]> Git Repo - J-linux.git/blob - drivers/mmc/host/mmci.c
amba: Make the remove callback return void
[J-linux.git] / drivers / mmc / host / mmci.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4  *
5  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6  *  Copyright (C) 2010 ST-Ericsson SA
7  */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/slot-gpio.h>
27 #include <linux/amba/bus.h>
28 #include <linux/clk.h>
29 #include <linux/scatterlist.h>
30 #include <linux/of.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 #include <linux/reset.h>
39
40 #include <asm/div64.h>
41 #include <asm/io.h>
42
43 #include "mmci.h"
44
45 #define DRIVER_NAME "mmci-pl18x"
46
47 static void mmci_variant_init(struct mmci_host *host);
48 static void ux500_variant_init(struct mmci_host *host);
49 static void ux500v2_variant_init(struct mmci_host *host);
50
51 static unsigned int fmax = 515633;
52
53 static struct variant_data variant_arm = {
54         .fifosize               = 16 * 4,
55         .fifohalfsize           = 8 * 4,
56         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
57         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
58         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
59         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
60         .datalength_bits        = 16,
61         .datactrl_blocksz       = 11,
62         .pwrreg_powerup         = MCI_PWR_UP,
63         .f_max                  = 100000000,
64         .reversed_irq_handling  = true,
65         .mmcimask1              = true,
66         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
67         .start_err              = MCI_STARTBITERR,
68         .opendrain              = MCI_ROD,
69         .init                   = mmci_variant_init,
70 };
71
72 static struct variant_data variant_arm_extended_fifo = {
73         .fifosize               = 128 * 4,
74         .fifohalfsize           = 64 * 4,
75         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
76         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
77         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
78         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
79         .datalength_bits        = 16,
80         .datactrl_blocksz       = 11,
81         .pwrreg_powerup         = MCI_PWR_UP,
82         .f_max                  = 100000000,
83         .mmcimask1              = true,
84         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
85         .start_err              = MCI_STARTBITERR,
86         .opendrain              = MCI_ROD,
87         .init                   = mmci_variant_init,
88 };
89
90 static struct variant_data variant_arm_extended_fifo_hwfc = {
91         .fifosize               = 128 * 4,
92         .fifohalfsize           = 64 * 4,
93         .clkreg_enable          = MCI_ARM_HWFCEN,
94         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
95         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
96         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
97         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
98         .datalength_bits        = 16,
99         .datactrl_blocksz       = 11,
100         .pwrreg_powerup         = MCI_PWR_UP,
101         .f_max                  = 100000000,
102         .mmcimask1              = true,
103         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
104         .start_err              = MCI_STARTBITERR,
105         .opendrain              = MCI_ROD,
106         .init                   = mmci_variant_init,
107 };
108
109 static struct variant_data variant_u300 = {
110         .fifosize               = 16 * 4,
111         .fifohalfsize           = 8 * 4,
112         .clkreg_enable          = MCI_ST_U300_HWFCEN,
113         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
114         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
115         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
116         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
117         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
118         .datalength_bits        = 16,
119         .datactrl_blocksz       = 11,
120         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
121         .st_sdio                        = true,
122         .pwrreg_powerup         = MCI_PWR_ON,
123         .f_max                  = 100000000,
124         .signal_direction       = true,
125         .pwrreg_clkgate         = true,
126         .pwrreg_nopower         = true,
127         .mmcimask1              = true,
128         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
129         .start_err              = MCI_STARTBITERR,
130         .opendrain              = MCI_OD,
131         .init                   = mmci_variant_init,
132 };
133
134 static struct variant_data variant_nomadik = {
135         .fifosize               = 16 * 4,
136         .fifohalfsize           = 8 * 4,
137         .clkreg                 = MCI_CLK_ENABLE,
138         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
139         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
140         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
141         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
142         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
143         .datalength_bits        = 24,
144         .datactrl_blocksz       = 11,
145         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
146         .st_sdio                = true,
147         .st_clkdiv              = true,
148         .pwrreg_powerup         = MCI_PWR_ON,
149         .f_max                  = 100000000,
150         .signal_direction       = true,
151         .pwrreg_clkgate         = true,
152         .pwrreg_nopower         = true,
153         .mmcimask1              = true,
154         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
155         .start_err              = MCI_STARTBITERR,
156         .opendrain              = MCI_OD,
157         .init                   = mmci_variant_init,
158 };
159
160 static struct variant_data variant_ux500 = {
161         .fifosize               = 30 * 4,
162         .fifohalfsize           = 8 * 4,
163         .clkreg                 = MCI_CLK_ENABLE,
164         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
165         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
166         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
167         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
168         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
169         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
170         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
171         .datalength_bits        = 24,
172         .datactrl_blocksz       = 11,
173         .datactrl_any_blocksz   = true,
174         .dma_power_of_2         = true,
175         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
176         .st_sdio                = true,
177         .st_clkdiv              = true,
178         .pwrreg_powerup         = MCI_PWR_ON,
179         .f_max                  = 100000000,
180         .signal_direction       = true,
181         .pwrreg_clkgate         = true,
182         .busy_detect            = true,
183         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
184         .busy_detect_flag       = MCI_ST_CARDBUSY,
185         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
186         .pwrreg_nopower         = true,
187         .mmcimask1              = true,
188         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
189         .start_err              = MCI_STARTBITERR,
190         .opendrain              = MCI_OD,
191         .init                   = ux500_variant_init,
192 };
193
194 static struct variant_data variant_ux500v2 = {
195         .fifosize               = 30 * 4,
196         .fifohalfsize           = 8 * 4,
197         .clkreg                 = MCI_CLK_ENABLE,
198         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
199         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
200         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
201         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
202         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
203         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
204         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
205         .datactrl_mask_ddrmode  = MCI_DPSM_ST_DDRMODE,
206         .datalength_bits        = 24,
207         .datactrl_blocksz       = 11,
208         .datactrl_any_blocksz   = true,
209         .dma_power_of_2         = true,
210         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
211         .st_sdio                = true,
212         .st_clkdiv              = true,
213         .pwrreg_powerup         = MCI_PWR_ON,
214         .f_max                  = 100000000,
215         .signal_direction       = true,
216         .pwrreg_clkgate         = true,
217         .busy_detect            = true,
218         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
219         .busy_detect_flag       = MCI_ST_CARDBUSY,
220         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
221         .pwrreg_nopower         = true,
222         .mmcimask1              = true,
223         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
224         .start_err              = MCI_STARTBITERR,
225         .opendrain              = MCI_OD,
226         .init                   = ux500v2_variant_init,
227 };
228
229 static struct variant_data variant_stm32 = {
230         .fifosize               = 32 * 4,
231         .fifohalfsize           = 8 * 4,
232         .clkreg                 = MCI_CLK_ENABLE,
233         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
234         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
235         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
236         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
237         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
238         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
239         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
240         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
241         .datalength_bits        = 24,
242         .datactrl_blocksz       = 11,
243         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
244         .st_sdio                = true,
245         .st_clkdiv              = true,
246         .pwrreg_powerup         = MCI_PWR_ON,
