpu, cr4))
1200                 return 1;
1201
1202         if (is_long_mode(vcpu)) {
1203                 if (!(cr4 & X86_CR4_PAE))
1204                         return 1;
1205                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1206                         return 1;
1207         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1208                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1209                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1210                 return 1;
1211
1212         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1213                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1214                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1215                         return 1;
1216         }
1217
1218         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1219
1220         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1221
1222         return 0;
1223 }
1224 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1225
1226 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1227 {
1228         struct kvm_mmu *mmu = vcpu->arch.mmu;
1229         unsigned long roots_to_free = 0;
1230         int i;
1231
1232         /*
1233          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1234          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1235          * also via the emulator.  KVM's TDP page tables are not in the scope of
1236          * the invalidation, but the guest's TLB entries need to be flushed as
1237          * the CPU may have cached entries in its TLB for the target PCID.
1238          */
1239         if (unlikely(tdp_enabled)) {
1240                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1241                 return;
1242         }
1243
1244         /*
1245          * If neither the current CR3 nor any of the prev_roots use the given
1246          * PCID, then nothing needs to be done here because a resync will
1247          * happen anyway before switching to any other CR3.
1248          */
1249         if (kvm_get_active_pcid(vcpu) == pcid) {
1250                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1251                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1252         }
1253
1254         /*
1255          * If PCID is disabled, there is no need to free prev_roots even if the
1256          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1257          * with PCIDE=0.
1258          */
1259         if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1260                 return;
1261
1262         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1263                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1264                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1265
1266         kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1267 }
1268
1269 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1270 {
1271         bool skip_tlb_flush = false;
1272         unsigned long pcid = 0;
1273 #ifdef CONFIG_X86_64
1274         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1275                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1276                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1277                 pcid = cr3 & X86_CR3_PCID_MASK;
1278         }
1279 #endif
1280
1281         /* PDPTRs are always reloaded for PAE paging. */
1282         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1283                 goto handle_tlb_flush;
1284
1285         /*
1286          * Do not condition the GPA check on long mode, this helper is used to
1287          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1288          * the current vCPU mode is accurate.
1289          */
1290         if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1291                 return 1;
1292
1293         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1294                 return 1;
1295
1296         if (cr3 != kvm_read_cr3(vcpu))
1297                 kvm_mmu_new_pgd(vcpu, cr3);
1298
1299         vcpu->arch.cr3 = cr3;
1300         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1301         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1302
1303 handle_tlb_flush:
1304         /*
1305          * A load of CR3 that flushes the TLB flushes only the current PCID,
1306          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1307          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1308          * and it's impossible to use a non-zero PCID when PCID is disabled,
1309          * i.e. only PCID=0 can be relevant.
1310          */
1311         if (!skip_tlb_flush)
1312                 kvm_invalidate_pcid(vcpu, pcid);
1313
1314         return 0;
1315 }
1316 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1317
1318 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1319 {
1320         if (cr8 & CR8_RESERVED_BITS)
1321                 return 1;
1322         if (lapic_in_kernel(vcpu))
1323                 kvm_lapic_set_tpr(vcpu, cr8);
1324         else
1325                 vcpu->arch.cr8 = cr8;
1326         return 0;
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1329
1330 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1331 {
1332         if (lapic_in_kernel(vcpu))
1333                 return kvm_lapic_get_cr8(vcpu);
1334         else
1335                 return vcpu->arch.cr8;
1336 }
1337 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1338
1339 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1340 {
1341         int i;
1342
1343         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1344                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1345                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1346         }
1347 }
1348
1349 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1350 {
1351         unsigned long dr7;
1352
1353         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1354                 dr7 = vcpu->arch.guest_debug_dr7;
1355         else
1356                 dr7 = vcpu->arch.dr7;
1357         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1358         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1359         if (dr7 & DR7_BP_EN_MASK)
1360                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1361 }
1362 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1363
1364 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1365 {
1366         u64 fixed = DR6_FIXED_1;
1367
1368         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1369                 fixed |= DR6_RTM;
1370
1371         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1372                 fixed |= DR6_BUS_LOCK;
1373         return fixed;
1374 }
1375
1376 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1377 {
1378         size_t size = ARRAY_SIZE(vcpu->arch.db);
1379
1380         switch (dr) {
1381         case 0 ... 3:
1382                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1383                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1384                         vcpu->arch.eff_db[dr] = val;
1385                 break;
1386         case 4:
1387         case 6:
1388                 if (!kvm_dr6_valid(val))
1389                         return 1; /* #GP */
1390                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1391                 break;
1392         case 5:
1393         default: /* 7 */
1394                 if (!kvm_dr7_valid(val))
1395                         return 1; /* #GP */
1396                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1397                 kvm_update_dr7(vcpu);
1398                 break;
1399         }
1400
1401         return 0;
1402 }
1403 EXPORT_SYMBOL_GPL(kvm_set_dr);
1404
1405 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1406 {
1407         size_t size = ARRAY_SIZE(vcpu->arch.db);
1408
1409         switch (dr) {
1410         case 0 ... 3:
1411                 return vcpu->arch.db[array_index_nospec(dr, size)];
1412         case 4:
1413         case 6:
1414                 return vcpu->arch.dr6;
1415         case 5:
1416         default: /* 7 */
1417                 return vcpu->arch.dr7;
1418         }
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_get_dr);
1421
1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1423 {
1424         u32 ecx = kvm_rcx_read(vcpu);
1425         u64 data;
1426
1427         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428                 kvm_inject_gp(vcpu, 0);
1429                 return 1;
1430         }
1431
1432         kvm_rax_write(vcpu, (u32)data);
1433         kvm_rdx_write(vcpu, data >> 32);
1434         return kvm_skip_emulated_instruction(vcpu);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1437
1438 /*
1439  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1442  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1443  * MSRs that KVM emulates without strictly requiring host support.
1444  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1446  * msrs_to_save and emulated_msrs.
1447  */
1448
1449 static const u32 msrs_to_save_base[] = {
1450         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1451         MSR_STAR,
1452 #ifdef CONFIG_X86_64
1453         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1454 #endif
1455         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457         MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464         MSR_IA32_UMWAIT_CONTROL,
1465
1466         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467 };
1468
1469 static const u32 msrs_to_save_pmu[] = {
1470         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474         MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1475
1476         /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1485
1486         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1488
1489         /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1494
1495         MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496         MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497         MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1498 };
1499
1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501                         ARRAY_SIZE(msrs_to_save_pmu)];
1502 static unsigned num_msrs_to_save;
1503
1504 static const u32 emulated_msrs_all[] = {
1505         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507
1508 #ifdef CONFIG_KVM_HYPERV
1509         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1510         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1511         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1512         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1513         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1514         HV_X64_MSR_RESET,
1515         HV_X64_MSR_VP_INDEX,
1516         HV_X64_MSR_VP_RUNTIME,
1517         HV_X64_MSR_SCONTROL,
1518         HV_X64_MSR_STIMER0_CONFIG,
1519         HV_X64_MSR_VP_ASSIST_PAGE,
1520         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1521         HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1522         HV_X64_MSR_SYNDBG_OPTIONS,
1523         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1524         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1525         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1526 #endif
1527
1528         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1529         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1530
1531         MSR_IA32_TSC_ADJUST,
1532         MSR_IA32_TSC_DEADLINE,
1533         MSR_IA32_ARCH_CAPABILITIES,
1534         MSR_IA32_PERF_CAPABILITIES,
1535         MSR_IA32_MISC_ENABLE,
1536         MSR_IA32_MCG_STATUS,
1537         MSR_IA32_MCG_CTL,
1538         MSR_IA32_MCG_EXT_CTL,
1539         MSR_IA32_SMBASE,
1540         MSR_SMI_COUNT,
1541         MSR_PLATFORM_INFO,
1542         MSR_MISC_FEATURES_ENABLES,
1543         MSR_AMD64_VIRT_SPEC_CTRL,
1544         MSR_AMD64_TSC_RATIO,
1545         MSR_IA32_POWER_CTL,
1546         MSR_IA32_UCODE_REV,
1547
1548         /*
1549          * KVM always supports the "true" VMX control MSRs, even if the host
1550          * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1551          * doesn't strictly require them to exist in the host (ignoring that
1552          * KVM would refuse to load in the first place if the core set of MSRs
1553          * aren't supported).
1554          */
1555         MSR_IA32_VMX_BASIC,
1556         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1557         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1558         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1559         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1560         MSR_IA32_VMX_MISC,
1561         MSR_IA32_VMX_CR0_FIXED0,
1562         MSR_IA32_VMX_CR4_FIXED0,
1563         MSR_IA32_VMX_VMCS_ENUM,
1564         MSR_IA32_VMX_PROCBASED_CTLS2,
1565         MSR_IA32_VMX_EPT_VPID_CAP,
1566         MSR_IA32_VMX_VMFUNC,
1567
1568         MSR_K7_HWCR,
1569         MSR_KVM_POLL_CONTROL,
1570 };
1571
1572 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1573 static unsigned num_emulated_msrs;
1574
1575 /*
1576  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1577  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1578  * feature MSRs, but are handled separately to allow expedited lookups.
1579  */
1580 static const u32 msr_based_features_all_except_vmx[] = {
1581         MSR_AMD64_DE_CFG,
1582         MSR_IA32_UCODE_REV,
1583         MSR_IA32_ARCH_CAPABILITIES,
1584         MSR_IA32_PERF_CAPABILITIES,
1585 };
1586
1587 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1588                               (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1589 static unsigned int num_msr_based_features;
1590
1591 /*
1592  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1593  * patch, are immutable once the vCPU model is defined.
1594  */
1595 static bool kvm_is_immutable_feature_msr(u32 msr)
1596 {
1597         int i;
1598
1599         if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1600                 return true;
1601
1602         for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1603                 if (msr == msr_based_features_all_except_vmx[i])
1604                         return msr != MSR_IA32_UCODE_REV;
1605         }
1606
1607         return false;
1608 }
1609
1610 /*
1611  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1612  * does not yet virtualize. These include:
1613  *   10 - MISC_PACKAGE_CTRLS
1614  *   11 - ENERGY_FILTERING_CTL
1615  *   12 - DOITM
1616  *   18 - FB_CLEAR_CTRL
1617  *   21 - XAPIC_DISABLE_STATUS
1618  *   23 - OVERCLOCKING_STATUS
1619  */
1620
1621 #define KVM_SUPPORTED_ARCH_CAP \
1622         (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1623          ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1624          ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1625          ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1626          ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1627          ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1628
1629 static u64 kvm_get_arch_capabilities(void)
1630 {
1631         u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1632
1633         /*
1634          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1635          * the nested hypervisor runs with NX huge pages.  If it is not,
1636          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1637          * L1 guests, so it need not worry about its own (L2) guests.
1638          */
1639         data |= ARCH_CAP_PSCHANGE_MC_NO;
1640
1641         /*
1642          * If we're doing cache flushes (either "always" or "cond")
1643          * we will do one whenever the guest does a vmlaunch/vmresume.
1644          * If an outer hypervisor is doing the cache flush for us
1645          * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1646          * capability to the guest too, and if EPT is disabled we're not
1647          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1648          * require a nested hypervisor to do a flush of its own.
1649          */
1650         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1651                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1652
1653         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1654                 data |= ARCH_CAP_RDCL_NO;
1655         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1656                 data |= ARCH_CAP_SSB_NO;
1657         if (!boot_cpu_has_bug(X86_BUG_MDS))
1658                 data |= ARCH_CAP_MDS_NO;
1659         if (!boot_cpu_has_bug(X86_BUG_RFDS))
1660                 data |= ARCH_CAP_RFDS_NO;
1661
1662         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1663                 /*
1664                  * If RTM=0 because the kernel has disabled TSX, the host might
1665                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1666                  * and therefore knows that there cannot be TAA) but keep
1667                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1668                  * and we want to allow migrating those guests to tsx=off hosts.
1669                  */
1670                 data &= ~ARCH_CAP_TAA_NO;
1671         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1672                 data |= ARCH_CAP_TAA_NO;
1673         } else {
1674                 /*
1675                  * Nothing to do here; we emulate TSX_CTRL if present on the
1676                  * host so the guest can choose between disabling TSX or
1677                  * using VERW to clear CPU buffers.
1678                  */
1679         }
1680
1681         if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1682                 data |= ARCH_CAP_GDS_NO;
1683
1684         return data;
1685 }
1686
1687 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1688 {
1689         switch (msr->index) {
1690         case MSR_IA32_ARCH_CAPABILITIES:
1691                 msr->data = kvm_get_arch_capabilities();
1692                 break;
1693         case MSR_IA32_PERF_CAPABILITIES:
1694                 msr->data = kvm_caps.supported_perf_cap;
1695                 break;
1696         case MSR_IA32_UCODE_REV:
1697                 rdmsrl_safe(msr->index, &msr->data);
1698                 break;
1699         default:
1700                 return static_call(kvm_x86_get_msr_feature)(msr);
1701         }
1702         return 0;
1703 }
1704
1705 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1706 {
1707         struct kvm_msr_entry msr;
1708         int r;
1709
1710         /* Unconditionally clear the output for simplicity */
1711         msr.data = 0;
1712         msr.index = index;
1713         r = kvm_get_msr_feature(&msr);
1714
1715         if (r == KVM_MSR_RET_INVALID && kvm_msr_ignored_check(index, 0, false))
1716                 r = 0;
1717
1718         *data = msr.data;
1719
1720         return r;
1721 }
1722
1723 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1724 {
1725         if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1726                 return false;
1727
1728         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1729                 return false;
1730
1731         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1732                 return false;
1733
1734         if (efer & (EFER_LME | EFER_LMA) &&
1735             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1736                 return false;
1737
1738         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1739                 return false;
1740
1741         return true;
1742
1743 }
1744 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1745 {
1746         if (efer & efer_reserved_bits)
1747                 return false;
1748
1749         return __kvm_valid_efer(vcpu, efer);
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1752
1753 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1754 {
1755         u64 old_efer = vcpu->arch.efer;
1756         u64 efer = msr_info->data;
1757         int r;
1758
1759         if (efer & efer_reserved_bits)
1760                 return 1;
1761
1762         if (!msr_info->host_initiated) {
1763                 if (!__kvm_valid_efer(vcpu, efer))
1764                         return 1;
1765
1766                 if (is_paging(vcpu) &&
1767                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1768                         return 1;
1769         }
1770
1771         efer &= ~EFER_LMA;
1772         efer |= vcpu->arch.efer & EFER_LMA;
1773
1774         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1775         if (r) {
1776                 WARN_ON(r > 0);
1777                 return r;
1778         }
1779
1780         if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1781                 kvm_mmu_reset_context(vcpu);
1782
1783         if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1784             (efer & EFER_SVME))
1785                 kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1786
1787         return 0;
1788 }
1789
1790 void kvm_enable_efer_bits(u64 mask)
1791 {
1792        efer_reserved_bits &= ~mask;
1793 }
1794 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1795
1796 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1797 {
1798         struct kvm_x86_msr_filter *msr_filter;
1799         struct msr_bitmap_range *ranges;
1800         struct kvm *kvm = vcpu->kvm;
1801         bool allowed;
1802         int idx;
1803         u32 i;
1804
1805         /* x2APIC MSRs do not support filtering. */
1806         if (index >= 0x800 && index <= 0x8ff)
1807                 return true;
1808
1809         idx = srcu_read_lock(&kvm->srcu);
1810
1811         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1812         if (!msr_filter) {
1813                 allowed = true;
1814                 goto out;
1815         }
1816
1817         allowed = msr_filter->default_allow;
1818         ranges = msr_filter->ranges;
1819
1820         for (i = 0; i < msr_filter->count; i++) {
1821                 u32 start = ranges[i].base;
1822                 u32 end = start + ranges[i].nmsrs;
1823                 u32 flags = ranges[i].flags;
1824                 unsigned long *bitmap = ranges[i].bitmap;
1825
1826                 if ((index >= start) && (index < end) && (flags & type)) {
1827                         allowed = test_bit(index - start, bitmap);
1828                         break;
1829                 }
1830         }
1831
1832 out:
1833         srcu_read_unlock(&kvm->srcu, idx);
1834
1835         return allowed;
1836 }
1837 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1838
1839 /*
1840  * Write @data into the MSR specified by @index.  Select MSR specific fault
1841  * checks are bypassed if @host_initiated is %true.
1842  * Returns 0 on success, non-0 otherwise.
1843  * Assumes vcpu_load() was already called.
1844  */
1845 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1846                          bool host_initiated)
1847 {
1848         struct msr_data msr;
1849
1850         switch (index) {
1851         case MSR_FS_BASE:
1852         case MSR_GS_BASE:
1853         case MSR_KERNEL_GS_BASE:
1854         case MSR_CSTAR:
1855         case MSR_LSTAR:
1856                 if (is_noncanonical_address(data, vcpu))
1857                         return 1;
1858                 break;
1859         case MSR_IA32_SYSENTER_EIP:
1860         case MSR_IA32_SYSENTER_ESP:
1861                 /*
1862                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1863                  * non-canonical address is written on Intel but not on
1864                  * AMD (which ignores the top 32-bits, because it does
1865                  * not implement 64-bit SYSENTER).
1866                  *
1867                  * 64-bit code should hence be able to write a non-canonical
1868                  * value on AMD.  Making the address canonical ensures that
1869                  * vmentry does not fail on Intel after writing a non-canonical
1870                  * value, and that something deterministic happens if the guest
1871                  * invokes 64-bit SYSENTER.
1872                  */
1873                 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1874                 break;
1875         case MSR_TSC_AUX:
1876                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1877                         return 1;
1878
1879                 if (!host_initiated &&
1880                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1881                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1882                         return 1;
1883
1884                 /*
1885                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1886                  * incomplete and conflicting architectural behavior.  Current
1887                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1888                  * reserved and always read as zeros.  Enforce Intel's reserved
1889                  * bits check if and only if the guest CPU is Intel, and clear
1890                  * the bits in all other cases.  This ensures cross-vendor
1891                  * migration will provide consistent behavior for the guest.
1892                  */
1893                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1894                         return 1;
1895
1896                 data = (u32)data;
1897                 break;
1898         }
1899
1900         msr.data = data;
1901         msr.index = index;
1902         msr.host_initiated = host_initiated;
1903
1904         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1905 }
1906
1907 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1908                                      u32 index, u64 data, bool host_initiated)
1909 {
1910         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1911
1912         if (ret == KVM_MSR_RET_INVALID)
1913                 if (kvm_msr_ignored_check(index, data, true))
1914                         ret = 0;
1915
1916         return ret;
1917 }
1918
1919 /*
1920  * Read the MSR specified by @index into @data.  Select MSR specific fault
1921  * checks are bypassed if @host_initiated is %true.
1922  * Returns 0 on success, non-0 otherwise.
1923  * Assumes vcpu_load() was already called.
1924  */
1925 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1926                   bool host_initiated)
1927 {
1928         struct msr_data msr;
1929         int ret;
1930
1931         switch (index) {
1932         case MSR_TSC_AUX:
1933                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1934                         return 1;
1935
1936                 if (!host_initiated &&
1937                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1938                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1939                         return 1;
1940                 break;
1941         }
1942
1943         msr.index = index;
1944         msr.host_initiated = host_initiated;
1945
1946         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1947         if (!ret)
1948                 *data = msr.data;
1949         return ret;
1950 }
1951
1952 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1953                                      u32 index, u64 *data, bool host_initiated)
1954 {
1955         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1956
1957         if (ret == KVM_MSR_RET_INVALID) {
1958                 /* Unconditionally clear *data for simplicity */
1959                 *data = 0;
1960                 if (kvm_msr_ignored_check(index, 0, false))
1961                         ret = 0;
1962         }
1963
1964         return ret;
1965 }
1966
1967 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1968 {
1969         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1970                 return KVM_MSR_RET_FILTERED;
1971         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1972 }
1973
1974 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1975 {
1976         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1977                 return KVM_MSR_RET_FILTERED;
1978         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1979 }
1980
1981 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1982 {
1983         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1984 }
1985 EXPORT_SYMBOL_GPL(kvm_get_msr);
1986
1987 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1988 {
1989         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1990 }
1991 EXPORT_SYMBOL_GPL(kvm_set_msr);
1992
1993 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1994 {
1995         if (!vcpu->run->msr.error) {
1996                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1997                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1998         }
1999 }
2000
2001 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2002 {
2003         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2004 }
2005
2006 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2007 {
2008         complete_userspace_rdmsr(vcpu);
2009         return complete_emulated_msr_access(vcpu);
2010 }
2011
2012 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2013 {
2014         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2015 }
2016
2017 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2018 {
2019         complete_userspace_rdmsr(vcpu);
2020         return complete_fast_msr_access(vcpu);
2021 }
2022
2023 static u64 kvm_msr_reason(int r)
2024 {
2025         switch (r) {
2026         case KVM_MSR_RET_INVALID:
2027                 return KVM_MSR_EXIT_REASON_UNKNOWN;
2028         case KVM_MSR_RET_FILTERED:
2029                 return KVM_MSR_EXIT_REASON_FILTER;
2030         default:
2031                 return KVM_MSR_EXIT_REASON_INVAL;
2032         }
2033 }
2034
2035 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2036                               u32 exit_reason, u64 data,
2037                               int (*completion)(struct kvm_vcpu *vcpu),
2038                               int r)
2039 {
2040         u64 msr_reason = kvm_msr_reason(r);
2041
2042         /* Check if the user wanted to know about this MSR fault */
2043         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2044                 return 0;
2045
2046         vcpu->run->exit_reason = exit_reason;
2047         vcpu->run->msr.error = 0;
2048         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2049         vcpu->run->msr.reason = msr_reason;
2050         vcpu->run->msr.index = index;
2051         vcpu->run->msr.data = data;
2052         vcpu->arch.complete_userspace_io = completion;
2053
2054         return 1;
2055 }
2056
2057 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2058 {
2059         u32 ecx = kvm_rcx_read(vcpu);
2060         u64 data;
2061         int r;
2062
2063         r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2064
2065         if (!r) {
2066                 trace_kvm_msr_read(ecx, data);
2067
2068                 kvm_rax_write(vcpu, data & -1u);
2069                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2070         } else {
2071                 /* MSR read failed? See if we should ask user space */
2072                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2073                                        complete_fast_rdmsr, r))
2074                         return 0;
2075                 trace_kvm_msr_read_ex(ecx);
2076         }
2077
2078         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2079 }
2080 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2081
2082 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2083 {
2084         u32 ecx = kvm_rcx_read(vcpu);
2085         u64 data = kvm_read_edx_eax(vcpu);
2086         int r;
2087
2088         r = kvm_set_msr_with_filter(vcpu, ecx, data);
2089
2090         if (!r) {
2091                 trace_kvm_msr_write(ecx, data);
2092         } else {
2093                 /* MSR write failed? See if we should ask user space */
2094                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2095                                        complete_fast_msr_access, r))
2096                         return 0;
2097                 /* Signal all other negative errors to userspace */
2098                 if (r < 0)
2099                         return r;
2100                 trace_kvm_msr_write_ex(ecx, data);
2101         }
2102
2103         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2104 }
2105 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2106
2107 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2108 {
2109         return kvm_skip_emulated_instruction(vcpu);
2110 }
2111
2112 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2113 {
2114         /* Treat an INVD instruction as a NOP and just skip it. */
2115         return kvm_emulate_as_nop(vcpu);
2116 }
2117 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2118
2119 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2120 {
2121         kvm_queue_exception(vcpu, UD_VECTOR);
2122         return 1;
2123 }
2124 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2125
2126
2127 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2128 {
2129         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2130             !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2131                 return kvm_handle_invalid_op(vcpu);
2132
2133         pr_warn_once("%s instruction emulated as NOP!\n", insn);
2134         return kvm_emulate_as_nop(vcpu);
2135 }
2136 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2137 {
2138         return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2139 }
2140 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2141
2142 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2143 {
2144         return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2145 }
2146 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2147
2148 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2149 {
2150         xfer_to_guest_mode_prepare();
2151         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2152                 xfer_to_guest_mode_work_pending();
2153 }
2154
2155 /*
2156  * The fast path for frequent and performance sensitive wrmsr emulation,
2157  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2158  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2159  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2160  * other cases which must be called after interrupts are enabled on the host.
2161  */
2162 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2163 {
2164         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2165                 return 1;
2166
2167         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2168             ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2169             ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2170             ((u32)(data >> 32) != X2APIC_BROADCAST))
2171                 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2172
2173         return 1;
2174 }
2175
2176 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2177 {
2178         if (!kvm_can_use_hv_timer(vcpu))
2179                 return 1;
2180
2181         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2182         return 0;
2183 }
2184
2185 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2186 {
2187         u32 msr = kvm_rcx_read(vcpu);
2188         u64 data;
2189         fastpath_t ret = EXIT_FASTPATH_NONE;
2190
2191         kvm_vcpu_srcu_read_lock(vcpu);
2192
2193         switch (msr) {
2194         case APIC_BASE_MSR + (APIC_ICR >> 4):
2195                 data = kvm_read_edx_eax(vcpu);
2196                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2197                         kvm_skip_emulated_instruction(vcpu);
2198                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2199                 }
2200                 break;
2201         case MSR_IA32_TSC_DEADLINE:
2202                 data = kvm_read_edx_eax(vcpu);
2203                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2204                         kvm_skip_emulated_instruction(vcpu);
2205                         ret = EXIT_FASTPATH_REENTER_GUEST;
2206                 }
2207                 break;
2208         default:
2209                 break;
2210         }
2211
2212         if (ret != EXIT_FASTPATH_NONE)
2213                 trace_kvm_msr_write(msr, data);
2214
2215         kvm_vcpu_srcu_read_unlock(vcpu);
2216
2217         return ret;
2218 }
2219 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2220
2221 /*
2222  * Adapt set_msr() to msr_io()'s calling convention
2223  */
2224 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2225 {
2226         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2227 }
2228
2229 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2230 {
2231         u64 val;
2232
2233         /*
2234          * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2235          * not support modifying the guest vCPU model on the fly, e.g. changing
2236          * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2237          * writes of the same value, e.g. to allow userspace to blindly stuff
2238          * all MSRs when emulating RESET.
2239          */
2240         if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2241                 if (do_get_msr(vcpu, index, &val) || *data != val)
2242                         return -EINVAL;
2243
2244                 return 0;
2245         }
2246
2247         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2248 }
2249
2250 #ifdef CONFIG_X86_64
2251 struct pvclock_clock {
2252         int vclock_mode;
2253         u64 cycle_last;
2254         u64 mask;
2255         u32 mult;
2256         u32 shift;
2257         u64 base_cycles;
2258         u64 offset;
2259 };
2260
2261 struct pvclock_gtod_data {
2262         seqcount_t      seq;
2263
2264         struct pvclock_clock clock; /* extract of a clocksource struct */
2265         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2266
2267         ktime_t         offs_boot;
2268         u64             wall_time_sec;
2269 };
2270
2271 static struct pvclock_gtod_data pvclock_gtod_data;
2272
2273 static void update_pvclock_gtod(struct timekeeper *tk)
2274 {
2275         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2276
2277         write_seqcount_begin(&vdata->seq);
2278
2279         /* copy pvclock gtod data */
2280         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2281         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2282         vdata->clock.mask               = tk->tkr_mono.mask;
2283         vdata->clock.mult               = tk->tkr_mono.mult;
2284         vdata->clock.shift              = tk->tkr_mono.shift;
2285         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2286         vdata->clock.offset             = tk->tkr_mono.base;
2287
2288         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2289         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2290         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2291         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2292         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2293         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2294         vdata->raw_clock.offset         = tk->tkr_raw.base;
2295
2296         vdata->wall_time_sec            = tk->xtime_sec;
2297
2298         vdata->offs_boot                = tk->offs_boot;
2299
2300         write_seqcount_end(&vdata->seq);
2301 }
2302
2303 static s64 get_kvmclock_base_ns(void)
2304 {
2305         /* Count up from boot time, but with the frequency of the raw clock.  */
2306         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2307 }
2308 #else
2309 static s64 get_kvmclock_base_ns(void)
2310 {
2311         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2312         return ktime_get_boottime_ns();
2313 }
2314 #endif
2315
2316 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2317 {
2318         int version;
2319         int r;
2320         struct pvclock_wall_clock wc;
2321         u32 wc_sec_hi;
2322         u64 wall_nsec;
2323
2324         if (!wall_clock)
2325                 return;
2326
2327         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2328         if (r)
2329                 return;
2330
2331         if (version & 1)
2332                 ++version;  /* first time write, random junk */
2333
2334         ++version;
2335
2336         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2337                 return;
2338
2339         wall_nsec = kvm_get_wall_clock_epoch(kvm);
2340
2341         wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2342         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2343         wc.version = version;
2344
2345         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2346
2347         if (sec_hi_ofs) {
2348                 wc_sec_hi = wall_nsec >> 32;
2349                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2350                                 &wc_sec_hi, sizeof(wc_sec_hi));
2351         }
2352
2353         version++;
2354         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2355 }
2356
2357 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2358                                   bool old_msr, bool host_initiated)
2359 {
2360         struct kvm_arch *ka = &vcpu->kvm->arch;
2361
2362         if (vcpu->vcpu_id == 0 && !host_initiated) {
2363                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2364                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2365
2366                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2367         }
2368
2369         vcpu->arch.time = system_time;
2370         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2371
2372         /* we verify if the enable bit is set... */
2373         if (system_time & 1)
2374                 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2375                                  sizeof(struct pvclock_vcpu_time_info));
2376         else
2377                 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2378
2379         return;
2380 }
2381
2382 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2383 {
2384         do_shl32_div32(dividend, divisor);
2385         return dividend;
2386 }
2387
2388 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2389                                s8 *pshift, u32 *pmultiplier)
2390 {
2391         uint64_t scaled64;
2392         int32_t  shift = 0;
2393         uint64_t tps64;
2394         uint32_t tps32;
2395
2396         tps64 = base_hz;
2397         scaled64 = scaled_hz;
2398         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2399                 tps64 >>= 1;
2400                 shift--;
2401         }
2402
2403         tps32 = (uint32_t)tps64;
2404         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2405                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2406                         scaled64 >>= 1;
2407                 else
2408                         tps32 <<= 1;
2409                 shift++;
2410         }
2411
2412         *pshift = shift;
2413         *pmultiplier = div_frac(scaled64, tps32);
2414 }
2415
2416 #ifdef CONFIG_X86_64
2417 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2418 #endif
2419
2420 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2421 static unsigned long max_tsc_khz;
2422
2423 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2424 {
2425         u64 v = (u64)khz * (1000000 + ppm);
2426         do_div(v, 1000000);
2427         return v;
2428 }
2429
2430 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2431
2432 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2433 {
2434         u64 ratio;
2435
2436         /* Guest TSC same frequency as host TSC? */
2437         if (!scale) {
2438                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2439                 return 0;
2440         }
2441
2442         /* TSC scaling supported? */
2443         if (!kvm_caps.has_tsc_control) {
2444                 if (user_tsc_khz > tsc_khz) {
2445                         vcpu->arch.tsc_catchup = 1;
2446                         vcpu->arch.tsc_always_catchup = 1;
2447                         return 0;
2448                 } else {
2449                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2450                         return -1;
2451                 }
2452         }
2453
2454         /* TSC scaling required  - calculate ratio */
2455         ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2456                                 user_tsc_khz, tsc_khz);
2457
2458         if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2459                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2460                                     user_tsc_khz);
2461                 return -1;
2462         }
2463
2464         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2465         return 0;
2466 }
2467
2468 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2469 {
2470         u32 thresh_lo, thresh_hi;
2471         int use_scaling = 0;
2472
2473         /* tsc_khz can be zero if TSC calibration fails */
2474         if (user_tsc_khz == 0) {
2475                 /* set tsc_scaling_ratio to a safe value */
2476                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2477                 return -1;
2478         }
2479
2480         /* Compute a scale to convert nanoseconds in TSC cycles */
2481         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2482                            &vcpu->arch.virtual_tsc_shift,
2483                            &vcpu->arch.virtual_tsc_mult);
2484         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2485
2486         /*
2487          * Compute the variation in TSC rate which is acceptable
2488          * within the range of tolerance and decide if the
2489          * rate being applied is within that bounds of the hardware
2490          * rate.  If so, no scaling or compensation need be done.
2491          */
2492         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2493         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2494         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2495                 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2496                          user_tsc_khz, thresh_lo, thresh_hi);
2497                 use_scaling = 1;
2498         }
2499         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2500 }
2501
2502 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2503 {
2504         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2505                                       vcpu->arch.virtual_tsc_mult,
2506                                       vcpu->arch.virtual_tsc_shift);
2507         tsc += vcpu->arch.this_tsc_write;
2508         return tsc;
2509 }
2510
2511 #ifdef CONFIG_X86_64
2512 static inline bool gtod_is_based_on_tsc(int mode)
2513 {
2514         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2515 }
2516 #endif
2517
2518 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2519 {
2520 #ifdef CONFIG_X86_64
2521         struct kvm_arch *ka = &vcpu->kvm->arch;
2522         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2523
2524         /*
2525          * To use the masterclock, the host clocksource must be based on TSC
2526          * and all vCPUs must have matching TSCs.  Note, the count for matching
2527          * vCPUs doesn't include the reference vCPU, hence "+1".
2528          */
2529         bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2530                                  atomic_read(&vcpu->kvm->online_vcpus)) &&
2531                                 gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2532
2533         /*
2534          * Request a masterclock update if the masterclock needs to be toggled
2535          * on/off, or when starting a new generation and the masterclock is
2536          * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2537          * taken _after_ the new generation is created).
2538          */
2539         if ((ka->use_master_clock && new_generation) ||
2540             (ka->use_master_clock != use_master_clock))
2541                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2542
2543         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2544                             atomic_read(&vcpu->kvm->online_vcpus),
2545                             ka->use_master_clock, gtod->clock.vclock_mode);
2546 #endif
2547 }
2548
2549 /*
2550  * Multiply tsc by a fixed point number represented by ratio.
2551  *
2552  * The most significant 64-N bits (mult) of ratio represent the
2553  * integral part of the fixed point number; the remaining N bits
2554  * (frac) represent the fractional part, ie. ratio represents a fixed
2555  * point number (mult + frac * 2^(-N)).
2556  *
2557  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2558  */
2559 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2560 {
2561         return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2562 }
2563
2564 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2565 {
2566         u64 _tsc = tsc;
2567
2568         if (ratio != kvm_caps.default_tsc_scaling_ratio)
2569                 _tsc = __scale_tsc(ratio, tsc);
2570
2571         return _tsc;
2572 }
2573
2574 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2575 {
2576         u64 tsc;
2577
2578         tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2579
2580         return target_tsc - tsc;
2581 }
2582
2583 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2584 {
2585         return vcpu->arch.l1_tsc_offset +
2586                 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2587 }
2588 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2589
2590 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2591 {
2592         u64 nested_offset;
2593
2594         if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2595                 nested_offset = l1_offset;
2596         else
2597                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2598                                                 kvm_caps.tsc_scaling_ratio_frac_bits);
2599
2600         nested_offset += l2_offset;
2601         return nested_offset;
2602 }
2603 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2604
2605 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2606 {
2607         if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2608                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2609                                        kvm_caps.tsc_scaling_ratio_frac_bits);
2610
2611         return l1_multiplier;
2612 }
2613 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2614
2615 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2616 {
2617         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2618                                    vcpu->arch.l1_tsc_offset,
2619                                    l1_offset);
2620
2621         vcpu->arch.l1_tsc_offset = l1_offset;
2622
2623         /*
2624          * If we are here because L1 chose not to trap WRMSR to TSC then
2625          * according to the spec this should set L1's TSC (as opposed to
2626          * setting L1's offset for L2).
2627          */
2628         if (is_guest_mode(vcpu))
2629                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2630                         l1_offset,
2631                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2632                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2633         else
2634                 vcpu->arch.tsc_offset = l1_offset;
2635
2636         static_call(kvm_x86_write_tsc_offset)(vcpu);
2637 }
2638
2639 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2640 {
2641         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2642
2643         /* Userspace is changing the multiplier while L2 is active */
2644         if (is_guest_mode(vcpu))
2645                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2646                         l1_multiplier,
2647                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2648         else
2649                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2650
2651         if (kvm_caps.has_tsc_control)
2652                 static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2653 }
2654
2655 static inline bool kvm_check_tsc_unstable(void)
2656 {
2657 #ifdef CONFIG_X86_64
2658         /*
2659          * TSC is marked unstable when we're running on Hyper-V,
2660          * 'TSC page' clocksource is good.
2661          */
2662         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2663                 return false;
2664 #endif
2665         return check_tsc_unstable();
2666 }
2667
2668 /*
2669  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2670  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2671  * participates in.
2672  */
2673 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2674                                   u64 ns, bool matched)
2675 {
2676         struct kvm *kvm = vcpu->kvm;
2677
2678         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2679
2680         /*
2681          * We also track th most recent recorded KHZ, write and time to
2682          * allow the matching interval to be extended at each write.
2683          */
2684         kvm->arch.last_tsc_nsec = ns;
2685         kvm->arch.last_tsc_write = tsc;
2686         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2687         kvm->arch.last_tsc_offset = offset;
2688
2689         vcpu->arch.last_guest_tsc = tsc;
2690
2691         kvm_vcpu_write_tsc_offset(vcpu, offset);
2692
2693         if (!matched) {
2694                 /*
2695                  * We split periods of matched TSC writes into generations.
2696                  * For each generation, we track the original measured
2697                  * nanosecond time, offset, and write, so if TSCs are in
2698                  * sync, we can match exact offset, and if not, we can match
2699                  * exact software computation in compute_guest_tsc()
2700                  *
2701                  * These values are tracked in kvm->arch.cur_xxx variables.
2702                  */
2703                 kvm->arch.cur_tsc_generation++;
2704                 kvm->arch.cur_tsc_nsec = ns;
2705                 kvm->arch.cur_tsc_write = tsc;
2706                 kvm->arch.cur_tsc_offset = offset;
2707                 kvm->arch.nr_vcpus_matched_tsc = 0;
2708         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2709                 kvm->arch.nr_vcpus_matched_tsc++;
2710         }
2711
2712         /* Keep track of which generation this VCPU has synchronized to */
2713         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2714         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2715         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2716
2717         kvm_track_tsc_matching(vcpu, !matched);
2718 }
2719
2720 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2721 {
2722         u64 data = user_value ? *user_value : 0;
2723         struct kvm *kvm = vcpu->kvm;
2724         u64 offset, ns, elapsed;
2725         unsigned long flags;
2726         bool matched = false;
2727         bool synchronizing = false;
2728
2729         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2730         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2731         ns = get_kvmclock_base_ns();
2732         elapsed = ns - kvm->arch.last_tsc_nsec;
2733
2734         if (vcpu->arch.virtual_tsc_khz) {
2735                 if (data == 0) {
2736                         /*
2737                          * Force synchronization when creating a vCPU, or when
2738                          * userspace explicitly writes a zero value.
2739                          */
2740                         synchronizing = true;
2741                 } else if (kvm->arch.user_set_tsc) {
2742                         u64 tsc_exp = kvm->arch.last_tsc_write +
2743                                                 nsec_to_cycles(vcpu, elapsed);
2744                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2745                         /*
2746                          * Here lies UAPI baggage: when a user-initiated TSC write has
2747                          * a small delta (1 second) of virtual cycle time against the
2748                          * previously set vCPU, we assume that they were intended to be
2749                          * in sync and the delta was only due to the racy nature of the
2750                          * legacy API.
2751                          *
2752                          * This trick falls down when restoring a guest which genuinely
2753                          * has been running for less time than the 1 second of imprecision
2754                          * which we allow for in the legacy API. In this case, the first
2755                          * value written by userspace (on any vCPU) should not be subject
2756                          * to this 'correction' to make it sync up with values that only
2757                          * come from the kernel's default vCPU creation. Make the 1-second
2758                          * slop hack only trigger if the user_set_tsc flag is already set.
2759                          */
2760                         synchronizing = data < tsc_exp + tsc_hz &&
2761                                         data + tsc_hz > tsc_exp;
2762                 }
2763         }
2764
2765         if (user_value)
2766                 kvm->arch.user_set_tsc = true;
2767
2768         /*
2769          * For a reliable TSC, we can match TSC offsets, and for an unstable
2770          * TSC, we add elapsed time in this computation.  We could let the
2771          * compensation code attempt to catch up if we fall behind, but
2772          * it's better to try to match offsets from the beginning.
2773          */
2774         if (synchronizing &&
2775             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2776                 if (!kvm_check_tsc_unstable()) {
2777                         offset = kvm->arch.cur_tsc_offset;
2778                 } else {
2779                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2780                         data += delta;
2781                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2782                 }
2783                 matched = true;
2784         }
2785
2786         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2787         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2788 }
2789
2790 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2791                                            s64 adjustment)
2792 {
2793         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2794         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2795 }
2796
2797 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2798 {
2799         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2800                 WARN_ON(adjustment < 0);
2801         adjustment = kvm_scale_tsc((u64) adjustment,
2802                                    vcpu->arch.l1_tsc_scaling_ratio);
2803         adjust_tsc_offset_guest(vcpu, adjustment);
2804 }
2805
2806 #ifdef CONFIG_X86_64
2807
2808 static u64 read_tsc(void)
2809 {
2810         u64 ret = (u64)rdtsc_ordered();
2811         u64 last = pvclock_gtod_data.clock.cycle_last;
2812
2813         if (likely(ret >= last))
2814                 return ret;
2815
2816         /*
2817          * GCC likes to generate cmov here, but this branch is extremely
2818          * predictable (it's just a function of time and the likely is
2819          * very likely) and there's a data dependence, so force GCC
2820          * to generate a branch instead.  I don't barrier() because
2821          * we don't actually need a barrier, and if this function
2822          * ever gets inlined it will generate worse code.
2823          */
2824         asm volatile ("");
2825         return last;
2826 }
2827
2828 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2829                           int *mode)
2830 {
2831         u64 tsc_pg_val;
2832         long v;
2833
2834         switch (clock->vclock_mode) {
2835         case VDSO_CLOCKMODE_HVCLOCK:
2836                 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2837                                          tsc_timestamp, &tsc_pg_val)) {
2838                         /* TSC page valid */
2839                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2840                         v = (tsc_pg_val - clock->cycle_last) &
2841                                 clock->mask;
2842                 } else {
2843                         /* TSC page invalid */
2844                         *mode = VDSO_CLOCKMODE_NONE;
2845                 }
2846                 break;
2847         case VDSO_CLOCKMODE_TSC:
2848                 *mode = VDSO_CLOCKMODE_TSC;
2849                 *tsc_timestamp = read_tsc();
2850                 v = (*tsc_timestamp - clock->cycle_last) &
2851                         clock->mask;
2852                 break;
2853         default:
2854                 *mode = VDSO_CLOCKMODE_NONE;
2855         }
2856
2857         if (*mode == VDSO_CLOCKMODE_NONE)
2858                 *tsc_timestamp = v = 0;
2859
2860         return v * clock->mult;
2861 }
2862
2863 /*
2864  * As with get_kvmclock_base_ns(), this counts from boot time, at the
2865  * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2866  */
2867 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2868 {
2869         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2870         unsigned long seq;
2871         int mode;
2872         u64 ns;
2873
2874         do {
2875                 seq = read_seqcount_begin(&gtod->seq);
2876                 ns = gtod->raw_clock.base_cycles;
2877                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2878                 ns >>= gtod->raw_clock.shift;
2879                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2880         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2881         *t = ns;
2882
2883         return mode;
2884 }
2885
2886 /*
2887  * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2888  * no boot time offset.
2889  */
2890 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2891 {
2892         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2893         unsigned long seq;
2894         int mode;
2895         u64 ns;
2896
2897         do {
2898                 seq = read_seqcount_begin(&gtod->seq);
2899                 ns = gtod->clock.base_cycles;
2900                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2901                 ns >>= gtod->clock.shift;
2902                 ns += ktime_to_ns(gtod->clock.offset);
2903         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2904         *t = ns;
2905
2906         return mode;
2907 }
2908
2909 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2910 {
2911         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2912         unsigned long seq;
2913         int mode;
2914         u64 ns;
2915
2916         do {
2917                 seq = read_seqcount_begin(&gtod->seq);
2918                 ts->tv_sec = gtod->wall_time_sec;
2919                 ns = gtod->clock.base_cycles;
2920                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2921                 ns >>= gtod->clock.shift;
2922         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2923
2924         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2925         ts->tv_nsec = ns;
2926
2927         return mode;
2928 }
2929
2930 /*
2931  * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2932  * reports the TSC value from which it do so. Returns true if host is
2933  * using TSC based clocksource.
2934  */
2935 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2936 {
2937         /* checked again under seqlock below */
2938         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2939                 return false;
2940
2941         return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2942                                                      tsc_timestamp));
2943 }
2944
2945 /*
2946  * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2947  * so. Returns true if host is using TSC based clocksource.
2948  */
2949 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2950 {
2951         /* checked again under seqlock below */
2952         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2953                 return false;
2954
2955         return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2956                                                  tsc_timestamp));
2957 }
2958
2959 /*
2960  * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2961  * so. Returns true if host is using TSC based clocksource.
2962  *
2963  * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2964  * for that.
2965  */
2966 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2967                                            u64 *tsc_timestamp)
2968 {
2969         /* checked again under seqlock below */
2970         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2971                 return false;
2972
2973         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2974 }
2975 #endif
2976
2977 /*
2978  *
2979  * Assuming a stable TSC across physical CPUS, and a stable TSC
2980  * across virtual CPUs, the following condition is possible.