247         .f_max                  = 48000000,
248         .pwrreg_clkgate         = true,
249         .pwrreg_nopower         = true,
250         .init                   = mmci_variant_init,
251 };
252
253 static struct variant_data variant_stm32_sdmmc = {
254         .fifosize               = 16 * 4,
255         .fifohalfsize           = 8 * 4,
256         .f_max                  = 208000000,
257         .stm32_clkdiv           = true,
258         .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
259         .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
260         .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
261         .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
262         .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
263         .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
264         .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
265         .datactrl_first         = true,
266         .datacnt_useless        = true,
267         .datalength_bits        = 25,
268         .datactrl_blocksz       = 14,
269         .datactrl_any_blocksz   = true,
270         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
271         .stm32_idmabsize_mask   = GENMASK(12, 5),
272         .busy_timeout           = true,
273         .busy_detect            = true,
274         .busy_detect_flag       = MCI_STM32_BUSYD0,
275         .busy_detect_mask       = MCI_STM32_BUSYD0ENDMASK,
276         .init                   = sdmmc_variant_init,
277 };
278
279 static struct variant_data variant_stm32_sdmmcv2 = {
280         .fifosize               = 16 * 4,
281         .fifohalfsize           = 8 * 4,
282         .f_max                  = 208000000,
283         .stm32_clkdiv           = true,
284         .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
285         .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
286         .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
287         .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
288         .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
289         .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
290         .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
291         .datactrl_first         = true,
292         .datacnt_useless        = true,
293         .datalength_bits        = 25,
294         .datactrl_blocksz       = 14,
295         .datactrl_any_blocksz   = true,
296         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
297         .stm32_idmabsize_mask   = GENMASK(16, 5),
298         .dma_lli                = true,
299         .busy_timeout           = true,
300         .busy_detect            = true,
301         .busy_detect_flag       = MCI_STM32_BUSYD0,
302         .busy_detect_mask       = MCI_STM32_BUSYD0ENDMASK,
303         .init                   = sdmmc_variant_init,
304 };
305
306 static struct variant_data variant_qcom = {
307         .fifosize               = 16 * 4,
308         .fifohalfsize           = 8 * 4,
309         .clkreg                 = MCI_CLK_ENABLE,
310         .clkreg_enable          = MCI_QCOM_CLK_FLOWENA |
311                                   MCI_QCOM_CLK_SELECT_IN_FBCLK,
312         .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
313         .datactrl_mask_ddrmode  = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
314         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
315         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
316         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
317         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
318         .data_cmd_enable        = MCI_CPSM_QCOM_DATCMD,
319         .datalength_bits        = 24,
320         .datactrl_blocksz       = 11,
321         .datactrl_any_blocksz   = true,
322         .pwrreg_powerup         = MCI_PWR_UP,
323         .f_max                  = 208000000,
324         .explicit_mclk_control  = true,
325         .qcom_fifo              = true,
326         .qcom_dml               = true,
327         .mmcimask1              = true,
328         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
329         .start_err              = MCI_STARTBITERR,
330         .opendrain              = MCI_ROD,
331         .init                   = qcom_variant_init,
332 };
333
334 /* Busy detection for the ST Micro variant */
335 static int mmci_card_busy(struct mmc_host *mmc)
336 {
337         struct mmci_host *host = mmc_priv(mmc);
338         unsigned long flags;
339         int busy = 0;
340
341         spin_lock_irqsave(&host->lock, flags);
342         if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
343                 busy = 1;
344         spin_unlock_irqrestore(&host->lock, flags);
345
346         return busy;
347 }
348
349 static void mmci_reg_delay(struct mmci_host *host)
350 {
351         /*
352          * According to the spec, at least three feedback clock cycles
353          * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
354          * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
355          * Worst delay time during card init is at 100 kHz => 30 us.
356          * Worst delay time when up and running is at 25 MHz => 120 ns.
357          */
358         if (host->cclk < 25000000)
359                 udelay(30);
360         else
361                 ndelay(120);
362 }
363
364 /*
365  * This must be called with host->lock held
366  */
367 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
368 {
369         if (host->clk_reg != clk) {
370                 host->clk_reg = clk;
371                 writel(clk, host->base + MMCICLOCK);
372         }
373 }
374
375 /*
376  * This must be called with host->lock held
377  */
378 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
379 {
380         if (host->pwr_reg != pwr) {
381                 host->pwr_reg = pwr;
382                 writel(pwr, host->base + MMCIPOWER);
383         }
384 }
385
386 /*
387  * This must be called with host->lock held
388  */
389 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
390 {
391         /* Keep busy mode in DPSM if enabled */
392         datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
393
394         if (host->datactrl_reg != datactrl) {
395                 host->datactrl_reg = datactrl;
396                 writel(datactrl, host->base + MMCIDATACTRL);
397         }
398 }
399
400 /*
401  * This must be called with host->lock held
402  */
403 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
404 {
405         struct variant_data *variant = host->variant;
406         u32 clk = variant->clkreg;
407
408         /* Make sure cclk reflects the current calculated clock */
409         host->cclk = 0;
410
411         if (desired) {
412                 if (variant->explicit_mclk_control) {
413                         host->cclk = host->mclk;
414                 } else if (desired >= host->mclk) {
415                         clk = MCI_CLK_BYPASS;
416                         if (variant->st_clkdiv)
417                                 clk |= MCI_ST_UX500_NEG_EDGE;
418                         host->cclk = host->mclk;
419                 } else if (variant->st_clkdiv) {
420                         /*
421                          * DB8500 TRM says f = mclk / (clkdiv + 2)
422                          * => clkdiv = (mclk / f) - 2
423                          * Round the divider up so we don't exceed the max
424                          * frequency
425                          */
426                         clk = DIV_ROUND_UP(host->mclk, desired) - 2;
427                         if (clk >= 256)
428                                 clk = 255;
429                         host->cclk = host->mclk / (clk + 2);
430                 } else {
431                         /*
432                          * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
433                          * => clkdiv = mclk / (2 * f) - 1
434                          */
435                         clk = host->mclk / (2 * desired) - 1;
436                         if (clk >= 256)
437                                 clk = 255;
438                         host->cclk = host->mclk / (2 * (clk + 1));
439                 }
440
441                 clk |= variant->clkreg_enable;
442                 clk |= MCI_CLK_ENABLE;
443                 /* This hasn't proven to be worthwhile */
444                 /* clk |= MCI_CLK_PWRSAVE; */
445         }
446
447         /* Set actual clock for debug */
448         host->mmc->actual_clock = host->cclk;
449
450         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
451                 clk |= MCI_4BIT_BUS;
452         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
453                 clk |= variant->clkreg_8bit_bus_enable;
454
455         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
456             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
457                 clk |= variant->clkreg_neg_edge_enable;
458
459         mmci_write_clkreg(host, clk);
460 }
461
462 static void mmci_dma_release(struct mmci_host *host)
463 {
464         if (host->ops && host->ops->dma_release)
465                 host->ops->dma_release(host);
466
467         host->use_dma = false;
468 }
469
470 static void mmci_dma_setup(struct mmci_host *host)
471 {
472         if (!host->ops || !host->ops->dma_setup)
473                 return;
474
475         if (host->ops->dma_setup(host))
476                 return;
477
478         /* initialize pre request cookie */
479         host->next_cookie = 1;
480
481         host->use_dma = true;
482 }
483
484 /*
485  * Validate mmc prerequisites
486  */
487 static int mmci_validate_data(struct mmci_host *host,
488                               struct mmc_data *data)
489 {
490         struct variant_data *variant = host->variant;
491
492         if (!data)
493                 return 0;
494         if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
495                 dev_err(mmc_dev(host->mmc),
496                         "unsupported block size (%d bytes)\n", data->blksz);
497                 return -EINVAL;
498         }
499
500         if (host->ops && host->ops->validate_data)
501                 return host->ops->validate_data(host, data);
502
503         return 0;
504 }
505
506 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
507 {
508         int err;
509
510         if (!host->ops || !host->ops->prep_data)
511                 return 0;
512
513         err = host->ops->prep_data(host, data, next);
514
515         if (next && !err)
516                 data->host_cookie = ++host->next_cookie < 0 ?
517                         1 : host->next_cookie;
518
519         return err;
520 }
521
522 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
523                       int err)
524 {
525         if (host->ops && host->ops->unprep_data)
526                 host->ops->unprep_data(host, data, err);
527
528         data->host_cookie = 0;
529 }
530
531 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
532 {
533         WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
534
535         if (host->ops && host->ops->get_next_data)
536                 host->ops->get_next_data(host, data);
537 }
538
539 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
540 {
541         struct mmc_data *data = host->data;
542         int ret;
543
544         if (!host->use_dma)
545                 return -EINVAL;
546
547         ret = mmci_prep_data(host, data, false);
548         if (ret)
549                 return ret;
550
551         if (!host->ops || !host->ops->dma_start)
552                 return -EINVAL;
553
554         /* Okay, go for it. */
555         dev_vdbg(mmc_dev(host->mmc),
556                  "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
557                  data->sg_len, data->blksz, data->blocks, data->flags);
558
559         ret = host->ops->dma_start(host, &datactrl);
560         if (ret)
561                 return ret;
562
563         /* Trigger the DMA transfer */
564         mmci_write_datactrlreg(host, datactrl);
565
566         /*
567          * Let the MMCI say when the data is ended and it's time
568          * to fire next DMA request. When that happens, MMCI will
569          * call mmci_data_end()
570          */
571         writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
572                host->base + MMCIMASK0);
573         return 0;
574 }
575
576 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
577 {
578         if (!host->use_dma)
579                 return;
580
581         if (host->ops && host->ops->dma_finalize)
582                 host->ops->dma_finalize(host, data);
583 }
584
585 static void mmci_dma_error(struct mmci_host *host)
586 {
587         if (!host->use_dma)
588                 return;
589
590         if (host->ops && host->ops->dma_error)
591                 host->ops->dma_error(host);
592 }
593
594 static void
595 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
596 {
597         writel(0, host->base + MMCICOMMAND);
598
599         BUG_ON(host->data);
600
601         host->mrq = NULL;
602         host->cmd = NULL;
603
604         mmc_request_done(host->mmc, mrq);
605 }
606
607 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
608 {
609         void __iomem *base = host->base;
610         struct variant_data *variant = host->variant;
611
612         if (host->singleirq) {
613                 unsigned int mask0 = readl(base + MMCIMASK0);
614
615                 mask0 &= ~variant->irq_pio_mask;
616                 mask0 |= mask;
617
618                 writel(mask0, base + MMCIMASK0);
619         }
620
621         if (variant->mmcimask1)
622                 writel(mask, base + MMCIMASK1);
623
624         host->mask1_reg = mask;
625 }
626
627 static void mmci_stop_data(struct mmci_host *host)
628 {
629         mmci_write_datactrlreg(host, 0);
630         mmci_set_mask1(host, 0);
631         host->data = NULL;
632 }
633
634 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
635 {
636         unsigned int flags = SG_MITER_ATOMIC;
637
638         if (data->flags & MMC_DATA_READ)
639                 flags |= SG_MITER_TO_SG;
640         else
641                 flags |= SG_MITER_FROM_SG;
642
643         sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
644 }
645
646 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
647 {
648         return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
649 }
650
651 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
652 {
653         return MCI_DPSM_ENABLE | (host->data->blksz << 16);
654 }
655
656 static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
657 {
658         void __iomem *base = host->base;
659
660         /*
661          * Before unmasking for the busy end IRQ, confirm that the
662          * command was sent successfully. To keep track of having a
663          * command in-progress, waiting for busy signaling to end,
664          * store the status in host->busy_status.
665          *
666          * Note that, the card may need a couple of clock cycles before
667          * it starts signaling busy on DAT0, hence re-read the
668          * MMCISTATUS register here, to allow the busy bit to be set.
669          * Potentially we may even need to poll the register for a
670          * while, to allow it to be set, but tests indicates that it
671          * isn't needed.
672          */
673         if (!host->busy_status && !(status & err_msk) &&
674             (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
675                 writel(readl(base + MMCIMASK0) |
676                        host->variant->busy_detect_mask,
677                        base + MMCIMASK0);
678
679                 host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
680                 return false;
681         }
682
683         /*
684          * If there is a command in-progress that has been successfully
685          * sent, then bail out if busy status is set and wait for the
686          * busy end IRQ.
687          *
688          * Note that, the HW triggers an IRQ on both edges while
689          * monitoring DAT0 for busy completion, but there is only one
690          * status bit in MMCISTATUS for the busy state. Therefore
691          * both the start and the end interrupts needs to be cleared,
692          * one after the other. So, clear the busy start IRQ here.
693          */
694         if (host->busy_status &&
695             (status & host->variant->busy_detect_flag)) {
696                 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
697                 return false;
698         }
699
700         /*
701          * If there is a command in-progress that has been successfully
702          * sent and the busy bit isn't set, it means we have received
703          * the busy end IRQ. Clear and mask the IRQ, then continue to
704          * process the command.
705          */
706         if (host->busy_status) {
707                 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
708
709                 writel(readl(base + MMCIMASK0) &
710                        ~host->variant->busy_detect_mask, base + MMCIMASK0);
711                 host->busy_status = 0;
712         }
713
714         return true;
715 }
716
717 /*
718  * All the DMA operation mode stuff goes inside this ifdef.
719  * This assumes that you have a generic DMA device interface,
720  * no custom DMA interfaces are supported.
721  */
722 #ifdef CONFIG_DMA_ENGINE
723 struct mmci_dmae_next {
724         struct dma_async_tx_descriptor *desc;
725         struct dma_chan *chan;
726 };
727
728 struct mmci_dmae_priv {
729         struct dma_chan *cur;
730         struct dma_chan *rx_channel;
731         struct dma_chan *tx_channel;
732         struct dma_async_tx_descriptor  *desc_current;
733         struct mmci_dmae_next next_data;
734 };
735
736 int mmci_dmae_setup(struct mmci_host *host)
737 {
738         const char *rxname, *txname;
739         struct mmci_dmae_priv *dmae;
740
741         dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
742         if (!dmae)
743                 return -ENOMEM;
744
745         host->dma_priv = dmae;
746
747         dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
748         if (IS_ERR(dmae->rx_channel)) {
749                 int ret = PTR_ERR(dmae->rx_channel);
750                 dmae->rx_channel = NULL;
751                 return ret;
752         }
753
754         dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
755         if (IS_ERR(dmae->tx_channel)) {
756                 if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
757                         dev_warn(mmc_dev(host->mmc),
758                                  "Deferred probe for TX channel ignored\n");
759                 dmae->tx_channel = NULL;
760         }
761
762         /*
763          * If only an RX channel is specified, the driver will
764          * attempt to use it bidirectionally, however if it is
765          * is specified but cannot be located, DMA will be disabled.
766          */
767         if (dmae->rx_channel && !dmae->tx_channel)
768                 dmae->tx_channel = dmae->rx_channel;
769
770         if (dmae->rx_channel)
771                 rxname = dma_chan_name(dmae->rx_channel);
772         else
773                 rxname = "none";
774
775         if (dmae->tx_channel)
776                 txname = dma_chan_name(dmae->tx_channel);
777         else
778                 txname = "none";
779
780         dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
781                  rxname, txname);
782
783         /*
784          * Limit the maximum segment size in any SG entry according to
785          * the parameters of the DMA engine device.
786          */
787         if (dmae->tx_channel) {
788                 struct device *dev = dmae->tx_channel->device->dev;
789                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
790
791                 if (max_seg_size < host->mmc->max_seg_size)
792                         host->mmc->max_seg_size = max_seg_size;
793         }
794         if (dmae->rx_channel) {
795                 struct device *dev = dmae->rx_channel->device->dev;
796                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
797
798                 if (max_seg_size < host->mmc->max_seg_size)
799                         host->mmc->max_seg_size = max_seg_size;
800         }
801
802         if (!dmae->tx_channel || !dmae->rx_channel) {
803                 mmci_dmae_release(host);
804                 return -EINVAL;
805         }
806
807         return 0;
808 }
809
810 /*
811  * This is used in or so inline it
812  * so it can be discarded.