2981  * Each numbered line represents an event visible to both
2982  * CPUs at the next numbered event.
2983  *
2984  * "timespecX" represents host monotonic time. "tscX" represents
2985  * RDTSC value.
2986  *
2987  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2988  *
2989  * 1.  read timespec0,tsc0
2990  * 2.                                   | timespec1 = timespec0 + N
2991  *                                      | tsc1 = tsc0 + M
2992  * 3. transition to guest               | transition to guest
2993  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2994  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2995  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2996  *
2997  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2998  *
2999  *      - ret0 < ret1
3000  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
3001  *              ...
3002  *      - 0 < N - M => M < N
3003  *
3004  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
3005  * always the case (the difference between two distinct xtime instances
3006  * might be smaller then the difference between corresponding TSC reads,
3007  * when updating guest vcpus pvclock areas).
3008  *
3009  * To avoid that problem, do not allow visibility of distinct
3010  * system_timestamp/tsc_timestamp values simultaneously: use a master
3011  * copy of host monotonic time values. Update that master copy
3012  * in lockstep.
3013  *
3014  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
3015  *
3016  */
3017
3018 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
3019 {
3020 #ifdef CONFIG_X86_64
3021         struct kvm_arch *ka = &kvm->arch;
3022         int vclock_mode;
3023         bool host_tsc_clocksource, vcpus_matched;
3024
3025         lockdep_assert_held(&kvm->arch.tsc_write_lock);
3026         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
3027                         atomic_read(&kvm->online_vcpus));
3028
3029         /*
3030          * If the host uses TSC clock, then passthrough TSC as stable
3031          * to the guest.
3032          */
3033         host_tsc_clocksource = kvm_get_time_and_clockread(
3034                                         &ka->master_kernel_ns,
3035                                         &ka->master_cycle_now);
3036
3037         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3038                                 && !ka->backwards_tsc_observed
3039                                 && !ka->boot_vcpu_runs_old_kvmclock;
3040
3041         if (ka->use_master_clock)
3042                 atomic_set(&kvm_guest_has_master_clock, 1);
3043
3044         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3045         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3046                                         vcpus_matched);
3047 #endif
3048 }
3049
3050 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3051 {
3052         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3053 }
3054
3055 static void __kvm_start_pvclock_update(struct kvm *kvm)
3056 {
3057         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3058         write_seqcount_begin(&kvm->arch.pvclock_sc);
3059 }
3060
3061 static void kvm_start_pvclock_update(struct kvm *kvm)
3062 {
3063         kvm_make_mclock_inprogress_request(kvm);
3064
3065         /* no guest entries from this point */
3066         __kvm_start_pvclock_update(kvm);
3067 }
3068
3069 static void kvm_end_pvclock_update(struct kvm *kvm)
3070 {
3071         struct kvm_arch *ka = &kvm->arch;
3072         struct kvm_vcpu *vcpu;
3073         unsigned long i;
3074
3075         write_seqcount_end(&ka->pvclock_sc);
3076         raw_spin_unlock_irq(&ka->tsc_write_lock);
3077         kvm_for_each_vcpu(i, vcpu, kvm)
3078                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3079
3080         /* guest entries allowed */
3081         kvm_for_each_vcpu(i, vcpu, kvm)
3082                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3083 }
3084
3085 static void kvm_update_masterclock(struct kvm *kvm)
3086 {
3087         kvm_hv_request_tsc_page_update(kvm);
3088         kvm_start_pvclock_update(kvm);
3089         pvclock_update_vm_gtod_copy(kvm);
3090         kvm_end_pvclock_update(kvm);
3091 }
3092
3093 /*
3094  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3095  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3096  * can change during boot even if the TSC is constant, as it's possible for KVM
3097  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3098  * notification when calibration completes, but practically speaking calibration
3099  * will complete before userspace is alive enough to create VMs.
3100  */
3101 static unsigned long get_cpu_tsc_khz(void)
3102 {
3103         if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3104                 return tsc_khz;
3105         else
3106                 return __this_cpu_read(cpu_tsc_khz);
3107 }
3108
3109 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3110 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3111 {
3112         struct kvm_arch *ka = &kvm->arch;
3113         struct pvclock_vcpu_time_info hv_clock;
3114
3115         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3116         get_cpu();
3117
3118         data->flags = 0;
3119         if (ka->use_master_clock &&
3120             (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3121 #ifdef CONFIG_X86_64
3122                 struct timespec64 ts;
3123
3124                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3125                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3126                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3127                 } else
3128 #endif
3129                 data->host_tsc = rdtsc();
3130
3131                 data->flags |= KVM_CLOCK_TSC_STABLE;
3132                 hv_clock.tsc_timestamp = ka->master_cycle_now;
3133                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3134                 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3135                                    &hv_clock.tsc_shift,
3136                                    &hv_clock.tsc_to_system_mul);
3137                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3138         } else {
3139                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3140         }
3141
3142         put_cpu();
3143 }
3144
3145 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3146 {
3147         struct kvm_arch *ka = &kvm->arch;
3148         unsigned seq;
3149
3150         do {
3151                 seq = read_seqcount_begin(&ka->pvclock_sc);
3152                 __get_kvmclock(kvm, data);
3153         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3154 }
3155
3156 u64 get_kvmclock_ns(struct kvm *kvm)
3157 {
3158         struct kvm_clock_data data;
3159
3160         get_kvmclock(kvm, &data);
3161         return data.clock;
3162 }
3163
3164 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3165                                     struct gfn_to_pfn_cache *gpc,
3166                                     unsigned int offset,
3167                                     bool force_tsc_unstable)
3168 {
3169         struct kvm_vcpu_arch *vcpu = &v->arch;
3170         struct pvclock_vcpu_time_info *guest_hv_clock;
3171         unsigned long flags;
3172
3173         read_lock_irqsave(&gpc->lock, flags);
3174         while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3175                 read_unlock_irqrestore(&gpc->lock, flags);
3176
3177                 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3178                         return;
3179
3180                 read_lock_irqsave(&gpc->lock, flags);
3181         }
3182
3183         guest_hv_clock = (void *)(gpc->khva + offset);
3184
3185         /*
3186          * This VCPU is paused, but it's legal for a guest to read another
3187          * VCPU's kvmclock, so we really have to follow the specification where
3188          * it says that version is odd if data is being modified, and even after
3189          * it is consistent.
3190          */
3191
3192         guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3193         smp_wmb();
3194
3195         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3196         vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3197
3198         if (vcpu->pvclock_set_guest_stopped_request) {
3199                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3200                 vcpu->pvclock_set_guest_stopped_request = false;
3201         }
3202
3203         memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3204
3205         if (force_tsc_unstable)
3206                 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3207
3208         smp_wmb();
3209
3210         guest_hv_clock->version = ++vcpu->hv_clock.version;
3211
3212         kvm_gpc_mark_dirty_in_slot(gpc);
3213         read_unlock_irqrestore(&gpc->lock, flags);
3214
3215         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3216 }
3217
3218 static int kvm_guest_time_update(struct kvm_vcpu *v)
3219 {
3220         unsigned long flags, tgt_tsc_khz;
3221         unsigned seq;
3222         struct kvm_vcpu_arch *vcpu = &v->arch;
3223         struct kvm_arch *ka = &v->kvm->arch;
3224         s64 kernel_ns;
3225         u64 tsc_timestamp, host_tsc;
3226         u8 pvclock_flags;
3227         bool use_master_clock;
3228 #ifdef CONFIG_KVM_XEN
3229         /*
3230          * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3231          * explicitly told to use TSC as its clocksource Xen will not set this bit.
3232          * This default behaviour led to bugs in some guest kernels which cause
3233          * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3234          */
3235         bool xen_pvclock_tsc_unstable =
3236                 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3237 #endif
3238
3239         kernel_ns = 0;
3240         host_tsc = 0;
3241
3242         /*
3243          * If the host uses TSC clock, then passthrough TSC as stable
3244          * to the guest.
3245          */
3246         do {
3247                 seq = read_seqcount_begin(&ka->pvclock_sc);
3248                 use_master_clock = ka->use_master_clock;
3249                 if (use_master_clock) {
3250                         host_tsc = ka->master_cycle_now;
3251                         kernel_ns = ka->master_kernel_ns;
3252                 }
3253         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3254
3255         /* Keep irq disabled to prevent changes to the clock */
3256         local_irq_save(flags);
3257         tgt_tsc_khz = get_cpu_tsc_khz();
3258         if (unlikely(tgt_tsc_khz == 0)) {
3259                 local_irq_restore(flags);
3260                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3261                 return 1;
3262         }
3263         if (!use_master_clock) {
3264                 host_tsc = rdtsc();
3265                 kernel_ns = get_kvmclock_base_ns();
3266         }
3267
3268         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3269
3270         /*
3271          * We may have to catch up the TSC to match elapsed wall clock
3272          * time for two reasons, even if kvmclock is used.
3273          *   1) CPU could have been running below the maximum TSC rate
3274          *   2) Broken TSC compensation resets the base at each VCPU
3275          *      entry to avoid unknown leaps of TSC even when running
3276          *      again on the same CPU.  This may cause apparent elapsed
3277          *      time to disappear, and the guest to stand still or run
3278          *      very slowly.
3279          */
3280         if (vcpu->tsc_catchup) {
3281                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3282                 if (tsc > tsc_timestamp) {
3283                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3284                         tsc_timestamp = tsc;
3285                 }
3286         }
3287
3288         local_irq_restore(flags);
3289
3290         /* With all the info we got, fill in the values */
3291
3292         if (kvm_caps.has_tsc_control)
3293                 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3294                                             v->arch.l1_tsc_scaling_ratio);
3295
3296         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3297                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3298                                    &vcpu->hv_clock.tsc_shift,
3299                                    &vcpu->hv_clock.tsc_to_system_mul);
3300                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3301                 kvm_xen_update_tsc_info(v);
3302         }
3303
3304         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3305         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3306         vcpu->last_guest_tsc = tsc_timestamp;
3307
3308         /* If the host uses TSC clocksource, then it is stable */
3309         pvclock_flags = 0;
3310         if (use_master_clock)
3311                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3312
3313         vcpu->hv_clock.flags = pvclock_flags;
3314
3315         if (vcpu->pv_time.active)
3316                 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3317 #ifdef CONFIG_KVM_XEN
3318         if (vcpu->xen.vcpu_info_cache.active)
3319                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3320                                         offsetof(struct compat_vcpu_info, time),
3321                                         xen_pvclock_tsc_unstable);
3322         if (vcpu->xen.vcpu_time_info_cache.active)
3323                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3324                                         xen_pvclock_tsc_unstable);
3325 #endif
3326         kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3327         return 0;
3328 }
3329
3330 /*
3331  * The pvclock_wall_clock ABI tells the guest the wall clock time at
3332  * which it started (i.e. its epoch, when its kvmclock was zero).
3333  *
3334  * In fact those clocks are subtly different; wall clock frequency is
3335  * adjusted by NTP and has leap seconds, while the kvmclock is a
3336  * simple function of the TSC without any such adjustment.
3337  *
3338  * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3339  * that and kvmclock, but even that would be subject to change over
3340  * time.
3341  *
3342  * Attempt to calculate the epoch at a given moment using the *same*
3343  * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3344  * wallclock and kvmclock times, and subtracting one from the other.
3345  *
3346  * Fall back to using their values at slightly different moments by
3347  * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3348  */
3349 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3350 {
3351 #ifdef CONFIG_X86_64
3352         struct pvclock_vcpu_time_info hv_clock;
3353         struct kvm_arch *ka = &kvm->arch;
3354         unsigned long seq, local_tsc_khz;
3355         struct timespec64 ts;
3356         uint64_t host_tsc;
3357
3358         do {
3359                 seq = read_seqcount_begin(&ka->pvclock_sc);
3360
3361                 local_tsc_khz = 0;
3362                 if (!ka->use_master_clock)
3363                         break;
3364
3365                 /*
3366                  * The TSC read and the call to get_cpu_tsc_khz() must happen
3367                  * on the same CPU.
3368                  */
3369                 get_cpu();
3370
3371                 local_tsc_khz = get_cpu_tsc_khz();
3372
3373                 if (local_tsc_khz &&
3374                     !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3375                         local_tsc_khz = 0; /* Fall back to old method */
3376
3377                 put_cpu();
3378
3379                 /*
3380                  * These values must be snapshotted within the seqcount loop.
3381                  * After that, it's just mathematics which can happen on any
3382                  * CPU at any time.
3383                  */
3384                 hv_clock.tsc_timestamp = ka->master_cycle_now;
3385                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3386
3387         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3388
3389         /*
3390          * If the conditions were right, and obtaining the wallclock+TSC was
3391          * successful, calculate the KVM clock at the corresponding time and
3392          * subtract one from the other to get the guest's epoch in nanoseconds
3393          * since 1970-01-01.
3394          */
3395         if (local_tsc_khz) {
3396                 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3397                                    &hv_clock.tsc_shift,
3398                                    &hv_clock.tsc_to_system_mul);
3399                 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3400                         __pvclock_read_cycles(&hv_clock, host_tsc);
3401         }
3402 #endif
3403         return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3404 }
3405
3406 /*
3407  * kvmclock updates which are isolated to a given vcpu, such as
3408  * vcpu->cpu migration, should not allow system_timestamp from
3409  * the rest of the vcpus to remain static. Otherwise ntp frequency
3410  * correction applies to one vcpu's system_timestamp but not
3411  * the others.
3412  *
3413  * So in those cases, request a kvmclock update for all vcpus.
3414  * We need to rate-limit these requests though, as they can
3415  * considerably slow guests that have a large number of vcpus.
3416  * The time for a remote vcpu to update its kvmclock is bound
3417  * by the delay we use to rate-limit the updates.
3418  */
3419
3420 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3421
3422 static void kvmclock_update_fn(struct work_struct *work)
3423 {
3424         unsigned long i;
3425         struct delayed_work *dwork = to_delayed_work(work);
3426         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3427                                            kvmclock_update_work);
3428         struct kvm *kvm = container_of(ka, struct kvm, arch);
3429         struct kvm_vcpu *vcpu;
3430
3431         kvm_for_each_vcpu(i, vcpu, kvm) {
3432                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3433                 kvm_vcpu_kick(vcpu);
3434         }
3435 }
3436
3437 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3438 {
3439         struct kvm *kvm = v->kvm;
3440
3441         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3442         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3443                                         KVMCLOCK_UPDATE_DELAY);
3444 }
3445
3446 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3447
3448 static void kvmclock_sync_fn(struct work_struct *work)
3449 {
3450         struct delayed_work *dwork = to_delayed_work(work);
3451         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3452                                            kvmclock_sync_work);
3453         struct kvm *kvm = container_of(ka, struct kvm, arch);
3454
3455         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3456         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3457                                         KVMCLOCK_SYNC_PERIOD);
3458 }
3459
3460 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3461 static bool is_mci_control_msr(u32 msr)
3462 {
3463         return (msr & 3) == 0;
3464 }
3465 static bool is_mci_status_msr(u32 msr)
3466 {
3467         return (msr & 3) == 1;
3468 }
3469
3470 /*
3471  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3472  */
3473 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3474 {
3475         /* McStatusWrEn enabled? */
3476         if (guest_cpuid_is_amd_compatible(vcpu))
3477                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3478
3479         return false;
3480 }
3481
3482 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3483 {
3484         u64 mcg_cap = vcpu->arch.mcg_cap;
3485         unsigned bank_num = mcg_cap & 0xff;
3486         u32 msr = msr_info->index;
3487         u64 data = msr_info->data;
3488         u32 offset, last_msr;
3489
3490         switch (msr) {
3491         case MSR_IA32_MCG_STATUS:
3492                 vcpu->arch.mcg_status = data;
3493                 break;
3494         case MSR_IA32_MCG_CTL:
3495                 if (!(mcg_cap & MCG_CTL_P) &&
3496                     (data || !msr_info->host_initiated))
3497                         return 1;
3498                 if (data != 0 && data != ~(u64)0)
3499                         return 1;
3500                 vcpu->arch.mcg_ctl = data;
3501                 break;
3502         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3503                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3504                 if (msr > last_msr)
3505                         return 1;
3506
3507                 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3508                         return 1;
3509                 /* An attempt to write a 1 to a reserved bit raises #GP */
3510                 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3511                         return 1;
3512                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3513                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
3514                 vcpu->arch.mci_ctl2_banks[offset] = data;
3515                 break;
3516         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3517                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3518                 if (msr > last_msr)
3519                         return 1;
3520
3521                 /*
3522                  * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3523                  * values are architecturally undefined.  But, some Linux
3524                  * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3525                  * issue on AMD K8s, allow bit 10 to be clear when setting all
3526                  * other bits in order to avoid an uncaught #GP in the guest.
3527                  *
3528                  * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3529                  * single-bit ECC data errors.
3530                  */
3531                 if (is_mci_control_msr(msr) &&
3532                     data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3533                         return 1;
3534
3535                 /*
3536                  * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3537                  * AMD-based CPUs allow non-zero values, but if and only if
3538                  * HWCR[McStatusWrEn] is set.
3539                  */
3540                 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3541                     data != 0 && !can_set_mci_status(vcpu))
3542                         return 1;
3543
3544                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3545                                             last_msr + 1 - MSR_IA32_MC0_CTL);
3546                 vcpu->arch.mce_banks[offset] = data;
3547                 break;
3548         default:
3549                 return 1;
3550         }
3551         return 0;
3552 }
3553
3554 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3555 {
3556         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3557
3558         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3559 }
3560
3561 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3562 {
3563         gpa_t gpa = data & ~0x3f;
3564
3565         /* Bits 4:5 are reserved, Should be zero */
3566         if (data & 0x30)
3567                 return 1;
3568
3569         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3570             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3571                 return 1;
3572
3573         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3574             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3575                 return 1;
3576
3577         if (!lapic_in_kernel(vcpu))
3578                 return data ? 1 : 0;
3579
3580         vcpu->arch.apf.msr_en_val = data;
3581
3582         if (!kvm_pv_async_pf_enabled(vcpu)) {
3583                 kvm_clear_async_pf_completion_queue(vcpu);
3584                 kvm_async_pf_hash_reset(vcpu);
3585                 return 0;
3586         }
3587
3588         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3589                                         sizeof(u64)))
3590                 return 1;
3591
3592         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3593         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3594
3595         kvm_async_pf_wakeup_all(vcpu);
3596
3597         return 0;
3598 }
3599
3600 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3601 {
3602         /* Bits 8-63 are reserved */
3603         if (data >> 8)
3604                 return 1;
3605
3606         if (!lapic_in_kernel(vcpu))
3607                 return 1;
3608
3609         vcpu->arch.apf.msr_int_val = data;
3610
3611         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3612
3613         return 0;
3614 }
3615
3616 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3617 {
3618         kvm_gpc_deactivate(&vcpu->arch.pv_time);
3619         vcpu->arch.time = 0;
3620 }
3621
3622 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3623 {
3624         ++vcpu->stat.tlb_flush;
3625         static_call(kvm_x86_flush_tlb_all)(vcpu);
3626
3627         /* Flushing all ASIDs flushes the current ASID... */
3628         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3629 }
3630
3631 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3632 {
3633         ++vcpu->stat.tlb_flush;
3634
3635         if (!tdp_enabled) {
3636                 /*
3637                  * A TLB flush on behalf of the guest is equivalent to
3638                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3639                  * a forced sync of the shadow page tables.  Ensure all the
3640                  * roots are synced and the guest TLB in hardware is clean.
3641                  */
3642                 kvm_mmu_sync_roots(vcpu);
3643                 kvm_mmu_sync_prev_roots(vcpu);
3644         }
3645
3646         static_call(kvm_x86_flush_tlb_guest)(vcpu);
3647
3648         /*
3649          * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3650          * grained flushing.
3651          */
3652         kvm_hv_vcpu_purge_flush_tlb(vcpu);
3653 }
3654
3655
3656 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3657 {
3658         ++vcpu->stat.tlb_flush;
3659         static_call(kvm_x86_flush_tlb_current)(vcpu);
3660 }
3661
3662 /*
3663  * Service "local" TLB flush requests, which are specific to the current MMU
3664  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3665  * TLB flushes that are targeted at an MMU context also need to be serviced
3666  * prior before nested VM-Enter/VM-Exit.
3667  */
3668 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3669 {
3670         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3671                 kvm_vcpu_flush_tlb_current(vcpu);
3672
3673         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3674                 kvm_vcpu_flush_tlb_guest(vcpu);
3675 }
3676 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3677
3678 static void record_steal_time(struct kvm_vcpu *vcpu)
3679 {
3680         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3681         struct kvm_steal_time __user *st;
3682         struct kvm_memslots *slots;
3683         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3684         u64 steal;
3685         u32 version;
3686
3687         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3688                 kvm_xen_runstate_set_running(vcpu);
3689                 return;
3690         }
3691
3692         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3693                 return;
3694
3695         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3696                 return;
3697
3698         slots = kvm_memslots(vcpu->kvm);
3699
3700         if (unlikely(slots->generation != ghc->generation ||
3701                      gpa != ghc->gpa ||
3702                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3703                 /* We rely on the fact that it fits in a single page. */
3704                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3705
3706                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3707                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3708                         return;
3709         }
3710
3711         st = (struct kvm_steal_time __user *)ghc->hva;
3712         /*
3713          * Doing a TLB flush here, on the guest's behalf, can avoid
3714          * expensive IPIs.
3715          */
3716         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3717                 u8 st_preempted = 0;
3718                 int err = -EFAULT;
3719
3720                 if (!user_access_begin(st, sizeof(*st)))
3721                         return;
3722
3723                 asm volatile("1: xchgb %0, %2\n"
3724                              "xor %1, %1\n"
3725                              "2:\n"
3726                              _ASM_EXTABLE_UA(1b, 2b)
3727                              : "+q" (st_preempted),
3728                                "+&r" (err),
3729                                "+m" (st->preempted));
3730                 if (err)
3731                         goto out;
3732
3733                 user_access_end();
3734
3735                 vcpu->arch.st.preempted = 0;
3736
3737                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3738                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3739                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3740                         kvm_vcpu_flush_tlb_guest(vcpu);
3741
3742                 if (!user_access_begin(st, sizeof(*st)))
3743                         goto dirty;
3744         } else {
3745                 if (!user_access_begin(st, sizeof(*st)))
3746                         return;
3747
3748                 unsafe_put_user(0, &st->preempted, out);
3749                 vcpu->arch.st.preempted = 0;
3750         }
3751
3752         unsafe_get_user(version, &st->version, out);
3753         if (version & 1)
3754                 version += 1;  /* first time write, random junk */
3755
3756         version += 1;
3757         unsafe_put_user(version, &st->version, out);
3758
3759         smp_wmb();
3760
3761         unsafe_get_user(steal, &st->steal, out);
3762         steal += current->sched_info.run_delay -
3763                 vcpu->arch.st.last_steal;
3764         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3765         unsafe_put_user(steal, &st->steal, out);
3766
3767         version += 1;
3768         unsafe_put_user(version, &st->version, out);
3769
3770  out:
3771         user_access_end();
3772  dirty:
3773         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3774 }
3775
3776 static bool kvm_is_msr_to_save(u32 msr_index)
3777 {
3778         unsigned int i;
3779
3780         for (i = 0; i < num_msrs_to_save; i++) {
3781                 if (msrs_to_save[i] == msr_index)
3782                         return true;
3783         }
3784
3785         return false;
3786 }
3787
3788 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3789 {
3790         u32 msr = msr_info->index;
3791         u64 data = msr_info->data;
3792
3793         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3794                 return kvm_xen_write_hypercall_page(vcpu, data);
3795
3796         switch (msr) {
3797         case MSR_AMD64_NB_CFG:
3798         case MSR_IA32_UCODE_WRITE:
3799         case MSR_VM_HSAVE_PA:
3800         case MSR_AMD64_PATCH_LOADER:
3801         case MSR_AMD64_BU_CFG2:
3802         case MSR_AMD64_DC_CFG:
3803         case MSR_AMD64_TW_CFG:
3804         case MSR_F15H_EX_CFG:
3805                 break;
3806
3807         case MSR_IA32_UCODE_REV:
3808                 if (msr_info->host_initiated)
3809                         vcpu->arch.microcode_version = data;
3810                 break;
3811         case MSR_IA32_ARCH_CAPABILITIES:
3812                 if (!msr_info->host_initiated)
3813                         return 1;
3814                 vcpu->arch.arch_capabilities = data;
3815                 break;
3816         case MSR_IA32_PERF_CAPABILITIES:
3817                 if (!msr_info->host_initiated)
3818                         return 1;
3819                 if (data & ~kvm_caps.supported_perf_cap)
3820                         return 1;
3821
3822                 /*
3823                  * Note, this is not just a performance optimization!  KVM
3824                  * disallows changing feature MSRs after the vCPU has run; PMU
3825                  * refresh will bug the VM if called after the vCPU has run.
3826                  */
3827                 if (vcpu->arch.perf_capabilities == data)
3828                         break;
3829
3830                 vcpu->arch.perf_capabilities = data;
3831                 kvm_pmu_refresh(vcpu);
3832                 break;
3833         case MSR_IA32_PRED_CMD: {
3834                 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3835
3836                 if (!msr_info->host_initiated) {
3837                         if ((!guest_has_pred_cmd_msr(vcpu)))
3838                                 return 1;
3839
3840                         if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3841                             !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3842                                 reserved_bits |= PRED_CMD_IBPB;
3843
3844                         if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3845                                 reserved_bits |= PRED_CMD_SBPB;
3846                 }
3847
3848                 if (!boot_cpu_has(X86_FEATURE_IBPB))
3849                         reserved_bits |= PRED_CMD_IBPB;
3850
3851                 if (!boot_cpu_has(X86_FEATURE_SBPB))
3852                         reserved_bits |= PRED_CMD_SBPB;
3853
3854                 if (data & reserved_bits)
3855                         return 1;
3856
3857                 if (!data)
3858                         break;
3859
3860                 wrmsrl(MSR_IA32_PRED_CMD, data);
3861                 break;
3862         }
3863         case MSR_IA32_FLUSH_CMD:
3864                 if (!msr_info->host_initiated &&
3865                     !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3866                         return 1;
3867
3868                 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3869                         return 1;
3870                 if (!data)
3871                         break;
3872
3873                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3874                 break;
3875         case MSR_EFER:
3876                 return set_efer(vcpu, msr_info);
3877         case MSR_K7_HWCR:
3878                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3879                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3880                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3881
3882                 /*
3883                  * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3884                  * through at least v6.6 whine if TscFreqSel is clear,
3885                  * depending on F/M/S.
3886                  */
3887                 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3888                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3889                         return 1;
3890                 }
3891                 vcpu->arch.msr_hwcr = data;
3892                 break;
3893         case MSR_FAM10H_MMIO_CONF_BASE:
3894                 if (data != 0) {
3895                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3896                         return 1;
3897                 }
3898                 break;
3899         case MSR_IA32_CR_PAT:
3900                 if (!kvm_pat_valid(data))
3901                         return 1;
3902
3903                 vcpu->arch.pat = data;
3904                 break;
3905         case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3906         case MSR_MTRRdefType:
3907                 return kvm_mtrr_set_msr(vcpu, msr, data);
3908         case MSR_IA32_APICBASE:
3909                 return kvm_set_apic_base(vcpu, msr_info);
3910         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3911                 return kvm_x2apic_msr_write(vcpu, msr, data);
3912         case MSR_IA32_TSC_DEADLINE:
3913                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3914                 break;
3915         case MSR_IA32_TSC_ADJUST:
3916                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3917                         if (!msr_info->host_initiated) {
3918                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3919                                 adjust_tsc_offset_guest(vcpu, adj);
3920                                 /* Before back to guest, tsc_timestamp must be adjusted
3921                                  * as well, otherwise guest's percpu pvclock time could jump.
3922                                  */
3923                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3924                         }
3925                         vcpu->arch.ia32_tsc_adjust_msr = data;
3926                 }
3927                 break;
3928         case MSR_IA32_MISC_ENABLE: {
3929                 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3930
3931                 if (!msr_info->host_initiated) {
3932                         /* RO bits */
3933                         if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3934                                 return 1;
3935
3936                         /* R bits, i.e. writes are ignored, but don't fault. */
3937                         data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3938                         data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3939                 }
3940
3941                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3942                     ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3943                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3944                                 return 1;
3945                         vcpu->arch.ia32_misc_enable_msr = data;
3946                         kvm_update_cpuid_runtime(vcpu);
3947                 } else {
3948                         vcpu->arch.ia32_misc_enable_msr = data;
3949                 }
3950                 break;
3951         }
3952         case MSR_IA32_SMBASE:
3953                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3954                         return 1;
3955                 vcpu->arch.smbase = data;
3956                 break;
3957         case MSR_IA32_POWER_CTL:
3958                 vcpu->arch.msr_ia32_power_ctl = data;
3959                 break;
3960         case MSR_IA32_TSC:
3961                 if (msr_info->host_initiated) {
3962                         kvm_synchronize_tsc(vcpu, &data);
3963                 } else {
3964                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3965                         adjust_tsc_offset_guest(vcpu, adj);
3966                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3967                 }
3968                 break;
3969         case MSR_IA32_XSS:
3970                 if (!msr_info->host_initiated &&
3971                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3972                         return 1;
3973                 /*
3974                  * KVM supports exposing PT to the guest, but does not support
3975                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3976                  * XSAVES/XRSTORS to save/restore PT MSRs.
3977                  */
3978                 if (data & ~kvm_caps.supported_xss)
3979                         return 1;
3980                 vcpu->arch.ia32_xss = data;
3981                 kvm_update_cpuid_runtime(vcpu);
3982                 break;
3983         case MSR_SMI_COUNT:
3984                 if (!msr_info->host_initiated)
3985                         return 1;
3986                 vcpu->arch.smi_count = data;
3987                 break;
3988         case MSR_KVM_WALL_CLOCK_NEW:
3989                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3990                         return 1;
3991
3992                 vcpu->kvm->arch.wall_clock = data;
3993                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3994                 break;
3995         case MSR_KVM_WALL_CLOCK:
3996                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3997                         return 1;
3998
3999                 vcpu->kvm->arch.wall_clock = data;
4000                 kvm_write_wall_clock(vcpu->kvm, data, 0);
4001                 break;
4002         case MSR_KVM_SYSTEM_TIME_NEW:
4003                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4004                         return 1;
4005
4006                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
4007                 break;
4008         case MSR_KVM_SYSTEM_TIME:
4009                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4010                         return 1;
4011
4012                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
4013                 break;
4014         case MSR_KVM_ASYNC_PF_EN:
4015                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4016                         return 1;
4017
4018                 if (kvm_pv_enable_async_pf(vcpu, data))
4019                         return 1;
4020                 break;
4021         case MSR_KVM_ASYNC_PF_INT:
4022                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4023                         return 1;
4024
4025                 if (kvm_pv_enable_async_pf_int(vcpu, data))
4026                         return 1;
4027                 break;
4028         case MSR_KVM_ASYNC_PF_ACK:
4029                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4030                         return 1;
4031                 if (data & 0x1) {
4032                         vcpu->arch.apf.pageready_pending = false;
4033                         kvm_check_async_pf_completion(vcpu);
4034                 }
4035                 break;
4036         case MSR_KVM_STEAL_TIME:
4037                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4038                         return 1;
4039
4040                 if (unlikely(!sched_info_on()))
4041                         return 1;
4042
4043                 if (data & KVM_STEAL_RESERVED_MASK)
4044                         return 1;
4045
4046                 vcpu->arch.st.msr_val = data;
4047
4048                 if (!(data & KVM_MSR_ENABLED))
4049                         break;
4050
4051                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4052
4053                 break;
4054         case MSR_KVM_PV_EOI_EN:
4055                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4056                         return 1;
4057
4058                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4059                         return 1;
4060                 break;
4061
4062         case MSR_KVM_POLL_CONTROL:
4063                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4064                         return 1;
4065
4066                 /* only enable bit supported */
4067                 if (data & (-1ULL << 1))
4068                         return 1;
4069
4070                 vcpu->arch.msr_kvm_poll_control = data;
4071                 break;
4072
4073         case MSR_IA32_MCG_CTL:
4074         case MSR_IA32_MCG_STATUS:
4075         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4076         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4077                 return set_msr_mce(vcpu, msr_info);
4078
4079         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4080         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4081         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4082         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4083                 if (kvm_pmu_is_valid_msr(vcpu, msr))
4084                         return kvm_pmu_set_msr(vcpu, msr_info);
4085
4086                 if (data)
4087                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4088                 break;
4089         case MSR_K7_CLK_CTL:
4090                 /*
4091                  * Ignore all writes to this no longer documented MSR.
4092                  * Writes are only relevant for old K7 processors,
4093                  * all pre-dating SVM, but a recommended workaround from
4094                  * AMD for these chips. It is possible to specify the
4095                  * affected processor models on the command line, hence
4096                  * the need to ignore the workaround.
4097                  */
4098                 break;
4099 #ifdef CONFIG_KVM_HYPERV
4100         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4101         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4102         case HV_X64_MSR_SYNDBG_OPTIONS:
4103         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4104         case HV_X64_MSR_CRASH_CTL:
4105         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4106         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4107         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4108         case HV_X64_MSR_TSC_EMULATION_STATUS:
4109         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4110                 return kvm_hv_set_msr_common(vcpu, msr, data,
4111                                              msr_info->host_initiated);
4112 #endif
4113         case MSR_IA32_BBL_CR_CTL3:
4114                 /* Drop writes to this legacy MSR -- see rdmsr
4115                  * counterpart for further detail.
4116                  */
4117                 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4118                 break;
4119         case MSR_AMD64_OSVW_ID_LENGTH:
4120                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4121                         return 1;
4122                 vcpu->arch.osvw.length = data;
4123                 break;
4124         case MSR_AMD64_OSVW_STATUS:
4125                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4126                         return 1;
4127                 vcpu->arch.osvw.status = data;
4128                 break;
4129         case MSR_PLATFORM_INFO:
4130                 if (!msr_info->host_initiated ||
4131                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4132                      cpuid_fault_enabled(vcpu)))
4133                         return 1;
4134                 vcpu->arch.msr_platform_info = data;
4135                 break;
4136         case MSR_MISC_FEATURES_ENABLES:
4137                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4138                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4139                      !supports_cpuid_fault(vcpu)))
4140                         return 1;
4141                 vcpu->arch.msr_misc_features_enables = data;
4142                 break;
4143 #ifdef CONFIG_X86_64
4144         case MSR_IA32_XFD:
4145                 if (!msr_info->host_initiated &&
4146                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4147                         return 1;
4148
4149                 if (data & ~kvm_guest_supported_xfd(vcpu))
4150                         return 1;
4151
4152                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4153                 break;
4154         case MSR_IA32_XFD_ERR:
4155                 if (!msr_info->host_initiated &&
4156                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4157                         return 1;
4158
4159                 if (data & ~kvm_guest_supported_xfd(vcpu))
4160                         return 1;
4161
4162                 vcpu->arch.guest_fpu.xfd_err = data;
4163                 break;
4164 #endif
4165         default:
4166                 if (kvm_pmu_is_valid_msr(vcpu, msr))
4167                         return kvm_pmu_set_msr(vcpu, msr_info);
4168
4169                 /*
4170                  * Userspace is allowed to write '0' to MSRs that KVM reports
4171                  * as to-be-saved, even if an MSRs isn't fully supported.
4172                  */
4173                 if (msr_info->host_initiated && !data &&
4174                     kvm_is_msr_to_save(msr))
4175                         break;
4176
4177                 return KVM_MSR_RET_INVALID;
4178         }
4179         return 0;
4180 }
4181 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4182
4183 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4184 {
4185         u64 data;
4186         u64 mcg_cap = vcpu->arch.mcg_cap;
4187         unsigned bank_num = mcg_cap & 0xff;
4188         u32 offset, last_msr;
4189
4190         switch (msr) {
4191         case MSR_IA32_P5_MC_ADDR:
4192         case MSR_IA32_P5_MC_TYPE:
4193                 data = 0;
4194                 break;
4195         case MSR_IA32_MCG_CAP:
4196                 data = vcpu->arch.mcg_cap;
4197                 break;
4198         case MSR_IA32_MCG_CTL:
4199                 if (!(mcg_cap & MCG_CTL_P) && !host)
4200                         return 1;
4201                 data = vcpu->arch.mcg_ctl;
4202                 break;
4203         case MSR_IA32_MCG_STATUS:
4204                 data = vcpu->arch.mcg_status;
4205                 break;
4206         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4207                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4208                 if (msr > last_msr)
4209                         return 1;
4210
4211                 if (!(mcg_cap & MCG_CMCI_P) && !host)
4212                         return 1;
4213                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4214                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
4215                 data = vcpu->arch.mci_ctl2_banks[offset];
4216                 break;
4217         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4218                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4219                 if (msr > last_msr)
4220                         return 1;
4221
4222                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4223                                             last_msr + 1 - MSR_IA32_MC0_CTL);
4224                 data = vcpu->arch.mce_banks[offset];
4225                 break;
4226         default:
4227                 return 1;
4228         }
4229         *pdata = data;
4230         return 0;
4231 }
4232
4233 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4234 {
4235         switch (msr_info->index) {
4236         case MSR_IA32_PLATFORM_ID:
4237         case MSR_IA32_EBL_CR_POWERON:
4238         case MSR_IA32_LASTBRANCHFROMIP:
4239         case MSR_IA32_LASTBRANCHTOIP:
4240         case MSR_IA32_LASTINTFROMIP:
4241         case MSR_IA32_LASTINTTOIP:
4242         case MSR_AMD64_SYSCFG:
4243         case MSR_K8_TSEG_ADDR:
4244         case MSR_K8_TSEG_MASK:
4245         case MSR_VM_HSAVE_PA:
4246         case MSR_K8_INT_PENDING_MSG:
4247         case MSR_AMD64_NB_CFG:
4248         case MSR_FAM10H_MMIO_CONF_BASE:
4249         case MSR_AMD64_BU_CFG2:
4250         case MSR_IA32_PERF_CTL:
4251         case MSR_AMD64_DC_CFG:
4252         case MSR_AMD64_TW_CFG:
4253         case MSR_F15H_EX_CFG:
4254         /*
4255          * Intel Sandy Bridge CPUs must support the RAPL (running average power
4256          * limit) MSRs. Just return 0, as we do not want to expose the host
4257          * data here. Do not conditionalize this on CPUID, as KVM does not do
4258          * so for existing CPU-specific MSRs.
4259          */
4260         case MSR_RAPL_POWER_UNIT:
4261         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
4262         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
4263         case MSR_PKG_ENERGY_STATUS:     /* Total package */
4264         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
4265                 msr_info->data = 0;
4266                 break;
4267         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4268         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4269         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4270         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4271                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4272                         return kvm_pmu_get_msr(vcpu, msr_info);
4273                 msr_info->data = 0;
4274                 break;
4275         case MSR_IA32_UCODE_REV:
4276                 msr_info->data = vcpu->arch.microcode_version;
4277                 break;
4278         case MSR_IA32_ARCH_CAPABILITIES:
4279                 if (!msr_info->host_initiated &&
4280                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4281                         return 1;
4282                 msr_info->data = vcpu->arch.arch_capabilities;
4283                 break;
4284         case MSR_IA32_PERF_CAPABILITIES:
4285                 if (!msr_info->host_initiated &&
4286                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4287                         return 1;
4288                 msr_info->data = vcpu->arch.perf_capabilities;
4289                 break;
4290         case MSR_IA32_POWER_CTL:
4291                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4292                 break;
4293         case MSR_IA32_TSC: {
4294                 /*
4295                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4296                  * even when not intercepted. AMD manual doesn't explicitly
4297                  * state this but appears to behave the same.
4298                  *
4299                  * On userspace reads and writes, however, we unconditionally
4300                  * return L1's TSC value to ensure backwards-compatible
4301                  * behavior for migration.
4302                  */
4303                 u64 offset, ratio;
4304
4305                 if (msr_info->host_initiated) {
4306                         offset = vcpu->arch.l1_tsc_offset;
4307                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
4308                 } else {
4309                         offset = vcpu->arch.tsc_offset;
4310                         ratio = vcpu->arch.tsc_scaling_ratio;
4311                 }
4312
4313                 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4314                 break;
4315         }
4316         case MSR_IA32_CR_PAT:
4317                 msr_info->data = vcpu->arch.pat;
4318                 break;
4319         case MSR_MTRRcap:
4320         case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4321         case MSR_MTRRdefType:
4322                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4323         case 0xcd: /* fsb frequency */
4324                 msr_info->data = 3;
4325                 break;
4326                 /*
4327                  * MSR_EBC_FREQUENCY_ID
4328                  * Conservative value valid for even the basic CPU models.
4329                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4330                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4331                  * and 266MHz for model 3, or 4. Set Core Clock
4332                  * Frequency to System Bus Frequency Ratio to 1 (bits
4333                  * 31:24) even though these are only valid for CPU
4334                  * models > 2, however guests may end up dividing or
4335                  * multiplying by zero otherwise.
4336                  */
4337         case MSR_EBC_FREQUENCY_ID:
4338                 msr_info->data = 1 << 24;
4339                 break;
4340         case MSR_IA32_APICBASE:
4341                 msr_info->data = kvm_get_apic_base(vcpu);
4342                 break;
4343         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4344                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4345         case MSR_IA32_TSC_DEADLINE:
4346                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4347                 break;
4348         case MSR_IA32_TSC_ADJUST:
4349                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4350                 break;
4351         case MSR_IA32_MISC_ENABLE:
4352                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4353                 break;
4354         case MSR_IA32_SMBASE:
4355                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4356                         return 1;
4357                 msr_info->data = vcpu->arch.smbase;
4358                 break;
4359         case MSR_SMI_COUNT:
4360                 msr_info->data = vcpu->arch.smi_count;
4361                 break;
4362         case MSR_IA32_PERF_STATUS:
4363                 /* TSC increment by tick */
4364                 msr_info->data = 1000ULL;
4365                 /* CPU multiplier */
4366                 msr_info->data |= (((uint64_t)4ULL) << 40);
4367                 break;
4368         case MSR_EFER:
4369                 msr_info->data = vcpu->arch.efer;
4370                 break;
4371         case MSR_KVM_WALL_CLOCK:
4372                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4373                         return 1;
4374
4375                 msr_info->data = vcpu->kvm->arch.wall_clock;
4376                 break;
4377         case MSR_KVM_WALL_CLOCK_NEW:
4378                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4379                         return 1;
4380
4381                 msr_info->data = vcpu->kvm->arch.wall_clock;
4382                 break;
4383         case MSR_KVM_SYSTEM_TIME:
4384                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4385                         return 1;
4386
4387                 msr_info->data = vcpu->arch.time;
4388                 break;
4389         case MSR_KVM_SYSTEM_TIME_NEW:
4390                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4391                         return 1;
4392
4393                 msr_info->data = vcpu->arch.time;
4394                 break;
4395         case MSR_KVM_ASYNC_PF_EN:
4396                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4397                         return 1;
4398
4399                 msr_info->data = vcpu->arch.apf.msr_en_val;
4400                 break;
4401         case MSR_KVM_ASYNC_PF_INT:
4402                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4403                         return 1;
4404
4405                 msr_info->data = vcpu->arch.apf.msr_int_val;
4406                 break;
4407         case MSR_KVM_ASYNC_PF_ACK:
4408                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4409                         return 1;
4410
4411                 msr_info->data = 0;
4412                 break;
4413         case MSR_KVM_STEAL_TIME:
4414                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4415                         return 1;
4416
4417                 msr_info->data = vcpu->arch.st.msr_val;
4418                 break;
4419         case MSR_KVM_PV_EOI_EN:
4420                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4421                         return 1;
4422
4423                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4424                 break;
4425         case MSR_KVM_POLL_CONTROL:
4426                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4427                         return 1;
4428
4429                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4430                 break;
4431         case MSR_IA32_P5_MC_ADDR:
4432         case MSR_IA32_P5_MC_TYPE:
4433         case MSR_IA32_MCG_CAP:
4434         case MSR_IA32_MCG_CTL:
4435         case MSR_IA32_MCG_STATUS:
4436         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4437         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4438                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4439                                    msr_info->host_initiated);
4440         case MSR_IA32_XSS:
4441                 if (!msr_info->host_initiated &&
4442                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4443                         return 1;
4444                 msr_info->data = vcpu->arch.ia32_xss;
4445                 break;
4446         case MSR_K7_CLK_CTL:
4447                 /*
4448                  * Provide expected ramp-up count for K7. All other
4449                  * are set to zero, indicating minimum divisors for
4450                  * every field.
4451                  *
4452                  * This prevents guest kernels on AMD host with CPU
4453                  * type 6, model 8 and higher from exploding due to
4454                  * the rdmsr failing.
4455                  */
4456                 msr_info->data = 0x20000000;
4457                 break;
4458 #ifdef CONFIG_KVM_HYPERV
4459         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4460         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4461         case HV_X64_MSR_SYNDBG_OPTIONS:
4462         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4463         case HV_X64_MSR_CRASH_CTL:
4464         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4465         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4466         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4467         case HV_X64_MSR_TSC_EMULATION_STATUS:
4468         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4469                 return kvm_hv_get_msr_common(vcpu,
4470                                              msr_info->index, &msr_info->data,
4471                                              msr_info->host_initiated);
4472 #endif
4473         case MSR_IA32_BBL_CR_CTL3:
4474                 /* This legacy MSR exists but isn't fully documented in current
4475                  * silicon.  It is however accessed by winxp in very narrow
4476                  * scenarios where it sets bit #19, itself documented as
4477                  * a "reserved" bit.  Best effort attempt to source coherent
4478                  * read data here should the balance of the register be
4479                  * interpreted by the guest:
4480                  *
4481                  * L2 cache control register 3: 64GB range, 256KB size,
4482                  * enabled, latency 0x1, configured
4483                  */
4484                 msr_info->data = 0xbe702111;
4485                 break;
4486         case MSR_AMD64_OSVW_ID_LENGTH:
4487                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4488                         return 1;
4489                 msr_info->data = vcpu->arch.osvw.length;
4490                 break;
4491         case MSR_AMD64_OSVW_STATUS:
4492                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4493                         return 1;
4494                 msr_info->data = vcpu->arch.osvw.status;
4495                 break;
4496         case MSR_PLATFORM_INFO:
4497                 if (!msr_info->host_initiated &&
4498                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4499                         return 1;
4500                 msr_info->data = vcpu->arch.msr_platform_info;
4501                 break;
4502         case MSR_MISC_FEATURES_ENABLES:
4503                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4504                 break;
4505         case MSR_K7_HWCR:
4506                 msr_info->data = vcpu->arch.msr_hwcr;
4507                 break;
4508 #ifdef CONFIG_X86_64
4509         case MSR_IA32_XFD:
4510                 if (!msr_info->host_initiated &&
4511                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4512                         return 1;
4513
4514                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4515                 break;
4516         case MSR_IA32_XFD_ERR:
4517                 if (!msr_info->host_initiated &&
4518                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4519                         return 1;
4520
4521                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4522                 break;
4523 #endif
4524         default:
4525                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4526                         return kvm_pmu_get_msr(vcpu, msr_info);
4527
4528                 /*
4529                  * Userspace is allowed to read MSRs that KVM reports as
4530                  * to-be-saved, even if an MSR isn't fully supported.
4531                  */
4532                 if (msr_info->host_initiated &&
4533                     kvm_is_msr_to_save(msr_info->index)) {
4534                         msr_info->data = 0;
4535                         break;
4536                 }
4537
4538                 return KVM_MSR_RET_INVALID;
4539         }
4540         return 0;
4541 }
4542 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4543
4544 /*
4545  * Read or write a bunch of msrs. All parameters are kernel addresses.
4546  *
4547  * @return number of msrs set successfully.
4548  */
4549 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4550                     struct kvm_msr_entry *entries,
4551                     int (*do_msr)(struct kvm_vcpu *vcpu,
4552                                   unsigned index, u64 *data))
4553 {
4554         int i;
4555
4556         for (i = 0; i < msrs->nmsrs; ++i)
4557                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4558                         break;
4559
4560         return i;
4561 }
4562
4563 /*
4564  * Read or write a bunch of msrs. Parameters are user addresses.
4565  *
4566  * @return number of msrs set successfully.
4567  */
4568 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4569                   int (*do_msr)(struct kvm_vcpu *vcpu,
4570                                 unsigned index, u64 *data),
4571                   int writeback)
4572 {
4573         struct kvm_msrs msrs;
4574         struct kvm_msr_entry *entries;
4575         unsigned size;
4576         int r;
4577
4578         r = -EFAULT;
4579         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4580                 goto out;
4581
4582         r = -E2BIG;
4583         if (msrs.nmsrs >= MAX_IO_MSRS)
4584                 goto out;
4585
4586         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4587         entries = memdup_user(user_msrs->entries, size);
4588         if (IS_ERR(entries)) {
4589                 r = PTR_ERR(entries);
4590                 goto out;
4591         }
4592
4593         r = __msr_io(vcpu, &msrs, entries, do_msr);
4594
4595         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4596                 r = -EFAULT;
4597
4598         kfree(entries);
4599 out:
4600         return r;
4601 }
4602
4603 static inline bool kvm_can_mwait_in_guest(void)
4604 {
4605         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4606                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4607                 boot_cpu_has(X86_FEATURE_ARAT);
4608 }
4609
4610 #ifdef CONFIG_KVM_HYPERV
4611 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4612                                             struct kvm_cpuid2 __user *cpuid_arg)
4613 {
4614         struct kvm_cpuid2 cpuid;
4615         int r;
4616
4617         r = -EFAULT;
4618         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4619                 return r;
4620
4621         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4622         if (r)
4623                 return r;
4624
4625         r = -EFAULT;
4626         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4627                 return r;
4628
4629         return 0;
4630 }
4631 #endif
4632
4633 static bool kvm_is_vm_type_supported(unsigned long type)
4634 {
4635         return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4636 }
4637
4638 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4639 {
4640         int r = 0;
4641
4642         switch (ext) {
4643         case KVM_CAP_IRQCHIP:
4644         case KVM_CAP_HLT:
4645         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4646         case KVM_CAP_SET_TSS_ADDR:
4647         case KVM_CAP_EXT_CPUID:
4648         case KVM_CAP_EXT_EMUL_CPUID:
4649         case KVM_CAP_CLOCKSOURCE:
4650         case KVM_CAP_PIT:
4651         case KVM_CAP_NOP_IO_DELAY:
4652         case KVM_CAP_MP_STATE:
4653         case KVM_CAP_SYNC_MMU:
4654         case KVM_CAP_USER_NMI:
4655         case KVM_CAP_REINJECT_CONTROL:
4656         case KVM_CAP_IRQ_INJECT_STATUS:
4657         case KVM_CAP_IOEVENTFD:
4658         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4659         case KVM_CAP_PIT2:
4660         case KVM_CAP_PIT_STATE2:
4661         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4662         case KVM_CAP_VCPU_EVENTS:
4663 #ifdef CONFIG_KVM_HYPERV
4664         case KVM_CAP_HYPERV:
4665         case KVM_CAP_HYPERV_VAPIC:
4666         case KVM_CAP_HYPERV_SPIN:
4667         case KVM_CAP_HYPERV_TIME:
4668         case KVM_CAP_HYPERV_SYNIC:
4669         case KVM_CAP_HYPERV_SYNIC2:
4670         case KVM_CAP_HYPERV_VP_INDEX:
4671         case KVM_CAP_HYPERV_EVENTFD:
4672         case KVM_CAP_HYPERV_TLBFLUSH:
4673         case KVM_CAP_HYPERV_SEND_IPI:
4674         case KVM_CAP_HYPERV_CPUID:
4675         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4676         case KVM_CAP_SYS_HYPERV_CPUID:
4677 #endif
4678         case KVM_CAP_PCI_SEGMENT:
4679         case KVM_CAP_DEBUGREGS:
4680         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4681         case KVM_CAP_XSAVE:
4682         case KVM_CAP_ASYNC_PF:
4683         case KVM_CAP_ASYNC_PF_INT:
4684         case KVM_CAP_GET_TSC_KHZ:
4685         case KVM_CAP_KVMCLOCK_CTRL:
4686         case KVM_CAP_READONLY_MEM:
4687         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4688         case KVM_CAP_TSC_DEADLINE_TIMER:
4689         case KVM_CAP_DISABLE_QUIRKS:
4690         case KVM_CAP_SET_BOOT_CPU_ID:
4691         case KVM_CAP_SPLIT_IRQCHIP:
4692         case KVM_CAP_IMMEDIATE_EXIT:
4693         case KVM_CAP_PMU_EVENT_FILTER:
4694         case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4695         case KVM_CAP_GET_MSR_FEATURES:
4696         case KVM_CAP_MSR_PLATFORM_INFO:
4697         case KVM_CAP_EXCEPTION_PAYLOAD:
4698         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4699         case KVM_CAP_SET_GUEST_DEBUG:
4700         case KVM_CAP_LAST_CPU:
4701         case KVM_CAP_X86_USER_SPACE_MSR:
4702         case KVM_CAP_X86_MSR_FILTER:
4703         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4704 #ifdef CONFIG_X86_SGX_KVM
4705         case KVM_CAP_SGX_ATTRIBUTE:
4706 #endif
4707         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4708         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4709         case KVM_CAP_SREGS2:
4710         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4711         case KVM_CAP_VCPU_ATTRIBUTES:
4712         case KVM_CAP_SYS_ATTRIBUTES:
4713         case KVM_CAP_VAPIC:
4714         case KVM_CAP_ENABLE_CAP:
4715         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4716         case KVM_CAP_IRQFD_RESAMPLE:
4717         case KVM_CAP_MEMORY_FAULT_INFO:
4718                 r = 1;
4719                 break;
4720         case KVM_CAP_EXIT_HYPERCALL:
4721                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4722                 break;
4723         case KVM_CAP_SET_GUEST_DEBUG2:
4724                 return KVM_GUESTDBG_VALID_MASK;
4725 #ifdef CONFIG_KVM_XEN
4726         case KVM_CAP_XEN_HVM:
4727                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4728                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4729                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4730                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4731                     KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4732                     KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4733                     KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4734                 if (sched_info_on())
4735                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4736                              KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4737                 break;
4738 #endif
4739         case KVM_CAP_SYNC_REGS:
4740                 r = KVM_SYNC_X86_VALID_FIELDS;
4741                 break;
4742         case KVM_CAP_ADJUST_CLOCK:
4743                 r = KVM_CLOCK_VALID_FLAGS;
4744                 break;
4745         case KVM_CAP_X86_DISABLE_EXITS:
4746                 r = KVM_X86_DISABLE_EXITS_PAUSE;
4747
4748                 if (!mitigate_smt_rsb) {
4749                         r |= KVM_X86_DISABLE_EXITS_HLT |
4750                              KVM_X86_DISABLE_EXITS_CSTATE;
4751
4752                         if (kvm_can_mwait_in_guest())
4753                                 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4754                 }
4755                 break;
4756         case KVM_CAP_X86_SMM:
4757                 if (!IS_ENABLED(CONFIG_KVM_SMM))
4758                         break;
4759
4760                 /* SMBASE is usually relocated above 1M on modern chipsets,
4761                  * and SMM handlers might indeed rely on 4G segment limits,
4762                  * so do not report SMM to be available if real mode is
4763                  * emulated via vm86 mode.  Still, do not go to great lengths
4764                  * to avoid userspace's usage of the feature, because it is a
4765                  * fringe case that is not enabled except via specific settings
4766                  * of the module parameters.
4767                  */
4768                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4769                 break;
4770         case KVM_CAP_NR_VCPUS:
4771                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4772                 break;
4773         case KVM_CAP_MAX_VCPUS:
4774                 r = KVM_MAX_VCPUS;
4775                 break;
4776         case KVM_CAP_MAX_VCPU_ID:
4777                 r = KVM_MAX_VCPU_IDS;
4778                 break;
4779         case KVM_CAP_PV_MMU:    /* obsolete */
4780                 r = 0;
4781                 break;
4782         case KVM_CAP_MCE:
4783                 r = KVM_MAX_MCE_BANKS;
4784                 break;
4785         case KVM_CAP_XCRS:
4786                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4787                 break;
4788         case KVM_CAP_TSC_CONTROL:
4789         case KVM_CAP_VM_TSC_CONTROL:
4790                 r = kvm_caps.has_tsc_control;
4791                 break;
4792         case KVM_CAP_X2APIC_API:
4793                 r = KVM_X2APIC_API_VALID_FLAGS;
4794                 break;
4795         case KVM_CAP_NESTED_STATE:
4796                 r = kvm_x86_ops.nested_ops->get_state ?
4797                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4798                 break;
4799 #ifdef CONFIG_KVM_HYPERV
4800         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4801                 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4802                 break;
4803         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4804                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4805                 break;
4806 #endif
4807         case KVM_CAP_SMALLER_MAXPHYADDR:
4808                 r = (int) allow_smaller_maxphyaddr;
4809                 break;
4810         case KVM_CAP_STEAL_TIME:
4811                 r = sched_info_on();
4812                 break;
4813         case KVM_CAP_X86_BUS_LOCK_EXIT:
4814                 if (kvm_caps.has_bus_lock_exit)
4815                         r = KVM_BUS_LOCK_DETECTION_OFF |
4816                             KVM_BUS_LOCK_DETECTION_EXIT;
4817                 else
4818                         r = 0;
4819                 break;
4820         case KVM_CAP_XSAVE2: {
4821                 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4822                 if (r < sizeof(struct kvm_xsave))
4823                         r = sizeof(struct kvm_xsave);
4824                 break;
4825         }
4826         case KVM_CAP_PMU_CAPABILITY:
4827                 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4828                 break;
4829         case KVM_CAP_DISABLE_QUIRKS2:
4830                 r = KVM_X86_VALID_QUIRKS;
4831                 break;
4832         case KVM_CAP_X86_NOTIFY_VMEXIT:
4833                 r = kvm_caps.has_notify_vmexit;
4834                 break;
4835         case KVM_CAP_VM_TYPES:
4836                 r = kvm_caps.supported_vm_types;
4837                 break;
4838         default:
4839                 break;
4840         }
4841         return r;
4842 }
4843
4844 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4845 {
4846         if (attr->group) {
4847                 if (kvm_x86_ops.dev_get_attr)
4848                         return static_call(kvm_x86_dev_get_attr)(attr->group, attr->attr, val);
4849                 return -ENXIO;
4850         }
4851
4852         switch (attr->attr) {
4853         case KVM_X86_XCOMP_GUEST_SUPP:
4854                 *val = kvm_caps.supported_xcr0;
4855                 return 0;
4856         default:
4857                 return -ENXIO;
4858         }
4859 }
4860
4861 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4862 {
4863         u64 __user *uaddr = u64_to_user_ptr(attr->addr);
4864         int r;
4865         u64 val;
4866
4867         r = __kvm_x86_dev_get_attr(attr, &val);
4868         if (r < 0)
4869                 return r;
4870
4871         if (put_user(val, uaddr))
4872                 return -EFAULT;
4873
4874         return 0;
4875 }
4876
4877 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4878 {
4879         u64 val;
4880
4881         return __kvm_x86_dev_get_attr(attr, &val);
4882 }
4883
4884 long kvm_arch_dev_ioctl(struct file *filp,
4885                         unsigned int ioctl, unsigned long arg)
4886 {
4887         void __user *argp = (void __user *)arg;
4888         long r;
4889
4890         switch (ioctl) {
4891         case KVM_GET_MSR_INDEX_LIST: {
4892                 struct kvm_msr_list __user *user_msr_list = argp;
4893                 struct kvm_msr_list msr_list;
4894                 unsigned n;
4895
4896                 r = -EFAULT;
4897                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4898                         goto out;
4899                 n = msr_list.nmsrs;
4900                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4901                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4902                         goto out;
4903                 r = -E2BIG;
4904                 if (n < msr_list.nmsrs)
4905                         goto out;
4906                 r = -EFAULT;
4907                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4908                                  num_msrs_to_save * sizeof(u32)))
4909                         goto out;
4910                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4911                                  &emulated_msrs,
4912                                  num_emulated_msrs * sizeof(u32)))
4913                         goto out;
4914                 r = 0;
4915                 break;
4916         }
4917         case KVM_GET_SUPPORTED_CPUID:
4918         case KVM_GET_EMULATED_CPUID: {
4919                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4920                 struct kvm_cpuid2 cpuid;
4921
4922                 r = -EFAULT;
4923                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4924                         goto out;
4925
4926                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4927                                             ioctl);
4928                 if (r)
4929                         goto out;
4930
4931                 r = -EFAULT;
4932                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4933                         goto out;
4934                 r = 0;
4935                 break;
4936         }
4937         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4938                 r = -EFAULT;
4939                 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4940                                  sizeof(kvm_caps.supported_mce_cap)))
4941                         goto out;
4942                 r = 0;
4943                 break;
4944         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4945                 struct kvm_msr_list __user *user_msr_list = argp;
4946                 struct kvm_msr_list msr_list;
4947                 unsigned int n;
4948
4949                 r = -EFAULT;
4950                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4951                         goto out;
4952                 n = msr_list.nmsrs;
4953                 msr_list.nmsrs = num_msr_based_features;
4954                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4955                         goto out;
4956                 r = -E2BIG;
4957                 if (n < msr_list.nmsrs)
4958                         goto out;
4959                 r = -EFAULT;
4960                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4961                                  num_msr_based_features * sizeof(u32)))
4962                         goto out;
4963                 r = 0;
4964                 break;
4965         }
4966         case KVM_GET_MSRS:
4967                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4968                 break;
4969 #ifdef CONFIG_KVM_HYPERV
4970         case KVM_GET_SUPPORTED_HV_CPUID:
4971                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4972                 break;
4973 #endif
4974         case KVM_GET_DEVICE_ATTR: {
4975                 struct kvm_device_attr attr;
4976                 r = -EFAULT;
4977                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4978                         break;
4979                 r = kvm_x86_dev_get_attr(&attr);
4980                 break;
4981         }
4982         case KVM_HAS_DEVICE_ATTR: {
4983                 struct kvm_device_attr attr;
4984                 r = -EFAULT;
4985                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4986                         break;
4987                 r = kvm_x86_dev_has_attr(&attr);
4988                 break;
4989         }
4990         default:
4991                 r = -EINVAL;
4992                 break;
4993         }
4994 out:
4995         return r;
4996 }
4997
4998 static void wbinvd_ipi(void *garbage)
4999 {
5000         wbinvd();
5001 }
5002
5003 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
5004 {
5005         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
5006 }
5007
5008 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
5009 {
5010         /* Address WBINVD may be executed by guest */
5011         if (need_emulate_wbinvd(vcpu)) {
5012                 if (static_call(kvm_x86_has_wbinvd_exit)())
5013                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5014                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
5015                         smp_call_function_single(vcpu->cpu,
5016                                         wbinvd_ipi, NULL, 1);
5017         }
5018
5019         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
5020
5021         /* Save host pkru register if supported */
5022         vcpu->arch.host_pkru = read_pkru();
5023
5024         /* Apply any externally detected TSC adjustments (due to suspend) */
5025         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5026                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5027                 vcpu->arch.tsc_offset_adjustment = 0;
5028                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5029         }
5030
5031         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5032                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5033                                 rdtsc() - vcpu->arch.last_host_tsc;
5034                 if (tsc_delta < 0)
5035                         mark_tsc_unstable("KVM discovered backwards TSC");
5036
5037                 if (kvm_check_tsc_unstable()) {
5038                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5039                                                 vcpu->arch.last_guest_tsc);
5040                         kvm_vcpu_write_tsc_offset(vcpu, offset);
5041                         vcpu->arch.tsc_catchup = 1;
5042                 }
5043
5044                 if (kvm_lapic_hv_timer_in_use(vcpu))
5045                         kvm_lapic_restart_hv_timer(vcpu);
5046
5047                 /*
5048                  * On a host with synchronized TSC, there is no need to update
5049                  * kvmclock on vcpu->cpu migration
5050                  */
5051                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5052                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5053                 if (vcpu->cpu != cpu)
5054                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5055                 vcpu->cpu = cpu;
5056         }
5057
5058         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5059 }
5060
5061 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5062 {
5063         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5064         struct kvm_steal_time __user *st;
5065         struct kvm_memslots *slots;
5066         static const u8 preempted = KVM_VCPU_PREEMPTED;
5067         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5068
5069         /*
5070          * The vCPU can be marked preempted if and only if the VM-Exit was on
5071          * an instruction boundary and will not trigger guest emulation of any
5072          * kind (see vcpu_run).  Vendor specific code controls (conservatively)
5073          * when this is true, for example allowing the vCPU to be marked
5074          * preempted if and only if the VM-Exit was due to a host interrupt.
5075          */
5076         if (!vcpu->arch.at_instruction_boundary) {
5077                 vcpu->stat.preemption_other++;
5078                 return;
5079         }
5080
5081         vcpu->stat.preemption_reported++;
5082         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5083                 return;
5084
5085         if (vcpu->arch.st.preempted)
5086                 return;
5087
5088         /* This happens on process exit */
5089         if (unlikely(current->mm != vcpu->kvm->mm))
5090                 return;
5091
5092         slots = kvm_memslots(vcpu->kvm);
5093
5094         if (unlikely(slots->generation != ghc->generation ||
5095                      gpa != ghc->gpa ||
5096                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5097                 return;
5098
5099         st = (struct kvm_steal_time __user *)ghc->hva;
5100         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5101
5102         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5103                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5104
5105         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5106 }
5107
5108 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5109 {
5110         int idx;
5111
5112         if (vcpu->preempted) {
5113                 vcpu->arch.preempted_in_kernel = kvm_arch_vcpu_in_kernel(vcpu);
5114
5115                 /*
5116                  * Take the srcu lock as memslots will be accessed to check the gfn
5117                  * cache generation against the memslots generation.
5118                  */
5119                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5120                 if (kvm_xen_msr_enabled(vcpu->kvm))
5121                         kvm_xen_runstate_set_preempted(vcpu);
5122                 else
5123                         kvm_steal_time_set_preempted(vcpu);
5124                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5125         }
5126
5127         static_call(kvm_x86_vcpu_put)(vcpu);
5128         vcpu->arch.last_host_tsc = rdtsc();
5129 }
5130
5131 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5132                                     struct kvm_lapic_state *s)
5133 {
5134         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
5135
5136         return kvm_apic_get_state(vcpu, s);
5137 }
5138
5139 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5140                                     struct kvm_lapic_state *s)
5141 {
5142         int r;
5143
5144         r = kvm_apic_set_state(vcpu, s);
5145         if (r)
5146                 return r;
5147         update_cr8_intercept(vcpu);
5148
5149         return 0;
5150 }
5151
5152 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5153 {
5154         /*
5155          * We can accept userspace's request for interrupt injection
5156          * as long as we have a place to store the interrupt number.
5157          * The actual injection will happen when the CPU is able to
5158          * deliver the interrupt.
5159          */
5160         if (kvm_cpu_has_extint(vcpu))
5161                 return false;
5162
5163         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5164         return (!lapic_in_kernel(vcpu) ||
5165                 kvm_apic_accept_pic_intr(vcpu));
5166 }
5167
5168 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5169 {
5170         /*
5171          * Do not cause an interrupt window exit if an exception
5172          * is pending or an event needs reinjection; userspace
5173          * might want to inject the interrupt manually using KVM_SET_REGS
5174          * or KVM_SET_SREGS.  For that to work, we must be at an
5175          * instruction boundary and with no events half-injected.
5176          */
5177         return (kvm_arch_interrupt_allowed(vcpu) &&
5178                 kvm_cpu_accept_dm_intr(vcpu) &&
5179                 !kvm_event_needs_reinjection(vcpu) &&
5180                 !kvm_is_exception_pending(vcpu));
5181 }
5182
5183 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5184                                     struct kvm_interrupt *irq)
5185 {
5186         if (irq->irq >= KVM_NR_INTERRUPTS)
5187                 return -EINVAL;
5188
5189         if (!irqchip_in_kernel(vcpu->kvm)) {
5190                 kvm_queue_interrupt(vcpu, irq->irq, false);
5191                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5192                 return 0;
5193         }
5194
5195         /*
5196          * With in-kernel LAPIC, we only use this to inject EXTINT, so
5197          * fail for in-kernel 8259.
5198          */
5199         if (pic_in_kernel(vcpu->kvm))
5200                 return -ENXIO;
5201
5202         if (vcpu->arch.pending_external_vector != -1)
5203                 return -EEXIST;
5204
5205         vcpu->arch.pending_external_vector = irq->irq;
5206         kvm_make_request(KVM_REQ_EVENT, vcpu);
5207         return 0;
5208 }
5209
5210 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5211 {
5212         kvm_inject_nmi(vcpu);
5213
5214         return 0;
5215 }
5216
5217 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5218                                            struct kvm_tpr_access_ctl *tac)
5219 {
5220         if (tac->flags)
5221                 return -EINVAL;
5222         vcpu->arch.tpr_access_reporting = !!tac->enabled;
5223         return 0;
5224 }
5225
5226 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5227                                         u64 mcg_cap)
5228 {
5229         int r;
5230         unsigned bank_num = mcg_cap & 0xff, bank;
5231
5232         r = -EINVAL;
5233         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5234                 goto out;
5235         if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5236                 goto out;
5237         r = 0;
5238         vcpu->arch.mcg_cap = mcg_cap;
5239         /* Init IA32_MCG_CTL to all 1s */
5240         if (mcg_cap & MCG_CTL_P)
5241                 vcpu->arch.mcg_ctl = ~(u64)0;
5242         /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5243         for (bank = 0; bank < bank_num; bank++) {
5244                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5245                 if (mcg_cap & MCG_CMCI_P)
5246                         vcpu->arch.mci_ctl2_banks[bank] = 0;
5247         }
5248
5249         kvm_apic_after_set_mcg_cap(vcpu);
5250
5251         static_call(kvm_x86_setup_mce)(vcpu);
5252 out:
5253         return r;
5254 }
5255
5256 /*
5257  * Validate this is an UCNA (uncorrectable no action) error by checking the
5258  * MCG_STATUS and MCi_STATUS registers:
5259  * - none of the bits for Machine Check Exceptions are set
5260  * - both the VAL (valid) and UC (uncorrectable) bits are set
5261  * MCI_STATUS_PCC - Processor Context Corrupted
5262  * MCI_STATUS_S - Signaled as a Machine Check Exception
5263  * MCI_STATUS_AR - Software recoverable Action Required
5264  */
5265 static bool is_ucna(struct kvm_x86_mce *mce)
5266 {
5267         return  !mce->mcg_status &&
5268                 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5269                 (mce->status & MCI_STATUS_VAL) &&
5270                 (mce->status & MCI_STATUS_UC);
5271 }
5272
5273 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5274 {
5275         u64 mcg_cap = vcpu->arch.mcg_cap;
5276
5277         banks[1] = mce->status;
5278         banks[2] = mce->addr;
5279         banks[3] = mce->misc;
5280         vcpu->arch.mcg_status = mce->mcg_status;
5281
5282         if (!(mcg_cap & MCG_CMCI_P) ||
5283             !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5284                 return 0;
5285
5286         if (lapic_in_kernel(vcpu))
5287                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5288
5289         return 0;
5290 }
5291
5292 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5293                                       struct kvm_x86_mce *mce)
5294 {
5295         u64 mcg_cap = vcpu->arch.mcg_cap;
5296         unsigned bank_num = mcg_cap & 0xff;
5297         u64 *banks = vcpu->arch.mce_banks;
5298
5299         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5300                 return -EINVAL;
5301
5302         banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5303
5304         if (is_ucna(mce))
5305                 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5306
5307         /*
5308          * if IA32_MCG_CTL is not all 1s, the uncorrected error
5309          * reporting is disabled
5310          */
5311         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5312             vcpu->arch.mcg_ctl != ~(u64)0)
5313                 return 0;
5314         /*
5315          * if IA32_MCi_CTL is not all 1s, the uncorrected error
5316          * reporting is disabled for the bank
5317          */
5318         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5319                 return 0;
5320         if (mce->status & MCI_STATUS_UC) {
5321                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5322                     !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5323                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5324                         return 0;
5325                 }
5326                 if (banks[1] & MCI_STATUS_VAL)
5327                         mce->status |= MCI_STATUS_OVER;
5328                 banks[2] = mce->addr;
5329                 banks[3] = mce->misc;
5330                 vcpu->arch.mcg_status = mce->mcg_status;
5331                 banks[1] = mce->status;
5332                 kvm_queue_exception(vcpu, MC_VECTOR);
5333         } else if (!(banks[1] & MCI_STATUS_VAL)
5334                    || !(banks[1] & MCI_STATUS_UC)) {
5335                 if (banks[1] & MCI_STATUS_VAL)
5336                         mce->status |= MCI_STATUS_OVER;
5337                 banks[2] = mce->addr;
5338                 banks[3] = mce->misc;
5339                 banks[1] = mce->status;
5340         } else
5341                 banks[1] |= MCI_STATUS_OVER;
5342         return 0;
5343 }
5344
5345 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5346                                                struct kvm_vcpu_events *events)
5347 {
5348         struct kvm_queued_exception *ex;
5349
5350         process_nmi(vcpu);
5351
5352 #ifdef CONFIG_KVM_SMM
5353         if (kvm_check_request(KVM_REQ_SMI, vcpu))
5354                 process_smi(vcpu);
5355 #endif
5356
5357         /*
5358          * KVM's ABI only allows for one exception to be migrated.  Luckily,
5359          * the only time there can be two queued exceptions is if there's a
5360          * non-exiting _injected_ exception, and a pending exiting exception.
5361          * In that case, ignore the VM-Exiting exception as it's an extension
5362          * of the injected exception.
5363          */
5364         if (vcpu->arch.exception_vmexit.pending &&
5365             !vcpu->arch.exception.pending &&
5366             !vcpu->arch.exception.injected)
5367                 ex = &vcpu->arch.exception_vmexit;
5368         else
5369                 ex = &vcpu->arch.exception;
5370
5371         /*
5372          * In guest mode, payload delivery should be deferred if the exception
5373          * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5374          * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5375          * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5376          * propagate the payload and so it cannot be safely deferred.  Deliver
5377          * the payload if the capability hasn't been requested.
5378          */
5379         if (!vcpu->kvm->arch.exception_payload_enabled &&
5380             ex->pending && ex->has_payload)
5381                 kvm_deliver_exception_payload(vcpu, ex);
5382
5383         memset(events, 0, sizeof(*events));
5384
5385         /*
5386          * The API doesn't provide the instruction length for software
5387          * exceptions, so don't report them. As long as the guest RIP
5388          * isn't advanced, we should expect to encounter the exception
5389          * again.
5390          */
5391         if (!kvm_exception_is_soft(ex->vector)) {
5392                 events->exception.injected = ex->injected;
5393                 events->exception.pending = ex->pending;
5394                 /*
5395                  * For ABI compatibility, deliberately conflate
5396                  * pending and injected exceptions when
5397                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5398                  */
5399                 if (!vcpu->kvm->arch.exception_payload_enabled)
5400                         events->exception.injected |= ex->pending;
5401         }
5402         events->exception.nr = ex->vector;
5403         events->exception.has_error_code = ex->has_error_code;
5404         events->exception.error_code = ex->error_code;
5405         events->exception_has_payload = ex->has_payload;
5406         events->exception_payload = ex->payload;
5407
5408         events->interrupt.injected =
5409                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5410         events->interrupt.nr = vcpu->arch.interrupt.nr;
5411         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5412
5413         events->nmi.injected = vcpu->arch.nmi_injected;
5414         events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5415         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5416
5417         /* events->sipi_vector is never valid when reporting to user space */
5418
5419 #ifdef CONFIG_KVM_SMM
5420         events->smi.smm = is_smm(vcpu);
5421         events->smi.pending = vcpu->arch.smi_pending;
5422         events->smi.smm_inside_nmi =
5423                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5424 #endif
5425         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5426
5427         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5428                          | KVM_VCPUEVENT_VALID_SHADOW
5429                          | KVM_VCPUEVENT_VALID_SMM);
5430         if (vcpu->kvm->arch.exception_payload_enabled)
5431                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5432         if (vcpu->kvm->arch.triple_fault_event) {
5433                 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5434                 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5435         }
5436 }
5437
5438 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5439                                               struct kvm_vcpu_events *events)
5440 {
5441         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5442                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5443                               | KVM_VCPUEVENT_VALID_SHADOW
5444                               | KVM_VCPUEVENT_VALID_SMM
5445                               | KVM_VCPUEVENT_VALID_PAYLOAD
5446                               | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5447                 return -EINVAL;
5448
5449         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5450                 if (!vcpu->kvm->arch.exception_payload_enabled)
5451                         return -EINVAL;
5452                 if (events->exception.pending)
5453                         events->exception.injected = 0;
5454                 else
5455                         events->exception_has_payload = 0;
5456         } else {
5457                 events->exception.pending = 0;
5458                 events->exception_has_payload = 0;
5459         }
5460
5461         if ((events->exception.injected || events->exception.pending) &&
5462             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5463                 return -EINVAL;
5464
5465         /* INITs are latched while in SMM */
5466         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5467             (events->smi.smm || events->smi.pending) &&
5468             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5469                 return -EINVAL;
5470
5471         process_nmi(vcpu);
5472
5473         /*
5474          * Flag that userspace is stuffing an exception, the next KVM_RUN will
5475          * morph the exception to a VM-Exit if appropriate.  Do this only for
5476          * pending exceptions, already-injected exceptions are not subject to
5477          * intercpetion.  Note, userspace that conflates pending and injected
5478          * is hosed, and will incorrectly convert an injected exception into a
5479          * pending exception, which in turn may cause a spurious VM-Exit.
5480          */
5481         vcpu->arch.exception_from_userspace = events->exception.pending;
5482
5483         vcpu->arch.exception_vmexit.pending = false;
5484
5485         vcpu->arch.exception.injected = events->exception.injected;
5486         vcpu->arch.exception.pending = events->exception.pending;
5487         vcpu->arch.exception.vector = events->exception.nr;
5488         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5489         vcpu->arch.exception.error_code = events->exception.error_code;
5490         vcpu->arch.exception.has_payload = events->exception_has_payload;
5491         vcpu->arch.exception.payload = events->exception_payload;
5492
5493         vcpu->arch.interrupt.injected = events->interrupt.injected;
5494         vcpu->arch.interrupt.nr = events->interrupt.nr;
5495         vcpu->arch.interrupt.soft = events->interrupt.soft;
5496         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5497                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5498                                                 events->interrupt.shadow);
5499
5500         vcpu->arch.nmi_injected = events->nmi.injected;
5501         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5502                 vcpu->arch.nmi_pending = 0;
5503                 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5504                 if (events->nmi.pending)
5505                         kvm_make_request(KVM_REQ_NMI, vcpu);
5506         }
5507         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5508
5509         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5510             lapic_in_kernel(vcpu))
5511                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5512
5513         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5514 #ifdef CONFIG_KVM_SMM
5515                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5516                         kvm_leave_nested(vcpu);
5517                         kvm_smm_changed(vcpu, events->smi.smm);
5518                 }
5519
5520                 vcpu->arch.smi_pending = events->smi.pending;
5521
5522                 if (events->smi.smm) {
5523                         if (events->smi.smm_inside_nmi)
5524                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5525                         else
5526                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5527                 }
5528
5529 #else
5530                 if (events->smi.smm || events->smi.pending ||
5531                     events->smi.smm_inside_nmi)
5532                         return -EINVAL;
5533 #endif
5534
5535                 if (lapic_in_kernel(vcpu)) {
5536                         if (events->smi.latched_init)
5537                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5538                         else
5539                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5540                 }
5541         }
5542
5543         if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5544                 if (!vcpu->kvm->arch.triple_fault_event)
5545                         return -EINVAL;
5546                 if (events->triple_fault.pending)
5547                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5548                 else
5549                         kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5550         }
5551
5552         kvm_make_request(KVM_REQ_EVENT, vcpu);
5553
5554         return 0;
5555 }
5556
5557 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5558                                             struct kvm_debugregs *dbgregs)
5559 {
5560         unsigned int i;
5561
5562         if (vcpu->kvm->arch.has_protected_state &&
5563             vcpu->arch.guest_state_protected)
5564                 return -EINVAL;
5565
5566         memset(dbgregs, 0, sizeof(*dbgregs));
5567
5568         BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5569         for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5570                 dbgregs->db[i] = vcpu->arch.db[i];
5571
5572         dbgregs->dr6 = vcpu->arch.dr6;
5573         dbgregs->dr7 = vcpu->arch.dr7;
5574         return 0;
5575 }
5576
5577 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5578                                             struct kvm_debugregs *dbgregs)
5579 {
5580         unsigned int i;
5581
5582         if (vcpu->kvm->arch.has_protected_state &&
5583             vcpu->arch.guest_state_protected)
5584                 return -EINVAL;
5585
5586         if (dbgregs->flags)
5587                 return -EINVAL;
5588
5589         if (!kvm_dr6_valid(dbgregs->dr6))
5590                 return -EINVAL;
5591         if (!kvm_dr7_valid(dbgregs->dr7))
5592                 return -EINVAL;
5593
5594         for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5595                 vcpu->arch.db[i] = dbgregs->db[i];
5596
5597         kvm_update_dr0123(vcpu);
5598         vcpu->arch.dr6 = dbgregs->dr6;
5599         vcpu->arch.dr7 = dbgregs->dr7;
5600         kvm_update_dr7(vcpu);
5601
5602         return 0;
5603 }
5604
5605
5606 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5607                                          u8 *state, unsigned int size)
5608 {
5609         /*
5610          * Only copy state for features that are enabled for the guest.  The
5611          * state itself isn't problematic, but setting bits in the header for
5612          * features that are supported in *this* host but not exposed to the
5613          * guest can result in KVM_SET_XSAVE failing when live migrating to a
5614          * compatible host without the features that are NOT exposed to the
5615          * guest.
5616          *
5617          * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5618          * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5619          * supported by the host.
5620          */
5621         u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5622                              XFEATURE_MASK_FPSSE;
5623
5624         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5625                 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5626
5627         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5628                                        supported_xcr0, vcpu->arch.pkru);
5629         return 0;
5630 }
5631
5632 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5633                                         struct kvm_xsave *guest_xsave)
5634 {
5635         return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5636                                              sizeof(guest_xsave->region));
5637 }
5638
5639 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5640                                         struct kvm_xsave *guest_xsave)
5641 {
5642         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5643                 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5644
5645         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5646                                               guest_xsave->region,
5647                                               kvm_caps.supported_xcr0,
5648                                               &vcpu->arch.pkru);
5649 }
5650
5651 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5652                                        struct kvm_xcrs *guest_xcrs)
5653 {
5654         if (vcpu->kvm->arch.has_protected_state &&
5655             vcpu->arch.guest_state_protected)
5656                 return -EINVAL;
5657
5658         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5659                 guest_xcrs->nr_xcrs = 0;
5660                 return 0;
5661         }
5662
5663         guest_xcrs->nr_xcrs = 1;
5664         guest_xcrs->flags = 0;
5665         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5666         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5667         return 0;
5668 }
5669
5670 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5671                                        struct kvm_xcrs *guest_xcrs)
5672 {
5673         int i, r = 0;
5674
5675         if (vcpu->kvm->arch.has_protected_state &&
5676             vcpu->arch.guest_state_protected)
5677                 return -EINVAL;
5678
5679         if (!boot_cpu_has(X86_FEATURE_XSAVE))
5680                 return -EINVAL;
5681
5682         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5683                 return -EINVAL;
5684
5685         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5686                 /* Only support XCR0 currently */
5687                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5688                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5689                                 guest_xcrs->xcrs[i].value);
5690                         break;
5691                 }
5692         if (r)
5693                 r = -EINVAL;
5694         return r;
5695 }
5696
5697 /*
5698  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5699  * stopped by the hypervisor.  This function will be called from the host only.
5700  * EINVAL is returned when the host attempts to set the flag for a guest that
5701  * does not support pv clocks.