813  */
814 void mmci_dmae_release(struct mmci_host *host)
815 {
816         struct mmci_dmae_priv *dmae = host->dma_priv;
817
818         if (dmae->rx_channel)
819                 dma_release_channel(dmae->rx_channel);
820         if (dmae->tx_channel)
821                 dma_release_channel(dmae->tx_channel);
822         dmae->rx_channel = dmae->tx_channel = NULL;
823 }
824
825 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
826 {
827         struct mmci_dmae_priv *dmae = host->dma_priv;
828         struct dma_chan *chan;
829
830         if (data->flags & MMC_DATA_READ)
831                 chan = dmae->rx_channel;
832         else
833                 chan = dmae->tx_channel;
834
835         dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
836                      mmc_get_dma_dir(data));
837 }
838
839 void mmci_dmae_error(struct mmci_host *host)
840 {
841         struct mmci_dmae_priv *dmae = host->dma_priv;
842
843         if (!dma_inprogress(host))
844                 return;
845
846         dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
847         dmaengine_terminate_all(dmae->cur);
848         host->dma_in_progress = false;
849         dmae->cur = NULL;
850         dmae->desc_current = NULL;
851         host->data->host_cookie = 0;
852
853         mmci_dma_unmap(host, host->data);
854 }
855
856 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
857 {
858         struct mmci_dmae_priv *dmae = host->dma_priv;
859         u32 status;
860         int i;
861
862         if (!dma_inprogress(host))
863                 return;
864
865         /* Wait up to 1ms for the DMA to complete */
866         for (i = 0; ; i++) {
867                 status = readl(host->base + MMCISTATUS);
868                 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
869                         break;
870                 udelay(10);
871         }
872
873         /*
874          * Check to see whether we still have some data left in the FIFO -
875          * this catches DMA controllers which are unable to monitor the
876          * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
877          * contiguous buffers.  On TX, we'll get a FIFO underrun error.
878          */
879         if (status & MCI_RXDATAAVLBLMASK) {
880                 mmci_dma_error(host);
881                 if (!data->error)
882                         data->error = -EIO;
883         } else if (!data->host_cookie) {
884                 mmci_dma_unmap(host, data);
885         }
886
887         /*
888          * Use of DMA with scatter-gather is impossible.
889          * Give up with DMA and switch back to PIO mode.
890          */
891         if (status & MCI_RXDATAAVLBLMASK) {
892                 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
893                 mmci_dma_release(host);
894         }
895
896         host->dma_in_progress = false;
897         dmae->cur = NULL;
898         dmae->desc_current = NULL;
899 }
900
901 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
902 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
903                                 struct dma_chan **dma_chan,
904                                 struct dma_async_tx_descriptor **dma_desc)
905 {
906         struct mmci_dmae_priv *dmae = host->dma_priv;
907         struct variant_data *variant = host->variant;
908         struct dma_slave_config conf = {
909                 .src_addr = host->phybase + MMCIFIFO,
910                 .dst_addr = host->phybase + MMCIFIFO,
911                 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
912                 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
913                 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
914                 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
915                 .device_fc = false,
916         };
917         struct dma_chan *chan;
918         struct dma_device *device;
919         struct dma_async_tx_descriptor *desc;
920         int nr_sg;
921         unsigned long flags = DMA_CTRL_ACK;
922
923         if (data->flags & MMC_DATA_READ) {
924                 conf.direction = DMA_DEV_TO_MEM;
925                 chan = dmae->rx_channel;
926         } else {
927                 conf.direction = DMA_MEM_TO_DEV;
928                 chan = dmae->tx_channel;
929         }
930
931         /* If there's no DMA channel, fall back to PIO */
932         if (!chan)
933                 return -EINVAL;
934
935         /* If less than or equal to the fifo size, don't bother with DMA */
936         if (data->blksz * data->blocks <= variant->fifosize)
937                 return -EINVAL;
938
939         /*
940          * This is necessary to get SDIO working on the Ux500. We do not yet
941          * know if this is a bug in:
942          * - The Ux500 DMA controller (DMA40)
943          * - The MMCI DMA interface on the Ux500
944          * some power of two blocks (such as 64 bytes) are sent regularly
945          * during SDIO traffic and those work fine so for these we enable DMA
946          * transfers.
947          */
948         if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
949                 return -EINVAL;
950
951         device = chan->device;
952         nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
953                            mmc_get_dma_dir(data));
954         if (nr_sg == 0)
955                 return -EINVAL;
956
957         if (host->variant->qcom_dml)
958                 flags |= DMA_PREP_INTERRUPT;
959
960         dmaengine_slave_config(chan, &conf);
961         desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
962                                             conf.direction, flags);
963         if (!desc)
964                 goto unmap_exit;
965
966         *dma_chan = chan;
967         *dma_desc = desc;
968
969         return 0;
970
971  unmap_exit:
972         dma_unmap_sg(device->dev, data->sg, data->sg_len,
973                      mmc_get_dma_dir(data));
974         return -ENOMEM;
975 }
976
977 int mmci_dmae_prep_data(struct mmci_host *host,
978                         struct mmc_data *data,
979                         bool next)
980 {
981         struct mmci_dmae_priv *dmae = host->dma_priv;
982         struct mmci_dmae_next *nd = &dmae->next_data;
983
984         if (!host->use_dma)
985                 return -EINVAL;
986
987         if (next)
988                 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
989         /* Check if next job is already prepared. */
990         if (dmae->cur && dmae->desc_current)
991                 return 0;
992
993         /* No job were prepared thus do it now. */
994         return _mmci_dmae_prep_data(host, data, &dmae->cur,
995                                     &dmae->desc_current);
996 }
997
998 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
999 {
1000         struct mmci_dmae_priv *dmae = host->dma_priv;
1001         int ret;
1002
1003         host->dma_in_progress = true;
1004         ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1005         if (ret < 0) {
1006                 host->dma_in_progress = false;
1007                 return ret;
1008         }
1009         dma_async_issue_pending(dmae->cur);
1010
1011         *datactrl |= MCI_DPSM_DMAENABLE;
1012
1013         return 0;
1014 }
1015
1016 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1017 {
1018         struct mmci_dmae_priv *dmae = host->dma_priv;
1019         struct mmci_dmae_next *next = &dmae->next_data;
1020
1021         if (!host->use_dma)
1022                 return;
1023
1024         WARN_ON(!data->host_cookie && (next->desc || next->chan));
1025
1026         dmae->desc_current = next->desc;
1027         dmae->cur = next->chan;
1028         next->desc = NULL;
1029         next->chan = NULL;
1030 }
1031
1032 void mmci_dmae_unprep_data(struct mmci_host *host,
1033                            struct mmc_data *data, int err)
1034
1035 {
1036         struct mmci_dmae_priv *dmae = host->dma_priv;
1037
1038         if (!host->use_dma)
1039                 return;
1040
1041         mmci_dma_unmap(host, data);
1042
1043         if (err) {
1044                 struct mmci_dmae_next *next = &dmae->next_data;
1045                 struct dma_chan *chan;
1046                 if (data->flags & MMC_DATA_READ)
1047                         chan = dmae->rx_channel;
1048                 else
1049                         chan = dmae->tx_channel;
1050                 dmaengine_terminate_all(chan);
1051
1052                 if (dmae->desc_current == next->desc)
1053                         dmae->desc_current = NULL;
1054
1055                 if (dmae->cur == next->chan) {
1056                         host->dma_in_progress = false;
1057                         dmae->cur = NULL;
1058                 }
1059
1060                 next->desc = NULL;
1061                 next->chan = NULL;
1062         }
1063 }
1064
1065 static struct mmci_host_ops mmci_variant_ops = {
1066         .prep_data = mmci_dmae_prep_data,
1067         .unprep_data = mmci_dmae_unprep_data,
1068         .get_datactrl_cfg = mmci_get_dctrl_cfg,
1069         .get_next_data = mmci_dmae_get_next_data,
1070         .dma_setup = mmci_dmae_setup,
1071         .dma_release = mmci_dmae_release,
1072         .dma_start = mmci_dmae_start,
1073         .dma_finalize = mmci_dmae_finalize,
1074         .dma_error = mmci_dmae_error,
1075 };
1076 #else
1077 static struct mmci_host_ops mmci_variant_ops = {
1078         .get_datactrl_cfg = mmci_get_dctrl_cfg,
1079 };
1080 #endif
1081
1082 static void mmci_variant_init(struct mmci_host *host)
1083 {
1084         host->ops = &mmci_variant_ops;
1085 }
1086
1087 static void ux500_variant_init(struct mmci_host *host)
1088 {
1089         host->ops = &mmci_variant_ops;
1090         host->ops->busy_complete = ux500_busy_complete;
1091 }
1092
1093 static void ux500v2_variant_init(struct mmci_host *host)
1094 {
1095         host->ops = &mmci_variant_ops;
1096         host->ops->busy_complete = ux500_busy_complete;
1097         host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1098 }
1099
1100 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1101 {
1102         struct mmci_host *host = mmc_priv(mmc);
1103         struct mmc_data *data = mrq->data;
1104
1105         if (!data)
1106                 return;
1107
1108         WARN_ON(data->host_cookie);
1109
1110         if (mmci_validate_data(host, data))
1111                 return;
1112
1113         mmci_prep_data(host, data, true);
1114 }
1115
1116 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1117                               int err)
1118 {
1119         struct mmci_host *host = mmc_priv(mmc);
1120         struct mmc_data *data = mrq->data;
1121
1122         if (!data || !data->host_cookie)
1123                 return;
1124
1125         mmci_unprep_data(host, data, err);
1126 }
1127
1128 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1129 {
1130         struct variant_data *variant = host->variant;
1131         unsigned int datactrl, timeout, irqmask;
1132         unsigned long long clks;
1133         void __iomem *base;
1134
1135         dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1136                 data->blksz, data->blocks, data->flags);
1137
1138         host->data = data;
1139         host->size = data->blksz * data->blocks;
1140         data->bytes_xfered = 0;
1141
1142         clks = (unsigned long long)data->timeout_ns * host->cclk;
1143         do_div(clks, NSEC_PER_SEC);
1144
1145         timeout = data->timeout_clks + (unsigned int)clks;
1146
1147         base = host->base;
1148         writel(timeout, base + MMCIDATATIMER);
1149         writel(host->size, base + MMCIDATALENGTH);
1150
1151         datactrl = host->ops->get_datactrl_cfg(host);
1152         datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1153
1154         if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1155                 u32 clk;
1156
1157                 datactrl |= variant->datactrl_mask_sdio;
1158
1159                 /*
1160                  * The ST Micro variant for SDIO small write transfers
1161                  * needs to have clock H/W flow control disabled,
1162                  * otherwise the transfer will not start. The threshold
1163                  * depends on the rate of MCLK.