5702  */
5703 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5704 {
5705         if (!vcpu->arch.pv_time.active)
5706                 return -EINVAL;
5707         vcpu->arch.pvclock_set_guest_stopped_request = true;
5708         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5709         return 0;
5710 }
5711
5712 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5713                                  struct kvm_device_attr *attr)
5714 {
5715         int r;
5716
5717         switch (attr->attr) {
5718         case KVM_VCPU_TSC_OFFSET:
5719                 r = 0;
5720                 break;
5721         default:
5722                 r = -ENXIO;
5723         }
5724
5725         return r;
5726 }
5727
5728 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5729                                  struct kvm_device_attr *attr)
5730 {
5731         u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5732         int r;
5733
5734         switch (attr->attr) {
5735         case KVM_VCPU_TSC_OFFSET:
5736                 r = -EFAULT;
5737                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5738                         break;
5739                 r = 0;
5740                 break;
5741         default:
5742                 r = -ENXIO;
5743         }
5744
5745         return r;
5746 }
5747
5748 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5749                                  struct kvm_device_attr *attr)
5750 {
5751         u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5752         struct kvm *kvm = vcpu->kvm;
5753         int r;
5754
5755         switch (attr->attr) {
5756         case KVM_VCPU_TSC_OFFSET: {
5757                 u64 offset, tsc, ns;
5758                 unsigned long flags;
5759                 bool matched;
5760
5761                 r = -EFAULT;
5762                 if (get_user(offset, uaddr))
5763                         break;
5764
5765                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5766
5767                 matched = (vcpu->arch.virtual_tsc_khz &&
5768                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5769                            kvm->arch.last_tsc_offset == offset);
5770
5771                 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5772                 ns = get_kvmclock_base_ns();
5773
5774                 kvm->arch.user_set_tsc = true;
5775                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5776                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5777
5778                 r = 0;
5779                 break;
5780         }
5781         default:
5782                 r = -ENXIO;
5783         }
5784
5785         return r;
5786 }
5787
5788 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5789                                       unsigned int ioctl,
5790                                       void __user *argp)
5791 {
5792         struct kvm_device_attr attr;
5793         int r;
5794
5795         if (copy_from_user(&attr, argp, sizeof(attr)))
5796                 return -EFAULT;
5797
5798         if (attr.group != KVM_VCPU_TSC_CTRL)
5799                 return -ENXIO;
5800
5801         switch (ioctl) {
5802         case KVM_HAS_DEVICE_ATTR:
5803                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5804                 break;
5805         case KVM_GET_DEVICE_ATTR:
5806                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5807                 break;
5808         case KVM_SET_DEVICE_ATTR:
5809                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5810                 break;
5811         }
5812
5813         return r;
5814 }
5815
5816 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5817                                      struct kvm_enable_cap *cap)
5818 {
5819         if (cap->flags)
5820                 return -EINVAL;
5821
5822         switch (cap->cap) {
5823 #ifdef CONFIG_KVM_HYPERV
5824         case KVM_CAP_HYPERV_SYNIC2:
5825                 if (cap->args[0])
5826                         return -EINVAL;
5827                 fallthrough;
5828
5829         case KVM_CAP_HYPERV_SYNIC:
5830                 if (!irqchip_in_kernel(vcpu->kvm))
5831                         return -EINVAL;
5832                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5833                                              KVM_CAP_HYPERV_SYNIC2);
5834         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5835                 {
5836                         int r;
5837                         uint16_t vmcs_version;
5838                         void __user *user_ptr;
5839
5840                         if (!kvm_x86_ops.nested_ops->enable_evmcs)
5841                                 return -ENOTTY;
5842                         r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5843                         if (!r) {
5844                                 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5845                                 if (copy_to_user(user_ptr, &vmcs_version,
5846                                                  sizeof(vmcs_version)))
5847                                         r = -EFAULT;
5848                         }
5849                         return r;
5850                 }
5851         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5852                 if (!kvm_x86_ops.enable_l2_tlb_flush)
5853                         return -ENOTTY;
5854
5855                 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5856
5857         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5858                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5859 #endif
5860
5861         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5862                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5863                 if (vcpu->arch.pv_cpuid.enforce)
5864                         kvm_update_pv_runtime(vcpu);
5865
5866                 return 0;
5867         default:
5868                 return -EINVAL;
5869         }
5870 }
5871
5872 long kvm_arch_vcpu_ioctl(struct file *filp,
5873                          unsigned int ioctl, unsigned long arg)
5874 {
5875         struct kvm_vcpu *vcpu = filp->private_data;
5876         void __user *argp = (void __user *)arg;
5877         int r;
5878         union {
5879                 struct kvm_sregs2 *sregs2;
5880                 struct kvm_lapic_state *lapic;
5881                 struct kvm_xsave *xsave;
5882                 struct kvm_xcrs *xcrs;
5883                 void *buffer;
5884         } u;
5885
5886         vcpu_load(vcpu);
5887
5888         u.buffer = NULL;
5889         switch (ioctl) {
5890         case KVM_GET_LAPIC: {
5891                 r = -EINVAL;
5892                 if (!lapic_in_kernel(vcpu))
5893                         goto out;
5894                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5895                                 GFP_KERNEL_ACCOUNT);
5896
5897                 r = -ENOMEM;
5898                 if (!u.lapic)
5899                         goto out;
5900                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5901                 if (r)
5902                         goto out;
5903                 r = -EFAULT;
5904                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5905                         goto out;
5906                 r = 0;
5907                 break;
5908         }
5909         case KVM_SET_LAPIC: {
5910                 r = -EINVAL;
5911                 if (!lapic_in_kernel(vcpu))
5912                         goto out;
5913                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5914                 if (IS_ERR(u.lapic)) {
5915                         r = PTR_ERR(u.lapic);
5916                         goto out_nofree;
5917                 }
5918
5919                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5920                 break;
5921         }
5922         case KVM_INTERRUPT: {
5923                 struct kvm_interrupt irq;
5924
5925                 r = -EFAULT;
5926                 if (copy_from_user(&irq, argp, sizeof(irq)))
5927                         goto out;
5928                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5929                 break;
5930         }
5931         case KVM_NMI: {
5932                 r = kvm_vcpu_ioctl_nmi(vcpu);
5933                 break;
5934         }
5935         case KVM_SMI: {
5936                 r = kvm_inject_smi(vcpu);
5937                 break;
5938         }
5939         case KVM_SET_CPUID: {
5940                 struct kvm_cpuid __user *cpuid_arg = argp;
5941                 struct kvm_cpuid cpuid;
5942
5943                 r = -EFAULT;
5944                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5945                         goto out;
5946                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5947                 break;
5948         }
5949         case KVM_SET_CPUID2: {
5950                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5951                 struct kvm_cpuid2 cpuid;
5952
5953                 r = -EFAULT;
5954                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5955                         goto out;
5956                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5957                                               cpuid_arg->entries);
5958                 break;
5959         }
5960         case KVM_GET_CPUID2: {
5961                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5962                 struct kvm_cpuid2 cpuid;
5963
5964                 r = -EFAULT;
5965                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5966                         goto out;
5967                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5968                                               cpuid_arg->entries);
5969                 if (r)
5970                         goto out;
5971                 r = -EFAULT;
5972                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5973                         goto out;
5974                 r = 0;
5975                 break;
5976         }
5977         case KVM_GET_MSRS: {
5978                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5979                 r = msr_io(vcpu, argp, do_get_msr, 1);
5980                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5981                 break;
5982         }
5983         case KVM_SET_MSRS: {
5984                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5985                 r = msr_io(vcpu, argp, do_set_msr, 0);
5986                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5987                 break;
5988         }
5989         case KVM_TPR_ACCESS_REPORTING: {
5990                 struct kvm_tpr_access_ctl tac;
5991
5992                 r = -EFAULT;
5993                 if (copy_from_user(&tac, argp, sizeof(tac)))
5994                         goto out;
5995                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5996                 if (r)
5997                         goto out;
5998                 r = -EFAULT;
5999                 if (copy_to_user(argp, &tac, sizeof(tac)))
6000                         goto out;
6001                 r = 0;
6002                 break;
6003         };
6004         case KVM_SET_VAPIC_ADDR: {
6005                 struct kvm_vapic_addr va;
6006                 int idx;
6007
6008                 r = -EINVAL;
6009                 if (!lapic_in_kernel(vcpu))
6010                         goto out;
6011                 r = -EFAULT;
6012                 if (copy_from_user(&va, argp, sizeof(va)))
6013                         goto out;
6014                 idx = srcu_read_lock(&vcpu->kvm->srcu);
6015                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
6016                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6017                 break;
6018         }
6019         case KVM_X86_SETUP_MCE: {
6020                 u64 mcg_cap;
6021
6022                 r = -EFAULT;
6023                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6024                         goto out;
6025                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6026                 break;
6027         }
6028         case KVM_X86_SET_MCE: {
6029                 struct kvm_x86_mce mce;
6030
6031                 r = -EFAULT;
6032                 if (copy_from_user(&mce, argp, sizeof(mce)))
6033                         goto out;
6034                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6035                 break;
6036         }
6037         case KVM_GET_VCPU_EVENTS: {
6038                 struct kvm_vcpu_events events;
6039
6040                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6041
6042                 r = -EFAULT;
6043                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6044                         break;
6045                 r = 0;
6046                 break;
6047         }
6048         case KVM_SET_VCPU_EVENTS: {
6049                 struct kvm_vcpu_events events;
6050
6051                 r = -EFAULT;
6052                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6053                         break;
6054
6055                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6056                 break;
6057         }
6058         case KVM_GET_DEBUGREGS: {
6059                 struct kvm_debugregs dbgregs;
6060
6061                 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6062                 if (r < 0)
6063                         break;
6064
6065                 r = -EFAULT;
6066                 if (copy_to_user(argp, &dbgregs,
6067                                  sizeof(struct kvm_debugregs)))
6068                         break;
6069                 r = 0;
6070                 break;
6071         }
6072         case KVM_SET_DEBUGREGS: {
6073                 struct kvm_debugregs dbgregs;
6074
6075                 r = -EFAULT;
6076                 if (copy_from_user(&dbgregs, argp,
6077                                    sizeof(struct kvm_debugregs)))
6078                         break;
6079
6080                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6081                 break;
6082         }
6083         case KVM_GET_XSAVE: {
6084                 r = -EINVAL;
6085                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6086                         break;
6087
6088                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
6089                 r = -ENOMEM;
6090                 if (!u.xsave)
6091                         break;
6092
6093                 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6094                 if (r < 0)
6095                         break;
6096
6097                 r = -EFAULT;
6098                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6099                         break;
6100                 r = 0;
6101                 break;
6102         }
6103         case KVM_SET_XSAVE: {
6104                 int size = vcpu->arch.guest_fpu.uabi_size;
6105
6106                 u.xsave = memdup_user(argp, size);
6107                 if (IS_ERR(u.xsave)) {
6108                         r = PTR_ERR(u.xsave);
6109                         goto out_nofree;
6110                 }
6111
6112                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6113                 break;
6114         }
6115
6116         case KVM_GET_XSAVE2: {
6117                 int size = vcpu->arch.guest_fpu.uabi_size;
6118
6119                 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
6120                 r = -ENOMEM;
6121                 if (!u.xsave)
6122                         break;
6123
6124                 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6125                 if (r < 0)
6126                         break;
6127
6128                 r = -EFAULT;
6129                 if (copy_to_user(argp, u.xsave, size))
6130                         break;
6131
6132                 r = 0;
6133                 break;
6134         }
6135
6136         case KVM_GET_XCRS: {
6137                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
6138                 r = -ENOMEM;
6139                 if (!u.xcrs)
6140                         break;
6141
6142                 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6143                 if (r < 0)
6144                         break;
6145
6146                 r = -EFAULT;
6147                 if (copy_to_user(argp, u.xcrs,
6148                                  sizeof(struct kvm_xcrs)))
6149                         break;
6150                 r = 0;
6151                 break;
6152         }
6153         case KVM_SET_XCRS: {
6154                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6155                 if (IS_ERR(u.xcrs)) {
6156                         r = PTR_ERR(u.xcrs);
6157                         goto out_nofree;
6158                 }
6159
6160                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6161                 break;
6162         }
6163         case KVM_SET_TSC_KHZ: {
6164                 u32 user_tsc_khz;
6165
6166                 r = -EINVAL;
6167                 user_tsc_khz = (u32)arg;
6168
6169                 if (kvm_caps.has_tsc_control &&
6170                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6171                         goto out;
6172
6173                 if (user_tsc_khz == 0)
6174                         user_tsc_khz = tsc_khz;
6175
6176                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6177                         r = 0;
6178
6179                 goto out;
6180         }
6181         case KVM_GET_TSC_KHZ: {
6182                 r = vcpu->arch.virtual_tsc_khz;
6183                 goto out;
6184         }
6185         case KVM_KVMCLOCK_CTRL: {
6186                 r = kvm_set_guest_paused(vcpu);
6187                 goto out;
6188         }
6189         case KVM_ENABLE_CAP: {
6190                 struct kvm_enable_cap cap;
6191
6192                 r = -EFAULT;
6193                 if (copy_from_user(&cap, argp, sizeof(cap)))
6194                         goto out;
6195                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6196                 break;
6197         }
6198         case KVM_GET_NESTED_STATE: {
6199                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6200                 u32 user_data_size;
6201
6202                 r = -EINVAL;
6203                 if (!kvm_x86_ops.nested_ops->get_state)
6204                         break;
6205
6206                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6207                 r = -EFAULT;
6208                 if (get_user(user_data_size, &user_kvm_nested_state->size))
6209                         break;
6210
6211                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6212                                                      user_data_size);
6213                 if (r < 0)
6214                         break;
6215
6216                 if (r > user_data_size) {
6217                         if (put_user(r, &user_kvm_nested_state->size))
6218                                 r = -EFAULT;
6219                         else
6220                                 r = -E2BIG;
6221                         break;
6222                 }
6223
6224                 r = 0;
6225                 break;
6226         }
6227         case KVM_SET_NESTED_STATE: {
6228                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6229                 struct kvm_nested_state kvm_state;
6230                 int idx;
6231
6232                 r = -EINVAL;
6233                 if (!kvm_x86_ops.nested_ops->set_state)
6234                         break;
6235
6236                 r = -EFAULT;
6237                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6238                         break;
6239
6240                 r = -EINVAL;
6241                 if (kvm_state.size < sizeof(kvm_state))
6242                         break;
6243
6244                 if (kvm_state.flags &
6245                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6246                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6247                       | KVM_STATE_NESTED_GIF_SET))
6248                         break;
6249
6250                 /* nested_run_pending implies guest_mode.  */
6251                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6252                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6253                         break;
6254
6255                 idx = srcu_read_lock(&vcpu->kvm->srcu);
6256                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6257                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6258                 break;
6259         }
6260 #ifdef CONFIG_KVM_HYPERV
6261         case KVM_GET_SUPPORTED_HV_CPUID:
6262                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6263                 break;
6264 #endif
6265 #ifdef CONFIG_KVM_XEN
6266         case KVM_XEN_VCPU_GET_ATTR: {
6267                 struct kvm_xen_vcpu_attr xva;
6268
6269                 r = -EFAULT;
6270                 if (copy_from_user(&xva, argp, sizeof(xva)))
6271                         goto out;
6272                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6273                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6274                         r = -EFAULT;
6275                 break;
6276         }
6277         case KVM_XEN_VCPU_SET_ATTR: {
6278                 struct kvm_xen_vcpu_attr xva;
6279
6280                 r = -EFAULT;
6281                 if (copy_from_user(&xva, argp, sizeof(xva)))
6282                         goto out;
6283                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6284                 break;
6285         }
6286 #endif
6287         case KVM_GET_SREGS2: {
6288                 r = -EINVAL;
6289                 if (vcpu->kvm->arch.has_protected_state &&
6290                     vcpu->arch.guest_state_protected)
6291                         goto out;
6292
6293                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6294                 r = -ENOMEM;
6295                 if (!u.sregs2)
6296                         goto out;
6297                 __get_sregs2(vcpu, u.sregs2);
6298                 r = -EFAULT;
6299                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6300                         goto out;
6301                 r = 0;
6302                 break;
6303         }
6304         case KVM_SET_SREGS2: {
6305                 r = -EINVAL;
6306                 if (vcpu->kvm->arch.has_protected_state &&
6307                     vcpu->arch.guest_state_protected)
6308                         goto out;
6309
6310                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6311                 if (IS_ERR(u.sregs2)) {
6312                         r = PTR_ERR(u.sregs2);
6313                         u.sregs2 = NULL;
6314                         goto out;
6315                 }
6316                 r = __set_sregs2(vcpu, u.sregs2);
6317                 break;
6318         }
6319         case KVM_HAS_DEVICE_ATTR:
6320         case KVM_GET_DEVICE_ATTR:
6321         case KVM_SET_DEVICE_ATTR:
6322                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6323                 break;
6324         default:
6325                 r = -EINVAL;
6326         }
6327 out:
6328         kfree(u.buffer);
6329 out_nofree:
6330         vcpu_put(vcpu);
6331         return r;
6332 }
6333
6334 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6335 {
6336         return VM_FAULT_SIGBUS;
6337 }
6338
6339 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6340 {
6341         int ret;
6342
6343         if (addr > (unsigned int)(-3 * PAGE_SIZE))
6344                 return -EINVAL;
6345         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6346         return ret;
6347 }
6348
6349 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6350                                               u64 ident_addr)
6351 {
6352         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6353 }
6354
6355 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6356                                          unsigned long kvm_nr_mmu_pages)
6357 {
6358         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6359                 return -EINVAL;
6360
6361         mutex_lock(&kvm->slots_lock);
6362
6363         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6364         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6365
6366         mutex_unlock(&kvm->slots_lock);
6367         return 0;
6368 }
6369
6370 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6371 {
6372         struct kvm_pic *pic = kvm->arch.vpic;
6373         int r;
6374
6375         r = 0;
6376         switch (chip->chip_id) {
6377         case KVM_IRQCHIP_PIC_MASTER:
6378                 memcpy(&chip->chip.pic, &pic->pics[0],
6379                         sizeof(struct kvm_pic_state));
6380                 break;
6381         case KVM_IRQCHIP_PIC_SLAVE:
6382                 memcpy(&chip->chip.pic, &pic->pics[1],
6383                         sizeof(struct kvm_pic_state));
6384                 break;
6385         case KVM_IRQCHIP_IOAPIC:
6386                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6387                 break;
6388         default:
6389                 r = -EINVAL;
6390                 break;
6391         }
6392         return r;
6393 }
6394
6395 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6396 {
6397         struct kvm_pic *pic = kvm->arch.vpic;
6398         int r;
6399
6400         r = 0;
6401         switch (chip->chip_id) {
6402         case KVM_IRQCHIP_PIC_MASTER:
6403                 spin_lock(&pic->lock);
6404                 memcpy(&pic->pics[0], &chip->chip.pic,
6405                         sizeof(struct kvm_pic_state));
6406                 spin_unlock(&pic->lock);
6407                 break;
6408         case KVM_IRQCHIP_PIC_SLAVE:
6409                 spin_lock(&pic->lock);
6410                 memcpy(&pic->pics[1], &chip->chip.pic,
6411                         sizeof(struct kvm_pic_state));
6412                 spin_unlock(&pic->lock);
6413                 break;
6414         case KVM_IRQCHIP_IOAPIC:
6415                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6416                 break;
6417         default:
6418                 r = -EINVAL;
6419                 break;
6420         }
6421         kvm_pic_update_irq(pic);
6422         return r;
6423 }
6424
6425 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6426 {
6427         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6428
6429         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6430
6431         mutex_lock(&kps->lock);
6432         memcpy(ps, &kps->channels, sizeof(*ps));
6433         mutex_unlock(&kps->lock);
6434         return 0;
6435 }
6436
6437 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6438 {
6439         int i;
6440         struct kvm_pit *pit = kvm->arch.vpit;
6441
6442         mutex_lock(&pit->pit_state.lock);
6443         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6444         for (i = 0; i < 3; i++)
6445                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6446         mutex_unlock(&pit->pit_state.lock);
6447         return 0;
6448 }
6449
6450 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6451 {
6452         mutex_lock(&kvm->arch.vpit->pit_state.lock);
6453         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6454                 sizeof(ps->channels));
6455         ps->flags = kvm->arch.vpit->pit_state.flags;
6456         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6457         memset(&ps->reserved, 0, sizeof(ps->reserved));
6458         return 0;
6459 }
6460
6461 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6462 {
6463         int start = 0;
6464         int i;
6465         u32 prev_legacy, cur_legacy;
6466         struct kvm_pit *pit = kvm->arch.vpit;
6467
6468         mutex_lock(&pit->pit_state.lock);
6469         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6470         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6471         if (!prev_legacy && cur_legacy)
6472                 start = 1;
6473         memcpy(&pit->pit_state.channels, &ps->channels,
6474                sizeof(pit->pit_state.channels));
6475         pit->pit_state.flags = ps->flags;
6476         for (i = 0; i < 3; i++)
6477                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6478                                    start && i == 0);
6479         mutex_unlock(&pit->pit_state.lock);
6480         return 0;
6481 }
6482
6483 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6484                                  struct kvm_reinject_control *control)
6485 {
6486         struct kvm_pit *pit = kvm->arch.vpit;
6487
6488         /* pit->pit_state.lock was overloaded to prevent userspace from getting
6489          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6490          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6491          */
6492         mutex_lock(&pit->pit_state.lock);
6493         kvm_pit_set_reinject(pit, control->pit_reinject);
6494         mutex_unlock(&pit->pit_state.lock);
6495
6496         return 0;
6497 }
6498
6499 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6500 {
6501
6502         /*
6503          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6504          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6505          * on all VM-Exits, thus we only need to kick running vCPUs to force a
6506          * VM-Exit.
6507          */
6508         struct kvm_vcpu *vcpu;
6509         unsigned long i;
6510
6511         if (!kvm_x86_ops.cpu_dirty_log_size)
6512                 return;
6513
6514         kvm_for_each_vcpu(i, vcpu, kvm)
6515                 kvm_vcpu_kick(vcpu);
6516 }
6517
6518 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6519                         bool line_status)
6520 {
6521         if (!irqchip_in_kernel(kvm))
6522                 return -ENXIO;
6523
6524         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6525                                         irq_event->irq, irq_event->level,
6526                                         line_status);
6527         return 0;
6528 }
6529
6530 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6531                             struct kvm_enable_cap *cap)
6532 {
6533         int r;
6534
6535         if (cap->flags)
6536                 return -EINVAL;
6537
6538         switch (cap->cap) {
6539         case KVM_CAP_DISABLE_QUIRKS2:
6540                 r = -EINVAL;
6541                 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6542                         break;
6543                 fallthrough;
6544         case KVM_CAP_DISABLE_QUIRKS:
6545                 kvm->arch.disabled_quirks = cap->args[0];
6546                 r = 0;
6547                 break;
6548         case KVM_CAP_SPLIT_IRQCHIP: {
6549                 mutex_lock(&kvm->lock);
6550                 r = -EINVAL;
6551                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6552                         goto split_irqchip_unlock;
6553                 r = -EEXIST;
6554                 if (irqchip_in_kernel(kvm))
6555                         goto split_irqchip_unlock;
6556                 if (kvm->created_vcpus)
6557                         goto split_irqchip_unlock;
6558                 r = kvm_setup_empty_irq_routing(kvm);
6559                 if (r)
6560                         goto split_irqchip_unlock;
6561                 /* Pairs with irqchip_in_kernel. */
6562                 smp_wmb();
6563                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6564                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6565                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6566                 r = 0;
6567 split_irqchip_unlock:
6568                 mutex_unlock(&kvm->lock);
6569                 break;
6570         }
6571         case KVM_CAP_X2APIC_API:
6572                 r = -EINVAL;
6573                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6574                         break;
6575
6576                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6577                         kvm->arch.x2apic_format = true;
6578                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6579                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
6580
6581                 r = 0;
6582                 break;
6583         case KVM_CAP_X86_DISABLE_EXITS:
6584                 r = -EINVAL;
6585                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6586                         break;
6587
6588                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6589                         kvm->arch.pause_in_guest = true;
6590
6591 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6592                     "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6593
6594                 if (!mitigate_smt_rsb) {
6595                         if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6596                             (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6597                                 pr_warn_once(SMT_RSB_MSG);
6598
6599                         if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6600                             kvm_can_mwait_in_guest())
6601                                 kvm->arch.mwait_in_guest = true;
6602                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6603                                 kvm->arch.hlt_in_guest = true;
6604                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6605                                 kvm->arch.cstate_in_guest = true;
6606                 }
6607
6608                 r = 0;
6609                 break;
6610         case KVM_CAP_MSR_PLATFORM_INFO:
6611                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6612                 r = 0;
6613                 break;
6614         case KVM_CAP_EXCEPTION_PAYLOAD:
6615                 kvm->arch.exception_payload_enabled = cap->args[0];
6616                 r = 0;
6617                 break;
6618         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6619                 kvm->arch.triple_fault_event = cap->args[0];
6620                 r = 0;
6621                 break;
6622         case KVM_CAP_X86_USER_SPACE_MSR:
6623                 r = -EINVAL;
6624                 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6625                         break;
6626                 kvm->arch.user_space_msr_mask = cap->args[0];
6627                 r = 0;
6628                 break;
6629         case KVM_CAP_X86_BUS_LOCK_EXIT:
6630                 r = -EINVAL;
6631                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6632                         break;
6633
6634                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6635                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6636                         break;
6637
6638                 if (kvm_caps.has_bus_lock_exit &&
6639                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6640                         kvm->arch.bus_lock_detection_enabled = true;
6641                 r = 0;
6642                 break;
6643 #ifdef CONFIG_X86_SGX_KVM
6644         case KVM_CAP_SGX_ATTRIBUTE: {
6645                 unsigned long allowed_attributes = 0;
6646
6647                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6648                 if (r)
6649                         break;
6650
6651                 /* KVM only supports the PROVISIONKEY privileged attribute. */
6652                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6653                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6654                         kvm->arch.sgx_provisioning_allowed = true;
6655                 else
6656                         r = -EINVAL;
6657                 break;
6658         }
6659 #endif
6660         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6661                 r = -EINVAL;
6662                 if (!kvm_x86_ops.vm_copy_enc_context_from)
6663                         break;
6664
6665                 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6666                 break;
6667         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6668                 r = -EINVAL;
6669                 if (!kvm_x86_ops.vm_move_enc_context_from)
6670                         break;
6671
6672                 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6673                 break;
6674         case KVM_CAP_EXIT_HYPERCALL:
6675                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6676                         r = -EINVAL;
6677                         break;
6678                 }
6679                 kvm->arch.hypercall_exit_enabled = cap->args[0];
6680                 r = 0;
6681                 break;
6682         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6683                 r = -EINVAL;
6684                 if (cap->args[0] & ~1)
6685                         break;
6686                 kvm->arch.exit_on_emulation_error = cap->args[0];
6687                 r = 0;
6688                 break;
6689         case KVM_CAP_PMU_CAPABILITY:
6690                 r = -EINVAL;
6691                 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6692                         break;
6693
6694                 mutex_lock(&kvm->lock);
6695                 if (!kvm->created_vcpus) {
6696                         kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6697                         r = 0;
6698                 }
6699                 mutex_unlock(&kvm->lock);
6700                 break;
6701         case KVM_CAP_MAX_VCPU_ID:
6702                 r = -EINVAL;
6703                 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6704                         break;
6705
6706                 mutex_lock(&kvm->lock);
6707                 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6708                         r = 0;
6709                 } else if (!kvm->arch.max_vcpu_ids) {
6710                         kvm->arch.max_vcpu_ids = cap->args[0];
6711                         r = 0;
6712                 }
6713                 mutex_unlock(&kvm->lock);
6714                 break;
6715         case KVM_CAP_X86_NOTIFY_VMEXIT:
6716                 r = -EINVAL;
6717                 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6718                         break;
6719                 if (!kvm_caps.has_notify_vmexit)
6720                         break;
6721                 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6722                         break;
6723                 mutex_lock(&kvm->lock);
6724                 if (!kvm->created_vcpus) {
6725                         kvm->arch.notify_window = cap->args[0] >> 32;
6726                         kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6727                         r = 0;
6728                 }
6729                 mutex_unlock(&kvm->lock);
6730                 break;
6731         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6732                 r = -EINVAL;
6733
6734                 /*
6735                  * Since the risk of disabling NX hugepages is a guest crashing
6736                  * the system, ensure the userspace process has permission to
6737                  * reboot the system.
6738                  *
6739                  * Note that unlike the reboot() syscall, the process must have
6740                  * this capability in the root namespace because exposing
6741                  * /dev/kvm into a container does not limit the scope of the
6742                  * iTLB multihit bug to that container. In other words,
6743                  * this must use capable(), not ns_capable().
6744                  */
6745                 if (!capable(CAP_SYS_BOOT)) {
6746                         r = -EPERM;
6747                         break;
6748                 }
6749
6750                 if (cap->args[0])
6751                         break;
6752
6753                 mutex_lock(&kvm->lock);
6754                 if (!kvm->created_vcpus) {
6755                         kvm->arch.disable_nx_huge_pages = true;
6756                         r = 0;
6757                 }
6758                 mutex_unlock(&kvm->lock);
6759                 break;
6760         default:
6761                 r = -EINVAL;
6762                 break;
6763         }
6764         return r;
6765 }
6766
6767 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6768 {
6769         struct kvm_x86_msr_filter *msr_filter;
6770
6771         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6772         if (!msr_filter)
6773                 return NULL;
6774
6775         msr_filter->default_allow = default_allow;
6776         return msr_filter;
6777 }
6778
6779 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6780 {
6781         u32 i;
6782
6783         if (!msr_filter)
6784                 return;
6785
6786         for (i = 0; i < msr_filter->count; i++)
6787                 kfree(msr_filter->ranges[i].bitmap);
6788
6789         kfree(msr_filter);
6790 }
6791
6792 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6793                               struct kvm_msr_filter_range *user_range)
6794 {
6795         unsigned long *bitmap;
6796         size_t bitmap_size;
6797
6798         if (!user_range->nmsrs)
6799                 return 0;
6800
6801         if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6802                 return -EINVAL;
6803
6804         if (!user_range->flags)
6805                 return -EINVAL;
6806
6807         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6808         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6809                 return -EINVAL;
6810
6811         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6812         if (IS_ERR(bitmap))
6813                 return PTR_ERR(bitmap);
6814
6815         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6816                 .flags = user_range->flags,
6817                 .base = user_range->base,
6818                 .nmsrs = user_range->nmsrs,
6819                 .bitmap = bitmap,
6820         };
6821
6822         msr_filter->count++;
6823         return 0;
6824 }
6825
6826 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6827                                        struct kvm_msr_filter *filter)
6828 {
6829         struct kvm_x86_msr_filter *new_filter, *old_filter;
6830         bool default_allow;
6831         bool empty = true;
6832         int r;
6833         u32 i;
6834
6835         if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6836                 return -EINVAL;
6837
6838         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6839                 empty &= !filter->ranges[i].nmsrs;
6840
6841         default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6842         if (empty && !default_allow)
6843                 return -EINVAL;
6844
6845         new_filter = kvm_alloc_msr_filter(default_allow);
6846         if (!new_filter)
6847                 return -ENOMEM;
6848
6849         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6850                 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6851                 if (r) {
6852                         kvm_free_msr_filter(new_filter);
6853                         return r;
6854                 }
6855         }
6856
6857         mutex_lock(&kvm->lock);
6858         old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6859                                          mutex_is_locked(&kvm->lock));
6860         mutex_unlock(&kvm->lock);
6861         synchronize_srcu(&kvm->srcu);
6862
6863         kvm_free_msr_filter(old_filter);
6864
6865         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6866
6867         return 0;
6868 }
6869
6870 #ifdef CONFIG_KVM_COMPAT
6871 /* for KVM_X86_SET_MSR_FILTER */
6872 struct kvm_msr_filter_range_compat {
6873         __u32 flags;
6874         __u32 nmsrs;
6875         __u32 base;
6876         __u32 bitmap;
6877 };
6878
6879 struct kvm_msr_filter_compat {
6880         __u32 flags;
6881         struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6882 };
6883
6884 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6885
6886 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6887                               unsigned long arg)
6888 {
6889         void __user *argp = (void __user *)arg;
6890         struct kvm *kvm = filp->private_data;
6891         long r = -ENOTTY;
6892
6893         switch (ioctl) {
6894         case KVM_X86_SET_MSR_FILTER_COMPAT: {
6895                 struct kvm_msr_filter __user *user_msr_filter = argp;
6896                 struct kvm_msr_filter_compat filter_compat;
6897                 struct kvm_msr_filter filter;
6898                 int i;
6899
6900                 if (copy_from_user(&filter_compat, user_msr_filter,
6901                                    sizeof(filter_compat)))
6902                         return -EFAULT;
6903
6904                 filter.flags = filter_compat.flags;
6905                 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6906                         struct kvm_msr_filter_range_compat *cr;
6907
6908                         cr = &filter_compat.ranges[i];
6909                         filter.ranges[i] = (struct kvm_msr_filter_range) {
6910                                 .flags = cr->flags,
6911                                 .nmsrs = cr->nmsrs,
6912                                 .base = cr->base,
6913                                 .bitmap = (__u8 *)(ulong)cr->bitmap,
6914                         };
6915                 }
6916
6917                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6918                 break;
6919         }
6920         }
6921
6922         return r;
6923 }
6924 #endif
6925
6926 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6927 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6928 {
6929         struct kvm_vcpu *vcpu;
6930         unsigned long i;
6931         int ret = 0;
6932
6933         mutex_lock(&kvm->lock);
6934         kvm_for_each_vcpu(i, vcpu, kvm) {
6935                 if (!vcpu->arch.pv_time.active)
6936                         continue;
6937
6938                 ret = kvm_set_guest_paused(vcpu);
6939                 if (ret) {
6940                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6941                                 vcpu->vcpu_id, ret);
6942                         break;
6943                 }
6944         }
6945         mutex_unlock(&kvm->lock);
6946
6947         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6948 }
6949
6950 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6951 {
6952         switch (state) {
6953         case PM_HIBERNATION_PREPARE:
6954         case PM_SUSPEND_PREPARE:
6955                 return kvm_arch_suspend_notifier(kvm);
6956         }
6957
6958         return NOTIFY_DONE;
6959 }
6960 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6961
6962 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6963 {
6964         struct kvm_clock_data data = { 0 };
6965
6966         get_kvmclock(kvm, &data);
6967         if (copy_to_user(argp, &data, sizeof(data)))
6968                 return -EFAULT;
6969
6970         return 0;
6971 }
6972
6973 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6974 {
6975         struct kvm_arch *ka = &kvm->arch;
6976         struct kvm_clock_data data;
6977         u64 now_raw_ns;
6978
6979         if (copy_from_user(&data, argp, sizeof(data)))
6980                 return -EFAULT;
6981
6982         /*
6983          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6984          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6985          */
6986         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6987                 return -EINVAL;
6988
6989         kvm_hv_request_tsc_page_update(kvm);
6990         kvm_start_pvclock_update(kvm);
6991         pvclock_update_vm_gtod_copy(kvm);
6992
6993         /*
6994          * This pairs with kvm_guest_time_update(): when masterclock is
6995          * in use, we use master_kernel_ns + kvmclock_offset to set
6996          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6997          * is slightly ahead) here we risk going negative on unsigned
6998          * 'system_time' when 'data.clock' is very small.
6999          */
7000         if (data.flags & KVM_CLOCK_REALTIME) {
7001                 u64 now_real_ns = ktime_get_real_ns();
7002
7003                 /*
7004                  * Avoid stepping the kvmclock backwards.
7005                  */
7006                 if (now_real_ns > data.realtime)
7007                         data.clock += now_real_ns - data.realtime;
7008         }
7009
7010         if (ka->use_master_clock)
7011                 now_raw_ns = ka->master_kernel_ns;
7012         else
7013                 now_raw_ns = get_kvmclock_base_ns();
7014         ka->kvmclock_offset = data.clock - now_raw_ns;
7015         kvm_end_pvclock_update(kvm);
7016         return 0;
7017 }
7018
7019 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7020 {
7021         struct kvm *kvm = filp->private_data;
7022         void __user *argp = (void __user *)arg;
7023         int r = -ENOTTY;
7024         /*
7025          * This union makes it completely explicit to gcc-3.x
7026          * that these two variables' stack usage should be
7027          * combined, not added together.
7028          */
7029         union {
7030                 struct kvm_pit_state ps;
7031                 struct kvm_pit_state2 ps2;
7032                 struct kvm_pit_config pit_config;
7033         } u;
7034
7035         switch (ioctl) {
7036         case KVM_SET_TSS_ADDR:
7037                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7038                 break;
7039         case KVM_SET_IDENTITY_MAP_ADDR: {
7040                 u64 ident_addr;
7041
7042                 mutex_lock(&kvm->lock);
7043                 r = -EINVAL;
7044                 if (kvm->created_vcpus)
7045                         goto set_identity_unlock;
7046                 r = -EFAULT;
7047                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7048                         goto set_identity_unlock;
7049                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7050 set_identity_unlock:
7051                 mutex_unlock(&kvm->lock);
7052                 break;
7053         }
7054         case KVM_SET_NR_MMU_PAGES:
7055                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7056                 break;
7057         case KVM_CREATE_IRQCHIP: {
7058                 mutex_lock(&kvm->lock);
7059
7060                 r = -EEXIST;
7061                 if (irqchip_in_kernel(kvm))
7062                         goto create_irqchip_unlock;
7063
7064                 r = -EINVAL;
7065                 if (kvm->created_vcpus)
7066                         goto create_irqchip_unlock;
7067
7068                 r = kvm_pic_init(kvm);
7069                 if (r)
7070                         goto create_irqchip_unlock;
7071
7072                 r = kvm_ioapic_init(kvm);
7073                 if (r) {
7074                         kvm_pic_destroy(kvm);
7075                         goto create_irqchip_unlock;
7076                 }
7077
7078                 r = kvm_setup_default_irq_routing(kvm);
7079                 if (r) {
7080                         kvm_ioapic_destroy(kvm);
7081                         kvm_pic_destroy(kvm);
7082                         goto create_irqchip_unlock;
7083                 }
7084                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7085                 smp_wmb();
7086                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7087                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7088         create_irqchip_unlock:
7089                 mutex_unlock(&kvm->lock);
7090                 break;
7091         }
7092         case KVM_CREATE_PIT:
7093                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7094                 goto create_pit;
7095         case KVM_CREATE_PIT2:
7096                 r = -EFAULT;
7097                 if (copy_from_user(&u.pit_config, argp,
7098                                    sizeof(struct kvm_pit_config)))
7099                         goto out;
7100         create_pit:
7101                 mutex_lock(&kvm->lock);
7102                 r = -EEXIST;
7103                 if (kvm->arch.vpit)
7104                         goto create_pit_unlock;
7105                 r = -ENOENT;
7106                 if (!pic_in_kernel(kvm))
7107                         goto create_pit_unlock;
7108                 r = -ENOMEM;
7109                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7110                 if (kvm->arch.vpit)
7111                         r = 0;
7112         create_pit_unlock:
7113                 mutex_unlock(&kvm->lock);
7114                 break;
7115         case KVM_GET_IRQCHIP: {
7116                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7117                 struct kvm_irqchip *chip;
7118
7119                 chip = memdup_user(argp, sizeof(*chip));
7120                 if (IS_ERR(chip)) {
7121                         r = PTR_ERR(chip);
7122                         goto out;
7123                 }
7124
7125                 r = -ENXIO;
7126                 if (!irqchip_kernel(kvm))
7127                         goto get_irqchip_out;
7128                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7129                 if (r)
7130                         goto get_irqchip_out;
7131                 r = -EFAULT;
7132                 if (copy_to_user(argp, chip, sizeof(*chip)))
7133                         goto get_irqchip_out;
7134                 r = 0;
7135         get_irqchip_out:
7136                 kfree(chip);
7137                 break;
7138         }
7139         case KVM_SET_IRQCHIP: {
7140                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7141                 struct kvm_irqchip *chip;
7142
7143                 chip = memdup_user(argp, sizeof(*chip));
7144                 if (IS_ERR(chip)) {
7145                         r = PTR_ERR(chip);
7146                         goto out;
7147                 }
7148
7149                 r = -ENXIO;
7150                 if (!irqchip_kernel(kvm))
7151                         goto set_irqchip_out;
7152                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7153         set_irqchip_out:
7154                 kfree(chip);
7155                 break;
7156         }
7157         case KVM_GET_PIT: {
7158                 r = -EFAULT;
7159                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7160                         goto out;
7161                 r = -ENXIO;
7162                 if (!kvm->arch.vpit)
7163                         goto out;
7164                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7165                 if (r)
7166                         goto out;
7167                 r = -EFAULT;
7168                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7169                         goto out;
7170                 r = 0;
7171                 break;
7172         }
7173         case KVM_SET_PIT: {
7174                 r = -EFAULT;
7175                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7176                         goto out;
7177                 mutex_lock(&kvm->lock);
7178                 r = -ENXIO;
7179                 if (!kvm->arch.vpit)
7180                         goto set_pit_out;
7181                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7182 set_pit_out:
7183                 mutex_unlock(&kvm->lock);
7184                 break;
7185         }
7186         case KVM_GET_PIT2: {
7187                 r = -ENXIO;
7188                 if (!kvm->arch.vpit)
7189                         goto out;
7190                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7191                 if (r)
7192                         goto out;
7193                 r = -EFAULT;
7194                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7195                         goto out;
7196                 r = 0;
7197                 break;
7198         }
7199         case KVM_SET_PIT2: {
7200                 r = -EFAULT;
7201                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7202                         goto out;
7203                 mutex_lock(&kvm->lock);
7204                 r = -ENXIO;
7205                 if (!kvm->arch.vpit)
7206                         goto set_pit2_out;
7207                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7208 set_pit2_out:
7209                 mutex_unlock(&kvm->lock);
7210                 break;
7211         }
7212         case KVM_REINJECT_CONTROL: {
7213                 struct kvm_reinject_control control;
7214                 r =  -EFAULT;
7215                 if (copy_from_user(&control, argp, sizeof(control)))
7216                         goto out;
7217                 r = -ENXIO;
7218                 if (!kvm->arch.vpit)
7219                         goto out;
7220                 r = kvm_vm_ioctl_reinject(kvm, &control);
7221                 break;
7222         }
7223         case KVM_SET_BOOT_CPU_ID:
7224                 r = 0;
7225                 mutex_lock(&kvm->lock);
7226                 if (kvm->created_vcpus)
7227                         r = -EBUSY;
7228                 else
7229                         kvm->arch.bsp_vcpu_id = arg;
7230                 mutex_unlock(&kvm->lock);
7231                 break;
7232 #ifdef CONFIG_KVM_XEN
7233         case KVM_XEN_HVM_CONFIG: {
7234                 struct kvm_xen_hvm_config xhc;
7235                 r = -EFAULT;
7236                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7237                         goto out;
7238                 r = kvm_xen_hvm_config(kvm, &xhc);
7239                 break;
7240         }
7241         case KVM_XEN_HVM_GET_ATTR: {
7242                 struct kvm_xen_hvm_attr xha;
7243
7244                 r = -EFAULT;
7245                 if (copy_from_user(&xha, argp, sizeof(xha)))
7246                         goto out;
7247                 r = kvm_xen_hvm_get_attr(kvm, &xha);
7248                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7249                         r = -EFAULT;
7250                 break;
7251         }
7252         case KVM_XEN_HVM_SET_ATTR: {
7253                 struct kvm_xen_hvm_attr xha;
7254
7255                 r = -EFAULT;
7256                 if (copy_from_user(&xha, argp, sizeof(xha)))
7257                         goto out;
7258                 r = kvm_xen_hvm_set_attr(kvm, &xha);
7259                 break;
7260         }
7261         case KVM_XEN_HVM_EVTCHN_SEND: {
7262                 struct kvm_irq_routing_xen_evtchn uxe;
7263
7264                 r = -EFAULT;
7265                 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7266                         goto out;
7267                 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7268                 break;
7269         }
7270 #endif
7271         case KVM_SET_CLOCK:
7272                 r = kvm_vm_ioctl_set_clock(kvm, argp);
7273                 break;
7274         case KVM_GET_CLOCK:
7275                 r = kvm_vm_ioctl_get_clock(kvm, argp);
7276                 break;
7277         case KVM_SET_TSC_KHZ: {
7278                 u32 user_tsc_khz;
7279
7280                 r = -EINVAL;
7281                 user_tsc_khz = (u32)arg;
7282
7283                 if (kvm_caps.has_tsc_control &&
7284                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7285                         goto out;
7286
7287                 if (user_tsc_khz == 0)
7288                         user_tsc_khz = tsc_khz;
7289
7290                 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7291                 r = 0;
7292
7293                 goto out;
7294         }
7295         case KVM_GET_TSC_KHZ: {
7296                 r = READ_ONCE(kvm->arch.default_tsc_khz);
7297                 goto out;
7298         }
7299         case KVM_MEMORY_ENCRYPT_OP: {
7300                 r = -ENOTTY;
7301                 if (!kvm_x86_ops.mem_enc_ioctl)
7302                         goto out;
7303
7304                 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7305                 break;
7306         }
7307         case KVM_MEMORY_ENCRYPT_REG_REGION: {
7308                 struct kvm_enc_region region;
7309
7310                 r = -EFAULT;
7311                 if (copy_from_user(&region, argp, sizeof(region)))
7312                         goto out;
7313
7314                 r = -ENOTTY;
7315                 if (!kvm_x86_ops.mem_enc_register_region)
7316                         goto out;
7317
7318                 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7319                 break;
7320         }
7321         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7322                 struct kvm_enc_region region;
7323
7324                 r = -EFAULT;
7325                 if (copy_from_user(&region, argp, sizeof(region)))
7326                         goto out;
7327
7328                 r = -ENOTTY;
7329                 if (!kvm_x86_ops.mem_enc_unregister_region)
7330                         goto out;
7331
7332                 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7333                 break;
7334         }
7335 #ifdef CONFIG_KVM_HYPERV
7336         case KVM_HYPERV_EVENTFD: {
7337                 struct kvm_hyperv_eventfd hvevfd;
7338
7339                 r = -EFAULT;
7340                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7341                         goto out;
7342                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7343                 break;
7344         }
7345 #endif
7346         case KVM_SET_PMU_EVENT_FILTER:
7347                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7348                 break;
7349         case KVM_X86_SET_MSR_FILTER: {
7350                 struct kvm_msr_filter __user *user_msr_filter = argp;
7351                 struct kvm_msr_filter filter;
7352
7353                 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7354                         return -EFAULT;
7355
7356                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7357                 break;
7358         }
7359         default:
7360                 r = -ENOTTY;
7361         }
7362 out:
7363         return r;
7364 }
7365
7366 static void kvm_probe_feature_msr(u32 msr_index)
7367 {
7368         struct kvm_msr_entry msr = {
7369                 .index = msr_index,
7370         };
7371
7372         if (kvm_get_msr_feature(&msr))
7373                 return;
7374
7375         msr_based_features[num_msr_based_features++] = msr_index;
7376 }
7377
7378 static void kvm_probe_msr_to_save(u32 msr_index)
7379 {
7380         u32 dummy[2];
7381
7382         if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7383                 return;
7384
7385         /*
7386          * Even MSRs that are valid in the host may not be exposed to guests in
7387          * some cases.
7388          */
7389         switch (msr_index) {
7390         case MSR_IA32_BNDCFGS:
7391                 if (!kvm_mpx_supported())
7392                         return;
7393                 break;
7394         case MSR_TSC_AUX:
7395                 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7396                     !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7397                         return;
7398                 break;
7399         case MSR_IA32_UMWAIT_CONTROL:
7400                 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7401                         return;
7402                 break;
7403         case MSR_IA32_RTIT_CTL:
7404         case MSR_IA32_RTIT_STATUS:
7405                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7406                         return;
7407                 break;
7408         case MSR_IA32_RTIT_CR3_MATCH:
7409                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7410                     !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7411                         return;
7412                 break;
7413         case MSR_IA32_RTIT_OUTPUT_BASE:
7414         case MSR_IA32_RTIT_OUTPUT_MASK:
7415                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7416                     (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7417                      !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7418                         return;
7419                 break;
7420         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7421                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7422                     (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7423                      intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7424                         return;
7425                 break;
7426         case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7427                 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7428                     kvm_pmu_cap.num_counters_gp)
7429                         return;
7430                 break;
7431         case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7432                 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7433                     kvm_pmu_cap.num_counters_gp)
7434                         return;
7435                 break;
7436         case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7437                 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7438                     kvm_pmu_cap.num_counters_fixed)
7439                         return;
7440                 break;
7441         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7442         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7443         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7444                 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7445                         return;
7446                 break;
7447         case MSR_IA32_XFD:
7448         case MSR_IA32_XFD_ERR:
7449                 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7450                         return;
7451                 break;
7452         case MSR_IA32_TSX_CTRL:
7453                 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7454                         return;
7455                 break;
7456         default:
7457                 break;
7458         }
7459
7460         msrs_to_save[num_msrs_to_save++] = msr_index;
7461 }
7462
7463 static void kvm_init_msr_lists(void)
7464 {
7465         unsigned i;
7466
7467         BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7468                          "Please update the fixed PMCs in msrs_to_save_pmu[]");
7469
7470         num_msrs_to_save = 0;
7471         num_emulated_msrs = 0;
7472         num_msr_based_features = 0;
7473
7474         for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7475                 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7476
7477         if (enable_pmu) {
7478                 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7479                         kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7480         }
7481
7482         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7483                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7484                         continue;
7485
7486                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7487         }
7488
7489         for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7490                 kvm_probe_feature_msr(i);
7491
7492         for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7493                 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7494 }
7495
7496 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7497                            const void *v)
7498 {
7499         int handled = 0;
7500         int n;
7501
7502         do {
7503                 n = min(len, 8);
7504                 if (!(lapic_in_kernel(vcpu) &&
7505                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7506                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7507                         break;
7508                 handled += n;
7509                 addr += n;
7510                 len -= n;
7511                 v += n;
7512         } while (len);
7513
7514         return handled;
7515 }
7516
7517 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7518 {
7519         int handled = 0;
7520         int n;
7521
7522         do {
7523                 n = min(len, 8);
7524                 if (!(lapic_in_kernel(vcpu) &&
7525                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7526                                          addr, n, v))
7527                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7528                         break;
7529                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7530                 handled += n;
7531                 addr += n;
7532                 len -= n;
7533                 v += n;
7534         } while (len);
7535
7536         return handled;
7537 }
7538
7539 void kvm_set_segment(struct kvm_vcpu *vcpu,
7540                      struct kvm_segment *var, int seg)
7541 {
7542         static_call(kvm_x86_set_segment)(vcpu, var, seg);
7543 }
7544
7545 void kvm_get_segment(struct kvm_vcpu *vcpu,
7546                      struct kvm_segment *var, int seg)
7547 {
7548         static_call(kvm_x86_get_segment)(vcpu, var, seg);
7549 }
7550
7551 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7552                            struct x86_exception *exception)
7553 {
7554         struct kvm_mmu *mmu = vcpu->arch.mmu;
7555         gpa_t t_gpa;
7556
7557         BUG_ON(!mmu_is_nested(vcpu));
7558
7559         /* NPT walks are always user-walks */
7560         access |= PFERR_USER_MASK;
7561         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7562
7563         return t_gpa;
7564 }
7565
7566 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7567                               struct x86_exception *exception)
7568 {
7569         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7570
7571         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7572         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7573 }
7574 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7575
7576 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7577                                struct x86_exception *exception)
7578 {
7579         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7580
7581         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7582         access |= PFERR_WRITE_MASK;
7583         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7584 }
7585 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7586
7587 /* uses this to access any guest's mapped memory without checking CPL */
7588 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7589                                 struct x86_exception *exception)
7590 {
7591         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7592
7593         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7594 }
7595
7596 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7597                                       struct kvm_vcpu *vcpu, u64 access,
7598                                       struct x86_exception *exception)
7599 {
7600         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7601         void *data = val;
7602         int r = X86EMUL_CONTINUE;
7603
7604         while (bytes) {
7605                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7606                 unsigned offset = addr & (PAGE_SIZE-1);
7607                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7608                 int ret;
7609
7610                 if (gpa == INVALID_GPA)
7611                         return X86EMUL_PROPAGATE_FAULT;
7612                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7613                                                offset, toread);
7614                 if (ret < 0) {
7615                         r = X86EMUL_IO_NEEDED;
7616                         goto out;
7617                 }
7618
7619                 bytes -= toread;
7620                 data += toread;
7621                 addr += toread;
7622         }
7623 out:
7624         return r;
7625 }
7626
7627 /* used for instruction fetching */
7628 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7629                                 gva_t addr, void *val, unsigned int bytes,
7630                                 struct x86_exception *exception)
7631 {
7632         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7633         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7634         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7635         unsigned offset;
7636         int ret;
7637
7638         /* Inline kvm_read_guest_virt_helper for speed.  */
7639         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7640                                     exception);
7641         if (unlikely(gpa == INVALID_GPA))
7642                 return X86EMUL_PROPAGATE_FAULT;
7643
7644         offset = addr & (PAGE_SIZE-1);
7645         if (WARN_ON(offset + bytes > PAGE_SIZE))
7646                 bytes = (unsigned)PAGE_SIZE - offset;
7647         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7648                                        offset, bytes);
7649         if (unlikely(ret < 0))
7650                 return X86EMUL_IO_NEEDED;
7651
7652         return X86EMUL_CONTINUE;
7653 }
7654
7655 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7656                                gva_t addr, void *val, unsigned int bytes,
7657                                struct x86_exception *exception)
7658 {
7659         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7660
7661         /*
7662          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7663          * is returned, but our callers are not ready for that and they blindly
7664          * call kvm_inject_page_fault.  Ensure that they at least do not leak
7665          * uninitialized kernel stack memory into cr2 and error code.