1164                  */
1165                 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1166                     (host->size < 8 ||
1167                      (host->size <= 8 && host->mclk > 50000000)))
1168                         clk = host->clk_reg & ~variant->clkreg_enable;
1169                 else
1170                         clk = host->clk_reg | variant->clkreg_enable;
1171
1172                 mmci_write_clkreg(host, clk);
1173         }
1174
1175         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1176             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1177                 datactrl |= variant->datactrl_mask_ddrmode;
1178
1179         /*
1180          * Attempt to use DMA operation mode, if this
1181          * should fail, fall back to PIO mode
1182          */
1183         if (!mmci_dma_start(host, datactrl))
1184                 return;
1185
1186         /* IRQ mode, map the SG list for CPU reading/writing */
1187         mmci_init_sg(host, data);
1188
1189         if (data->flags & MMC_DATA_READ) {
1190                 irqmask = MCI_RXFIFOHALFFULLMASK;
1191
1192                 /*
1193                  * If we have less than the fifo 'half-full' threshold to
1194                  * transfer, trigger a PIO interrupt as soon as any data
1195                  * is available.
1196                  */
1197                 if (host->size < variant->fifohalfsize)
1198                         irqmask |= MCI_RXDATAAVLBLMASK;
1199         } else {
1200                 /*
1201                  * We don't actually need to include "FIFO empty" here
1202                  * since its implicit in "FIFO half empty".
1203                  */
1204                 irqmask = MCI_TXFIFOHALFEMPTYMASK;
1205         }
1206
1207         mmci_write_datactrlreg(host, datactrl);
1208         writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1209         mmci_set_mask1(host, irqmask);
1210 }
1211
1212 static void
1213 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1214 {
1215         void __iomem *base = host->base;
1216         unsigned long long clks;
1217
1218         dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1219             cmd->opcode, cmd->arg, cmd->flags);
1220
1221         if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1222                 writel(0, base + MMCICOMMAND);
1223                 mmci_reg_delay(host);
1224         }
1225
1226         if (host->variant->cmdreg_stop &&
1227             cmd->opcode == MMC_STOP_TRANSMISSION)
1228                 c |= host->variant->cmdreg_stop;
1229
1230         c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1231         if (cmd->flags & MMC_RSP_PRESENT) {
1232                 if (cmd->flags & MMC_RSP_136)
1233                         c |= host->variant->cmdreg_lrsp_crc;
1234                 else if (cmd->flags & MMC_RSP_CRC)
1235                         c |= host->variant->cmdreg_srsp_crc;
1236                 else
1237                         c |= host->variant->cmdreg_srsp;
1238         }
1239
1240         if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1241                 if (!cmd->busy_timeout)
1242                         cmd->busy_timeout = 10 * MSEC_PER_SEC;
1243
1244                 clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1245                 do_div(clks, MSEC_PER_SEC);
1246                 writel_relaxed(clks, host->base + MMCIDATATIMER);
1247         }
1248
1249         if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1250                 host->ops->pre_sig_volt_switch(host);
1251
1252         if (/*interrupt*/0)
1253                 c |= MCI_CPSM_INTERRUPT;
1254
1255         if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1256                 c |= host->variant->data_cmd_enable;
1257
1258         host->cmd = cmd;
1259
1260         writel(cmd->arg, base + MMCIARGUMENT);
1261         writel(c, base + MMCICOMMAND);
1262 }
1263
1264 static void mmci_stop_command(struct mmci_host *host)
1265 {
1266         host->stop_abort.error = 0;
1267         mmci_start_command(host, &host->stop_abort, 0);
1268 }
1269
1270 static void
1271 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1272               unsigned int status)
1273 {
1274         unsigned int status_err;
1275
1276         /* Make sure we have data to handle */
1277         if (!data)
1278                 return;
1279
1280         /* First check for errors */
1281         status_err = status & (host->variant->start_err |
1282                                MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1283                                MCI_TXUNDERRUN | MCI_RXOVERRUN);
1284
1285         if (status_err) {
1286                 u32 remain, success;
1287
1288                 /* Terminate the DMA transfer */
1289                 mmci_dma_error(host);
1290
1291                 /*
1292                  * Calculate how far we are into the transfer.  Note that
1293                  * the data counter gives the number of bytes transferred
1294                  * on the MMC bus, not on the host side.  On reads, this
1295                  * can be as much as a FIFO-worth of data ahead.  This
1296                  * matters for FIFO overruns only.
1297                  */
1298                 if (!host->variant->datacnt_useless) {
1299                         remain = readl(host->base + MMCIDATACNT);
1300                         success = data->blksz * data->blocks - remain;
1301                 } else {
1302                         success = 0;
1303                 }
1304
1305                 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1306                         status_err, success);
1307                 if (status_err & MCI_DATACRCFAIL) {
1308                         /* Last block was not successful */
1309                         success -= 1;
1310                         data->error = -EILSEQ;
1311                 } else if (status_err & MCI_DATATIMEOUT) {
1312                         data->error = -ETIMEDOUT;
1313                 } else if (status_err & MCI_STARTBITERR) {
1314                         data->error = -ECOMM;
1315                 } else if (status_err & MCI_TXUNDERRUN) {
1316                         data->error = -EIO;
1317                 } else if (status_err & MCI_RXOVERRUN) {
1318                         if (success > host->variant->fifosize)
1319                                 success -= host->variant->fifosize;
1320                         else
1321                                 success = 0;
1322                         data->error = -EIO;
1323                 }
1324                 data->bytes_xfered = round_down(success, data->blksz);
1325         }
1326
1327         if (status & MCI_DATABLOCKEND)
1328                 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1329
1330         if (status & MCI_DATAEND || data->error) {
1331                 mmci_dma_finalize(host, data);
1332
1333                 mmci_stop_data(host);
1334
1335                 if (!data->error)
1336                         /* The error clause is handled above, success! */
1337                         data->bytes_xfered = data->blksz * data->blocks;
1338
1339                 if (!data->stop) {
1340                         if (host->variant->cmdreg_stop && data->error)
1341                                 mmci_stop_command(host);
1342                         else
1343                                 mmci_request_end(host, data->mrq);
1344                 } else if (host->mrq->sbc && !data->error) {
1345                         mmci_request_end(host, data->mrq);
1346                 } else {
1347                         mmci_start_command(host, data->stop, 0);
1348                 }
1349         }
1350 }
1351
1352 static void
1353 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1354              unsigned int status)
1355 {
1356         u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1357         void __iomem *base = host->base;
1358         bool sbc, busy_resp;
1359
1360         if (!cmd)
1361                 return;
1362
1363         sbc = (cmd == host->mrq->sbc);
1364         busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1365
1366         /*
1367          * We need to be one of these interrupts to be considered worth
1368          * handling. Note that we tag on any latent IRQs postponed
1369          * due to waiting for busy status.