7666          */
7667         memset(exception, 0, sizeof(*exception));
7668         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7669                                           exception);
7670 }
7671 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7672
7673 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7674                              gva_t addr, void *val, unsigned int bytes,
7675                              struct x86_exception *exception, bool system)
7676 {
7677         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7678         u64 access = 0;
7679
7680         if (system)
7681                 access |= PFERR_IMPLICIT_ACCESS;
7682         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7683                 access |= PFERR_USER_MASK;
7684
7685         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7686 }
7687
7688 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7689                                       struct kvm_vcpu *vcpu, u64 access,
7690                                       struct x86_exception *exception)
7691 {
7692         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7693         void *data = val;
7694         int r = X86EMUL_CONTINUE;
7695
7696         while (bytes) {
7697                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7698                 unsigned offset = addr & (PAGE_SIZE-1);
7699                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7700                 int ret;
7701
7702                 if (gpa == INVALID_GPA)
7703                         return X86EMUL_PROPAGATE_FAULT;
7704                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7705                 if (ret < 0) {
7706                         r = X86EMUL_IO_NEEDED;
7707                         goto out;
7708                 }
7709
7710                 bytes -= towrite;
7711                 data += towrite;
7712                 addr += towrite;
7713         }
7714 out:
7715         return r;
7716 }
7717
7718 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7719                               unsigned int bytes, struct x86_exception *exception,
7720                               bool system)
7721 {
7722         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7723         u64 access = PFERR_WRITE_MASK;
7724
7725         if (system)
7726                 access |= PFERR_IMPLICIT_ACCESS;
7727         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7728                 access |= PFERR_USER_MASK;
7729
7730         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7731                                            access, exception);
7732 }
7733
7734 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7735                                 unsigned int bytes, struct x86_exception *exception)
7736 {
7737         /* kvm_write_guest_virt_system can pull in tons of pages. */
7738         vcpu->arch.l1tf_flush_l1d = true;
7739
7740         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7741                                            PFERR_WRITE_MASK, exception);
7742 }
7743 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7744
7745 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7746                                   void *insn, int insn_len)
7747 {
7748         return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type,
7749                                                               insn, insn_len);
7750 }
7751
7752 int handle_ud(struct kvm_vcpu *vcpu)
7753 {
7754         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7755         int fep_flags = READ_ONCE(force_emulation_prefix);
7756         int emul_type = EMULTYPE_TRAP_UD;
7757         char sig[5]; /* ud2; .ascii "kvm" */
7758         struct x86_exception e;
7759         int r;
7760
7761         r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7762         if (r != X86EMUL_CONTINUE)
7763                 return 1;
7764
7765         if (fep_flags &&
7766             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7767                                 sig, sizeof(sig), &e) == 0 &&
7768             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7769                 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7770                         kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7771                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7772                 emul_type = EMULTYPE_TRAP_UD_FORCED;
7773         }
7774
7775         return kvm_emulate_instruction(vcpu, emul_type);
7776 }
7777 EXPORT_SYMBOL_GPL(handle_ud);
7778
7779 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7780                             gpa_t gpa, bool write)
7781 {
7782         /* For APIC access vmexit */
7783         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7784                 return 1;
7785
7786         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7787                 trace_vcpu_match_mmio(gva, gpa, write, true);
7788                 return 1;
7789         }
7790
7791         return 0;
7792 }
7793
7794 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7795                                 gpa_t *gpa, struct x86_exception *exception,
7796                                 bool write)
7797 {
7798         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7799         u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7800                 | (write ? PFERR_WRITE_MASK : 0);
7801
7802         /*
7803          * currently PKRU is only applied to ept enabled guest so
7804          * there is no pkey in EPT page table for L1 guest or EPT
7805          * shadow page table for L2 guest.
7806          */
7807         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7808             !permission_fault(vcpu, vcpu->arch.walk_mmu,
7809                               vcpu->arch.mmio_access, 0, access))) {
7810                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7811                                         (gva & (PAGE_SIZE - 1));
7812                 trace_vcpu_match_mmio(gva, *gpa, write, false);
7813                 return 1;
7814         }
7815
7816         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7817
7818         if (*gpa == INVALID_GPA)
7819                 return -1;
7820
7821         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7822 }
7823
7824 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7825                         const void *val, int bytes)
7826 {
7827         int ret;
7828
7829         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7830         if (ret < 0)
7831                 return 0;
7832         kvm_page_track_write(vcpu, gpa, val, bytes);
7833         return 1;
7834 }
7835
7836 struct read_write_emulator_ops {
7837         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7838                                   int bytes);
7839         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7840                                   void *val, int bytes);
7841         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7842                                int bytes, void *val);
7843         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7844                                     void *val, int bytes);
7845         bool write;
7846 };
7847
7848 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7849 {
7850         if (vcpu->mmio_read_completed) {
7851                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7852                                vcpu->mmio_fragments[0].gpa, val);
7853                 vcpu->mmio_read_completed = 0;
7854                 return 1;
7855         }
7856
7857         return 0;
7858 }
7859
7860 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7861                         void *val, int bytes)
7862 {
7863         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7864 }
7865
7866 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7867                          void *val, int bytes)
7868 {
7869         return emulator_write_phys(vcpu, gpa, val, bytes);
7870 }
7871
7872 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7873 {
7874         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7875         return vcpu_mmio_write(vcpu, gpa, bytes, val);
7876 }
7877
7878 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7879                           void *val, int bytes)
7880 {
7881         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7882         return X86EMUL_IO_NEEDED;
7883 }
7884
7885 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7886                            void *val, int bytes)
7887 {
7888         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7889
7890         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7891         return X86EMUL_CONTINUE;
7892 }
7893
7894 static const struct read_write_emulator_ops read_emultor = {
7895         .read_write_prepare = read_prepare,
7896         .read_write_emulate = read_emulate,
7897         .read_write_mmio = vcpu_mmio_read,
7898         .read_write_exit_mmio = read_exit_mmio,
7899 };
7900
7901 static const struct read_write_emulator_ops write_emultor = {
7902         .read_write_emulate = write_emulate,
7903         .read_write_mmio = write_mmio,
7904         .read_write_exit_mmio = write_exit_mmio,
7905         .write = true,
7906 };
7907
7908 static int emulator_read_write_onepage(unsigned long addr, void *val,
7909                                        unsigned int bytes,
7910                                        struct x86_exception *exception,
7911                                        struct kvm_vcpu *vcpu,
7912                                        const struct read_write_emulator_ops *ops)
7913 {
7914         gpa_t gpa;
7915         int handled, ret;
7916         bool write = ops->write;
7917         struct kvm_mmio_fragment *frag;
7918         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7919
7920         /*
7921          * If the exit was due to a NPF we may already have a GPA.
7922          * If the GPA is present, use it to avoid the GVA to GPA table walk.
7923          * Note, this cannot be used on string operations since string
7924          * operation using rep will only have the initial GPA from the NPF
7925          * occurred.
7926          */
7927         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7928             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7929                 gpa = ctxt->gpa_val;
7930                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7931         } else {
7932                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7933                 if (ret < 0)
7934                         return X86EMUL_PROPAGATE_FAULT;
7935         }
7936
7937         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7938                 return X86EMUL_CONTINUE;
7939
7940         /*
7941          * Is this MMIO handled locally?
7942          */
7943         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7944         if (handled == bytes)
7945                 return X86EMUL_CONTINUE;
7946
7947         gpa += handled;
7948         bytes -= handled;
7949         val += handled;
7950
7951         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7952         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7953         frag->gpa = gpa;
7954         frag->data = val;
7955         frag->len = bytes;
7956         return X86EMUL_CONTINUE;
7957 }
7958
7959 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7960                         unsigned long addr,
7961                         void *val, unsigned int bytes,
7962                         struct x86_exception *exception,
7963                         const struct read_write_emulator_ops *ops)
7964 {
7965         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7966         gpa_t gpa;
7967         int rc;
7968
7969         if (ops->read_write_prepare &&
7970                   ops->read_write_prepare(vcpu, val, bytes))
7971                 return X86EMUL_CONTINUE;
7972
7973         vcpu->mmio_nr_fragments = 0;
7974
7975         /* Crossing a page boundary? */
7976         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7977                 int now;
7978
7979                 now = -addr & ~PAGE_MASK;
7980                 rc = emulator_read_write_onepage(addr, val, now, exception,
7981                                                  vcpu, ops);
7982
7983                 if (rc != X86EMUL_CONTINUE)
7984                         return rc;
7985                 addr += now;
7986                 if (ctxt->mode != X86EMUL_MODE_PROT64)
7987                         addr = (u32)addr;
7988                 val += now;
7989                 bytes -= now;
7990         }
7991
7992         rc = emulator_read_write_onepage(addr, val, bytes, exception,
7993                                          vcpu, ops);
7994         if (rc != X86EMUL_CONTINUE)
7995                 return rc;
7996
7997         if (!vcpu->mmio_nr_fragments)
7998                 return rc;
7999
8000         gpa = vcpu->mmio_fragments[0].gpa;
8001
8002         vcpu->mmio_needed = 1;
8003         vcpu->mmio_cur_fragment = 0;
8004
8005         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
8006         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
8007         vcpu->run->exit_reason = KVM_EXIT_MMIO;
8008         vcpu->run->mmio.phys_addr = gpa;
8009
8010         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8011 }
8012
8013 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8014                                   unsigned long addr,
8015                                   void *val,
8016                                   unsigned int bytes,
8017                                   struct x86_exception *exception)
8018 {
8019         return emulator_read_write(ctxt, addr, val, bytes,
8020                                    exception, &read_emultor);
8021 }
8022
8023 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8024                             unsigned long addr,
8025                             const void *val,
8026                             unsigned int bytes,
8027                             struct x86_exception *exception)
8028 {
8029         return emulator_read_write(ctxt, addr, (void *)val, bytes,
8030                                    exception, &write_emultor);
8031 }
8032
8033 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8034         (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8035
8036 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8037                                      unsigned long addr,
8038                                      const void *old,
8039                                      const void *new,
8040                                      unsigned int bytes,
8041                                      struct x86_exception *exception)
8042 {
8043         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8044         u64 page_line_mask;
8045         unsigned long hva;
8046         gpa_t gpa;
8047         int r;
8048
8049         /* guests cmpxchg8b have to be emulated atomically */
8050         if (bytes > 8 || (bytes & (bytes - 1)))
8051                 goto emul_write;
8052
8053         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8054
8055         if (gpa == INVALID_GPA ||
8056             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8057                 goto emul_write;
8058
8059         /*
8060          * Emulate the atomic as a straight write to avoid #AC if SLD is
8061          * enabled in the host and the access splits a cache line.
8062          */
8063         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8064                 page_line_mask = ~(cache_line_size() - 1);
8065         else
8066                 page_line_mask = PAGE_MASK;
8067
8068         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8069                 goto emul_write;
8070
8071         hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8072         if (kvm_is_error_hva(hva))
8073                 goto emul_write;
8074
8075         hva += offset_in_page(gpa);
8076
8077         switch (bytes) {
8078         case 1:
8079                 r = emulator_try_cmpxchg_user(u8, hva, old, new);
8080                 break;
8081         case 2:
8082                 r = emulator_try_cmpxchg_user(u16, hva, old, new);
8083                 break;
8084         case 4:
8085                 r = emulator_try_cmpxchg_user(u32, hva, old, new);
8086                 break;
8087         case 8:
8088                 r = emulator_try_cmpxchg_user(u64, hva, old, new);
8089                 break;
8090         default:
8091                 BUG();
8092         }
8093
8094         if (r < 0)
8095                 return X86EMUL_UNHANDLEABLE;
8096
8097         /*
8098          * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8099          * successful, as the old value is written back on failure.  Note, for
8100          * live migration, this is unnecessarily conservative as CMPXCHG writes
8101          * back the original value and the access is atomic, but KVM's ABI is
8102          * that all writes are dirty logged, regardless of the value written.
8103          */
8104         kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8105
8106         if (r)
8107                 return X86EMUL_CMPXCHG_FAILED;
8108
8109         kvm_page_track_write(vcpu, gpa, new, bytes);
8110
8111         return X86EMUL_CONTINUE;
8112
8113 emul_write:
8114         pr_warn_once("emulating exchange as write\n");
8115
8116         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8117 }
8118
8119 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8120                                unsigned short port, void *data,
8121                                unsigned int count, bool in)
8122 {
8123         unsigned i;
8124         int r;
8125
8126         WARN_ON_ONCE(vcpu->arch.pio.count);
8127         for (i = 0; i < count; i++) {
8128                 if (in)
8129                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8130                 else
8131                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8132
8133                 if (r) {
8134                         if (i == 0)
8135                                 goto userspace_io;
8136
8137                         /*
8138                          * Userspace must have unregistered the device while PIO
8139                          * was running.  Drop writes / read as 0.
8140                          */
8141                         if (in)
8142                                 memset(data, 0, size * (count - i));
8143                         break;
8144                 }
8145
8146                 data += size;
8147         }
8148         return 1;
8149
8150 userspace_io:
8151         vcpu->arch.pio.port = port;
8152         vcpu->arch.pio.in = in;
8153         vcpu->arch.pio.count = count;
8154         vcpu->arch.pio.size = size;
8155
8156         if (in)
8157                 memset(vcpu->arch.pio_data, 0, size * count);
8158         else
8159                 memcpy(vcpu->arch.pio_data, data, size * count);
8160
8161         vcpu->run->exit_reason = KVM_EXIT_IO;
8162         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8163         vcpu->run->io.size = size;
8164         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8165         vcpu->run->io.count = count;
8166         vcpu->run->io.port = port;
8167         return 0;
8168 }
8169
8170 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8171                            unsigned short port, void *val, unsigned int count)
8172 {
8173         int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8174         if (r)
8175                 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8176
8177         return r;
8178 }
8179
8180 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8181 {
8182         int size = vcpu->arch.pio.size;
8183         unsigned int count = vcpu->arch.pio.count;
8184         memcpy(val, vcpu->arch.pio_data, size * count);
8185         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8186         vcpu->arch.pio.count = 0;
8187 }
8188
8189 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8190                                     int size, unsigned short port, void *val,
8191                                     unsigned int count)
8192 {
8193         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8194         if (vcpu->arch.pio.count) {
8195                 /*
8196                  * Complete a previous iteration that required userspace I/O.
8197                  * Note, @count isn't guaranteed to match pio.count as userspace
8198                  * can modify ECX before rerunning the vCPU.  Ignore any such
8199                  * shenanigans as KVM doesn't support modifying the rep count,
8200                  * and the emulator ensures @count doesn't overflow the buffer.
8201                  */
8202                 complete_emulator_pio_in(vcpu, val);
8203                 return 1;
8204         }
8205
8206         return emulator_pio_in(vcpu, size, port, val, count);
8207 }
8208
8209 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8210                             unsigned short port, const void *val,
8211                             unsigned int count)
8212 {
8213         trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8214         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8215 }
8216
8217 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8218                                      int size, unsigned short port,
8219                                      const void *val, unsigned int count)
8220 {
8221         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8222 }
8223
8224 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8225 {
8226         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
8227 }
8228
8229 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8230 {
8231         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8232 }
8233
8234 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8235 {
8236         if (!need_emulate_wbinvd(vcpu))
8237                 return X86EMUL_CONTINUE;
8238
8239         if (static_call(kvm_x86_has_wbinvd_exit)()) {
8240                 int cpu = get_cpu();
8241
8242                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8243                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8244                                 wbinvd_ipi, NULL, 1);
8245                 put_cpu();
8246                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8247         } else
8248                 wbinvd();
8249         return X86EMUL_CONTINUE;
8250 }
8251
8252 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8253 {
8254         kvm_emulate_wbinvd_noskip(vcpu);
8255         return kvm_skip_emulated_instruction(vcpu);
8256 }
8257 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8258
8259
8260
8261 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8262 {
8263         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8264 }
8265
8266 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8267 {
8268         return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8269 }
8270
8271 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8272                            unsigned long value)
8273 {
8274
8275         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8276 }
8277
8278 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8279 {
8280         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8281 }
8282
8283 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8284 {
8285         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8286         unsigned long value;
8287
8288         switch (cr) {
8289         case 0:
8290                 value = kvm_read_cr0(vcpu);
8291                 break;
8292         case 2:
8293                 value = vcpu->arch.cr2;
8294                 break;
8295         case 3:
8296                 value = kvm_read_cr3(vcpu);
8297                 break;
8298         case 4:
8299                 value = kvm_read_cr4(vcpu);
8300                 break;
8301         case 8:
8302                 value = kvm_get_cr8(vcpu);
8303                 break;
8304         default:
8305                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8306                 return 0;
8307         }
8308
8309         return value;
8310 }
8311
8312 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8313 {
8314         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8315         int res = 0;
8316
8317         switch (cr) {
8318         case 0:
8319                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8320                 break;
8321         case 2:
8322                 vcpu->arch.cr2 = val;
8323                 break;
8324         case 3:
8325                 res = kvm_set_cr3(vcpu, val);
8326                 break;
8327         case 4:
8328                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8329                 break;
8330         case 8:
8331                 res = kvm_set_cr8(vcpu, val);
8332                 break;
8333         default:
8334                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8335                 res = -1;
8336         }
8337
8338         return res;
8339 }
8340
8341 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8342 {
8343         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8344 }
8345
8346 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8347 {
8348         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8349 }
8350
8351 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8352 {
8353         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8354 }
8355
8356 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8357 {
8358         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8359 }
8360
8361 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8362 {
8363         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8364 }
8365
8366 static unsigned long emulator_get_cached_segment_base(
8367         struct x86_emulate_ctxt *ctxt, int seg)
8368 {
8369         return get_segment_base(emul_to_vcpu(ctxt), seg);
8370 }
8371
8372 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8373                                  struct desc_struct *desc, u32 *base3,
8374                                  int seg)
8375 {
8376         struct kvm_segment var;
8377
8378         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8379         *selector = var.selector;
8380
8381         if (var.unusable) {
8382                 memset(desc, 0, sizeof(*desc));
8383                 if (base3)
8384                         *base3 = 0;
8385                 return false;
8386         }
8387
8388         if (var.g)
8389                 var.limit >>= 12;
8390         set_desc_limit(desc, var.limit);
8391         set_desc_base(desc, (unsigned long)var.base);
8392 #ifdef CONFIG_X86_64
8393         if (base3)
8394                 *base3 = var.base >> 32;
8395 #endif
8396         desc->type = var.type;
8397         desc->s = var.s;
8398         desc->dpl = var.dpl;
8399         desc->p = var.present;
8400         desc->avl = var.avl;
8401         desc->l = var.l;
8402         desc->d = var.db;
8403         desc->g = var.g;
8404
8405         return true;
8406 }
8407
8408 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8409                                  struct desc_struct *desc, u32 base3,
8410                                  int seg)
8411 {
8412         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8413         struct kvm_segment var;
8414
8415         var.selector = selector;
8416         var.base = get_desc_base(desc);
8417 #ifdef CONFIG_X86_64
8418         var.base |= ((u64)base3) << 32;
8419 #endif
8420         var.limit = get_desc_limit(desc);
8421         if (desc->g)
8422                 var.limit = (var.limit << 12) | 0xfff;
8423         var.type = desc->type;
8424         var.dpl = desc->dpl;
8425         var.db = desc->d;
8426         var.s = desc->s;
8427         var.l = desc->l;
8428         var.g = desc->g;
8429         var.avl = desc->avl;
8430         var.present = desc->p;
8431         var.unusable = !var.present;
8432         var.padding = 0;
8433
8434         kvm_set_segment(vcpu, &var, seg);
8435         return;
8436 }
8437
8438 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8439                                         u32 msr_index, u64 *pdata)
8440 {
8441         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8442         int r;
8443
8444         r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8445         if (r < 0)
8446                 return X86EMUL_UNHANDLEABLE;
8447
8448         if (r) {
8449                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8450                                        complete_emulated_rdmsr, r))
8451                         return X86EMUL_IO_NEEDED;
8452
8453                 trace_kvm_msr_read_ex(msr_index);
8454                 return X86EMUL_PROPAGATE_FAULT;
8455         }
8456
8457         trace_kvm_msr_read(msr_index, *pdata);
8458         return X86EMUL_CONTINUE;
8459 }
8460
8461 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8462                                         u32 msr_index, u64 data)
8463 {
8464         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8465         int r;
8466
8467         r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8468         if (r < 0)
8469                 return X86EMUL_UNHANDLEABLE;
8470
8471         if (r) {
8472                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8473                                        complete_emulated_msr_access, r))
8474                         return X86EMUL_IO_NEEDED;
8475
8476                 trace_kvm_msr_write_ex(msr_index, data);
8477                 return X86EMUL_PROPAGATE_FAULT;
8478         }
8479
8480         trace_kvm_msr_write(msr_index, data);
8481         return X86EMUL_CONTINUE;
8482 }
8483
8484 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8485                             u32 msr_index, u64 *pdata)
8486 {
8487         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8488 }
8489
8490 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8491 {
8492         return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8493 }
8494
8495 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8496                              u32 pmc, u64 *pdata)
8497 {
8498         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8499 }
8500
8501 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8502 {
8503         emul_to_vcpu(ctxt)->arch.halt_request = 1;
8504 }
8505
8506 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8507                               struct x86_instruction_info *info,
8508                               enum x86_intercept_stage stage)
8509 {
8510         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8511                                             &ctxt->exception);
8512 }
8513
8514 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8515                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8516                               bool exact_only)
8517 {
8518         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8519 }
8520
8521 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8522 {
8523         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8524 }
8525
8526 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8527 {
8528         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8529 }
8530
8531 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8532 {
8533         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8534 }
8535
8536 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8537 {
8538         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8539 }
8540
8541 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8542 {
8543         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8544 }
8545
8546 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8547 {
8548         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8549 }
8550
8551 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8552 {
8553         return is_smm(emul_to_vcpu(ctxt));
8554 }
8555
8556 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8557 {
8558         return is_guest_mode(emul_to_vcpu(ctxt));
8559 }
8560
8561 #ifndef CONFIG_KVM_SMM
8562 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8563 {
8564         WARN_ON_ONCE(1);
8565         return X86EMUL_UNHANDLEABLE;
8566 }
8567 #endif
8568
8569 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8570 {
8571         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8572 }
8573
8574 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8575 {
8576         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8577 }
8578
8579 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8580 {
8581         struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8582
8583         if (!kvm->vm_bugged)
8584                 kvm_vm_bugged(kvm);
8585 }
8586
8587 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8588                                         gva_t addr, unsigned int flags)
8589 {
8590         if (!kvm_x86_ops.get_untagged_addr)
8591                 return addr;
8592
8593         return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags);
8594 }
8595
8596 static const struct x86_emulate_ops emulate_ops = {
8597         .vm_bugged           = emulator_vm_bugged,
8598         .read_gpr            = emulator_read_gpr,
8599         .write_gpr           = emulator_write_gpr,
8600         .read_std            = emulator_read_std,
8601         .write_std           = emulator_write_std,
8602         .fetch               = kvm_fetch_guest_virt,
8603         .read_emulated       = emulator_read_emulated,
8604         .write_emulated      = emulator_write_emulated,
8605         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
8606         .invlpg              = emulator_invlpg,
8607         .pio_in_emulated     = emulator_pio_in_emulated,
8608         .pio_out_emulated    = emulator_pio_out_emulated,
8609         .get_segment         = emulator_get_segment,
8610         .set_segment         = emulator_set_segment,
8611         .get_cached_segment_base = emulator_get_cached_segment_base,
8612         .get_gdt             = emulator_get_gdt,
8613         .get_idt             = emulator_get_idt,
8614         .set_gdt             = emulator_set_gdt,
8615         .set_idt             = emulator_set_idt,
8616         .get_cr              = emulator_get_cr,
8617         .set_cr              = emulator_set_cr,
8618         .cpl                 = emulator_get_cpl,
8619         .get_dr              = emulator_get_dr,
8620         .set_dr              = emulator_set_dr,
8621         .set_msr_with_filter = emulator_set_msr_with_filter,
8622         .get_msr_with_filter = emulator_get_msr_with_filter,
8623         .get_msr             = emulator_get_msr,
8624         .check_rdpmc_early   = emulator_check_rdpmc_early,
8625         .read_pmc            = emulator_read_pmc,
8626         .halt                = emulator_halt,
8627         .wbinvd              = emulator_wbinvd,
8628         .fix_hypercall       = emulator_fix_hypercall,
8629         .intercept           = emulator_intercept,
8630         .get_cpuid           = emulator_get_cpuid,
8631         .guest_has_movbe     = emulator_guest_has_movbe,
8632         .guest_has_fxsr      = emulator_guest_has_fxsr,
8633         .guest_has_rdpid     = emulator_guest_has_rdpid,
8634         .set_nmi_mask        = emulator_set_nmi_mask,
8635         .is_smm              = emulator_is_smm,
8636         .is_guest_mode       = emulator_is_guest_mode,
8637         .leave_smm           = emulator_leave_smm,
8638         .triple_fault        = emulator_triple_fault,
8639         .set_xcr             = emulator_set_xcr,
8640         .get_untagged_addr   = emulator_get_untagged_addr,
8641 };
8642
8643 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8644 {
8645         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8646         /*
8647          * an sti; sti; sequence only disable interrupts for the first
8648          * instruction. So, if the last instruction, be it emulated or
8649          * not, left the system with the INT_STI flag enabled, it
8650          * means that the last instruction is an sti. We should not
8651          * leave the flag on in this case. The same goes for mov ss
8652          */
8653         if (int_shadow & mask)
8654                 mask = 0;
8655         if (unlikely(int_shadow || mask)) {
8656                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8657                 if (!mask)
8658                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8659         }
8660 }
8661
8662 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8663 {
8664         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8665
8666         if (ctxt->exception.vector == PF_VECTOR)
8667                 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8668         else if (ctxt->exception.error_code_valid)
8669                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8670                                       ctxt->exception.error_code);
8671         else
8672                 kvm_queue_exception(vcpu, ctxt->exception.vector);
8673 }
8674
8675 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8676 {
8677         struct x86_emulate_ctxt *ctxt;
8678
8679         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8680         if (!ctxt) {
8681                 pr_err("failed to allocate vcpu's emulator\n");
8682                 return NULL;
8683         }
8684
8685         ctxt->vcpu = vcpu;
8686         ctxt->ops = &emulate_ops;
8687         vcpu->arch.emulate_ctxt = ctxt;
8688
8689         return ctxt;
8690 }
8691
8692 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8693 {
8694         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8695         int cs_db, cs_l;
8696
8697         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8698
8699         ctxt->gpa_available = false;
8700         ctxt->eflags = kvm_get_rflags(vcpu);
8701         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8702
8703         ctxt->eip = kvm_rip_read(vcpu);
8704         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
8705                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
8706                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
8707                      cs_db                              ? X86EMUL_MODE_PROT32 :
8708                                                           X86EMUL_MODE_PROT16;
8709         ctxt->interruptibility = 0;
8710         ctxt->have_exception = false;
8711         ctxt->exception.vector = -1;
8712         ctxt->perm_ok = false;
8713
8714         init_decode_cache(ctxt);
8715         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8716 }
8717
8718 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8719 {
8720         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8721         int ret;
8722
8723         init_emulate_ctxt(vcpu);
8724
8725         ctxt->op_bytes = 2;
8726         ctxt->ad_bytes = 2;
8727         ctxt->_eip = ctxt->eip + inc_eip;
8728         ret = emulate_int_real(ctxt, irq);
8729
8730         if (ret != X86EMUL_CONTINUE) {
8731                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8732         } else {
8733                 ctxt->eip = ctxt->_eip;
8734                 kvm_rip_write(vcpu, ctxt->eip);
8735                 kvm_set_rflags(vcpu, ctxt->eflags);
8736         }
8737 }
8738 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8739
8740 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8741                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
8742 {
8743         struct kvm_run *run = vcpu->run;
8744         u64 info[5];
8745         u8 info_start;
8746
8747         /*
8748          * Zero the whole array used to retrieve the exit info, as casting to
8749          * u32 for select entries will leave some chunks uninitialized.
8750          */
8751         memset(&info, 0, sizeof(info));
8752
8753         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8754                                            &info[2], (u32 *)&info[3],
8755                                            (u32 *)&info[4]);
8756
8757         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8758         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8759
8760         /*
8761          * There's currently space for 13 entries, but 5 are used for the exit
8762          * reason and info.  Restrict to 4 to reduce the maintenance burden
8763          * when expanding kvm_run.emulation_failure in the future.
8764          */
8765         if (WARN_ON_ONCE(ndata > 4))
8766                 ndata = 4;
8767
8768         /* Always include the flags as a 'data' entry. */
8769         info_start = 1;
8770         run->emulation_failure.flags = 0;
8771
8772         if (insn_size) {
8773                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8774                               sizeof(run->emulation_failure.insn_bytes) != 16));
8775                 info_start += 2;
8776                 run->emulation_failure.flags |=
8777                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8778                 run->emulation_failure.insn_size = insn_size;
8779                 memset(run->emulation_failure.insn_bytes, 0x90,
8780                        sizeof(run->emulation_failure.insn_bytes));
8781                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8782         }
8783
8784         memcpy(&run->internal.data[info_start], info, sizeof(info));
8785         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8786                ndata * sizeof(data[0]));
8787
8788         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8789 }
8790
8791 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8792 {
8793         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8794
8795         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8796                                        ctxt->fetch.end - ctxt->fetch.data);
8797 }
8798
8799 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8800                                           u8 ndata)
8801 {
8802         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8803 }
8804 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8805
8806 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8807 {
8808         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8809 }
8810 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8811
8812 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8813 {
8814         struct kvm *kvm = vcpu->kvm;
8815
8816         ++vcpu->stat.insn_emulation_fail;
8817         trace_kvm_emulate_insn_failed(vcpu);
8818
8819         if (emulation_type & EMULTYPE_VMWARE_GP) {
8820                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8821                 return 1;
8822         }
8823
8824         if (kvm->arch.exit_on_emulation_error ||
8825             (emulation_type & EMULTYPE_SKIP)) {
8826                 prepare_emulation_ctxt_failure_exit(vcpu);
8827                 return 0;
8828         }
8829
8830         kvm_queue_exception(vcpu, UD_VECTOR);
8831
8832         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8833                 prepare_emulation_ctxt_failure_exit(vcpu);
8834                 return 0;
8835         }
8836
8837         return 1;
8838 }
8839
8840 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8841                                   int emulation_type)
8842 {
8843         gpa_t gpa = cr2_or_gpa;
8844         kvm_pfn_t pfn;
8845
8846         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8847                 return false;
8848
8849         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8850             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8851                 return false;
8852
8853         if (!vcpu->arch.mmu->root_role.direct) {
8854                 /*
8855                  * Write permission should be allowed since only
8856                  * write access need to be emulated.
8857                  */
8858                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8859
8860                 /*
8861                  * If the mapping is invalid in guest, let cpu retry
8862                  * it to generate fault.
8863                  */
8864                 if (gpa == INVALID_GPA)
8865                         return true;
8866         }
8867
8868         /*
8869          * Do not retry the unhandleable instruction if it faults on the
8870          * readonly host memory, otherwise it will goto a infinite loop:
8871          * retry instruction -> write #PF -> emulation fail -> retry
8872          * instruction -> ...
8873          */
8874         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8875
8876         /*
8877          * If the instruction failed on the error pfn, it can not be fixed,
8878          * report the error to userspace.
8879          */
8880         if (is_error_noslot_pfn(pfn))
8881                 return false;
8882
8883         kvm_release_pfn_clean(pfn);
8884
8885         /*
8886          * If emulation may have been triggered by a write to a shadowed page
8887          * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8888          * guest to let the CPU re-execute the instruction in the hope that the
8889          * CPU can cleanly execute the instruction that KVM failed to emulate.
8890          */
8891         if (vcpu->kvm->arch.indirect_shadow_pages)
8892                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8893
8894         /*
8895          * If the failed instruction faulted on an access to page tables that
8896          * are used to translate any part of the instruction, KVM can't resolve
8897          * the issue by unprotecting the gfn, as zapping the shadow page will
8898          * result in the instruction taking a !PRESENT page fault and thus put
8899          * the vCPU into an infinite loop of page faults.  E.g. KVM will create
8900          * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8901          * then zap the SPTE to unprotect the gfn, and then do it all over
8902          * again.  Report the error to userspace.
8903          */
8904         return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8905 }
8906
8907 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8908                               gpa_t cr2_or_gpa,  int emulation_type)
8909 {
8910         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8911         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8912
8913         last_retry_eip = vcpu->arch.last_retry_eip;
8914         last_retry_addr = vcpu->arch.last_retry_addr;
8915
8916         /*
8917          * If the emulation is caused by #PF and it is non-page_table
8918          * writing instruction, it means the VM-EXIT is caused by shadow
8919          * page protected, we can zap the shadow page and retry this
8920          * instruction directly.
8921          *
8922          * Note: if the guest uses a non-page-table modifying instruction
8923          * on the PDE that points to the instruction, then we will unmap
8924          * the instruction and go to an infinite loop. So, we cache the
8925          * last retried eip and the last fault address, if we meet the eip
8926          * and the address again, we can break out of the potential infinite
8927          * loop.
8928          */
8929         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8930
8931         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8932                 return false;
8933
8934         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8935             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8936                 return false;
8937
8938         if (x86_page_table_writing_insn(ctxt))
8939                 return false;
8940
8941         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8942                 return false;
8943
8944         vcpu->arch.last_retry_eip = ctxt->eip;
8945         vcpu->arch.last_retry_addr = cr2_or_gpa;
8946
8947         if (!vcpu->arch.mmu->root_role.direct)
8948                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8949
8950         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8951
8952         return true;
8953 }
8954
8955 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8956 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8957
8958 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8959                                 unsigned long *db)
8960 {
8961         u32 dr6 = 0;
8962         int i;
8963         u32 enable, rwlen;
8964
8965         enable = dr7;
8966         rwlen = dr7 >> 16;
8967         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8968                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8969                         dr6 |= (1 << i);
8970         return dr6;
8971 }
8972
8973 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8974 {
8975         struct kvm_run *kvm_run = vcpu->run;
8976
8977         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8978                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8979                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8980                 kvm_run->debug.arch.exception = DB_VECTOR;
8981                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8982                 return 0;
8983         }
8984         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8985         return 1;
8986 }
8987
8988 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8989 {
8990         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8991         int r;
8992
8993         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8994         if (unlikely(!r))
8995                 return 0;
8996
8997         kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
8998
8999         /*
9000          * rflags is the old, "raw" value of the flags.  The new value has
9001          * not been saved yet.
9002          *
9003          * This is correct even for TF set by the guest, because "the
9004          * processor will not generate this exception after the instruction
9005          * that sets the TF flag".
9006          */
9007         if (unlikely(rflags & X86_EFLAGS_TF))
9008                 r = kvm_vcpu_do_singlestep(vcpu);
9009         return r;
9010 }
9011 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
9012
9013 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
9014 {
9015         u32 shadow;
9016
9017         if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
9018                 return true;
9019
9020         /*
9021          * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
9022          * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
9023          * to avoid the relatively expensive CPUID lookup.
9024          */
9025         shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
9026         return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
9027                guest_cpuid_is_intel(vcpu);
9028 }
9029
9030 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
9031                                            int emulation_type, int *r)
9032 {
9033         WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
9034
9035         /*
9036          * Do not check for code breakpoints if hardware has already done the
9037          * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
9038          * the instruction has passed all exception checks, and all intercepted
9039          * exceptions that trigger emulation have lower priority than code
9040          * breakpoints, i.e. the fact that the intercepted exception occurred
9041          * means any code breakpoints have already been serviced.
9042          *
9043          * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
9044          * hardware has checked the RIP of the magic prefix, but not the RIP of
9045          * the instruction being emulated.  The intent of forced emulation is
9046          * to behave as if KVM intercepted the instruction without an exception
9047          * and without a prefix.
9048          */
9049         if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
9050                               EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
9051                 return false;
9052
9053         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
9054             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
9055                 struct kvm_run *kvm_run = vcpu->run;
9056                 unsigned long eip = kvm_get_linear_rip(vcpu);
9057                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9058                                            vcpu->arch.guest_debug_dr7,
9059                                            vcpu->arch.eff_db);
9060
9061                 if (dr6 != 0) {
9062                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9063                         kvm_run->debug.arch.pc = eip;
9064                         kvm_run->debug.arch.exception = DB_VECTOR;
9065                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
9066                         *r = 0;
9067                         return true;
9068                 }
9069         }
9070
9071         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9072             !kvm_is_code_breakpoint_inhibited(vcpu)) {
9073                 unsigned long eip = kvm_get_linear_rip(vcpu);
9074                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9075                                            vcpu->arch.dr7,
9076                                            vcpu->arch.db);
9077
9078                 if (dr6 != 0) {
9079                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9080                         *r = 1;
9081                         return true;
9082                 }
9083         }
9084
9085         return false;
9086 }
9087
9088 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9089 {
9090         switch (ctxt->opcode_len) {
9091         case 1:
9092                 switch (ctxt->b) {
9093                 case 0xe4:      /* IN */
9094                 case 0xe5:
9095                 case 0xec:
9096                 case 0xed:
9097                 case 0xe6:      /* OUT */
9098                 case 0xe7:
9099                 case 0xee:
9100                 case 0xef:
9101                 case 0x6c:      /* INS */
9102                 case 0x6d:
9103                 case 0x6e:      /* OUTS */
9104                 case 0x6f:
9105                         return true;
9106                 }
9107                 break;
9108         case 2:
9109                 switch (ctxt->b) {
9110                 case 0x33:      /* RDPMC */
9111                         return true;
9112                 }
9113                 break;
9114         }
9115
9116         return false;
9117 }
9118
9119 /*
9120  * Decode an instruction for emulation.  The caller is responsible for handling
9121  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
9122  * (and wrong) when emulating on an intercepted fault-like exception[*], as
9123  * code breakpoints have higher priority and thus have already been done by
9124  * hardware.
9125  *
9126  * [*] Except #MC, which is higher priority, but KVM should never emulate in
9127  *     response to a machine check.
9128  */
9129 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9130                                     void *insn, int insn_len)
9131 {
9132         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9133         int r;
9134
9135         init_emulate_ctxt(vcpu);
9136
9137         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9138
9139         trace_kvm_emulate_insn_start(vcpu);
9140         ++vcpu->stat.insn_emulation;
9141
9142         return r;
9143 }
9144 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9145
9146 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9147                             int emulation_type, void *insn, int insn_len)
9148 {
9149         int r;
9150         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9151         bool writeback = true;
9152
9153         r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9154         if (r != X86EMUL_CONTINUE) {
9155                 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9156                         return 1;
9157
9158                 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9159                 return handle_emulation_failure(vcpu, emulation_type);
9160         }
9161
9162         vcpu->arch.l1tf_flush_l1d = true;
9163
9164         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9165                 kvm_clear_exception_queue(vcpu);
9166
9167                 /*
9168                  * Return immediately if RIP hits a code breakpoint, such #DBs
9169                  * are fault-like and are higher priority than any faults on
9170                  * the code fetch itself.
9171                  */
9172                 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9173                         return r;
9174
9175                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9176                                                     insn, insn_len);
9177                 if (r != EMULATION_OK)  {
9178                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
9179                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9180                                 kvm_queue_exception(vcpu, UD_VECTOR);
9181                                 return 1;
9182                         }
9183                         if (reexecute_instruction(vcpu, cr2_or_gpa,
9184                                                   emulation_type))
9185                                 return 1;
9186
9187                         if (ctxt->have_exception &&
9188                             !(emulation_type & EMULTYPE_SKIP)) {
9189                                 /*
9190                                  * #UD should result in just EMULATION_FAILED, and trap-like
9191                                  * exception should not be encountered during decode.
9192                                  */
9193                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9194                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9195                                 inject_emulated_exception(vcpu);
9196                                 return 1;
9197                         }
9198                         return handle_emulation_failure(vcpu, emulation_type);
9199                 }
9200         }
9201
9202         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9203             !is_vmware_backdoor_opcode(ctxt)) {
9204                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9205                 return 1;
9206         }
9207
9208         /*
9209          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9210          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9211          * The caller is responsible for updating interruptibility state and
9212          * injecting single-step #DBs.
9213          */
9214         if (emulation_type & EMULTYPE_SKIP) {
9215                 if (ctxt->mode != X86EMUL_MODE_PROT64)
9216                         ctxt->eip = (u32)ctxt->_eip;
9217                 else
9218                         ctxt->eip = ctxt->_eip;
9219
9220                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9221                         r = 1;
9222                         goto writeback;
9223                 }
9224
9225                 kvm_rip_write(vcpu, ctxt->eip);
9226                 if (ctxt->eflags & X86_EFLAGS_RF)
9227                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9228                 return 1;
9229         }
9230
9231         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
9232                 return 1;
9233
9234         /* this is needed for vmware backdoor interface to work since it
9235            changes registers values  during IO operation */
9236         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9237                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9238                 emulator_invalidate_register_cache(ctxt);
9239         }
9240
9241 restart:
9242         if (emulation_type & EMULTYPE_PF) {
9243                 /* Save the faulting GPA (cr2) in the address field */
9244                 ctxt->exception.address = cr2_or_gpa;
9245
9246                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9247                 if (vcpu->arch.mmu->root_role.direct) {
9248                         ctxt->gpa_available = true;
9249                         ctxt->gpa_val = cr2_or_gpa;
9250                 }
9251         } else {
9252                 /* Sanitize the address out of an abundance of paranoia. */
9253                 ctxt->exception.address = 0;
9254         }
9255
9256         r = x86_emulate_insn(ctxt);
9257
9258         if (r == EMULATION_INTERCEPTED)
9259                 return 1;
9260
9261         if (r == EMULATION_FAILED) {
9262                 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9263                         return 1;
9264
9265                 return handle_emulation_failure(vcpu, emulation_type);
9266         }
9267
9268         if (ctxt->have_exception) {
9269                 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9270                 vcpu->mmio_needed = false;
9271                 r = 1;
9272                 inject_emulated_exception(vcpu);
9273         } else if (vcpu->arch.pio.count) {
9274                 if (!vcpu->arch.pio.in) {
9275                         /* FIXME: return into emulator if single-stepping.  */
9276                         vcpu->arch.pio.count = 0;
9277                 } else {
9278                         writeback = false;
9279                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
9280                 }
9281                 r = 0;
9282         } else if (vcpu->mmio_needed) {
9283                 ++vcpu->stat.mmio_exits;
9284
9285                 if (!vcpu->mmio_is_write)
9286                         writeback = false;
9287                 r = 0;
9288                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9289         } else if (vcpu->arch.complete_userspace_io) {
9290                 writeback = false;
9291                 r = 0;
9292         } else if (r == EMULATION_RESTART)
9293                 goto restart;
9294         else
9295                 r = 1;
9296
9297 writeback:
9298         if (writeback) {
9299                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9300                 toggle_interruptibility(vcpu, ctxt->interruptibility);
9301                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9302
9303                 /*
9304                  * Note, EXCPT_DB is assumed to be fault-like as the emulator
9305                  * only supports code breakpoints and general detect #DB, both
9306                  * of which are fault-like.
9307                  */
9308                 if (!ctxt->have_exception ||
9309                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9310                         kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9311                         if (ctxt->is_branch)
9312                                 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9313                         kvm_rip_write(vcpu, ctxt->eip);
9314                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9315                                 r = kvm_vcpu_do_singlestep(vcpu);
9316                         static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9317                         __kvm_set_rflags(vcpu, ctxt->eflags);
9318                 }
9319
9320                 /*
9321                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9322                  * do nothing, and it will be requested again as soon as
9323                  * the shadow expires.  But we still need to check here,
9324                  * because POPF has no interrupt shadow.
9325                  */
9326                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9327                         kvm_make_request(KVM_REQ_EVENT, vcpu);
9328         } else
9329                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9330
9331         return r;
9332 }
9333
9334 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9335 {
9336         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9337 }
9338 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9339
9340 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9341                                         void *insn, int insn_len)
9342 {
9343         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9344 }
9345 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9346
9347 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9348 {
9349         vcpu->arch.pio.count = 0;
9350         return 1;
9351 }
9352
9353 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9354 {
9355         vcpu->arch.pio.count = 0;
9356
9357         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9358                 return 1;
9359
9360         return kvm_skip_emulated_instruction(vcpu);
9361 }
9362
9363 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9364                             unsigned short port)
9365 {
9366         unsigned long val = kvm_rax_read(vcpu);
9367         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9368
9369         if (ret)
9370                 return ret;
9371
9372         /*
9373          * Workaround userspace that relies on old KVM behavior of %rip being
9374          * incremented prior to exiting to userspace to handle "OUT 0x7e".
9375          */
9376         if (port == 0x7e &&
9377             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9378                 vcpu->arch.complete_userspace_io =
9379                         complete_fast_pio_out_port_0x7e;
9380                 kvm_skip_emulated_instruction(vcpu);
9381         } else {
9382                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9383                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9384         }
9385         return 0;
9386 }
9387
9388 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9389 {
9390         unsigned long val;
9391
9392         /* We should only ever be called with arch.pio.count equal to 1 */
9393         BUG_ON(vcpu->arch.pio.count != 1);
9394
9395         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9396                 vcpu->arch.pio.count = 0;
9397                 return 1;
9398         }
9399
9400         /* For size less than 4 we merge, else we zero extend */
9401         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9402
9403         complete_emulator_pio_in(vcpu, &val);
9404         kvm_rax_write(vcpu, val);
9405
9406         return kvm_skip_emulated_instruction(vcpu);
9407 }
9408
9409 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9410                            unsigned short port)
9411 {
9412         unsigned long val;
9413         int ret;
9414
9415         /* For size less than 4 we merge, else we zero extend */
9416         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9417
9418         ret = emulator_pio_in(vcpu, size, port, &val, 1);
9419         if (ret) {
9420                 kvm_rax_write(vcpu, val);
9421                 return ret;
9422         }
9423
9424         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9425         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9426
9427         return 0;
9428 }
9429
9430 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9431 {
9432         int ret;
9433
9434         if (in)
9435                 ret = kvm_fast_pio_in(vcpu, size, port);
9436         else
9437                 ret = kvm_fast_pio_out(vcpu, size, port);
9438         return ret && kvm_skip_emulated_instruction(vcpu);
9439 }
9440 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9441
9442 static int kvmclock_cpu_down_prep(unsigned int cpu)
9443 {
9444         __this_cpu_write(cpu_tsc_khz, 0);
9445         return 0;
9446 }
9447
9448 static void tsc_khz_changed(void *data)
9449 {
9450         struct cpufreq_freqs *freq = data;
9451         unsigned long khz;
9452
9453         WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9454
9455         if (data)
9456                 khz = freq->new;
9457         else
9458                 khz = cpufreq_quick_get(raw_smp_processor_id());
9459         if (!khz)
9460                 khz = tsc_khz;
9461         __this_cpu_write(cpu_tsc_khz, khz);
9462 }
9463
9464 #ifdef CONFIG_X86_64
9465 static void kvm_hyperv_tsc_notifier(void)
9466 {
9467         struct kvm *kvm;
9468         int cpu;
9469
9470         mutex_lock(&kvm_lock);
9471         list_for_each_entry(kvm, &vm_list, vm_list)
9472                 kvm_make_mclock_inprogress_request(kvm);
9473
9474         /* no guest entries from this point */
9475         hyperv_stop_tsc_emulation();
9476
9477         /* TSC frequency always matches when on Hyper-V */
9478         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9479                 for_each_present_cpu(cpu)
9480                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9481         }
9482         kvm_caps.max_guest_tsc_khz = tsc_khz;
9483
9484         list_for_each_entry(kvm, &vm_list, vm_list) {
9485                 __kvm_start_pvclock_update(kvm);
9486                 pvclock_update_vm_gtod_copy(kvm);
9487                 kvm_end_pvclock_update(kvm);
9488         }
9489
9490         mutex_unlock(&kvm_lock);
9491 }
9492 #endif
9493
9494 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9495 {
9496         struct kvm *kvm;
9497         struct kvm_vcpu *vcpu;
9498         int send_ipi = 0;
9499         unsigned long i;
9500
9501         /*
9502          * We allow guests to temporarily run on slowing clocks,
9503          * provided we notify them after, or to run on accelerating
9504          * clocks, provided we notify them before.  Thus time never
9505          * goes backwards.
9506          *
9507          * However, we have a problem.  We can't atomically update
9508          * the frequency of a given CPU from this function; it is
9509          * merely a notifier, which can be called from any CPU.
9510          * Changing the TSC frequency at arbitrary points in time
9511          * requires a recomputation of local variables related to
9512          * the TSC for each VCPU.  We must flag these local variables
9513          * to be updated and be sure the update takes place with the
9514          * new frequency before any guests proceed.
9515          *
9516          * Unfortunately, the combination of hotplug CPU and frequency
9517          * change creates an intractable locking scenario; the order
9518          * of when these callouts happen is undefined with respect to
9519          * CPU hotplug, and they can race with each other.  As such,
9520          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9521          * undefined; you can actually have a CPU frequency change take
9522          * place in between the computation of X and the setting of the
9523          * variable.  To protect against this problem, all updates of
9524          * the per_cpu tsc_khz variable are done in an interrupt
9525          * protected IPI, and all callers wishing to update the value
9526          * must wait for a synchronous IPI to complete (which is trivial
9527          * if the caller is on the CPU already).  This establishes the
9528          * necessary total order on variable updates.
9529          *
9530          * Note that because a guest time update may take place
9531          * anytime after the setting of the VCPU's request bit, the
9532          * correct TSC value must be set before the request.  However,
9533          * to ensure the update actually makes it to any guest which
9534          * starts running in hardware virtualization between the set
9535          * and the acquisition of the spinlock, we must also ping the
9536          * CPU after setting the request bit.
9537          *
9538          */
9539
9540         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9541
9542         mutex_lock(&kvm_lock);
9543         list_for_each_entry(kvm, &vm_list, vm_list) {
9544                 kvm_for_each_vcpu(i, vcpu, kvm) {
9545                         if (vcpu->cpu != cpu)
9546                                 continue;
9547                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9548                         if (vcpu->cpu != raw_smp_processor_id())
9549                                 send_ipi = 1;
9550                 }
9551         }
9552         mutex_unlock(&kvm_lock);
9553
9554         if (freq->old < freq->new && send_ipi) {
9555                 /*
9556                  * We upscale the frequency.  Must make the guest
9557                  * doesn't see old kvmclock values while running with
9558                  * the new frequency, otherwise we risk the guest sees
9559                  * time go backwards.
9560                  *
9561                  * In case we update the frequency for another cpu
9562                  * (which might be in guest context) send an interrupt
9563                  * to kick the cpu out of guest context.  Next time
9564                  * guest context is entered kvmclock will be updated,
9565                  * so the guest will not see stale values.
9566                  */
9567                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9568         }
9569 }
9570
9571 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9572                                      void *data)
9573 {
9574         struct cpufreq_freqs *freq = data;
9575         int cpu;
9576
9577         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9578                 return 0;
9579         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9580                 return 0;
9581
9582         for_each_cpu(cpu, freq->policy->cpus)
9583                 __kvmclock_cpufreq_notifier(freq, cpu);
9584
9585         return 0;
9586 }
9587
9588 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9589         .notifier_call  = kvmclock_cpufreq_notifier
9590 };
9591
9592 static int kvmclock_cpu_online(unsigned int cpu)
9593 {
9594         tsc_khz_changed(NULL);
9595         return 0;
9596 }
9597
9598 static void kvm_timer_init(void)
9599 {
9600         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9601                 max_tsc_khz = tsc_khz;
9602
9603                 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9604                         struct cpufreq_policy *policy;
9605                         int cpu;
9606
9607                         cpu = get_cpu();
9608                         policy = cpufreq_cpu_get(cpu);
9609                         if (policy) {
9610                                 if (policy->cpuinfo.max_freq)
9611                                         max_tsc_khz = policy->cpuinfo.max_freq;
9612                                 cpufreq_cpu_put(policy);
9613                         }
9614                         put_cpu();
9615                 }
9616                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9617                                           CPUFREQ_TRANSITION_NOTIFIER);
9618
9619                 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9620                                   kvmclock_cpu_online, kvmclock_cpu_down_prep);
9621         }
9622 }
9623
9624 #ifdef CONFIG_X86_64
9625 static void pvclock_gtod_update_fn(struct work_struct *work)
9626 {
9627         struct kvm *kvm;
9628         struct kvm_vcpu *vcpu;
9629         unsigned long i;
9630
9631         mutex_lock(&kvm_lock);
9632         list_for_each_entry(kvm, &vm_list, vm_list)
9633                 kvm_for_each_vcpu(i, vcpu, kvm)
9634                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9635         atomic_set(&kvm_guest_has_master_clock, 0);
9636         mutex_unlock(&kvm_lock);
9637 }
9638
9639 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9640
9641 /*
9642  * Indirection to move queue_work() out of the tk_core.seq write held
9643  * region to prevent possible deadlocks against time accessors which
9644  * are invoked with work related locks held.
9645  */
9646 static void pvclock_irq_work_fn(struct irq_work *w)
9647 {
9648         queue_work(system_long_wq, &pvclock_gtod_work);
9649 }
9650
9651 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9652
9653 /*
9654  * Notification about pvclock gtod data update.
9655  */
9656 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9657                                void *priv)
9658 {
9659         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9660         struct timekeeper *tk = priv;
9661
9662         update_pvclock_gtod(tk);
9663
9664         /*
9665          * Disable master clock if host does not trust, or does not use,
9666          * TSC based clocksource. Delegate queue_work() to irq_work as
9667          * this is invoked with tk_core.seq write held.
9668          */
9669         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9670             atomic_read(&kvm_guest_has_master_clock) != 0)
9671                 irq_work_queue(&pvclock_irq_work);
9672         return 0;
9673 }
9674
9675 static struct notifier_block pvclock_gtod_notifier = {
9676         .notifier_call = pvclock_gtod_notify,
9677 };
9678 #endif
9679
9680 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9681 {
9682         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9683
9684 #define __KVM_X86_OP(func) \
9685         static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9686 #define KVM_X86_OP(func) \
9687         WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9688 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9689 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9690         static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9691                                            (void *)__static_call_return0);
9692 #include <asm/kvm-x86-ops.h>
9693 #undef __KVM_X86_OP
9694
9695         kvm_pmu_ops_update(ops->pmu_ops);
9696 }
9697
9698 static int kvm_x86_check_processor_compatibility(void)
9699 {
9700         int cpu = smp_processor_id();
9701         struct cpuinfo_x86 *c = &cpu_data(cpu);
9702
9703         /*
9704          * Compatibility checks are done when loading KVM and when enabling
9705          * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9706          * compatible, i.e. KVM should never perform a compatibility check on
9707          * an offline CPU.
9708          */
9709         WARN_ON(!cpu_online(cpu));
9710
9711         if (__cr4_reserved_bits(cpu_has, c) !=
9712             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9713                 return -EIO;
9714
9715         return static_call(kvm_x86_check_processor_compatibility)();
9716 }
9717
9718 static void kvm_x86_check_cpu_compat(void *ret)
9719 {
9720         *(int *)ret = kvm_x86_check_processor_compatibility();
9721 }
9722
9723 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9724 {
9725         u64 host_pat;
9726         int r, cpu;
9727
9728         guard(mutex)(&vendor_module_lock);
9729
9730         if (kvm_x86_ops.hardware_enable) {
9731                 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9732                 return -EEXIST;
9733         }
9734
9735         /*
9736          * KVM explicitly assumes that the guest has an FPU and
9737          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9738          * vCPU's FPU state as a fxregs_state struct.
9739          */
9740         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9741                 pr_err("inadequate fpu\n");
9742                 return -EOPNOTSUPP;
9743         }
9744
9745         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9746                 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9747                 return -EOPNOTSUPP;
9748         }
9749
9750         /*
9751          * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9752          * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9753          * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9754          * with an exception.  PAT[0] is set to WB on RESET and also by the
9755          * kernel, i.e. failure indicates a kernel bug or broken firmware.
9756          */
9757         if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9758             (host_pat & GENMASK(2, 0)) != 6) {
9759                 pr_err("host PAT[0] is not WB\n");
9760                 return -EIO;
9761         }
9762
9763         memset(&kvm_caps, 0, sizeof(kvm_caps));
9764
9765         x86_emulator_cache = kvm_alloc_emulator_cache();
9766         if (!x86_emulator_cache) {
9767                 pr_err("failed to allocate cache for x86 emulator\n");
9768                 return -ENOMEM;
9769         }
9770
9771         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9772         if (!user_return_msrs) {
9773                 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9774                 r = -ENOMEM;
9775                 goto out_free_x86_emulator_cache;
9776         }
9777         kvm_nr_uret_msrs = 0;
9778
9779         r = kvm_mmu_vendor_module_init();
9780         if (r)
9781                 goto out_free_percpu;
9782
9783         kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
9784         kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
9785
9786         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9787                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9788                 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9789         }
9790
9791         rdmsrl_safe(MSR_EFER, &host_efer);
9792
9793         if (boot_cpu_has(X86_FEATURE_XSAVES))
9794                 rdmsrl(MSR_IA32_XSS, host_xss);
9795
9796         kvm_init_pmu_capability(ops->pmu_ops);
9797
9798         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9799                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9800
9801         r = ops->hardware_setup();
9802         if (r != 0)
9803                 goto out_mmu_exit;
9804
9805         kvm_ops_update(ops);
9806
9807         for_each_online_cpu(cpu) {
9808                 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9809                 if (r < 0)
9810                         goto out_unwind_ops;
9811         }
9812
9813         /*
9814          * Point of no return!  DO NOT add error paths below this point unless
9815          * absolutely necessary, as most operations from this point forward
9816          * require unwinding.
9817          */
9818         kvm_timer_init();
9819
9820         if (pi_inject_timer == -1)
9821                 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9822 #ifdef CONFIG_X86_64
9823         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9824
9825         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9826                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9827 #endif
9828
9829         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9830
9831         if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
9832                 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
9833
9834         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9835                 kvm_caps.supported_xss = 0;
9836
9837 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9838         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9839 #undef __kvm_cpu_cap_has
9840
9841         if (kvm_caps.has_tsc_control) {
9842                 /*
9843                  * Make sure the user can only configure tsc_khz values that
9844                  * fit into a signed integer.
9845                  * A min value is not calculated because it will always
9846                  * be 1 on all machines.
9847                  */
9848                 u64 max = min(0x7fffffffULL,
9849                               __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9850                 kvm_caps.max_guest_tsc_khz = max;
9851         }
9852         kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9853         kvm_init_msr_lists();
9854         return 0;
9855
9856 out_unwind_ops:
9857         kvm_x86_ops.hardware_enable = NULL;
9858         static_call(kvm_x86_hardware_unsetup)();
9859 out_mmu_exit:
9860         kvm_mmu_vendor_module_exit();
9861 out_free_percpu:
9862         free_percpu(user_return_msrs);
9863 out_free_x86_emulator_cache:
9864         kmem_cache_destroy(x86_emulator_cache);
9865         return r;
9866 }
9867 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9868
9869 void kvm_x86_vendor_exit(void)
9870 {
9871         kvm_unregister_perf_callbacks();
9872
9873 #ifdef CONFIG_X86_64
9874         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9875                 clear_hv_tscchange_cb();
9876 #endif
9877         kvm_lapic_exit();
9878
9879         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9880                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9881                                             CPUFREQ_TRANSITION_NOTIFIER);
9882                 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9883         }
9884 #ifdef CONFIG_X86_64
9885         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9886         irq_work_sync(&pvclock_irq_work);
9887         cancel_work_sync(&pvclock_gtod_work);
9888 #endif
9889         static_call(kvm_x86_hardware_unsetup)();
9890         kvm_mmu_vendor_module_exit();
9891         free_percpu(user_return_msrs);
9892         kmem_cache_destroy(x86_emulator_cache);
9893 #ifdef CONFIG_KVM_XEN
9894         static_key_deferred_flush(&kvm_xen_enabled);
9895         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9896 #endif
9897         mutex_lock(&vendor_module_lock);
9898         kvm_x86_ops.hardware_enable = NULL;
9899         mutex_unlock(&vendor_module_lock);
9900 }
9901 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9902
9903 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9904 {
9905         /*
9906          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9907          * local APIC is in-kernel, the run loop will detect the non-runnable
9908          * state and halt the vCPU.  Exit to userspace if the local APIC is
9909          * managed by userspace, in which case userspace is responsible for
9910          * handling wake events.
9911          */
9912         ++vcpu->stat.halt_exits;
9913         if (lapic_in_kernel(vcpu)) {
9914                 vcpu->arch.mp_state = state;
9915                 return 1;
9916         } else {
9917                 vcpu->run->exit_reason = reason;
9918                 return 0;
9919         }
9920 }
9921
9922 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9923 {
9924         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9925 }
9926 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9927
9928 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9929 {
9930         int ret = kvm_skip_emulated_instruction(vcpu);
9931         /*
9932          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9933          * KVM_EXIT_DEBUG here.
9934          */
9935         return kvm_emulate_halt_noskip(vcpu) && ret;
9936 }
9937 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9938
9939 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9940 {
9941         int ret = kvm_skip_emulated_instruction(vcpu);
9942
9943         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9944                                         KVM_EXIT_AP_RESET_HOLD) && ret;
9945 }
9946 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9947
9948 #ifdef CONFIG_X86_64
9949 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9950                                 unsigned long clock_type)
9951 {
9952         struct kvm_clock_pairing clock_pairing;
9953         struct timespec64 ts;
9954         u64 cycle;
9955         int ret;
9956
9957         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9958                 return -KVM_EOPNOTSUPP;
9959
9960         /*
9961          * When tsc is in permanent catchup mode guests won't be able to use
9962          * pvclock_read_retry loop to get consistent view of pvclock
9963          */
9964         if (vcpu->arch.tsc_always_catchup)
9965                 return -KVM_EOPNOTSUPP;
9966
9967         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9968                 return -KVM_EOPNOTSUPP;
9969
9970         clock_pairing.sec = ts.tv_sec;
9971         clock_pairing.nsec = ts.tv_nsec;
9972         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9973         clock_pairing.flags = 0;
9974         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9975
9976         ret = 0;
9977         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9978                             sizeof(struct kvm_clock_pairing)))
9979                 ret = -KVM_EFAULT;
9980
9981         return ret;
9982 }
9983 #endif
9984
9985 /*
9986  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9987  *
9988  * @apicid - apicid of vcpu to be kicked.
9989  */
9990 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9991 {
9992         /*
9993          * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9994          * common code, e.g. for tracing. Defer initialization to the compiler.
9995          */
9996         struct kvm_lapic_irq lapic_irq = {
9997                 .delivery_mode = APIC_DM_REMRD,
9998                 .dest_mode = APIC_DEST_PHYSICAL,
9999                 .shorthand = APIC_DEST_NOSHORT,
10000                 .dest_id = apicid,
10001         };
10002
10003         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
10004 }
10005
10006 bool kvm_apicv_activated(struct kvm *kvm)
10007 {
10008         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
10009 }
10010 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
10011
10012 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
10013 {
10014         ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
10015         ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
10016
10017         return (vm_reasons | vcpu_reasons) == 0;
10018 }
10019 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
10020
10021 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
10022                                        enum kvm_apicv_inhibit reason, bool set)
10023 {
10024         if (set)
10025                 __set_bit(reason, inhibits);
10026         else
10027                 __clear_bit(reason, inhibits);
10028
10029         trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
10030 }
10031
10032 static void kvm_apicv_init(struct kvm *kvm)
10033 {
10034         unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
10035
10036         init_rwsem(&kvm->arch.apicv_update_lock);
10037
10038         set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
10039
10040         if (!enable_apicv)
10041                 set_or_clear_apicv_inhibit(inhibits,
10042                                            APICV_INHIBIT_REASON_DISABLE, true);
10043 }
10044
10045 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
10046 {
10047         struct kvm_vcpu *target = NULL;
10048         struct kvm_apic_map *map;
10049
10050         vcpu->stat.directed_yield_attempted++;
10051
10052         if (single_task_running())
10053                 goto no_yield;
10054
10055         rcu_read_lock();
10056         map = rcu_dereference(vcpu->kvm->arch.apic_map);
10057
10058         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
10059                 target = map->phys_map[dest_id]->vcpu;
10060
10061         rcu_read_unlock();
10062
10063         if (!target || !READ_ONCE(target->ready))
10064                 goto no_yield;
10065
10066         /* Ignore requests to yield to self */
10067         if (vcpu == target)
10068                 goto no_yield;
10069
10070         if (kvm_vcpu_yield_to(target) <= 0)
10071                 goto no_yield;
10072
10073         vcpu->stat.directed_yield_successful++;
10074
10075 no_yield:
10076         return;
10077 }
10078
10079 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10080 {
10081         u64 ret = vcpu->run->hypercall.ret;
10082
10083         if (!is_64_bit_mode(vcpu))
10084                 ret = (u32)ret;
10085         kvm_rax_write(vcpu, ret);
10086         ++vcpu->stat.hypercalls;
10087         return kvm_skip_emulated_instruction(vcpu);
10088 }
10089
10090 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
10091                                       unsigned long a0, unsigned long a1,
10092                                       unsigned long a2, unsigned long a3,
10093                                       int op_64_bit, int cpl)
10094 {
10095         unsigned long ret;
10096
10097         trace_kvm_hypercall(nr, a0, a1, a2, a3);
10098
10099         if (!op_64_bit) {
10100                 nr &= 0xFFFFFFFF;
10101                 a0 &= 0xFFFFFFFF;
10102                 a1 &= 0xFFFFFFFF;
10103                 a2 &= 0xFFFFFFFF;
10104                 a3 &= 0xFFFFFFFF;
10105         }
10106
10107         if (cpl) {
10108                 ret = -KVM_EPERM;
10109                 goto out;
10110         }
10111
10112         ret = -KVM_ENOSYS;
10113
10114         switch (nr) {
10115         case KVM_HC_VAPIC_POLL_IRQ:
10116                 ret = 0;
10117                 break;
10118         case KVM_HC_KICK_CPU:
10119                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10120                         break;
10121
10122                 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10123                 kvm_sched_yield(vcpu, a1);
10124                 ret = 0;
10125                 break;
10126 #ifdef CONFIG_X86_64
10127         case KVM_HC_CLOCK_PAIRING:
10128                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10129                 break;
10130 #endif
10131         case KVM_HC_SEND_IPI:
10132                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10133                         break;
10134
10135                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10136                 break;
10137         case KVM_HC_SCHED_YIELD:
10138                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10139                         break;
10140
10141                 kvm_sched_yield(vcpu, a0);
10142                 ret = 0;
10143                 break;
10144         case KVM_HC_MAP_GPA_RANGE: {
10145                 u64 gpa = a0, npages = a1, attrs = a2;
10146
10147                 ret = -KVM_ENOSYS;
10148                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10149                         break;
10150
10151                 if (!PAGE_ALIGNED(gpa) || !npages ||
10152                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10153                         ret = -KVM_EINVAL;
10154                         break;
10155                 }
10156
10157                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10158                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10159                 vcpu->run->hypercall.args[0]  = gpa;
10160                 vcpu->run->hypercall.args[1]  = npages;
10161                 vcpu->run->hypercall.args[2]  = attrs;
10162                 vcpu->run->hypercall.flags    = 0;
10163                 if (op_64_bit)
10164                         vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10165
10166                 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10167                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10168                 /* stat is incremented on completion. */
10169                 return 0;
10170         }
10171         default:
10172                 ret = -KVM_ENOSYS;
10173                 break;
10174         }
10175
10176 out:
10177         ++vcpu->stat.hypercalls;
10178         return ret;
10179 }
10180 EXPORT_SYMBOL_GPL(__kvm_emulate_hypercall);
10181
10182 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10183 {
10184         unsigned long nr, a0, a1, a2, a3, ret;
10185         int op_64_bit;
10186         int cpl;
10187
10188         if (kvm_xen_hypercall_enabled(vcpu->kvm))
10189                 return kvm_xen_hypercall(vcpu);
10190
10191         if (kvm_hv_hypercall_enabled(vcpu))
10192                 return kvm_hv_hypercall(vcpu);
10193
10194         nr = kvm_rax_read(vcpu);
10195         a0 = kvm_rbx_read(vcpu);
10196         a1 = kvm_rcx_read(vcpu);
10197         a2 = kvm_rdx_read(vcpu);
10198         a3 = kvm_rsi_read(vcpu);
10199         op_64_bit = is_64_bit_hypercall(vcpu);
10200         cpl = static_call(kvm_x86_get_cpl)(vcpu);
10201
10202         ret = __kvm_emulate_hypercall(vcpu, nr, a0, a1, a2, a3, op_64_bit, cpl);
10203         if (nr == KVM_HC_MAP_GPA_RANGE && !ret)
10204                 /* MAP_GPA tosses the request to the user space. */
10205                 return 0;
10206
10207         if (!op_64_bit)
10208                 ret = (u32)ret;
10209         kvm_rax_write(vcpu, ret);
10210
10211         return kvm_skip_emulated_instruction(vcpu);
10212 }
10213 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10214
10215 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10216 {
10217         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10218         char instruction[3];
10219         unsigned long rip = kvm_rip_read(vcpu);
10220
10221         /*
10222          * If the quirk is disabled, synthesize a #UD and let the guest pick up
10223          * the pieces.
10224          */
10225         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10226                 ctxt->exception.error_code_valid = false;
10227                 ctxt->exception.vector = UD_VECTOR;
10228                 ctxt->have_exception = true;
10229                 return X86EMUL_PROPAGATE_FAULT;
10230         }
10231
10232         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
10233
10234         return emulator_write_emulated(ctxt, rip, instruction, 3,
10235                 &ctxt->exception);
10236 }
10237
10238 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10239 {
10240         return vcpu->run->request_interrupt_window &&
10241                 likely(!pic_in_kernel(vcpu->kvm));
10242 }
10243
10244 /* Called within kvm->srcu read side.  */
10245 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10246 {
10247         struct kvm_run *kvm_run = vcpu->run;
10248
10249         kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
10250         kvm_run->cr8 = kvm_get_cr8(vcpu);
10251         kvm_run->apic_base = kvm_get_apic_base(vcpu);
10252
10253         kvm_run->ready_for_interrupt_injection =
10254                 pic_in_kernel(vcpu->kvm) ||
10255                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10256
10257         if (is_smm(vcpu))
10258                 kvm_run->flags |= KVM_RUN_X86_SMM;
10259 }
10260
10261 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10262 {
10263         int max_irr, tpr;
10264
10265         if (!kvm_x86_ops.update_cr8_intercept)
10266                 return;
10267
10268         if (!lapic_in_kernel(vcpu))
10269                 return;
10270
10271         if (vcpu->arch.apic->apicv_active)
10272                 return;
10273
10274         if (!vcpu->arch.apic->vapic_addr)
10275                 max_irr = kvm_lapic_find_highest_irr(vcpu);
10276         else
10277                 max_irr = -1;
10278
10279         if (max_irr != -1)
10280                 max_irr >>= 4;
10281
10282         tpr = kvm_lapic_get_cr8(vcpu);
10283
10284         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10285 }
10286
10287
10288 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10289 {
10290         if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10291                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10292                 return 1;
10293         }
10294
10295         return kvm_x86_ops.nested_ops->check_events(vcpu);
10296 }
10297
10298 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10299 {
10300         /*
10301          * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10302          * exceptions don't report error codes.  The presence of an error code
10303          * is carried with the exception and only stripped when the exception
10304          * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10305          * report an error code despite the CPU being in Real Mode.
10306          */
10307         vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10308
10309         trace_kvm_inj_exception(vcpu->arch.exception.vector,
10310                                 vcpu->arch.exception.has_error_code,
10311                                 vcpu->arch.exception.error_code,
10312                                 vcpu->arch.exception.injected);
10313
10314         static_call(kvm_x86_inject_exception)(vcpu);
10315 }
10316
10317 /*
10318  * Check for any event (interrupt or exception) that is ready to be injected,
10319  * and if there is at least one event, inject the event with the highest
10320  * priority.  This handles both "pending" events, i.e. events that have never
10321  * been injected into the guest, and "injected" events, i.e. events that were
10322  * injected as part of a previous VM-Enter, but weren't successfully delivered
10323  * and need to be re-injected.
10324  *
10325  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10326  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10327  * be able to inject exceptions in the "middle" of an instruction, and so must
10328  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10329  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10330  * boundaries is necessary and correct.
10331  *
10332  * For simplicity, KVM uses a single path to inject all events (except events
10333  * that are injected directly from L1 to L2) and doesn't explicitly track
10334  * instruction boundaries for asynchronous events.  However, because VM-Exits
10335  * that can occur during instruction execution typically result in KVM skipping
10336  * the instruction or injecting an exception, e.g. instruction and exception
10337  * intercepts, and because pending exceptions have higher priority than pending
10338  * interrupts, KVM still honors instruction boundaries in most scenarios.
10339  *
10340  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10341  * the instruction or inject an exception, then KVM can incorrecty inject a new
10342  * asynchronous event if the event became pending after the CPU fetched the
10343  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10344  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10345  * injected on the restarted instruction instead of being deferred until the
10346  * instruction completes.
10347  *
10348  * In practice, this virtualization hole is unlikely to be observed by the
10349  * guest, and even less likely to cause functional problems.  To detect the
10350  * hole, the guest would have to trigger an event on a side effect of an early
10351  * phase of instruction execution, e.g. on the instruction fetch from memory.
10352  * And for it to be a functional problem, the guest would need to depend on the
10353  * ordering between that side effect, the instruction completing, _and_ the
10354  * delivery of the asynchronous event.
10355  */
10356 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10357                                        bool *req_immediate_exit)
10358 {
10359         bool can_inject;
10360         int r;
10361
10362         /*
10363          * Process nested events first, as nested VM-Exit supersedes event
10364          * re-injection.  If there's an event queued for re-injection, it will
10365          * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10366          */
10367         if (is_guest_mode(vcpu))
10368                 r = kvm_check_nested_events(vcpu);
10369         else
10370                 r = 0;
10371
10372         /*
10373          * Re-inject exceptions and events *especially* if immediate entry+exit
10374          * to/from L2 is needed, as any event that has already been injected
10375          * into L2 needs to complete its lifecycle before injecting a new event.
10376          *
10377          * Don't re-inject an NMI or interrupt if there is a pending exception.
10378          * This collision arises if an exception occurred while vectoring the
10379          * injected event, KVM intercepted said exception, and KVM ultimately
10380          * determined the fault belongs to the guest and queues the exception
10381          * for injection back into the guest.
10382          *
10383          * "Injected" interrupts can also collide with pending exceptions if
10384          * userspace ignores the "ready for injection" flag and blindly queues
10385          * an interrupt.  In that case, prioritizing the exception is correct,
10386          * as the exception "occurred" before the exit to userspace.  Trap-like
10387          * exceptions, e.g. most #DBs, have higher priority than interrupts.
10388          * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10389          * priority, they're only generated (pended) during instruction
10390          * execution, and interrupts are recognized at instruction boundaries.
10391          * Thus a pending fault-like exception means the fault occurred on the
10392          * *previous* instruction and must be serviced prior to recognizing any
10393          * new events in order to fully complete the previous instruction.
10394          */
10395         if (vcpu->arch.exception.injected)
10396                 kvm_inject_exception(vcpu);
10397         else if (kvm_is_exception_pending(vcpu))
10398                 ; /* see above */
10399         else if (vcpu->arch.nmi_injected)
10400                 static_call(kvm_x86_inject_nmi)(vcpu);
10401         else if (vcpu->arch.interrupt.injected)
10402                 static_call(kvm_x86_inject_irq)(vcpu, true);
10403
10404         /*
10405          * Exceptions that morph to VM-Exits are handled above, and pending
10406          * exceptions on top of injected exceptions that do not VM-Exit should
10407          * either morph to #DF or, sadly, override the injected exception.
10408          */
10409         WARN_ON_ONCE(vcpu->arch.exception.injected &&
10410                      vcpu->arch.exception.pending);
10411
10412         /*
10413          * Bail if immediate entry+exit to/from the guest is needed to complete
10414          * nested VM-Enter or event re-injection so that a different pending
10415          * event can be serviced (or if KVM needs to exit to userspace).
10416          *
10417          * Otherwise, continue processing events even if VM-Exit occurred.  The
10418          * VM-Exit will have cleared exceptions that were meant for L2, but
10419          * there may now be events that can be injected into L1.
10420          */
10421         if (r < 0)
10422                 goto out;
10423
10424         /*
10425          * A pending exception VM-Exit should either result in nested VM-Exit
10426          * or force an immediate re-entry and exit to/from L2, and exception
10427          * VM-Exits cannot be injected (flag should _never_ be set).
10428          */
10429         WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10430                      vcpu->arch.exception_vmexit.pending);
10431
10432         /*
10433          * New events, other than exceptions, cannot be injected if KVM needs
10434          * to re-inject a previous event.  See above comments on re-injecting
10435          * for why pending exceptions get priority.
10436          */
10437         can_inject = !kvm_event_needs_reinjection(vcpu);
10438
10439         if (vcpu->arch.exception.pending) {
10440                 /*
10441                  * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10442                  * value pushed on the stack.  Trap-like exception and all #DBs
10443                  * leave RF as-is (KVM follows Intel's behavior in this regard;
10444                  * AMD states that code breakpoint #DBs excplitly clear RF=0).
10445                  *
10446                  * Note, most versions of Intel's SDM and AMD's APM incorrectly
10447                  * describe the behavior of General Detect #DBs, which are
10448                  * fault-like.  They do _not_ set RF, a la code breakpoints.
10449                  */
10450                 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10451                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10452                                              X86_EFLAGS_RF);
10453
10454                 if (vcpu->arch.exception.vector == DB_VECTOR) {
10455                         kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10456                         if (vcpu->arch.dr7 & DR7_GD) {
10457                                 vcpu->arch.dr7 &= ~DR7_GD;
10458                                 kvm_update_dr7(vcpu);
10459                         }
10460                 }
10461
10462                 kvm_inject_exception(vcpu);
10463
10464                 vcpu->arch.exception.pending = false;
10465                 vcpu->arch.exception.injected = true;
10466
10467                 can_inject = false;
10468         }
10469
10470         /* Don't inject interrupts if the user asked to avoid doing so */
10471         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10472                 return 0;
10473
10474         /*
10475          * Finally, inject interrupt events.  If an event cannot be injected
10476          * due to architectural conditions (e.g. IF=0) a window-open exit
10477          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10478          * and can architecturally be injected, but we cannot do it right now:
10479          * an interrupt could have arrived just now and we have to inject it
10480          * as a vmexit, or there could already an event in the queue, which is
10481          * indicated by can_inject.  In that case we request an immediate exit
10482          * in order to make progress and get back here for another iteration.
10483          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10484          */
10485 #ifdef CONFIG_KVM_SMM
10486         if (vcpu->arch.smi_pending) {
10487                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10488                 if (r < 0)
10489                         goto out;
10490                 if (r) {
10491                         vcpu->arch.smi_pending = false;
10492                         ++vcpu->arch.smi_count;
10493                         enter_smm(vcpu);
10494                         can_inject = false;
10495                 } else
10496                         static_call(kvm_x86_enable_smi_window)(vcpu);
10497         }
10498 #endif
10499
10500         if (vcpu->arch.nmi_pending) {
10501                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10502                 if (r < 0)
10503                         goto out;
10504                 if (r) {
10505                         --vcpu->arch.nmi_pending;
10506                         vcpu->arch.nmi_injected = true;
10507                         static_call(kvm_x86_inject_nmi)(vcpu);
10508                         can_inject = false;
10509                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10510                 }
10511                 if (vcpu->arch.nmi_pending)
10512                         static_call(kvm_x86_enable_nmi_window)(vcpu);
10513         }
10514
10515         if (kvm_cpu_has_injectable_intr(vcpu)) {
10516                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10517                 if (r < 0)
10518                         goto out;
10519                 if (r) {
10520                         int irq = kvm_cpu_get_interrupt(vcpu);
10521
10522                         if (!WARN_ON_ONCE(irq == -1)) {
10523                                 kvm_queue_interrupt(vcpu, irq, false);
10524                                 static_call(kvm_x86_inject_irq)(vcpu, false);
10525                                 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10526                         }
10527                 }
10528                 if (kvm_cpu_has_injectable_intr(vcpu))
10529                         static_call(kvm_x86_enable_irq_window)(vcpu);
10530         }
10531
10532         if (is_guest_mode(vcpu) &&
10533             kvm_x86_ops.nested_ops->has_events &&
10534             kvm_x86_ops.nested_ops->has_events(vcpu))
10535                 *req_immediate_exit = true;
10536
10537         /*
10538          * KVM must never queue a new exception while injecting an event; KVM
10539          * is done emulating and should only propagate the to-be-injected event
10540          * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10541          * infinite loop as KVM will bail from VM-Enter to inject the pending
10542          * exception and start the cycle all over.
10543          *
10544          * Exempt triple faults as they have special handling and won't put the
10545          * vCPU into an infinite loop.  Triple fault can be queued when running
10546          * VMX without unrestricted guest, as that requires KVM to emulate Real
10547          * Mode events (see kvm_inject_realmode_interrupt()).
10548          */
10549         WARN_ON_ONCE(vcpu->arch.exception.pending ||
10550                      vcpu->arch.exception_vmexit.pending);
10551         return 0;
10552
10553 out:
10554         if (r == -EBUSY) {
10555                 *req_immediate_exit = true;
10556                 r = 0;
10557         }
10558         return r;
10559 }
10560
10561 static void process_nmi(struct kvm_vcpu *vcpu)
10562 {
10563         unsigned int limit;
10564
10565         /*
10566          * x86 is limited to one NMI pending, but because KVM can't react to
10567          * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10568          * scheduled out, KVM needs to play nice with two queued NMIs showing
10569          * up at the same time.  To handle this scenario, allow two NMIs to be
10570          * (temporarily) pending so long as NMIs are not blocked and KVM is not
10571          * waiting for a previous NMI injection to complete (which effectively
10572          * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10573          * will request an NMI window to handle the second NMI.
10574          */
10575         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10576                 limit = 1;
10577         else
10578                 limit = 2;
10579
10580         /*
10581          * Adjust the limit to account for pending virtual NMIs, which aren't
10582          * tracked in vcpu->arch.nmi_pending.
10583          */
10584         if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10585                 limit--;
10586
10587         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10588         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10589
10590         if (vcpu->arch.nmi_pending &&
10591             (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10592                 vcpu->arch.nmi_pending--;
10593
10594         if (vcpu->arch.nmi_pending)
10595                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10596 }
10597
10598 /* Return total number of NMIs pending injection to the VM */
10599 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10600 {
10601         return vcpu->arch.nmi_pending +
10602                static_call(kvm_x86_is_vnmi_pending)(vcpu);
10603 }
10604
10605 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10606                                        unsigned long *vcpu_bitmap)
10607 {
10608         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10609 }
10610
10611 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10612 {
10613         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10614 }
10615
10616 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10617 {
10618         struct kvm_lapic *apic = vcpu->arch.apic;
10619         bool activate;
10620
10621         if (!lapic_in_kernel(vcpu))
10622                 return;
10623
10624         down_read(&vcpu->kvm->arch.apicv_update_lock);
10625         preempt_disable();
10626
10627         /* Do not activate APICV when APIC is disabled */
10628         activate = kvm_vcpu_apicv_activated(vcpu) &&
10629                    (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10630
10631         if (apic->apicv_active == activate)
10632                 goto out;
10633
10634         apic->apicv_active = activate;
10635         kvm_apic_update_apicv(vcpu);
10636         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10637
10638         /*
10639          * When APICv gets disabled, we may still have injected interrupts
10640          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10641          * still active when the interrupt got accepted. Make sure
10642          * kvm_check_and_inject_events() is called to check for that.
10643          */
10644         if (!apic->apicv_active)
10645                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10646
10647 out:
10648         preempt_enable();
10649         up_read(&vcpu->kvm->arch.apicv_update_lock);
10650 }
10651 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10652
10653 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10654 {
10655         if (!lapic_in_kernel(vcpu))
10656                 return;
10657
10658         /*
10659          * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10660          * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10661          * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10662          * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10663          * this case so that KVM can the AVIC doorbell to inject interrupts to
10664          * running vCPUs, but KVM must not create SPTEs for the APIC base as
10665          * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10666          * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10667          * access page is sticky.
10668          */
10669         if (apic_x2apic_mode(vcpu->arch.apic) &&
10670             kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10671                 kvm_inhibit_apic_access_page(vcpu);
10672
10673         __kvm_vcpu_update_apicv(vcpu);
10674 }
10675
10676 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10677                                       enum kvm_apicv_inhibit reason, bool set)
10678 {
10679         unsigned long old, new;
10680
10681         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10682
10683         if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10684                 return;
10685
10686         old = new = kvm->arch.apicv_inhibit_reasons;
10687
10688         set_or_clear_apicv_inhibit(&new, reason, set);
10689
10690         if (!!old != !!new) {
10691                 /*
10692                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10693                  * false positives in the sanity check WARN in svm_vcpu_run().
10694                  * This task will wait for all vCPUs to ack the kick IRQ before
10695                  * updating apicv_inhibit_reasons, and all other vCPUs will
10696                  * block on acquiring apicv_update_lock so that vCPUs can't
10697                  * redo svm_vcpu_run() without seeing the new inhibit state.
10698                  *
10699                  * Note, holding apicv_update_lock and taking it in the read
10700                  * side (handling the request) also prevents other vCPUs from
10701                  * servicing the request with a stale apicv_inhibit_reasons.
10702                  */
10703                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10704                 kvm->arch.apicv_inhibit_reasons = new;
10705                 if (new) {
10706                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10707                         int idx = srcu_read_lock(&kvm->srcu);
10708
10709                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
10710                         srcu_read_unlock(&kvm->srcu, idx);
10711                 }
10712         } else {
10713                 kvm->arch.apicv_inhibit_reasons = new;
10714         }
10715 }
10716
10717 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10718                                     enum kvm_apicv_inhibit reason, bool set)
10719 {
10720         if (!enable_apicv)
10721                 return;
10722
10723         down_write(&kvm->arch.apicv_update_lock);
10724         __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10725         up_write(&kvm->arch.apicv_update_lock);
10726 }
10727 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10728
10729 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10730 {
10731         if (!kvm_apic_present(vcpu))
10732                 return;
10733
10734         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10735
10736         if (irqchip_split(vcpu->kvm))
10737                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10738         else {
10739                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10740                 if (ioapic_in_kernel(vcpu->kvm))
10741                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10742         }
10743
10744         if (is_guest_mode(vcpu))
10745                 vcpu->arch.load_eoi_exitmap_pending = true;
10746         else
10747                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10748 }
10749
10750 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10751 {
10752         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10753                 return;
10754
10755 #ifdef CONFIG_KVM_HYPERV
10756         if (to_hv_vcpu(vcpu)) {
10757                 u64 eoi_exit_bitmap[4];
10758
10759                 bitmap_or((ulong *)eoi_exit_bitmap,
10760                           vcpu->arch.ioapic_handled_vectors,
10761                           to_hv_synic(vcpu)->vec_bitmap, 256);
10762                 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10763                 return;
10764         }
10765 #endif
10766         static_call_cond(kvm_x86_load_eoi_exitmap)(
10767                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10768 }
10769
10770 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10771 {
10772         static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10773 }
10774
10775 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10776 {
10777         if (!lapic_in_kernel(vcpu))
10778                 return;
10779
10780         static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10781 }
10782
10783 /*
10784  * Called within kvm->srcu read side.
10785  * Returns 1 to let vcpu_run() continue the guest execution loop without
10786  * exiting to the userspace.  Otherwise, the value will be returned to the
10787  * userspace.
10788  */
10789 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10790 {
10791         int r;
10792         bool req_int_win =
10793                 dm_request_for_irq_injection(vcpu) &&
10794                 kvm_cpu_accept_dm_intr(vcpu);
10795         fastpath_t exit_fastpath;
10796
10797         bool req_immediate_exit = false;
10798
10799         if (kvm_request_pending(vcpu)) {
10800                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10801                         r = -EIO;
10802                         goto out;
10803                 }
10804
10805                 if (kvm_dirty_ring_check_request(vcpu)) {
10806                         r = 0;
10807                         goto out;
10808                 }
10809
10810                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10811                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10812                                 r = 0;
10813                                 goto out;
10814                         }
10815                 }
10816                 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10817                         kvm_mmu_free_obsolete_roots(vcpu);
10818                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10819                         __kvm_migrate_timers(vcpu);
10820                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10821                         kvm_update_masterclock(vcpu->kvm);
10822                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10823                         kvm_gen_kvmclock_update(vcpu);
10824                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10825                         r = kvm_guest_time_update(vcpu);
10826                         if (unlikely(r))
10827                                 goto out;
10828                 }
10829                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10830                         kvm_mmu_sync_roots(vcpu);
10831                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10832                         kvm_mmu_load_pgd(vcpu);
10833
10834                 /*
10835                  * Note, the order matters here, as flushing "all" TLB entries
10836                  * also flushes the "current" TLB entries, i.e. servicing the
10837                  * flush "all" will clear any request to flush "current".