1370          */
1371         if (host->variant->busy_timeout && busy_resp)
1372                 err_msk |= MCI_DATATIMEOUT;
1373
1374         if (!((status | host->busy_status) &
1375               (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1376                 return;
1377
1378         /* Handle busy detection on DAT0 if the variant supports it. */
1379         if (busy_resp && host->variant->busy_detect)
1380                 if (!host->ops->busy_complete(host, status, err_msk))
1381                         return;
1382
1383         host->cmd = NULL;
1384
1385         if (status & MCI_CMDTIMEOUT) {
1386                 cmd->error = -ETIMEDOUT;
1387         } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1388                 cmd->error = -EILSEQ;
1389         } else if (host->variant->busy_timeout && busy_resp &&
1390                    status & MCI_DATATIMEOUT) {
1391                 cmd->error = -ETIMEDOUT;
1392                 host->irq_action = IRQ_WAKE_THREAD;
1393         } else {
1394                 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1395                 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1396                 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1397                 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1398         }
1399
1400         if ((!sbc && !cmd->data) || cmd->error) {
1401                 if (host->data) {
1402                         /* Terminate the DMA transfer */
1403                         mmci_dma_error(host);
1404
1405                         mmci_stop_data(host);
1406                         if (host->variant->cmdreg_stop && cmd->error) {
1407                                 mmci_stop_command(host);
1408                                 return;
1409                         }
1410                 }
1411
1412                 if (host->irq_action != IRQ_WAKE_THREAD)
1413                         mmci_request_end(host, host->mrq);
1414
1415         } else if (sbc) {
1416                 mmci_start_command(host, host->mrq->cmd, 0);
1417         } else if (!host->variant->datactrl_first &&
1418                    !(cmd->data->flags & MMC_DATA_READ)) {
1419                 mmci_start_data(host, cmd->data);
1420         }
1421 }
1422
1423 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1424 {
1425         return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1426 }
1427
1428 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1429 {
1430         /*
1431          * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1432          * from the fifo range should be used
1433          */
1434         if (status & MCI_RXFIFOHALFFULL)
1435                 return host->variant->fifohalfsize;
1436         else if (status & MCI_RXDATAAVLBL)
1437                 return 4;
1438
1439         return 0;
1440 }
1441
1442 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1443 {
1444         void __iomem *base = host->base;
1445         char *ptr = buffer;
1446         u32 status = readl(host->base + MMCISTATUS);
1447         int host_remain = host->size;
1448
1449         do {
1450                 int count = host->get_rx_fifocnt(host, status, host_remain);
1451
1452                 if (count > remain)
1453                         count = remain;
1454
1455                 if (count <= 0)
1456                         break;
1457
1458                 /*
1459                  * SDIO especially may want to send something that is
1460                  * not divisible by 4 (as opposed to card sectors
1461                  * etc). Therefore make sure to always read the last bytes
1462                  * while only doing full 32-bit reads towards the FIFO.
1463                  */
1464                 if (unlikely(count & 0x3)) {
1465                         if (count < 4) {
1466                                 unsigned char buf[4];
1467                                 ioread32_rep(base + MMCIFIFO, buf, 1);
1468                                 memcpy(ptr, buf, count);
1469                         } else {
1470                                 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1471                                 count &= ~0x3;
1472                         }
1473                 } else {
1474                         ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1475                 }
1476
1477                 ptr += count;
1478                 remain -= count;
1479                 host_remain -= count;
1480
1481                 if (remain == 0)
1482                         break;
1483
1484                 status = readl(base + MMCISTATUS);
1485         } while (status & MCI_RXDATAAVLBL);
1486
1487         return ptr - buffer;
1488 }
1489
1490 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1491 {
1492         struct variant_data *variant = host->variant;
1493         void __iomem *base = host->base;
1494         char *ptr = buffer;
1495
1496         do {
1497                 unsigned int count, maxcnt;
1498
1499                 maxcnt = status & MCI_TXFIFOEMPTY ?
1500                          variant->fifosize : variant->fifohalfsize;
1501                 count = min(remain, maxcnt);
1502
1503                 /*
1504                  * SDIO especially may want to send something that is
1505                  * not divisible by 4 (as opposed to card sectors
1506                  * etc), and the FIFO only accept full 32-bit writes.
1507                  * So compensate by adding +3 on the count, a single
1508                  * byte become a 32bit write, 7 bytes will be two
1509                  * 32bit writes etc.
1510                  */
1511                 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1512
1513                 ptr += count;
1514                 remain -= count;
1515
1516                 if (remain == 0)
1517                         break;
1518
1519                 status = readl(base + MMCISTATUS);
1520         } while (status & MCI_TXFIFOHALFEMPTY);
1521
1522         return ptr - buffer;
1523 }
1524
1525 /*
1526  * PIO data transfer IRQ handler.
1527  */
1528 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1529 {
1530         struct mmci_host *host = dev_id;
1531         struct sg_mapping_iter *sg_miter = &host->sg_miter;
1532         struct variant_data *variant = host->variant;
1533         void __iomem *base = host->base;
1534         u32 status;
1535
1536         status = readl(base + MMCISTATUS);
1537
1538         dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1539
1540         do {
1541                 unsigned int remain, len;
1542                 char *buffer;
1543
1544                 /*
1545                  * For write, we only need to test the half-empty flag
1546                  * here - if the FIFO is completely empty, then by
1547                  * definition it is more than half empty.
1548                  *
1549                  * For read, check for data available.
1550                  */
1551                 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1552                         break;
1553
1554                 if (!sg_miter_next(sg_miter))
1555                         break;
1556
1557                 buffer = sg_miter->addr;
1558                 remain = sg_miter->length;
1559
1560                 len = 0;
1561                 if (status & MCI_RXACTIVE)
1562                         len = mmci_pio_read(host, buffer, remain);
1563                 if (status & MCI_TXACTIVE)
1564                         len = mmci_pio_write(host, buffer, remain, status);
1565
1566                 sg_miter->consumed = len;
1567
1568                 host->size -= len;
1569                 remain -= len;
1570
1571                 if (remain)
1572                         break;
1573
1574                 status = readl(base + MMCISTATUS);
1575         } while (1);
1576
1577         sg_miter_stop(sg_miter);
1578
1579         /*
1580          * If we have less than the fifo 'half-full' threshold to transfer,
1581          * trigger a PIO interrupt as soon as any data is available.
1582          */
1583         if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1584                 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1585
1586         /*
1587          * If we run out of data, disable the data IRQs; this
1588          * prevents a race where the FIFO becomes empty before
1589          * the chip itself has disabled the data path, and
1590          * stops us racing with our data end IRQ.
1591          */
1592         if (host->size == 0) {
1593                 mmci_set_mask1(host, 0);
1594                 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1595         }
1596
1597         return IRQ_HANDLED;
1598 }
1599
1600 /*
1601  * Handle completion of command and data transfers.