10838                  */
10839                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10840                         kvm_vcpu_flush_tlb_all(vcpu);
10841
10842                 kvm_service_local_tlb_flush_requests(vcpu);
10843
10844                 /*
10845                  * Fall back to a "full" guest flush if Hyper-V's precise
10846                  * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10847                  * the flushes are considered "remote" and not "local" because
10848                  * the requests can be initiated from other vCPUs.
10849                  */
10850 #ifdef CONFIG_KVM_HYPERV
10851                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10852                     kvm_hv_vcpu_flush_tlb(vcpu))
10853                         kvm_vcpu_flush_tlb_guest(vcpu);
10854 #endif
10855
10856                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10857                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10858                         r = 0;
10859                         goto out;
10860                 }
10861                 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10862                         if (is_guest_mode(vcpu))
10863                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10864
10865                         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10866                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10867                                 vcpu->mmio_needed = 0;
10868                                 r = 0;
10869                                 goto out;
10870                         }
10871                 }
10872                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10873                         /* Page is swapped out. Do synthetic halt */
10874                         vcpu->arch.apf.halted = true;
10875                         r = 1;
10876                         goto out;
10877                 }
10878                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10879                         record_steal_time(vcpu);
10880                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10881                         kvm_pmu_handle_event(vcpu);
10882                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10883                         kvm_pmu_deliver_pmi(vcpu);
10884 #ifdef CONFIG_KVM_SMM
10885                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10886                         process_smi(vcpu);
10887 #endif
10888                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10889                         process_nmi(vcpu);
10890                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10891                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10892                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
10893                                      vcpu->arch.ioapic_handled_vectors)) {
10894                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10895                                 vcpu->run->eoi.vector =
10896                                                 vcpu->arch.pending_ioapic_eoi;
10897                                 r = 0;
10898                                 goto out;
10899                         }
10900                 }
10901                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10902                         vcpu_scan_ioapic(vcpu);
10903                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10904                         vcpu_load_eoi_exitmap(vcpu);
10905                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10906                         kvm_vcpu_reload_apic_access_page(vcpu);
10907 #ifdef CONFIG_KVM_HYPERV
10908                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10909                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10910                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10911                         vcpu->run->system_event.ndata = 0;
10912                         r = 0;
10913                         goto out;
10914                 }
10915                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10916                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10917                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10918                         vcpu->run->system_event.ndata = 0;
10919                         r = 0;
10920                         goto out;
10921                 }
10922                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10923                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10924
10925                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10926                         vcpu->run->hyperv = hv_vcpu->exit;
10927                         r = 0;
10928                         goto out;
10929                 }
10930
10931                 /*
10932                  * KVM_REQ_HV_STIMER has to be processed after
10933                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10934                  * depend on the guest clock being up-to-date
10935                  */
10936                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10937                         kvm_hv_process_stimers(vcpu);
10938 #endif
10939                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10940                         kvm_vcpu_update_apicv(vcpu);
10941                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10942                         kvm_check_async_pf_completion(vcpu);
10943                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10944                         static_call(kvm_x86_msr_filter_changed)(vcpu);
10945
10946                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10947                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10948         }
10949
10950         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10951             kvm_xen_has_interrupt(vcpu)) {
10952                 ++vcpu->stat.req_event;
10953                 r = kvm_apic_accept_events(vcpu);
10954                 if (r < 0) {
10955                         r = 0;
10956                         goto out;
10957                 }
10958                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10959                         r = 1;
10960                         goto out;
10961                 }
10962
10963                 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10964                 if (r < 0) {
10965                         r = 0;
10966                         goto out;
10967                 }
10968                 if (req_int_win)
10969                         static_call(kvm_x86_enable_irq_window)(vcpu);
10970
10971                 if (kvm_lapic_enabled(vcpu)) {
10972                         update_cr8_intercept(vcpu);
10973                         kvm_lapic_sync_to_vapic(vcpu);
10974                 }
10975         }
10976
10977         r = kvm_mmu_reload(vcpu);
10978         if (unlikely(r)) {
10979                 goto cancel_injection;
10980         }
10981
10982         preempt_disable();
10983
10984         static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10985
10986         /*
10987          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10988          * IPI are then delayed after guest entry, which ensures that they
10989          * result in virtual interrupt delivery.
10990          */
10991         local_irq_disable();
10992
10993         /* Store vcpu->apicv_active before vcpu->mode.  */
10994         smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10995
10996         kvm_vcpu_srcu_read_unlock(vcpu);
10997
10998         /*
10999          * 1) We should set ->mode before checking ->requests.  Please see
11000          * the comment in kvm_vcpu_exiting_guest_mode().
11001          *
11002          * 2) For APICv, we should set ->mode before checking PID.ON. This
11003          * pairs with the memory barrier implicit in pi_test_and_set_on
11004          * (see vmx_deliver_posted_interrupt).
11005          *
11006          * 3) This also orders the write to mode from any reads to the page
11007          * tables done while the VCPU is running.  Please see the comment
11008          * in kvm_flush_remote_tlbs.
11009          */
11010         smp_mb__after_srcu_read_unlock();
11011
11012         /*
11013          * Process pending posted interrupts to handle the case where the
11014          * notification IRQ arrived in the host, or was never sent (because the
11015          * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
11016          * status, KVM doesn't update assigned devices when APICv is inhibited,
11017          * i.e. they can post interrupts even if APICv is temporarily disabled.
11018          */
11019         if (kvm_lapic_enabled(vcpu))
11020                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
11021
11022         if (kvm_vcpu_exit_request(vcpu)) {
11023                 vcpu->mode = OUTSIDE_GUEST_MODE;
11024                 smp_wmb();
11025                 local_irq_enable();
11026                 preempt_enable();
11027                 kvm_vcpu_srcu_read_lock(vcpu);
11028                 r = 1;
11029                 goto cancel_injection;
11030         }
11031
11032         if (req_immediate_exit)
11033                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11034
11035         fpregs_assert_state_consistent();
11036         if (test_thread_flag(TIF_NEED_FPU_LOAD))
11037                 switch_fpu_return();
11038
11039         if (vcpu->arch.guest_fpu.xfd_err)
11040                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
11041
11042         if (unlikely(vcpu->arch.switch_db_regs)) {
11043                 set_debugreg(0, 7);
11044                 set_debugreg(vcpu->arch.eff_db[0], 0);
11045                 set_debugreg(vcpu->arch.eff_db[1], 1);
11046                 set_debugreg(vcpu->arch.eff_db[2], 2);
11047                 set_debugreg(vcpu->arch.eff_db[3], 3);
11048         } else if (unlikely(hw_breakpoint_active())) {
11049                 set_debugreg(0, 7);
11050         }
11051
11052         guest_timing_enter_irqoff();
11053
11054         for (;;) {
11055                 /*
11056                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
11057                  * update must kick and wait for all vCPUs before toggling the
11058                  * per-VM state, and responding vCPUs must wait for the update
11059                  * to complete before servicing KVM_REQ_APICV_UPDATE.
11060                  */
11061                 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11062                              (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11063
11064                 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu, req_immediate_exit);
11065                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11066                         break;
11067
11068                 if (kvm_lapic_enabled(vcpu))
11069                         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
11070
11071                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11072                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11073                         break;
11074                 }
11075
11076                 /* Note, VM-Exits that go down the "slow" path are accounted below. */
11077                 ++vcpu->stat.exits;
11078         }
11079
11080         /*
11081          * Do this here before restoring debug registers on the host.  And
11082          * since we do this before handling the vmexit, a DR access vmexit
11083          * can (a) read the correct value of the debug registers, (b) set
11084          * KVM_DEBUGREG_WONT_EXIT again.
11085          */
11086         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11087                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11088                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
11089                 kvm_update_dr0123(vcpu);
11090                 kvm_update_dr7(vcpu);
11091         }
11092
11093         /*
11094          * If the guest has used debug registers, at least dr7
11095          * will be disabled while returning to the host.
11096          * If we don't have active breakpoints in the host, we don't
11097          * care about the messed up debug address registers. But if
11098          * we have some of them active, restore the old state.
11099          */
11100         if (hw_breakpoint_active())
11101                 hw_breakpoint_restore();
11102
11103         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11104         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11105
11106         vcpu->mode = OUTSIDE_GUEST_MODE;
11107         smp_wmb();
11108
11109         /*
11110          * Sync xfd before calling handle_exit_irqoff() which may
11111          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11112          * in #NM irqoff handler).
11113          */
11114         if (vcpu->arch.xfd_no_write_intercept)
11115                 fpu_sync_guest_vmexit_xfd_state();
11116
11117         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
11118
11119         if (vcpu->arch.guest_fpu.xfd_err)
11120                 wrmsrl(MSR_IA32_XFD_ERR, 0);
11121
11122         /*
11123          * Consume any pending interrupts, including the possible source of
11124          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11125          * An instruction is required after local_irq_enable() to fully unblock
11126          * interrupts on processors that implement an interrupt shadow, the
11127          * stat.exits increment will do nicely.
11128          */
11129         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11130         local_irq_enable();
11131         ++vcpu->stat.exits;
11132         local_irq_disable();
11133         kvm_after_interrupt(vcpu);
11134
11135         /*
11136          * Wait until after servicing IRQs to account guest time so that any
11137          * ticks that occurred while running the guest are properly accounted
11138          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
11139          * of accounting via context tracking, but the loss of accuracy is
11140          * acceptable for all known use cases.
11141          */
11142         guest_timing_exit_irqoff();
11143
11144         local_irq_enable();
11145         preempt_enable();
11146
11147         kvm_vcpu_srcu_read_lock(vcpu);
11148
11149         /*
11150          * Profile KVM exit RIPs:
11151          */
11152         if (unlikely(prof_on == KVM_PROFILING)) {
11153                 unsigned long rip = kvm_rip_read(vcpu);
11154                 profile_hit(KVM_PROFILING, (void *)rip);
11155         }
11156
11157         if (unlikely(vcpu->arch.tsc_always_catchup))
11158                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11159
11160         if (vcpu->arch.apic_attention)
11161                 kvm_lapic_sync_from_vapic(vcpu);
11162
11163         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
11164         return r;
11165
11166 cancel_injection:
11167         if (req_immediate_exit)
11168                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11169         static_call(kvm_x86_cancel_injection)(vcpu);
11170         if (unlikely(vcpu->arch.apic_attention))
11171                 kvm_lapic_sync_from_vapic(vcpu);
11172 out:
11173         return r;
11174 }
11175
11176 /* Called within kvm->srcu read side.  */
11177 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11178 {
11179         bool hv_timer;
11180
11181         if (!kvm_arch_vcpu_runnable(vcpu)) {
11182                 /*
11183                  * Switch to the software timer before halt-polling/blocking as
11184                  * the guest's timer may be a break event for the vCPU, and the
11185                  * hypervisor timer runs only when the CPU is in guest mode.
11186                  * Switch before halt-polling so that KVM recognizes an expired
11187                  * timer before blocking.
11188                  */
11189                 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11190                 if (hv_timer)
11191                         kvm_lapic_switch_to_sw_timer(vcpu);
11192
11193                 kvm_vcpu_srcu_read_unlock(vcpu);
11194                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11195                         kvm_vcpu_halt(vcpu);
11196                 else
11197                         kvm_vcpu_block(vcpu);
11198                 kvm_vcpu_srcu_read_lock(vcpu);
11199
11200                 if (hv_timer)
11201                         kvm_lapic_switch_to_hv_timer(vcpu);
11202
11203                 /*
11204                  * If the vCPU is not runnable, a signal or another host event
11205                  * of some kind is pending; service it without changing the
11206                  * vCPU's activity state.
11207                  */
11208                 if (!kvm_arch_vcpu_runnable(vcpu))
11209                         return 1;
11210         }
11211
11212         /*
11213          * Evaluate nested events before exiting the halted state.  This allows
11214          * the halt state to be recorded properly in the VMCS12's activity
11215          * state field (AMD does not have a similar field and a VM-Exit always
11216          * causes a spurious wakeup from HLT).
11217          */
11218         if (is_guest_mode(vcpu)) {
11219                 if (kvm_check_nested_events(vcpu) < 0)
11220                         return 0;
11221         }
11222
11223         if (kvm_apic_accept_events(vcpu) < 0)
11224                 return 0;
11225         switch(vcpu->arch.mp_state) {
11226         case KVM_MP_STATE_HALTED:
11227         case KVM_MP_STATE_AP_RESET_HOLD:
11228                 vcpu->arch.pv.pv_unhalted = false;
11229                 vcpu->arch.mp_state =
11230                         KVM_MP_STATE_RUNNABLE;
11231                 fallthrough;
11232         case KVM_MP_STATE_RUNNABLE:
11233                 vcpu->arch.apf.halted = false;
11234                 break;
11235         case KVM_MP_STATE_INIT_RECEIVED:
11236                 break;
11237         default:
11238                 WARN_ON_ONCE(1);
11239                 break;
11240         }
11241         return 1;
11242 }
11243
11244 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11245 {
11246         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11247                 !vcpu->arch.apf.halted);
11248 }
11249
11250 /* Called within kvm->srcu read side.  */
11251 static int vcpu_run(struct kvm_vcpu *vcpu)
11252 {
11253         int r;
11254
11255         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11256         vcpu->arch.l1tf_flush_l1d = true;
11257
11258         for (;;) {
11259                 /*
11260                  * If another guest vCPU requests a PV TLB flush in the middle
11261                  * of instruction emulation, the rest of the emulation could
11262                  * use a stale page translation. Assume that any code after
11263                  * this point can start executing an instruction.
11264                  */
11265                 vcpu->arch.at_instruction_boundary = false;
11266                 if (kvm_vcpu_running(vcpu)) {
11267                         r = vcpu_enter_guest(vcpu);
11268                 } else {
11269                         r = vcpu_block(vcpu);
11270                 }
11271
11272                 if (r <= 0)
11273                         break;
11274
11275                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11276                 if (kvm_xen_has_pending_events(vcpu))
11277                         kvm_xen_inject_pending_events(vcpu);
11278
11279                 if (kvm_cpu_has_pending_timer(vcpu))
11280                         kvm_inject_pending_timer_irqs(vcpu);
11281
11282                 if (dm_request_for_irq_injection(vcpu) &&
11283                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11284                         r = 0;
11285                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11286                         ++vcpu->stat.request_irq_exits;
11287                         break;
11288                 }
11289
11290                 if (__xfer_to_guest_mode_work_pending()) {
11291                         kvm_vcpu_srcu_read_unlock(vcpu);
11292                         r = xfer_to_guest_mode_handle_work(vcpu);
11293                         kvm_vcpu_srcu_read_lock(vcpu);
11294                         if (r)
11295                                 return r;
11296                 }
11297         }
11298
11299         return r;
11300 }
11301
11302 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11303 {
11304         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11305 }
11306
11307 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11308 {
11309         BUG_ON(!vcpu->arch.pio.count);
11310
11311         return complete_emulated_io(vcpu);
11312 }
11313
11314 /*
11315  * Implements the following, as a state machine:
11316  *
11317  * read:
11318  *   for each fragment
11319  *     for each mmio piece in the fragment
11320  *       write gpa, len
11321  *       exit
11322  *       copy data
11323  *   execute insn
11324  *
11325  * write:
11326  *   for each fragment
11327  *     for each mmio piece in the fragment
11328  *       write gpa, len
11329  *       copy data
11330  *       exit
11331  */
11332 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11333 {
11334         struct kvm_run *run = vcpu->run;
11335         struct kvm_mmio_fragment *frag;
11336         unsigned len;
11337
11338         BUG_ON(!vcpu->mmio_needed);
11339
11340         /* Complete previous fragment */
11341         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11342         len = min(8u, frag->len);
11343         if (!vcpu->mmio_is_write)
11344                 memcpy(frag->data, run->mmio.data, len);
11345
11346         if (frag->len <= 8) {
11347                 /* Switch to the next fragment. */
11348                 frag++;
11349                 vcpu->mmio_cur_fragment++;
11350         } else {
11351                 /* Go forward to the next mmio piece. */
11352                 frag->data += len;
11353                 frag->gpa += len;
11354                 frag->len -= len;
11355         }
11356
11357         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11358                 vcpu->mmio_needed = 0;
11359
11360                 /* FIXME: return into emulator if single-stepping.  */
11361                 if (vcpu->mmio_is_write)
11362                         return 1;
11363                 vcpu->mmio_read_completed = 1;
11364                 return complete_emulated_io(vcpu);
11365         }
11366
11367         run->exit_reason = KVM_EXIT_MMIO;
11368         run->mmio.phys_addr = frag->gpa;
11369         if (vcpu->mmio_is_write)
11370                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11371         run->mmio.len = min(8u, frag->len);
11372         run->mmio.is_write = vcpu->mmio_is_write;
11373         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11374         return 0;
11375 }
11376
11377 /* Swap (qemu) user FPU context for the guest FPU context. */
11378 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11379 {
11380         /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11381         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11382         trace_kvm_fpu(1);
11383 }
11384
11385 /* When vcpu_run ends, restore user space FPU context. */
11386 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11387 {
11388         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11389         ++vcpu->stat.fpu_reload;
11390         trace_kvm_fpu(0);
11391 }
11392
11393 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11394 {
11395         struct kvm_queued_exception *ex = &vcpu->arch.exception;
11396         struct kvm_run *kvm_run = vcpu->run;
11397         int r;
11398
11399         vcpu_load(vcpu);
11400         kvm_sigset_activate(vcpu);
11401         kvm_run->flags = 0;
11402         kvm_load_guest_fpu(vcpu);
11403
11404         kvm_vcpu_srcu_read_lock(vcpu);
11405         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11406                 if (kvm_run->immediate_exit) {
11407                         r = -EINTR;
11408                         goto out;
11409                 }
11410
11411                 /*
11412                  * Don't bother switching APIC timer emulation from the
11413                  * hypervisor timer to the software timer, the only way for the
11414                  * APIC timer to be active is if userspace stuffed vCPU state,
11415                  * i.e. put the vCPU into a nonsensical state.  Only an INIT
11416                  * will transition the vCPU out of UNINITIALIZED (without more
11417                  * state stuffing from userspace), which will reset the local
11418                  * APIC and thus cancel the timer or drop the IRQ (if the timer
11419                  * already expired).
11420                  */
11421                 kvm_vcpu_srcu_read_unlock(vcpu);
11422                 kvm_vcpu_block(vcpu);
11423                 kvm_vcpu_srcu_read_lock(vcpu);
11424
11425                 if (kvm_apic_accept_events(vcpu) < 0) {
11426                         r = 0;
11427                         goto out;
11428                 }
11429                 r = -EAGAIN;
11430                 if (signal_pending(current)) {
11431                         r = -EINTR;
11432                         kvm_run->exit_reason = KVM_EXIT_INTR;
11433                         ++vcpu->stat.signal_exits;
11434                 }
11435                 goto out;
11436         }
11437
11438         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11439             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11440                 r = -EINVAL;
11441                 goto out;
11442         }
11443
11444         if (kvm_run->kvm_dirty_regs) {
11445                 r = sync_regs(vcpu);
11446                 if (r != 0)
11447                         goto out;
11448         }
11449
11450         /* re-sync apic's tpr */
11451         if (!lapic_in_kernel(vcpu)) {
11452                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11453                         r = -EINVAL;
11454                         goto out;
11455                 }
11456         }
11457
11458         /*
11459          * If userspace set a pending exception and L2 is active, convert it to
11460          * a pending VM-Exit if L1 wants to intercept the exception.
11461          */
11462         if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11463             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11464                                                         ex->error_code)) {
11465                 kvm_queue_exception_vmexit(vcpu, ex->vector,
11466                                            ex->has_error_code, ex->error_code,
11467                                            ex->has_payload, ex->payload);
11468                 ex->injected = false;
11469                 ex->pending = false;
11470         }
11471         vcpu->arch.exception_from_userspace = false;
11472
11473         if (unlikely(vcpu->arch.complete_userspace_io)) {
11474                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11475                 vcpu->arch.complete_userspace_io = NULL;
11476                 r = cui(vcpu);
11477                 if (r <= 0)
11478                         goto out;
11479         } else {
11480                 WARN_ON_ONCE(vcpu->arch.pio.count);
11481                 WARN_ON_ONCE(vcpu->mmio_needed);
11482         }
11483
11484         if (kvm_run->immediate_exit) {
11485                 r = -EINTR;
11486                 goto out;
11487         }
11488
11489         r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11490         if (r <= 0)
11491                 goto out;
11492
11493         r = vcpu_run(vcpu);
11494
11495 out:
11496         kvm_put_guest_fpu(vcpu);
11497         if (kvm_run->kvm_valid_regs)
11498                 store_regs(vcpu);
11499         post_kvm_run_save(vcpu);
11500         kvm_vcpu_srcu_read_unlock(vcpu);
11501
11502         kvm_sigset_deactivate(vcpu);
11503         vcpu_put(vcpu);
11504         return r;
11505 }
11506
11507 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11508 {
11509         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11510                 /*
11511                  * We are here if userspace calls get_regs() in the middle of
11512                  * instruction emulation. Registers state needs to be copied
11513                  * back from emulation context to vcpu. Userspace shouldn't do
11514                  * that usually, but some bad designed PV devices (vmware
11515                  * backdoor interface) need this to work
11516                  */
11517                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11518                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11519         }
11520         regs->rax = kvm_rax_read(vcpu);
11521         regs->rbx = kvm_rbx_read(vcpu);
11522         regs->rcx = kvm_rcx_read(vcpu);
11523         regs->rdx = kvm_rdx_read(vcpu);
11524         regs->rsi = kvm_rsi_read(vcpu);
11525         regs->rdi = kvm_rdi_read(vcpu);
11526         regs->rsp = kvm_rsp_read(vcpu);
11527         regs->rbp = kvm_rbp_read(vcpu);
11528 #ifdef CONFIG_X86_64
11529         regs->r8 = kvm_r8_read(vcpu);
11530         regs->r9 = kvm_r9_read(vcpu);
11531         regs->r10 = kvm_r10_read(vcpu);
11532         regs->r11 = kvm_r11_read(vcpu);
11533         regs->r12 = kvm_r12_read(vcpu);
11534         regs->r13 = kvm_r13_read(vcpu);
11535         regs->r14 = kvm_r14_read(vcpu);
11536         regs->r15 = kvm_r15_read(vcpu);
11537 #endif
11538
11539         regs->rip = kvm_rip_read(vcpu);
11540         regs->rflags = kvm_get_rflags(vcpu);
11541 }
11542
11543 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11544 {
11545         if (vcpu->kvm->arch.has_protected_state &&
11546             vcpu->arch.guest_state_protected)
11547                 return -EINVAL;
11548
11549         vcpu_load(vcpu);
11550         __get_regs(vcpu, regs);
11551         vcpu_put(vcpu);
11552         return 0;
11553 }
11554
11555 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11556 {
11557         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11558         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11559
11560         kvm_rax_write(vcpu, regs->rax);
11561         kvm_rbx_write(vcpu, regs->rbx);
11562         kvm_rcx_write(vcpu, regs->rcx);
11563         kvm_rdx_write(vcpu, regs->rdx);
11564         kvm_rsi_write(vcpu, regs->rsi);
11565         kvm_rdi_write(vcpu, regs->rdi);
11566         kvm_rsp_write(vcpu, regs->rsp);
11567         kvm_rbp_write(vcpu, regs->rbp);
11568 #ifdef CONFIG_X86_64
11569         kvm_r8_write(vcpu, regs->r8);
11570         kvm_r9_write(vcpu, regs->r9);
11571         kvm_r10_write(vcpu, regs->r10);
11572         kvm_r11_write(vcpu, regs->r11);
11573         kvm_r12_write(vcpu, regs->r12);
11574         kvm_r13_write(vcpu, regs->r13);
11575         kvm_r14_write(vcpu, regs->r14);
11576         kvm_r15_write(vcpu, regs->r15);
11577 #endif
11578
11579         kvm_rip_write(vcpu, regs->rip);
11580         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11581
11582         vcpu->arch.exception.pending = false;
11583         vcpu->arch.exception_vmexit.pending = false;
11584
11585         kvm_make_request(KVM_REQ_EVENT, vcpu);
11586 }
11587
11588 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11589 {
11590         if (vcpu->kvm->arch.has_protected_state &&
11591             vcpu->arch.guest_state_protected)
11592                 return -EINVAL;
11593
11594         vcpu_load(vcpu);
11595         __set_regs(vcpu, regs);
11596         vcpu_put(vcpu);
11597         return 0;
11598 }
11599
11600 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11601 {
11602         struct desc_ptr dt;
11603
11604         if (vcpu->arch.guest_state_protected)
11605                 goto skip_protected_regs;
11606
11607         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11608         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11609         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11610         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11611         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11612         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11613
11614         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11615         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11616
11617         static_call(kvm_x86_get_idt)(vcpu, &dt);
11618         sregs->idt.limit = dt.size;
11619         sregs->idt.base = dt.address;
11620         static_call(kvm_x86_get_gdt)(vcpu, &dt);
11621         sregs->gdt.limit = dt.size;
11622         sregs->gdt.base = dt.address;
11623
11624         sregs->cr2 = vcpu->arch.cr2;
11625         sregs->cr3 = kvm_read_cr3(vcpu);
11626
11627 skip_protected_regs:
11628         sregs->cr0 = kvm_read_cr0(vcpu);
11629         sregs->cr4 = kvm_read_cr4(vcpu);
11630         sregs->cr8 = kvm_get_cr8(vcpu);
11631         sregs->efer = vcpu->arch.efer;
11632         sregs->apic_base = kvm_get_apic_base(vcpu);
11633 }
11634
11635 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11636 {
11637         __get_sregs_common(vcpu, sregs);
11638
11639         if (vcpu->arch.guest_state_protected)
11640                 return;
11641
11642         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11643                 set_bit(vcpu->arch.interrupt.nr,
11644                         (unsigned long *)sregs->interrupt_bitmap);
11645 }
11646
11647 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11648 {
11649         int i;
11650
11651         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11652
11653         if (vcpu->arch.guest_state_protected)
11654                 return;
11655
11656         if (is_pae_paging(vcpu)) {
11657                 for (i = 0 ; i < 4 ; i++)
11658                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11659                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11660         }
11661 }
11662
11663 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11664                                   struct kvm_sregs *sregs)
11665 {
11666         if (vcpu->kvm->arch.has_protected_state &&
11667             vcpu->arch.guest_state_protected)
11668                 return -EINVAL;
11669
11670         vcpu_load(vcpu);
11671         __get_sregs(vcpu, sregs);
11672         vcpu_put(vcpu);
11673         return 0;
11674 }
11675
11676 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11677                                     struct kvm_mp_state *mp_state)
11678 {
11679         int r;
11680
11681         vcpu_load(vcpu);
11682         if (kvm_mpx_supported())
11683                 kvm_load_guest_fpu(vcpu);
11684
11685         r = kvm_apic_accept_events(vcpu);
11686         if (r < 0)
11687                 goto out;
11688         r = 0;
11689
11690         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11691              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11692             vcpu->arch.pv.pv_unhalted)
11693                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11694         else
11695                 mp_state->mp_state = vcpu->arch.mp_state;
11696
11697 out:
11698         if (kvm_mpx_supported())
11699                 kvm_put_guest_fpu(vcpu);
11700         vcpu_put(vcpu);
11701         return r;
11702 }
11703
11704 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11705                                     struct kvm_mp_state *mp_state)
11706 {
11707         int ret = -EINVAL;
11708
11709         vcpu_load(vcpu);
11710
11711         switch (mp_state->mp_state) {
11712         case KVM_MP_STATE_UNINITIALIZED:
11713         case KVM_MP_STATE_HALTED:
11714         case KVM_MP_STATE_AP_RESET_HOLD:
11715         case KVM_MP_STATE_INIT_RECEIVED:
11716         case KVM_MP_STATE_SIPI_RECEIVED:
11717                 if (!lapic_in_kernel(vcpu))
11718                         goto out;
11719                 break;
11720
11721         case KVM_MP_STATE_RUNNABLE:
11722                 break;
11723
11724         default:
11725                 goto out;
11726         }
11727
11728         /*
11729          * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11730          * forcing the guest into INIT/SIPI if those events are supposed to be
11731          * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11732          * if an SMI is pending as well.
11733          */
11734         if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11735             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11736              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11737                 goto out;
11738
11739         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11740                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11741                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11742         } else
11743                 vcpu->arch.mp_state = mp_state->mp_state;
11744         kvm_make_request(KVM_REQ_EVENT, vcpu);
11745
11746         ret = 0;
11747 out:
11748         vcpu_put(vcpu);
11749         return ret;
11750 }
11751
11752 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11753                     int reason, bool has_error_code, u32 error_code)
11754 {
11755         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11756         int ret;
11757
11758         init_emulate_ctxt(vcpu);
11759
11760         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11761                                    has_error_code, error_code);
11762         if (ret) {
11763                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11764                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11765                 vcpu->run->internal.ndata = 0;
11766                 return 0;
11767         }
11768
11769         kvm_rip_write(vcpu, ctxt->eip);
11770         kvm_set_rflags(vcpu, ctxt->eflags);
11771         return 1;
11772 }
11773 EXPORT_SYMBOL_GPL(kvm_task_switch);
11774
11775 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11776 {
11777         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11778                 /*
11779                  * When EFER.LME and CR0.PG are set, the processor is in
11780                  * 64-bit mode (though maybe in a 32-bit code segment).
11781                  * CR4.PAE and EFER.LMA must be set.
11782                  */
11783                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11784                         return false;
11785                 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11786                         return false;
11787         } else {
11788                 /*
11789                  * Not in 64-bit mode: EFER.LMA is clear and the code
11790                  * segment cannot be 64-bit.
11791                  */
11792                 if (sregs->efer & EFER_LMA || sregs->cs.l)
11793                         return false;
11794         }
11795
11796         return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11797                kvm_is_valid_cr0(vcpu, sregs->cr0);
11798 }
11799
11800 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11801                 int *mmu_reset_needed, bool update_pdptrs)
11802 {
11803         struct msr_data apic_base_msr;
11804         int idx;
11805         struct desc_ptr dt;
11806
11807         if (!kvm_is_valid_sregs(vcpu, sregs))
11808                 return -EINVAL;
11809
11810         apic_base_msr.data = sregs->apic_base;
11811         apic_base_msr.host_initiated = true;
11812         if (kvm_set_apic_base(vcpu, &apic_base_msr))
11813                 return -EINVAL;
11814
11815         if (vcpu->arch.guest_state_protected)
11816                 return 0;
11817
11818         dt.size = sregs->idt.limit;
11819         dt.address = sregs->idt.base;
11820         static_call(kvm_x86_set_idt)(vcpu, &dt);
11821         dt.size = sregs->gdt.limit;
11822         dt.address = sregs->gdt.base;
11823         static_call(kvm_x86_set_gdt)(vcpu, &dt);
11824
11825         vcpu->arch.cr2 = sregs->cr2;
11826         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11827         vcpu->arch.cr3 = sregs->cr3;
11828         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11829         static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11830
11831         kvm_set_cr8(vcpu, sregs->cr8);
11832
11833         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11834         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11835
11836         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11837         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11838
11839         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11840         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11841
11842         if (update_pdptrs) {
11843                 idx = srcu_read_lock(&vcpu->kvm->srcu);
11844                 if (is_pae_paging(vcpu)) {
11845                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11846                         *mmu_reset_needed = 1;
11847                 }
11848                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11849         }
11850
11851         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11852         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11853         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11854         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11855         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11856         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11857
11858         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11859         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11860
11861         update_cr8_intercept(vcpu);
11862
11863         /* Older userspace won't unhalt the vcpu on reset. */
11864         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11865             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11866             !is_protmode(vcpu))
11867                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11868
11869         return 0;
11870 }
11871
11872 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11873 {
11874         int pending_vec, max_bits;
11875         int mmu_reset_needed = 0;
11876         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11877
11878         if (ret)
11879                 return ret;
11880
11881         if (mmu_reset_needed) {
11882                 kvm_mmu_reset_context(vcpu);
11883                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11884         }
11885
11886         max_bits = KVM_NR_INTERRUPTS;
11887         pending_vec = find_first_bit(
11888                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11889
11890         if (pending_vec < max_bits) {
11891                 kvm_queue_interrupt(vcpu, pending_vec, false);
11892                 pr_debug("Set back pending irq %d\n", pending_vec);
11893                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11894         }
11895         return 0;
11896 }
11897
11898 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11899 {
11900         int mmu_reset_needed = 0;
11901         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11902         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11903                 !(sregs2->efer & EFER_LMA);
11904         int i, ret;
11905
11906         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11907                 return -EINVAL;
11908
11909         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11910                 return -EINVAL;
11911
11912         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11913                                  &mmu_reset_needed, !valid_pdptrs);
11914         if (ret)
11915                 return ret;
11916
11917         if (valid_pdptrs) {
11918                 for (i = 0; i < 4 ; i++)
11919                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11920
11921                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11922                 mmu_reset_needed = 1;
11923                 vcpu->arch.pdptrs_from_userspace = true;
11924         }
11925         if (mmu_reset_needed) {
11926                 kvm_mmu_reset_context(vcpu);
11927                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11928         }
11929         return 0;
11930 }
11931
11932 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11933                                   struct kvm_sregs *sregs)
11934 {
11935         int ret;
11936
11937         if (vcpu->kvm->arch.has_protected_state &&
11938             vcpu->arch.guest_state_protected)
11939                 return -EINVAL;
11940
11941         vcpu_load(vcpu);
11942         ret = __set_sregs(vcpu, sregs);
11943         vcpu_put(vcpu);
11944         return ret;
11945 }
11946
11947 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11948 {
11949         bool set = false;
11950         struct kvm_vcpu *vcpu;
11951         unsigned long i;
11952
11953         if (!enable_apicv)
11954                 return;
11955
11956         down_write(&kvm->arch.apicv_update_lock);
11957
11958         kvm_for_each_vcpu(i, vcpu, kvm) {
11959                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11960                         set = true;
11961                         break;
11962                 }
11963         }
11964         __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11965         up_write(&kvm->arch.apicv_update_lock);
11966 }
11967
11968 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11969                                         struct kvm_guest_debug *dbg)
11970 {
11971         unsigned long rflags;
11972         int i, r;
11973
11974         if (vcpu->arch.guest_state_protected)
11975                 return -EINVAL;
11976
11977         vcpu_load(vcpu);
11978
11979         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11980                 r = -EBUSY;
11981                 if (kvm_is_exception_pending(vcpu))
11982                         goto out;
11983                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11984                         kvm_queue_exception(vcpu, DB_VECTOR);
11985                 else
11986                         kvm_queue_exception(vcpu, BP_VECTOR);
11987         }
11988
11989         /*
11990          * Read rflags as long as potentially injected trace flags are still
11991          * filtered out.
11992          */
11993         rflags = kvm_get_rflags(vcpu);
11994
11995         vcpu->guest_debug = dbg->control;
11996         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11997                 vcpu->guest_debug = 0;
11998
11999         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12000                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
12001                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12002                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12003         } else {
12004                 for (i = 0; i < KVM_NR_DB_REGS; i++)
12005                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12006         }
12007         kvm_update_dr7(vcpu);
12008
12009         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12010                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12011
12012         /*
12013          * Trigger an rflags update that will inject or remove the trace
12014          * flags.
12015          */
12016         kvm_set_rflags(vcpu, rflags);
12017
12018         static_call(kvm_x86_update_exception_bitmap)(vcpu);
12019
12020         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12021
12022         r = 0;
12023
12024 out:
12025         vcpu_put(vcpu);
12026         return r;
12027 }
12028
12029 /*
12030  * Translate a guest virtual address to a guest physical address.
12031  */
12032 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12033                                     struct kvm_translation *tr)
12034 {
12035         unsigned long vaddr = tr->linear_address;
12036         gpa_t gpa;
12037         int idx;
12038
12039         vcpu_load(vcpu);
12040
12041         idx = srcu_read_lock(&vcpu->kvm->srcu);
12042         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12043         srcu_read_unlock(&vcpu->kvm->srcu, idx);
12044         tr->physical_address = gpa;
12045         tr->valid = gpa != INVALID_GPA;
12046         tr->writeable = 1;
12047         tr->usermode = 0;
12048
12049         vcpu_put(vcpu);
12050         return 0;
12051 }
12052
12053 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12054 {
12055         struct fxregs_state *fxsave;
12056
12057         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12058                 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12059
12060         vcpu_load(vcpu);
12061
12062         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12063         memcpy(fpu->fpr, fxsave->st_space, 128);
12064         fpu->fcw = fxsave->cwd;
12065         fpu->fsw = fxsave->swd;
12066         fpu->ftwx = fxsave->twd;
12067         fpu->last_opcode = fxsave->fop;
12068         fpu->last_ip = fxsave->rip;
12069         fpu->last_dp = fxsave->rdp;
12070         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12071
12072         vcpu_put(vcpu);
12073         return 0;
12074 }
12075
12076 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12077 {
12078         struct fxregs_state *fxsave;
12079
12080         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12081                 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12082
12083         vcpu_load(vcpu);
12084
12085         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12086
12087         memcpy(fxsave->st_space, fpu->fpr, 128);
12088         fxsave->cwd = fpu->fcw;
12089         fxsave->swd = fpu->fsw;
12090         fxsave->twd = fpu->ftwx;
12091         fxsave->fop = fpu->last_opcode;
12092         fxsave->rip = fpu->last_ip;
12093         fxsave->rdp = fpu->last_dp;
12094         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12095
12096         vcpu_put(vcpu);
12097         return 0;
12098 }
12099
12100 static void store_regs(struct kvm_vcpu *vcpu)
12101 {
12102         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12103
12104         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12105                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
12106
12107         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12108                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12109
12110         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12111                 kvm_vcpu_ioctl_x86_get_vcpu_events(
12112                                 vcpu, &vcpu->run->s.regs.events);
12113 }
12114
12115 static int sync_regs(struct kvm_vcpu *vcpu)
12116 {
12117         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12118                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
12119                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12120         }
12121
12122         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12123                 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12124
12125                 if (__set_sregs(vcpu, &sregs))
12126                         return -EINVAL;
12127
12128                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12129         }
12130
12131         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12132                 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12133
12134                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12135                         return -EINVAL;
12136
12137                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12138         }
12139
12140         return 0;
12141 }
12142
12143 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12144 {
12145         if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12146                 pr_warn_once("SMP vm created on host with unstable TSC; "
12147                              "guest TSC will not be reliable\n");
12148
12149         if (!kvm->arch.max_vcpu_ids)
12150                 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12151
12152         if (id >= kvm->arch.max_vcpu_ids)
12153                 return -EINVAL;
12154
12155         return static_call(kvm_x86_vcpu_precreate)(kvm);
12156 }
12157
12158 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12159 {
12160         struct page *page;
12161         int r;
12162
12163         vcpu->arch.last_vmentry_cpu = -1;
12164         vcpu->arch.regs_avail = ~0;
12165         vcpu->arch.regs_dirty = ~0;
12166
12167         kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12168
12169         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12170                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12171         else
12172                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12173
12174         r = kvm_mmu_create(vcpu);
12175         if (r < 0)
12176                 return r;
12177
12178         r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
12179         if (r < 0)
12180                 goto fail_mmu_destroy;
12181
12182         r = -ENOMEM;
12183
12184         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12185         if (!page)
12186                 goto fail_free_lapic;
12187         vcpu->arch.pio_data = page_address(page);
12188
12189         vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12190                                        GFP_KERNEL_ACCOUNT);
12191         vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12192                                             GFP_KERNEL_ACCOUNT);
12193         if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12194                 goto fail_free_mce_banks;
12195         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12196
12197         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12198                                 GFP_KERNEL_ACCOUNT))
12199                 goto fail_free_mce_banks;
12200
12201         if (!alloc_emulate_ctxt(vcpu))
12202                 goto free_wbinvd_dirty_mask;
12203
12204         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12205                 pr_err("failed to allocate vcpu's fpu\n");
12206                 goto free_emulate_ctxt;
12207         }
12208
12209         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12210         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12211
12212         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12213
12214         kvm_async_pf_hash_reset(vcpu);
12215
12216         vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12217         kvm_pmu_init(vcpu);
12218
12219         vcpu->arch.pending_external_vector = -1;
12220         vcpu->arch.preempted_in_kernel = false;
12221
12222 #if IS_ENABLED(CONFIG_HYPERV)
12223         vcpu->arch.hv_root_tdp = INVALID_PAGE;
12224 #endif
12225
12226         r = static_call(kvm_x86_vcpu_create)(vcpu);
12227         if (r)
12228                 goto free_guest_fpu;
12229
12230         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12231         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12232         kvm_xen_init_vcpu(vcpu);
12233         kvm_vcpu_mtrr_init(vcpu);
12234         vcpu_load(vcpu);
12235         kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12236         kvm_vcpu_reset(vcpu, false);
12237         kvm_init_mmu(vcpu);
12238         vcpu_put(vcpu);
12239         return 0;
12240
12241 free_guest_fpu:
12242         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12243 free_emulate_ctxt:
12244         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12245 free_wbinvd_dirty_mask:
12246         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12247 fail_free_mce_banks:
12248         kfree(vcpu->arch.mce_banks);
12249         kfree(vcpu->arch.mci_ctl2_banks);
12250         free_page((unsigned long)vcpu->arch.pio_data);
12251 fail_free_lapic:
12252         kvm_free_lapic(vcpu);
12253 fail_mmu_destroy:
12254         kvm_mmu_destroy(vcpu);
12255         return r;
12256 }
12257
12258 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12259 {
12260         struct kvm *kvm = vcpu->kvm;
12261
12262         if (mutex_lock_killable(&vcpu->mutex))
12263                 return;
12264         vcpu_load(vcpu);
12265         kvm_synchronize_tsc(vcpu, NULL);
12266         vcpu_put(vcpu);
12267
12268         /* poll control enabled by default */
12269         vcpu->arch.msr_kvm_poll_control = 1;
12270
12271         mutex_unlock(&vcpu->mutex);
12272
12273         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12274                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12275                                                 KVMCLOCK_SYNC_PERIOD);
12276 }
12277
12278 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12279 {
12280         int idx;
12281
12282         kvmclock_reset(vcpu);
12283
12284         static_call(kvm_x86_vcpu_free)(vcpu);
12285
12286         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12287         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12288         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12289
12290         kvm_xen_destroy_vcpu(vcpu);
12291         kvm_hv_vcpu_uninit(vcpu);
12292         kvm_pmu_destroy(vcpu);
12293         kfree(vcpu->arch.mce_banks);
12294         kfree(vcpu->arch.mci_ctl2_banks);
12295         kvm_free_lapic(vcpu);
12296         idx = srcu_read_lock(&vcpu->kvm->srcu);
12297         kvm_mmu_destroy(vcpu);
12298         srcu_read_unlock(&vcpu->kvm->srcu, idx);
12299         free_page((unsigned long)vcpu->arch.pio_data);
12300         kvfree(vcpu->arch.cpuid_entries);
12301 }
12302
12303 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12304 {
12305         struct kvm_cpuid_entry2 *cpuid_0x1;
12306         unsigned long old_cr0 = kvm_read_cr0(vcpu);
12307         unsigned long new_cr0;
12308
12309         /*
12310          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12311          * to handle side effects.  RESET emulation hits those flows and relies
12312          * on emulated/virtualized registers, including those that are loaded
12313          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12314          * to detect improper or missing initialization.
12315          */
12316         WARN_ON_ONCE(!init_event &&
12317                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12318
12319         /*
12320          * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12321          * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12322          * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12323          * bits), i.e. virtualization is disabled.
12324          */
12325         if (is_guest_mode(vcpu))
12326                 kvm_leave_nested(vcpu);
12327
12328         kvm_lapic_reset(vcpu, init_event);
12329
12330         WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12331         vcpu->arch.hflags = 0;
12332
12333         vcpu->arch.smi_pending = 0;
12334         vcpu->arch.smi_count = 0;
12335         atomic_set(&vcpu->arch.nmi_queued, 0);
12336         vcpu->arch.nmi_pending = 0;
12337         vcpu->arch.nmi_injected = false;
12338         kvm_clear_interrupt_queue(vcpu);
12339         kvm_clear_exception_queue(vcpu);
12340
12341         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12342         kvm_update_dr0123(vcpu);
12343         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12344         vcpu->arch.dr7 = DR7_FIXED_1;
12345         kvm_update_dr7(vcpu);
12346
12347         vcpu->arch.cr2 = 0;
12348
12349         kvm_make_request(KVM_REQ_EVENT, vcpu);
12350         vcpu->arch.apf.msr_en_val = 0;
12351         vcpu->arch.apf.msr_int_val = 0;
12352         vcpu->arch.st.msr_val = 0;
12353
12354         kvmclock_reset(vcpu);
12355
12356         kvm_clear_async_pf_completion_queue(vcpu);
12357         kvm_async_pf_hash_reset(vcpu);
12358         vcpu->arch.apf.halted = false;
12359
12360         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12361                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12362
12363                 /*
12364                  * All paths that lead to INIT are required to load the guest's
12365                  * FPU state (because most paths are buried in KVM_RUN).