1602  */
1603 static irqreturn_t mmci_irq(int irq, void *dev_id)
1604 {
1605         struct mmci_host *host = dev_id;
1606         u32 status;
1607
1608         spin_lock(&host->lock);
1609         host->irq_action = IRQ_HANDLED;
1610
1611         do {
1612                 status = readl(host->base + MMCISTATUS);
1613
1614                 if (host->singleirq) {
1615                         if (status & host->mask1_reg)
1616                                 mmci_pio_irq(irq, dev_id);
1617
1618                         status &= ~host->variant->irq_pio_mask;
1619                 }
1620
1621                 /*
1622                  * Busy detection is managed by mmci_cmd_irq(), including to
1623                  * clear the corresponding IRQ.
1624                  */
1625                 status &= readl(host->base + MMCIMASK0);
1626                 if (host->variant->busy_detect)
1627                         writel(status & ~host->variant->busy_detect_mask,
1628                                host->base + MMCICLEAR);
1629                 else
1630                         writel(status, host->base + MMCICLEAR);
1631
1632                 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1633
1634                 if (host->variant->reversed_irq_handling) {
1635                         mmci_data_irq(host, host->data, status);
1636                         mmci_cmd_irq(host, host->cmd, status);
1637                 } else {
1638                         mmci_cmd_irq(host, host->cmd, status);
1639                         mmci_data_irq(host, host->data, status);
1640                 }
1641
1642                 /*
1643                  * Busy detection has been handled by mmci_cmd_irq() above.
1644                  * Clear the status bit to prevent polling in IRQ context.
1645                  */
1646                 if (host->variant->busy_detect_flag)
1647                         status &= ~host->variant->busy_detect_flag;
1648
1649         } while (status);
1650
1651         spin_unlock(&host->lock);
1652
1653         return host->irq_action;
1654 }
1655
1656 /*
1657  * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1658  *
1659  * A reset is needed for some variants, where a datatimeout for a R1B request
1660  * causes the DPSM to stay busy (non-functional).
1661  */
1662 static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1663 {
1664         struct mmci_host *host = dev_id;
1665         unsigned long flags;
1666
1667         if (host->rst) {
1668                 reset_control_assert(host->rst);
1669                 udelay(2);
1670                 reset_control_deassert(host->rst);
1671         }
1672
1673         spin_lock_irqsave(&host->lock, flags);
1674         writel(host->clk_reg, host->base + MMCICLOCK);
1675         writel(host->pwr_reg, host->base + MMCIPOWER);
1676         writel(MCI_IRQENABLE | host->variant->start_err,
1677                host->base + MMCIMASK0);
1678
1679         host->irq_action = IRQ_HANDLED;
1680         mmci_request_end(host, host->mrq);
1681         spin_unlock_irqrestore(&host->lock, flags);
1682
1683         return host->irq_action;
1684 }
1685
1686 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1687 {
1688         struct mmci_host *host = mmc_priv(mmc);
1689         unsigned long flags;
1690
1691         WARN_ON(host->mrq != NULL);
1692
1693         mrq->cmd->error = mmci_validate_data(host, mrq->data);
1694         if (mrq->cmd->error) {
1695                 mmc_request_done(mmc, mrq);
1696                 return;
1697         }
1698
1699         spin_lock_irqsave(&host->lock, flags);
1700
1701         host->mrq = mrq;
1702
1703         if (mrq->data)
1704                 mmci_get_next_data(host, mrq->data);
1705
1706         if (mrq->data &&
1707             (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1708                 mmci_start_data(host, mrq->data);
1709
1710         if (mrq->sbc)
1711                 mmci_start_command(host, mrq->sbc, 0);
1712         else
1713                 mmci_start_command(host, mrq->cmd, 0);
1714
1715         spin_unlock_irqrestore(&host->lock, flags);
1716 }
1717
1718 static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1719 {
1720         struct mmci_host *host = mmc_priv(mmc);
1721         u32 max_busy_timeout = 0;
1722
1723         if (!host->variant->busy_detect)
1724                 return;
1725
1726         if (host->variant->busy_timeout && mmc->actual_clock)
1727                 max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
1728
1729         mmc->max_busy_timeout = max_busy_timeout;
1730 }
1731
1732 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1733 {
1734         struct mmci_host *host = mmc_priv(mmc);
1735         struct variant_data *variant = host->variant;
1736         u32 pwr = 0;
1737         unsigned long flags;
1738         int ret;
1739
1740         if (host->plat->ios_handler &&
1741                 host->plat->ios_handler(mmc_dev(mmc), ios))
1742                         dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1743
1744         switch (ios->power_mode) {
1745         case MMC_POWER_OFF:
1746                 if (!IS_ERR(mmc->supply.vmmc))
1747                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1748
1749                 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1750                         regulator_disable(mmc->supply.vqmmc);
1751                         host->vqmmc_enabled = false;
1752                 }
1753
1754                 break;
1755         case MMC_POWER_UP:
1756                 if (!IS_ERR(mmc->supply.vmmc))
1757                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1758
1759                 /*
1760                  * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1761                  * and instead uses MCI_PWR_ON so apply whatever value is
1762                  * configured in the variant data.
1763                  */
1764                 pwr |= variant->pwrreg_powerup;
1765
1766                 break;
1767         case MMC_POWER_ON:
1768                 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1769                         ret = regulator_enable(mmc->supply.vqmmc);
1770                         if (ret < 0)
1771                                 dev_err(mmc_dev(mmc),
1772                                         "failed to enable vqmmc regulator\n");
1773                         else
1774                                 host->vqmmc_enabled = true;
1775                 }
1776
1777                 pwr |= MCI_PWR_ON;
1778                 break;
1779         }
1780
1781         if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1782                 /*
1783                  * The ST Micro variant has some additional bits
1784                  * indicating signal direction for the signals in
1785                  * the SD/MMC bus and feedback-clock usage.
1786                  */
1787                 pwr |= host->pwr_reg_add;
1788
1789                 if (ios->bus_width == MMC_BUS_WIDTH_4)
1790                         pwr &= ~MCI_ST_DATA74DIREN;
1791                 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1792                         pwr &= (~MCI_ST_DATA74DIREN &
1793                                 ~MCI_ST_DATA31DIREN &
1794                                 ~MCI_ST_DATA2DIREN);
1795         }
1796
1797         if (variant->opendrain) {
1798                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1799                         pwr |= variant->opendrain;
1800         } else {
1801                 /*
1802                  * If the variant cannot configure the pads by its own, then we
1803                  * expect the pinctrl to be able to do that for us
1804                  */
1805                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1806                         pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1807                 else
1808                         pinctrl_select_default_state(mmc_dev(mmc));
1809         }
1810
1811         /*
1812          * If clock = 0 and the variant requires the MMCIPOWER to be used for
1813          * gating the clock, the MCI_PWR_ON bit is cleared.