12366                  */
12367                 if (init_event)
12368                         kvm_put_guest_fpu(vcpu);
12369
12370                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12371                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12372
12373                 if (init_event)
12374                         kvm_load_guest_fpu(vcpu);
12375         }
12376
12377         if (!init_event) {
12378                 vcpu->arch.smbase = 0x30000;
12379
12380                 vcpu->arch.msr_misc_features_enables = 0;
12381                 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12382                                                   MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12383
12384                 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12385                 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12386         }
12387
12388         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12389         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12390         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12391
12392         /*
12393          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12394          * if no CPUID match is found.  Note, it's impossible to get a match at
12395          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12396          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12397          * on RESET.  But, go through the motions in case that's ever remedied.
12398          */
12399         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12400         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12401
12402         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12403
12404         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12405         kvm_rip_write(vcpu, 0xfff0);
12406
12407         vcpu->arch.cr3 = 0;
12408         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12409
12410         /*
12411          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12412          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12413          * (or qualify) that with a footnote stating that CD/NW are preserved.
12414          */
12415         new_cr0 = X86_CR0_ET;
12416         if (init_event)
12417                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12418         else
12419                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12420
12421         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12422         static_call(kvm_x86_set_cr4)(vcpu, 0);
12423         static_call(kvm_x86_set_efer)(vcpu, 0);
12424         static_call(kvm_x86_update_exception_bitmap)(vcpu);
12425
12426         /*
12427          * On the standard CR0/CR4/EFER modification paths, there are several
12428          * complex conditions determining whether the MMU has to be reset and/or
12429          * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12430          * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12431          * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12432          * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12433          */
12434         if (old_cr0 & X86_CR0_PG) {
12435                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12436                 kvm_mmu_reset_context(vcpu);
12437         }
12438
12439         /*
12440          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12441          * APM states the TLBs are untouched by INIT, but it also states that
12442          * the TLBs are flushed on "External initialization of the processor."
12443          * Flush the guest TLB regardless of vendor, there is no meaningful
12444          * benefit in relying on the guest to flush the TLB immediately after
12445          * INIT.  A spurious TLB flush is benign and likely negligible from a
12446          * performance perspective.
12447          */
12448         if (init_event)
12449                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12450 }
12451 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12452
12453 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12454 {
12455         struct kvm_segment cs;
12456
12457         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12458         cs.selector = vector << 8;
12459         cs.base = vector << 12;
12460         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12461         kvm_rip_write(vcpu, 0);
12462 }
12463 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12464
12465 int kvm_arch_hardware_enable(void)
12466 {
12467         struct kvm *kvm;
12468         struct kvm_vcpu *vcpu;
12469         unsigned long i;
12470         int ret;
12471         u64 local_tsc;
12472         u64 max_tsc = 0;
12473         bool stable, backwards_tsc = false;
12474
12475         kvm_user_return_msr_cpu_online();
12476
12477         ret = kvm_x86_check_processor_compatibility();
12478         if (ret)
12479                 return ret;
12480
12481         ret = static_call(kvm_x86_hardware_enable)();
12482         if (ret != 0)
12483                 return ret;
12484
12485         local_tsc = rdtsc();
12486         stable = !kvm_check_tsc_unstable();
12487         list_for_each_entry(kvm, &vm_list, vm_list) {
12488                 kvm_for_each_vcpu(i, vcpu, kvm) {
12489                         if (!stable && vcpu->cpu == smp_processor_id())
12490                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12491                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12492                                 backwards_tsc = true;
12493                                 if (vcpu->arch.last_host_tsc > max_tsc)
12494                                         max_tsc = vcpu->arch.last_host_tsc;
12495                         }
12496                 }
12497         }
12498
12499         /*
12500          * Sometimes, even reliable TSCs go backwards.  This happens on
12501          * platforms that reset TSC during suspend or hibernate actions, but
12502          * maintain synchronization.  We must compensate.  Fortunately, we can
12503          * detect that condition here, which happens early in CPU bringup,
12504          * before any KVM threads can be running.  Unfortunately, we can't
12505          * bring the TSCs fully up to date with real time, as we aren't yet far
12506          * enough into CPU bringup that we know how much real time has actually
12507          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12508          * variables that haven't been updated yet.
12509          *
12510          * So we simply find the maximum observed TSC above, then record the
12511          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12512          * the adjustment will be applied.  Note that we accumulate
12513          * adjustments, in case multiple suspend cycles happen before some VCPU
12514          * gets a chance to run again.  In the event that no KVM threads get a
12515          * chance to run, we will miss the entire elapsed period, as we'll have
12516          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12517          * loose cycle time.  This isn't too big a deal, since the loss will be
12518          * uniform across all VCPUs (not to mention the scenario is extremely
12519          * unlikely). It is possible that a second hibernate recovery happens
12520          * much faster than a first, causing the observed TSC here to be
12521          * smaller; this would require additional padding adjustment, which is
12522          * why we set last_host_tsc to the local tsc observed here.
12523          *
12524          * N.B. - this code below runs only on platforms with reliable TSC,
12525          * as that is the only way backwards_tsc is set above.  Also note
12526          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12527          * have the same delta_cyc adjustment applied if backwards_tsc
12528          * is detected.  Note further, this adjustment is only done once,
12529          * as we reset last_host_tsc on all VCPUs to stop this from being
12530          * called multiple times (one for each physical CPU bringup).
12531          *
12532          * Platforms with unreliable TSCs don't have to deal with this, they
12533          * will be compensated by the logic in vcpu_load, which sets the TSC to
12534          * catchup mode.  This will catchup all VCPUs to real time, but cannot
12535          * guarantee that they stay in perfect synchronization.
12536          */
12537         if (backwards_tsc) {
12538                 u64 delta_cyc = max_tsc - local_tsc;
12539                 list_for_each_entry(kvm, &vm_list, vm_list) {
12540                         kvm->arch.backwards_tsc_observed = true;
12541                         kvm_for_each_vcpu(i, vcpu, kvm) {
12542                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12543                                 vcpu->arch.last_host_tsc = local_tsc;
12544                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12545                         }
12546
12547                         /*
12548                          * We have to disable TSC offset matching.. if you were
12549                          * booting a VM while issuing an S4 host suspend....
12550                          * you may have some problem.  Solving this issue is
12551                          * left as an exercise to the reader.
12552                          */
12553                         kvm->arch.last_tsc_nsec = 0;
12554                         kvm->arch.last_tsc_write = 0;
12555                 }
12556
12557         }
12558         return 0;
12559 }
12560
12561 void kvm_arch_hardware_disable(void)
12562 {
12563         static_call(kvm_x86_hardware_disable)();
12564         drop_user_return_notifiers();
12565 }
12566
12567 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12568 {
12569         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12570 }
12571
12572 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12573 {
12574         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12575 }
12576
12577 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12578 {
12579         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12580
12581         vcpu->arch.l1tf_flush_l1d = true;
12582         if (pmu->version && unlikely(pmu->event_count)) {
12583                 pmu->need_cleanup = true;
12584                 kvm_make_request(KVM_REQ_PMU, vcpu);
12585         }
12586         static_call(kvm_x86_sched_in)(vcpu, cpu);
12587 }
12588
12589 void kvm_arch_free_vm(struct kvm *kvm)
12590 {
12591 #if IS_ENABLED(CONFIG_HYPERV)
12592         kfree(kvm->arch.hv_pa_pg);
12593 #endif
12594         __kvm_arch_free_vm(kvm);
12595 }
12596
12597
12598 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12599 {
12600         int ret;
12601         unsigned long flags;
12602
12603         if (!kvm_is_vm_type_supported(type))
12604                 return -EINVAL;
12605
12606         kvm->arch.vm_type = type;
12607         kvm->arch.has_private_mem =
12608                 (type == KVM_X86_SW_PROTECTED_VM);
12609
12610         ret = kvm_page_track_init(kvm);
12611         if (ret)
12612                 goto out;
12613
12614         kvm_mmu_init_vm(kvm);
12615
12616         ret = static_call(kvm_x86_vm_init)(kvm);
12617         if (ret)
12618                 goto out_uninit_mmu;
12619
12620         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12621         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12622
12623         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12624         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12625         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12626         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12627                 &kvm->arch.irq_sources_bitmap);
12628
12629         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12630         mutex_init(&kvm->arch.apic_map_lock);
12631         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12632         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12633
12634         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12635         pvclock_update_vm_gtod_copy(kvm);
12636         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12637
12638         kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12639         kvm->arch.guest_can_read_msr_platform_info = true;
12640         kvm->arch.enable_pmu = enable_pmu;
12641
12642 #if IS_ENABLED(CONFIG_HYPERV)
12643         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12644         kvm->arch.hv_root_tdp = INVALID_PAGE;
12645 #endif
12646
12647         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12648         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12649
12650         kvm_apicv_init(kvm);
12651         kvm_hv_init_vm(kvm);
12652         kvm_xen_init_vm(kvm);
12653
12654         return 0;
12655
12656 out_uninit_mmu:
12657         kvm_mmu_uninit_vm(kvm);
12658         kvm_page_track_cleanup(kvm);
12659 out:
12660         return ret;
12661 }
12662
12663 int kvm_arch_post_init_vm(struct kvm *kvm)
12664 {
12665         return kvm_mmu_post_init_vm(kvm);
12666 }
12667
12668 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12669 {
12670         vcpu_load(vcpu);
12671         kvm_mmu_unload(vcpu);
12672         vcpu_put(vcpu);
12673 }
12674
12675 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12676 {
12677         unsigned long i;
12678         struct kvm_vcpu *vcpu;
12679
12680         kvm_for_each_vcpu(i, vcpu, kvm) {
12681                 kvm_clear_async_pf_completion_queue(vcpu);
12682                 kvm_unload_vcpu_mmu(vcpu);
12683         }
12684 }
12685
12686 void kvm_arch_sync_events(struct kvm *kvm)
12687 {
12688         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12689         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12690         kvm_free_pit(kvm);
12691 }
12692
12693 /**
12694  * __x86_set_memory_region: Setup KVM internal memory slot
12695  *
12696  * @kvm: the kvm pointer to the VM.
12697  * @id: the slot ID to setup.
12698  * @gpa: the GPA to install the slot (unused when @size == 0).
12699  * @size: the size of the slot. Set to zero to uninstall a slot.
12700  *
12701  * This function helps to setup a KVM internal memory slot.  Specify
12702  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12703  * slot.  The return code can be one of the following:
12704  *
12705  *   HVA:           on success (uninstall will return a bogus HVA)
12706  *   -errno:        on error
12707  *
12708  * The caller should always use IS_ERR() to check the return value
12709  * before use.  Note, the KVM internal memory slots are guaranteed to
12710  * remain valid and unchanged until the VM is destroyed, i.e., the
12711  * GPA->HVA translation will not change.  However, the HVA is a user
12712  * address, i.e. its accessibility is not guaranteed, and must be
12713  * accessed via __copy_{to,from}_user().
12714  */
12715 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12716                                       u32 size)
12717 {
12718         int i, r;
12719         unsigned long hva, old_npages;
12720         struct kvm_memslots *slots = kvm_memslots(kvm);
12721         struct kvm_memory_slot *slot;
12722
12723         /* Called with kvm->slots_lock held.  */
12724         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12725                 return ERR_PTR_USR(-EINVAL);
12726
12727         slot = id_to_memslot(slots, id);
12728         if (size) {
12729                 if (slot && slot->npages)
12730                         return ERR_PTR_USR(-EEXIST);
12731
12732                 /*
12733                  * MAP_SHARED to prevent internal slot pages from being moved
12734                  * by fork()/COW.
12735                  */
12736                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12737                               MAP_SHARED | MAP_ANONYMOUS, 0);
12738                 if (IS_ERR_VALUE(hva))
12739                         return (void __user *)hva;
12740         } else {
12741                 if (!slot || !slot->npages)
12742                         return NULL;
12743
12744                 old_npages = slot->npages;
12745                 hva = slot->userspace_addr;
12746         }
12747
12748         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12749                 struct kvm_userspace_memory_region2 m;
12750
12751                 m.slot = id | (i << 16);
12752                 m.flags = 0;
12753                 m.guest_phys_addr = gpa;
12754                 m.userspace_addr = hva;
12755                 m.memory_size = size;
12756                 r = __kvm_set_memory_region(kvm, &m);
12757                 if (r < 0)
12758                         return ERR_PTR_USR(r);
12759         }
12760
12761         if (!size)
12762                 vm_munmap(hva, old_npages * PAGE_SIZE);
12763
12764         return (void __user *)hva;
12765 }
12766 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12767
12768 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12769 {
12770         kvm_mmu_pre_destroy_vm(kvm);
12771 }
12772
12773 void kvm_arch_destroy_vm(struct kvm *kvm)
12774 {
12775         if (current->mm == kvm->mm) {
12776                 /*
12777                  * Free memory regions allocated on behalf of userspace,
12778                  * unless the memory map has changed due to process exit
12779                  * or fd copying.
12780                  */
12781                 mutex_lock(&kvm->slots_lock);
12782                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12783                                         0, 0);
12784                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12785                                         0, 0);
12786                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12787                 mutex_unlock(&kvm->slots_lock);
12788         }
12789         kvm_unload_vcpu_mmus(kvm);
12790         static_call_cond(kvm_x86_vm_destroy)(kvm);
12791         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12792         kvm_pic_destroy(kvm);
12793         kvm_ioapic_destroy(kvm);
12794         kvm_destroy_vcpus(kvm);
12795         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12796         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12797         kvm_mmu_uninit_vm(kvm);
12798         kvm_page_track_cleanup(kvm);
12799         kvm_xen_destroy_vm(kvm);
12800         kvm_hv_destroy_vm(kvm);
12801 }
12802
12803 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12804 {
12805         int i;
12806
12807         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12808                 kvfree(slot->arch.rmap[i]);
12809                 slot->arch.rmap[i] = NULL;
12810         }
12811 }
12812
12813 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12814 {
12815         int i;
12816
12817         memslot_rmap_free(slot);
12818
12819         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12820                 kvfree(slot->arch.lpage_info[i - 1]);
12821                 slot->arch.lpage_info[i - 1] = NULL;
12822         }
12823
12824         kvm_page_track_free_memslot(slot);
12825 }
12826
12827 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12828 {
12829         const int sz = sizeof(*slot->arch.rmap[0]);
12830         int i;
12831
12832         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12833                 int level = i + 1;
12834                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12835
12836                 if (slot->arch.rmap[i])
12837                         continue;
12838
12839                 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12840                 if (!slot->arch.rmap[i]) {
12841                         memslot_rmap_free(slot);
12842                         return -ENOMEM;
12843                 }
12844         }
12845
12846         return 0;
12847 }
12848
12849 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12850                                       struct kvm_memory_slot *slot)
12851 {
12852         unsigned long npages = slot->npages;
12853         int i, r;
12854
12855         /*
12856          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12857          * old arrays will be freed by __kvm_set_memory_region() if installing
12858          * the new memslot is successful.
12859          */
12860         memset(&slot->arch, 0, sizeof(slot->arch));
12861
12862         if (kvm_memslots_have_rmaps(kvm)) {
12863                 r = memslot_rmap_alloc(slot, npages);
12864                 if (r)
12865                         return r;
12866         }
12867
12868         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12869                 struct kvm_lpage_info *linfo;
12870                 unsigned long ugfn;
12871                 int lpages;
12872                 int level = i + 1;
12873
12874                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12875
12876                 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12877                 if (!linfo)
12878                         goto out_free;
12879
12880                 slot->arch.lpage_info[i - 1] = linfo;
12881
12882                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12883                         linfo[0].disallow_lpage = 1;
12884                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12885                         linfo[lpages - 1].disallow_lpage = 1;
12886                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12887                 /*
12888                  * If the gfn and userspace address are not aligned wrt each
12889                  * other, disable large page support for this slot.
12890                  */
12891                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12892                         unsigned long j;
12893
12894                         for (j = 0; j < lpages; ++j)
12895                                 linfo[j].disallow_lpage = 1;
12896                 }
12897         }
12898
12899 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12900         kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12901 #endif
12902
12903         if (kvm_page_track_create_memslot(kvm, slot, npages))
12904                 goto out_free;
12905
12906         return 0;
12907
12908 out_free:
12909         memslot_rmap_free(slot);
12910
12911         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12912                 kvfree(slot->arch.lpage_info[i - 1]);
12913                 slot->arch.lpage_info[i - 1] = NULL;
12914         }
12915         return -ENOMEM;
12916 }
12917
12918 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12919 {
12920         struct kvm_vcpu *vcpu;
12921         unsigned long i;
12922
12923         /*
12924          * memslots->generation has been incremented.
12925          * mmio generation may have reached its maximum value.
12926          */
12927         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12928
12929         /* Force re-initialization of steal_time cache */
12930         kvm_for_each_vcpu(i, vcpu, kvm)
12931                 kvm_vcpu_kick(vcpu);
12932 }
12933
12934 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12935                                    const struct kvm_memory_slot *old,
12936                                    struct kvm_memory_slot *new,
12937                                    enum kvm_mr_change change)
12938 {
12939         /*
12940          * KVM doesn't support moving memslots when there are external page
12941          * trackers attached to the VM, i.e. if KVMGT is in use.
12942          */
12943         if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12944                 return -EINVAL;
12945
12946         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12947                 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12948                         return -EINVAL;
12949
12950                 return kvm_alloc_memslot_metadata(kvm, new);
12951         }
12952
12953         if (change == KVM_MR_FLAGS_ONLY)
12954                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12955         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12956                 return -EIO;
12957
12958         return 0;
12959 }
12960
12961
12962 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12963 {
12964         int nr_slots;
12965
12966         if (!kvm_x86_ops.cpu_dirty_log_size)
12967                 return;
12968
12969         nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12970         if ((enable && nr_slots == 1) || !nr_slots)
12971                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12972 }
12973
12974 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12975                                      struct kvm_memory_slot *old,
12976                                      const struct kvm_memory_slot *new,
12977                                      enum kvm_mr_change change)
12978 {
12979         u32 old_flags = old ? old->flags : 0;
12980         u32 new_flags = new ? new->flags : 0;
12981         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12982
12983         /*
12984          * Update CPU dirty logging if dirty logging is being toggled.  This
12985          * applies to all operations.
12986          */
12987         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12988                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12989
12990         /*
12991          * Nothing more to do for RO slots (which can't be dirtied and can't be
12992          * made writable) or CREATE/MOVE/DELETE of a slot.
12993          *
12994          * For a memslot with dirty logging disabled:
12995          * CREATE:      No dirty mappings will already exist.
12996          * MOVE/DELETE: The old mappings will already have been cleaned up by
12997          *              kvm_arch_flush_shadow_memslot()
12998          *
12999          * For a memslot with dirty logging enabled:
13000          * CREATE:      No shadow pages exist, thus nothing to write-protect
13001          *              and no dirty bits to clear.
13002          * MOVE/DELETE: The old mappings will already have been cleaned up by
13003          *              kvm_arch_flush_shadow_memslot().
13004          */
13005         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13006                 return;
13007
13008         /*
13009          * READONLY and non-flags changes were filtered out above, and the only
13010          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13011          * logging isn't being toggled on or off.
13012          */
13013         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13014                 return;
13015
13016         if (!log_dirty_pages) {
13017                 /*
13018                  * Dirty logging tracks sptes in 4k granularity, meaning that
13019                  * large sptes have to be split.  If live migration succeeds,
13020                  * the guest in the source machine will be destroyed and large
13021                  * sptes will be created in the destination.  However, if the
13022                  * guest continues to run in the source machine (for example if
13023                  * live migration fails), small sptes will remain around and
13024                  * cause bad performance.
13025                  *
13026                  * Scan sptes if dirty logging has been stopped, dropping those
13027                  * which can be collapsed into a single large-page spte.  Later
13028                  * page faults will create the large-page sptes.
13029                  */
13030                 kvm_mmu_zap_collapsible_sptes(kvm, new);
13031         } else {
13032                 /*
13033                  * Initially-all-set does not require write protecting any page,
13034                  * because they're all assumed to be dirty.
13035                  */
13036                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13037                         return;
13038
13039                 if (READ_ONCE(eager_page_split))
13040                         kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13041
13042                 if (kvm_x86_ops.cpu_dirty_log_size) {
13043                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13044                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13045                 } else {
13046                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13047                 }
13048
13049                 /*
13050                  * Unconditionally flush the TLBs after enabling dirty logging.
13051                  * A flush is almost always going to be necessary (see below),
13052                  * and unconditionally flushing allows the helpers to omit
13053                  * the subtly complex checks when removing write access.
13054                  *
13055                  * Do the flush outside of mmu_lock to reduce the amount of
13056                  * time mmu_lock is held.  Flushing after dropping mmu_lock is
13057                  * safe as KVM only needs to guarantee the slot is fully
13058                  * write-protected before returning to userspace, i.e. before
13059                  * userspace can consume the dirty status.
13060                  *
13061                  * Flushing outside of mmu_lock requires KVM to be careful when
13062                  * making decisions based on writable status of an SPTE, e.g. a
13063                  * !writable SPTE doesn't guarantee a CPU can't perform writes.
13064                  *
13065                  * Specifically, KVM also write-protects guest page tables to
13066                  * monitor changes when using shadow paging, and must guarantee
13067                  * no CPUs can write to those page before mmu_lock is dropped.
13068                  * Because CPUs may have stale TLB entries at this point, a
13069                  * !writable SPTE doesn't guarantee CPUs can't perform writes.
13070                  *
13071                  * KVM also allows making SPTES writable outside of mmu_lock,
13072                  * e.g. to allow dirty logging without taking mmu_lock.
13073                  *
13074                  * To handle these scenarios, KVM uses a separate software-only
13075                  * bit (MMU-writable) to track if a SPTE is !writable due to
13076                  * a guest page table being write-protected (KVM clears the
13077                  * MMU-writable flag when write-protecting for shadow paging).
13078                  *
13079                  * The use of MMU-writable is also the primary motivation for
13080                  * the unconditional flush.  Because KVM must guarantee that a
13081                  * CPU doesn't contain stale, writable TLB entries for a
13082                  * !MMU-writable SPTE, KVM must flush if it encounters any
13083                  * MMU-writable SPTE regardless of whether the actual hardware
13084                  * writable bit was set.  I.e. KVM is almost guaranteed to need
13085                  * to flush, while unconditionally flushing allows the "remove
13086                  * write access" helpers to ignore MMU-writable entirely.
13087                  *
13088                  * See is_writable_pte() for more details (the case involving
13089                  * access-tracked SPTEs is particularly relevant).
13090                  */
13091                 kvm_flush_remote_tlbs_memslot(kvm, new);
13092         }
13093 }
13094
13095 void kvm_arch_commit_memory_region(struct kvm *kvm,
13096                                 struct kvm_memory_slot *old,
13097                                 const struct kvm_memory_slot *new,
13098                                 enum kvm_mr_change change)
13099 {
13100         if (change == KVM_MR_DELETE)
13101                 kvm_page_track_delete_slot(kvm, old);
13102
13103         if (!kvm->arch.n_requested_mmu_pages &&
13104             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13105                 unsigned long nr_mmu_pages;
13106
13107                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13108                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13109                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13110         }
13111
13112         kvm_mmu_slot_apply_flags(kvm, old, new, change);
13113
13114         /* Free the arrays associated with the old memslot. */
13115         if (change == KVM_MR_MOVE)
13116                 kvm_arch_free_memslot(kvm, old);
13117 }
13118
13119 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
13120 {
13121         return (is_guest_mode(vcpu) &&
13122                 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
13123 }
13124
13125 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
13126 {
13127         if (!list_empty_careful(&vcpu->async_pf.done))
13128                 return true;
13129
13130         if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
13131             kvm_apic_init_sipi_allowed(vcpu))
13132                 return true;
13133
13134         if (vcpu->arch.pv.pv_unhalted)
13135                 return true;
13136
13137         if (kvm_is_exception_pending(vcpu))
13138                 return true;
13139
13140         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13141             (vcpu->arch.nmi_pending &&
13142              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
13143                 return true;
13144
13145 #ifdef CONFIG_KVM_SMM
13146         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
13147             (vcpu->arch.smi_pending &&
13148              static_call(kvm_x86_smi_allowed)(vcpu, false)))
13149                 return true;
13150 #endif
13151
13152         if (kvm_test_request(KVM_REQ_PMI, vcpu))
13153                 return true;
13154
13155         if (kvm_arch_interrupt_allowed(vcpu) &&
13156             (kvm_cpu_has_interrupt(vcpu) ||
13157             kvm_guest_apic_has_interrupt(vcpu)))
13158                 return true;
13159
13160         if (kvm_hv_has_stimer_pending(vcpu))
13161                 return true;
13162
13163         if (is_guest_mode(vcpu) &&
13164             kvm_x86_ops.nested_ops->has_events &&
13165             kvm_x86_ops.nested_ops->has_events(vcpu))
13166                 return true;
13167
13168         if (kvm_xen_has_pending_events(vcpu))
13169                 return true;
13170
13171         return false;
13172 }
13173
13174 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
13175 {
13176         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
13177 }
13178
13179 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
13180 {
13181         return kvm_vcpu_apicv_active(vcpu) &&
13182                static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu);
13183 }
13184
13185 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
13186 {
13187         return vcpu->arch.preempted_in_kernel;
13188 }
13189
13190 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
13191 {
13192         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
13193                 return true;
13194
13195         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13196 #ifdef CONFIG_KVM_SMM
13197                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
13198 #endif
13199                  kvm_test_request(KVM_REQ_EVENT, vcpu))
13200                 return true;
13201
13202         return kvm_arch_dy_has_pending_interrupt(vcpu);
13203 }
13204
13205 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13206 {
13207         if (vcpu->arch.guest_state_protected)
13208                 return true;
13209
13210         return static_call(kvm_x86_get_cpl)(vcpu) == 0;
13211 }
13212
13213 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13214 {
13215         return kvm_rip_read(vcpu);
13216 }
13217
13218 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13219 {
13220         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13221 }
13222
13223 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13224 {
13225         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
13226 }
13227
13228 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13229 {
13230         /* Can't read the RIP when guest state is protected, just return 0 */
13231         if (vcpu->arch.guest_state_protected)
13232                 return 0;
13233
13234         if (is_64_bit_mode(vcpu))
13235                 return kvm_rip_read(vcpu);
13236         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13237                      kvm_rip_read(vcpu));
13238 }
13239 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13240
13241 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13242 {
13243         return kvm_get_linear_rip(vcpu) == linear_rip;
13244 }
13245 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13246
13247 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13248 {
13249         unsigned long rflags;
13250
13251         rflags = static_call(kvm_x86_get_rflags)(vcpu);
13252         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13253                 rflags &= ~X86_EFLAGS_TF;
13254         return rflags;
13255 }
13256 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13257
13258 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13259 {
13260         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13261             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13262                 rflags |= X86_EFLAGS_TF;
13263         static_call(kvm_x86_set_rflags)(vcpu, rflags);
13264 }
13265
13266 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13267 {
13268         __kvm_set_rflags(vcpu, rflags);
13269         kvm_make_request(KVM_REQ_EVENT, vcpu);
13270 }
13271 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13272
13273 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13274 {
13275         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13276
13277         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13278 }
13279
13280 static inline u32 kvm_async_pf_next_probe(u32 key)
13281 {
13282         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13283 }
13284
13285 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13286 {
13287         u32 key = kvm_async_pf_hash_fn(gfn);
13288
13289         while (vcpu->arch.apf.gfns[key] != ~0)
13290                 key = kvm_async_pf_next_probe(key);
13291
13292         vcpu->arch.apf.gfns[key] = gfn;
13293 }
13294
13295 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13296 {
13297         int i;
13298         u32 key = kvm_async_pf_hash_fn(gfn);
13299
13300         for (i = 0; i < ASYNC_PF_PER_VCPU &&
13301                      (vcpu->arch.apf.gfns[key] != gfn &&
13302                       vcpu->arch.apf.gfns[key] != ~0); i++)
13303                 key = kvm_async_pf_next_probe(key);
13304
13305         return key;
13306 }
13307
13308 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13309 {
13310         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13311 }
13312
13313 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13314 {
13315         u32 i, j, k;
13316
13317         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13318
13319         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13320                 return;
13321
13322         while (true) {
13323                 vcpu->arch.apf.gfns[i] = ~0;
13324                 do {
13325                         j = kvm_async_pf_next_probe(j);
13326                         if (vcpu->arch.apf.gfns[j] == ~0)
13327                                 return;
13328                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13329                         /*
13330                          * k lies cyclically in ]i,j]
13331                          * |    i.k.j |
13332                          * |....j i.k.| or  |.k..j i...|
13333                          */
13334                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13335                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13336                 i = j;
13337         }
13338 }
13339
13340 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13341 {
13342         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13343
13344         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13345                                       sizeof(reason));
13346 }
13347
13348 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13349 {
13350         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13351
13352         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13353                                              &token, offset, sizeof(token));
13354 }
13355
13356 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13357 {
13358         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13359         u32 val;
13360
13361         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13362                                          &val, offset, sizeof(val)))
13363                 return false;
13364
13365         return !val;
13366 }
13367
13368 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13369 {
13370
13371         if (!kvm_pv_async_pf_enabled(vcpu))
13372                 return false;
13373
13374         if (vcpu->arch.apf.send_user_only &&
13375             static_call(kvm_x86_get_cpl)(vcpu) == 0)
13376                 return false;
13377
13378         if (is_guest_mode(vcpu)) {
13379                 /*
13380                  * L1 needs to opt into the special #PF vmexits that are
13381                  * used to deliver async page faults.
13382                  */
13383                 return vcpu->arch.apf.delivery_as_pf_vmexit;
13384         } else {
13385                 /*
13386                  * Play it safe in case the guest temporarily disables paging.
13387                  * The real mode IDT in particular is unlikely to have a #PF
13388                  * exception setup.
13389                  */
13390                 return is_paging(vcpu);
13391         }
13392 }
13393
13394 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13395 {
13396         if (unlikely(!lapic_in_kernel(vcpu) ||
13397                      kvm_event_needs_reinjection(vcpu) ||
13398                      kvm_is_exception_pending(vcpu)))
13399                 return false;
13400
13401         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13402                 return false;
13403
13404         /*
13405          * If interrupts are off we cannot even use an artificial
13406          * halt state.
13407          */
13408         return kvm_arch_interrupt_allowed(vcpu);
13409 }
13410
13411 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13412                                      struct kvm_async_pf *work)
13413 {
13414         struct x86_exception fault;
13415
13416         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13417         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13418
13419         if (kvm_can_deliver_async_pf(vcpu) &&
13420             !apf_put_user_notpresent(vcpu)) {
13421                 fault.vector = PF_VECTOR;
13422                 fault.error_code_valid = true;
13423                 fault.error_code = 0;
13424                 fault.nested_page_fault = false;
13425                 fault.address = work->arch.token;
13426                 fault.async_page_fault = true;
13427                 kvm_inject_page_fault(vcpu, &fault);
13428                 return true;
13429         } else {
13430                 /*
13431                  * It is not possible to deliver a paravirtualized asynchronous
13432                  * page fault, but putting the guest in an artificial halt state
13433                  * can be beneficial nevertheless: if an interrupt arrives, we
13434                  * can deliver it timely and perhaps the guest will schedule
13435                  * another process.  When the instruction that triggered a page
13436                  * fault is retried, hopefully the page will be ready in the host.
13437                  */
13438                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13439                 return false;
13440         }
13441 }
13442
13443 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13444                                  struct kvm_async_pf *work)
13445 {
13446         struct kvm_lapic_irq irq = {
13447                 .delivery_mode = APIC_DM_FIXED,
13448                 .vector = vcpu->arch.apf.vec
13449         };
13450
13451         if (work->wakeup_all)
13452                 work->arch.token = ~0; /* broadcast wakeup */
13453         else
13454                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13455         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13456
13457         if ((work->wakeup_all || work->notpresent_injected) &&
13458             kvm_pv_async_pf_enabled(vcpu) &&
13459             !apf_put_user_ready(vcpu, work->arch.token)) {
13460                 vcpu->arch.apf.pageready_pending = true;
13461                 kvm_apic_set_irq(vcpu, &irq, NULL);
13462         }
13463
13464         vcpu->arch.apf.halted = false;
13465         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13466 }
13467
13468 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13469 {
13470         kvm_make_request(KVM_REQ_APF_READY, vcpu);
13471         if (!vcpu->arch.apf.pageready_pending)
13472                 kvm_vcpu_kick(vcpu);
13473 }
13474
13475 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13476 {
13477         if (!kvm_pv_async_pf_enabled(vcpu))
13478                 return true;
13479         else
13480                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13481 }
13482
13483 void kvm_arch_start_assignment(struct kvm *kvm)
13484 {
13485         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13486                 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13487 }
13488 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13489
13490 void kvm_arch_end_assignment(struct kvm *kvm)
13491 {
13492         atomic_dec(&kvm->arch.assigned_device_count);
13493 }
13494 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13495
13496 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13497 {
13498         return raw_atomic_read(&kvm->arch.assigned_device_count);
13499 }
13500 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13501
13502 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13503 {
13504         /*
13505          * Non-coherent DMA assignment and de-assignment will affect
13506          * whether KVM honors guest MTRRs and cause changes in memtypes
13507          * in TDP.
13508          * So, pass %true unconditionally to indicate non-coherent DMA was,
13509          * or will be involved, and that zapping SPTEs might be necessary.
13510          */
13511         if (__kvm_mmu_honors_guest_mtrrs(true))
13512                 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13513 }
13514
13515 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13516 {
13517         if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13518                 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13519 }
13520 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13521
13522 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13523 {
13524         if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13525                 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13526 }
13527 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13528
13529 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13530 {
13531         return atomic_read(&kvm->arch.noncoherent_dma_count);
13532 }
13533 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13534
13535 bool kvm_arch_has_irq_bypass(void)
13536 {
13537         return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13538 }
13539
13540 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13541                                       struct irq_bypass_producer *prod)
13542 {
13543         struct kvm_kernel_irqfd *irqfd =
13544                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13545         int ret;
13546
13547         irqfd->producer = prod;
13548         kvm_arch_start_assignment(irqfd->kvm);
13549         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13550                                          prod->irq, irqfd->gsi, 1);
13551
13552         if (ret)
13553                 kvm_arch_end_assignment(irqfd->kvm);
13554
13555         return ret;
13556 }
13557
13558 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13559                                       struct irq_bypass_producer *prod)
13560 {
13561         int ret;
13562         struct kvm_kernel_irqfd *irqfd =
13563                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13564
13565         WARN_ON(irqfd->producer != prod);
13566         irqfd->producer = NULL;
13567
13568         /*
13569          * When producer of consumer is unregistered, we change back to
13570          * remapped mode, so we can re-use the current implementation
13571          * when the irq is masked/disabled or the consumer side (KVM
13572          * int this case doesn't want to receive the interrupts.
13573         */
13574         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13575         if (ret)
13576                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13577                        " fails: %d\n", irqfd->consumer.token, ret);
13578
13579         kvm_arch_end_assignment(irqfd->kvm);
13580 }
13581
13582 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13583                                    uint32_t guest_irq, bool set)
13584 {
13585         return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13586 }
13587
13588 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13589                                   struct kvm_kernel_irq_routing_entry *new)
13590 {
13591         if (new->type != KVM_IRQ_ROUTING_MSI)
13592                 return true;
13593
13594         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13595 }
13596
13597 bool kvm_vector_hashing_enabled(void)
13598 {
13599         return vector_hashing;
13600 }
13601
13602 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13603 {
13604         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13605 }
13606 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13607
13608
13609 int kvm_spec_ctrl_test_value(u64 value)
13610 {
13611         /*
13612          * test that setting IA32_SPEC_CTRL to given value
13613          * is allowed by the host processor
13614          */
13615
13616         u64 saved_value;
13617         unsigned long flags;
13618         int ret = 0;
13619
13620         local_irq_save(flags);
13621
13622         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13623                 ret = 1;
13624         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13625                 ret = 1;
13626         else
13627                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13628
13629         local_irq_restore(flags);
13630
13631         return ret;
13632 }
13633 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13634
13635 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13636 {
13637         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13638         struct x86_exception fault;
13639         u64 access = error_code &
13640                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13641
13642         if (!(error_code & PFERR_PRESENT_MASK) ||
13643             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13644                 /*
13645                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13646                  * tables probably do not match the TLB.  Just proceed
13647                  * with the error code that the processor gave.
13648                  */
13649                 fault.vector = PF_VECTOR;
13650                 fault.error_code_valid = true;
13651                 fault.error_code = error_code;
13652                 fault.nested_page_fault = false;
13653                 fault.address = gva;
13654                 fault.async_page_fault = false;
13655         }
13656         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13657 }
13658 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13659
13660 /*
13661  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13662  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13663  * indicates whether exit to userspace is needed.
13664  */
13665 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13666                               struct x86_exception *e)
13667 {
13668         if (r == X86EMUL_PROPAGATE_FAULT) {
13669                 if (KVM_BUG_ON(!e, vcpu->kvm))
13670                         return -EIO;
13671
13672                 kvm_inject_emulated_page_fault(vcpu, e);
13673                 return 1;
13674         }
13675
13676         /*
13677          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13678          * while handling a VMX instruction KVM could've handled the request
13679          * correctly by exiting to userspace and performing I/O but there
13680          * doesn't seem to be a real use-case behind such requests, just return
13681          * KVM_EXIT_INTERNAL_ERROR for now.
13682          */
13683         kvm_prepare_emulation_failure_exit(vcpu);
13684
13685         return 0;
13686 }
13687 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13688
13689 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13690 {
13691         bool pcid_enabled;
13692         struct x86_exception e;
13693         struct {
13694                 u64 pcid;
13695                 u64 gla;
13696         } operand;
13697         int r;
13698
13699         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13700         if (r != X86EMUL_CONTINUE)
13701                 return kvm_handle_memory_failure(vcpu, r, &e);
13702
13703         if (operand.pcid >> 12 != 0) {
13704                 kvm_inject_gp(vcpu, 0);
13705                 return 1;
13706         }
13707
13708         pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13709
13710         switch (type) {
13711         case INVPCID_TYPE_INDIV_ADDR:
13712                 /*
13713                  * LAM doesn't apply to addresses that are inputs to TLB
13714                  * invalidation.
13715                  */
13716                 if ((!pcid_enabled && (operand.pcid != 0)) ||
13717                     is_noncanonical_address(operand.gla, vcpu)) {
13718                         kvm_inject_gp(vcpu, 0);
13719                         return 1;
13720                 }
13721                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13722                 return kvm_skip_emulated_instruction(vcpu);
13723
13724         case INVPCID_TYPE_SINGLE_CTXT:
13725                 if (!pcid_enabled && (operand.pcid != 0)) {
13726                         kvm_inject_gp(vcpu, 0);
13727                         return 1;
13728                 }
13729
13730                 kvm_invalidate_pcid(vcpu, operand.pcid);
13731                 return kvm_skip_emulated_instruction(vcpu);
13732
13733         case INVPCID_TYPE_ALL_NON_GLOBAL:
13734                 /*
13735                  * Currently, KVM doesn't mark global entries in the shadow
13736                  * page tables, so a non-global flush just degenerates to a
13737                  * global flush. If needed, we could optimize this later by
13738                  * keeping track of global entries in shadow page tables.
13739                  */
13740
13741                 fallthrough;
13742         case INVPCID_TYPE_ALL_INCL_GLOBAL:
13743                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13744                 return kvm_skip_emulated_instruction(vcpu);
13745
13746         default:
13747                 kvm_inject_gp(vcpu, 0);
13748                 return 1;
13749         }
13750 }
13751 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13752
13753 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13754 {
13755         struct kvm_run *run = vcpu->run;
13756         struct kvm_mmio_fragment *frag;
13757         unsigned int len;
13758
13759         BUG_ON(!vcpu->mmio_needed);
13760
13761         /* Complete previous fragment */
13762         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13763         len = min(8u, frag->len);
13764         if (!vcpu->mmio_is_write)
13765                 memcpy(frag->data, run->mmio.data, len);
13766
13767         if (frag->len <= 8) {
13768                 /* Switch to the next fragment. */
13769                 frag++;
13770                 vcpu->mmio_cur_fragment++;
13771         } else {
13772                 /* Go forward to the next mmio piece. */
13773                 frag->data += len;
13774                 frag->gpa += len;
13775                 frag->len -= len;
13776         }
13777
13778         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13779                 vcpu->mmio_needed = 0;
13780
13781                 // VMG change, at this point, we're always done
13782                 // RIP has already been advanced
13783                 return 1;
13784         }
13785
13786         // More MMIO is needed
13787         run->mmio.phys_addr = frag->gpa;
13788         run->mmio.len = min(8u, frag->len);
13789         run->mmio.is_write = vcpu->mmio_is_write;
13790         if (run->mmio.is_write)
13791                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13792         run->exit_reason = KVM_EXIT_MMIO;
13793
13794         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13795
13796         return 0;
13797 }
13798
13799 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13800                           void *data)
13801 {
13802         int handled;
13803         struct kvm_mmio_fragment *frag;
13804
13805         if (!data)
13806                 return -EINVAL;
13807
13808         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13809         if (handled == bytes)
13810                 return 1;
13811
13812         bytes -= handled;
13813         gpa += handled;
13814         data += handled;
13815
13816         /*TODO: Check if need to increment number of frags */
13817         frag = vcpu->mmio_fragments;
13818         vcpu->mmio_nr_fragments = 1;
13819         frag->len = bytes;
13820         frag->gpa = gpa;
13821         frag->data = data;
13822
13823         vcpu->mmio_needed = 1;
13824         vcpu->mmio_cur_fragment = 0;
13825
13826         vcpu->run->mmio.phys_addr = gpa;
13827         vcpu->run->mmio.len = min(8u, frag->len);
13828         vcpu->run->mmio.is_write = 1;
13829         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13830         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13831
13832         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13833
13834         return 0;
13835 }
13836 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13837
13838 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13839                          void *data)
13840 {
13841         int handled;
13842         struct kvm_mmio_fragment *frag;
13843
13844         if (!data)
13845                 return -EINVAL;
13846
13847         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13848         if (handled == bytes)
13849                 return 1;
13850
13851         bytes -= handled;
13852         gpa += handled;
13853         data += handled;
13854
13855         /*TODO: Check if need to increment number of frags */
13856         frag = vcpu->mmio_fragments;
13857         vcpu->mmio_nr_fragments = 1;
13858         frag->len = bytes;
13859         frag->gpa = gpa;
13860         frag->data = data;
13861
13862         vcpu->mmio_needed = 1;
13863         vcpu->mmio_cur_fragment = 0;
13864
13865         vcpu->run->mmio.phys_addr = gpa;
13866         vcpu->run->mmio.len = min(8u, frag->len);
13867         vcpu->run->mmio.is_write = 0;
13868         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13869
13870         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13871
13872         return 0;
13873 }
13874 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13875
13876 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13877 {
13878         vcpu->arch.sev_pio_count -= count;
13879         vcpu->arch.sev_pio_data += count * size;
13880 }
13881
13882 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13883                            unsigned int port);
13884
13885 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13886 {
13887         int size = vcpu->arch.pio.size;
13888         int port = vcpu->arch.pio.port;
13889
13890         vcpu->arch.pio.count = 0;
13891         if (vcpu->arch.sev_pio_count)
13892                 return kvm_sev_es_outs(vcpu, size, port);
13893         return 1;
13894 }
13895
13896 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13897                            unsigned int port)
13898 {
13899         for (;;) {
13900                 unsigned int count =
13901                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13902                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13903
13904                 /* memcpy done already by emulator_pio_out.  */
13905                 advance_sev_es_emulated_pio(vcpu, count, size);
13906                 if (!ret)
13907                         break;
13908
13909                 /* Emulation done by the kernel.  */
13910                 if (!vcpu->arch.sev_pio_count)
13911                         return 1;
13912         }
13913
13914         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13915         return 0;
13916 }
13917
13918 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13919                           unsigned int port);
13920
13921 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13922 {
13923         unsigned count = vcpu->arch.pio.count;
13924         int size = vcpu->arch.pio.size;
13925         int port = vcpu->arch.pio.port;
13926
13927         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13928         advance_sev_es_emulated_pio(vcpu, count, size);
13929         if (vcpu->arch.sev_pio_count)
13930                 return kvm_sev_es_ins(vcpu, size, port);
13931         return 1;
13932 }
13933
13934 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13935                           unsigned int port)
13936 {
13937         for (;;) {
13938                 unsigned int count =
13939                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13940                 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13941                         break;
13942
13943                 /* Emulation done by the kernel.  */
13944                 advance_sev_es_emulated_pio(vcpu, count, size);
13945                 if (!vcpu->arch.sev_pio_count)
13946                         return 1;
13947         }
13948
13949         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13950         return 0;
13951 }
13952
13953 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13954                          unsigned int port, void *data,  unsigned int count,
13955                          int in)
13956 {
13957         vcpu->arch.sev_pio_data = data;
13958         vcpu->arch.sev_pio_count = count;
13959         return in ? kvm_sev_es_ins(vcpu, size, port)
13960                   : kvm_sev_es_outs(vcpu, size, port);
13961 }
13962 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13963
13964 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13965 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13966 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13970 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13971 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13972 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13973 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13976 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13977 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13978 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13979 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13980 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13981 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13982 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13983 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13984 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13985 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13986 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13987 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13988 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13989 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13990 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13991 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13992 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13993
13994 static int __init kvm_x86_init(void)
13995 {
13996         kvm_mmu_x86_module_init();
13997         mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13998         return 0;
13999 }
14000 module_init(kvm_x86_init);
14001
14002 static void __exit kvm_x86_exit(void)
14003 {
14004         WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14005 }
14006 module_exit(kvm_x86_exit);
This page took 0.859583 seconds and 4 git commands to generate.