1814          */
1815         if (!ios->clock && variant->pwrreg_clkgate)
1816                 pwr &= ~MCI_PWR_ON;
1817
1818         if (host->variant->explicit_mclk_control &&
1819             ios->clock != host->clock_cache) {
1820                 ret = clk_set_rate(host->clk, ios->clock);
1821                 if (ret < 0)
1822                         dev_err(mmc_dev(host->mmc),
1823                                 "Error setting clock rate (%d)\n", ret);
1824                 else
1825                         host->mclk = clk_get_rate(host->clk);
1826         }
1827         host->clock_cache = ios->clock;
1828
1829         spin_lock_irqsave(&host->lock, flags);
1830
1831         if (host->ops && host->ops->set_clkreg)
1832                 host->ops->set_clkreg(host, ios->clock);
1833         else
1834                 mmci_set_clkreg(host, ios->clock);
1835
1836         mmci_set_max_busy_timeout(mmc);
1837
1838         if (host->ops && host->ops->set_pwrreg)
1839                 host->ops->set_pwrreg(host, pwr);
1840         else
1841                 mmci_write_pwrreg(host, pwr);
1842
1843         mmci_reg_delay(host);
1844
1845         spin_unlock_irqrestore(&host->lock, flags);
1846 }
1847
1848 static int mmci_get_cd(struct mmc_host *mmc)
1849 {
1850         struct mmci_host *host = mmc_priv(mmc);
1851         struct mmci_platform_data *plat = host->plat;
1852         unsigned int status = mmc_gpio_get_cd(mmc);
1853
1854         if (status == -ENOSYS) {
1855                 if (!plat->status)
1856                         return 1; /* Assume always present */
1857
1858                 status = plat->status(mmc_dev(host->mmc));
1859         }
1860         return status;
1861 }
1862
1863 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1864 {
1865         struct mmci_host *host = mmc_priv(mmc);
1866         int ret;
1867
1868         ret = mmc_regulator_set_vqmmc(mmc, ios);
1869
1870         if (!ret && host->ops && host->ops->post_sig_volt_switch)
1871                 ret = host->ops->post_sig_volt_switch(host, ios);
1872         else if (ret)
1873                 ret = 0;
1874
1875         if (ret < 0)
1876                 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1877
1878         return ret;
1879 }
1880
1881 static struct mmc_host_ops mmci_ops = {
1882         .request        = mmci_request,
1883         .pre_req        = mmci_pre_request,
1884         .post_req       = mmci_post_request,
1885         .set_ios        = mmci_set_ios,
1886         .get_ro         = mmc_gpio_get_ro,
1887         .get_cd         = mmci_get_cd,
1888         .start_signal_voltage_switch = mmci_sig_volt_switch,
1889 };
1890
1891 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1892 {
1893         struct mmci_host *host = mmc_priv(mmc);
1894         int ret = mmc_of_parse(mmc);
1895
1896         if (ret)
1897                 return ret;
1898
1899         if (of_get_property(np, "st,sig-dir-dat0", NULL))
1900                 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1901         if (of_get_property(np, "st,sig-dir-dat2", NULL))
1902                 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1903         if (of_get_property(np, "st,sig-dir-dat31", NULL))
1904                 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1905         if (of_get_property(np, "st,sig-dir-dat74", NULL))
1906                 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1907         if (of_get_property(np, "st,sig-dir-cmd", NULL))
1908                 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1909         if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1910                 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1911         if (of_get_property(np, "st,sig-dir", NULL))
1912                 host->pwr_reg_add |= MCI_STM32_DIRPOL;
1913         if (of_get_property(np, "st,neg-edge", NULL))
1914                 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1915         if (of_get_property(np, "st,use-ckin", NULL))
1916                 host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1917
1918         if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1919                 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1920         if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1921                 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1922
1923         return 0;
1924 }
1925
1926 static int mmci_probe(struct amba_device *dev,
1927         const struct amba_id *id)
1928 {
1929         struct mmci_platform_data *plat = dev->dev.platform_data;
1930         struct device_node *np = dev->dev.of_node;
1931         struct variant_data *variant = id->data;
1932         struct mmci_host *host;
1933         struct mmc_host *mmc;
1934         int ret;
1935
1936         /* Must have platform data or Device Tree. */
1937         if (!plat && !np) {
1938                 dev_err(&dev->dev, "No plat data or DT found\n");
1939                 return -EINVAL;
1940         }
1941
1942         if (!plat) {
1943                 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1944                 if (!plat)
1945                         return -ENOMEM;
1946         }
1947
1948         mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1949         if (!mmc)
1950                 return -ENOMEM;
1951
1952         ret = mmci_of_parse(np, mmc);
1953         if (ret)
1954                 goto host_free;
1955
1956         host = mmc_priv(mmc);
1957         host->mmc = mmc;
1958         host->mmc_ops = &mmci_ops;
1959         mmc->ops = &mmci_ops;
1960
1961         /*
1962          * Some variant (STM32) doesn't have opendrain bit, nevertheless
1963          * pins can be set accordingly using pinctrl
1964          */
1965         if (!variant->opendrain) {
1966                 host->pinctrl = devm_pinctrl_get(&dev->dev);
1967                 if (IS_ERR(host->pinctrl)) {
1968                         dev_err(&dev->dev, "failed to get pinctrl");
1969                         ret = PTR_ERR(host->pinctrl);
1970                         goto host_free;
1971                 }
1972
1973                 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1974                                                             MMCI_PINCTRL_STATE_OPENDRAIN);
1975                 if (IS_ERR(host->pins_opendrain)) {
1976                         dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1977                         ret = PTR_ERR(host->pins_opendrain);
1978                         goto host_free;
1979                 }
1980         }
1981
1982         host->hw_designer = amba_manf(dev);
1983         host->hw_revision = amba_rev(dev);
1984         dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1985         dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1986
1987         host->clk = devm_clk_get(&dev->dev, NULL);
1988         if (IS_ERR(host->clk)) {
1989                 ret = PTR_ERR(host->clk);
1990                 goto host_free;
1991         }
1992
1993         ret = clk_prepare_enable(host->clk);
1994         if (ret)
1995                 goto host_free;
1996
1997         if (variant->qcom_fifo)
1998                 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1999         else
2000                 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2001
2002         host->plat = plat;
2003         host->variant = variant;
2004         host->mclk = clk_get_rate(host->clk);
2005         /*
2006          * According to the spec, mclk is max 100 MHz,
2007          * so we try to adjust the clock down to this,
2008          * (if possible).
2009          */
2010         if (host->mclk > variant->f_max) {
2011                 ret = clk_set_rate(host->clk, variant->f_max);
2012                 if (ret < 0)
2013                         goto clk_disable;
2014                 host->mclk = clk_get_rate(host->clk);
2015                 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2016                         host->mclk);
2017         }
2018
2019         host->phybase = dev->res.start;
2020         host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2021         if (IS_ERR(host->base)) {
2022                 ret = PTR_ERR(host->base);
2023                 goto clk_disable;
2024         }
2025
2026         if (variant->init)
2027                 variant->init(host);
2028
2029         /*
2030          * The ARM and ST versions of the block have slightly different
2031          * clock divider equations which means that the minimum divider
2032          * differs too.
2033          * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2034          */
2035         if (variant->st_clkdiv)
2036                 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2037         else if (variant->stm32_clkdiv)
2038                 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2039         else if (variant->explicit_mclk_control)
2040                 mmc->f_min = clk_round_rate(host->clk, 100000);
2041         else
2042                 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2043         /*
2044          * If no maximum operating frequency is supplied, fall back to use
2045          * the module parameter, which has a (low) default value in case it
2046          * is not specified. Either value must not exceed the clock rate into
2047          * the block, of course.
2048          */
2049         if (mmc->f_max)
2050                 mmc->f_max = variant->explicit_mclk_control ?
2051                                 min(variant->f_max, mmc->f_max) :
2052                                 min(host->mclk, mmc->f_max);
2053         else
2054                 mmc->f_max = variant->explicit_mclk_control ?
2055                                 fmax : min(host->mclk, fmax);
2056
2057
2058         dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2059
2060         host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2061         if (IS_ERR(host->rst)) {
2062                 ret = PTR_ERR(host->rst);
2063                 goto clk_disable;
2064         }
2065
2066         /* Get regulators and the supported OCR mask */
2067         ret = mmc_regulator_get_supply(mmc);
2068         if (ret)
2069                 goto clk_disable;
2070
2071         if (!mmc->ocr_avail)
2072                 mmc->ocr_avail = plat->ocr_mask;
2073         else if (plat->ocr_mask)
2074                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2075
2076         /* We support these capabilities. */
2077         mmc->caps |= MMC_CAP_CMD23;
2078
2079         /*
2080          * Enable busy detection.
2081          */
2082         if (variant->busy_detect) {
2083                 mmci_ops.card_busy = mmci_card_busy;
2084                 /*
2085                  * Not all variants have a flag to enable busy detection
2086                  * in the DPSM, but if they do, set it here.
2087                  */
2088                 if (variant->busy_dpsm_flag)
2089                         mmci_write_datactrlreg(host,
2090                                                host->variant->busy_dpsm_flag);
2091                 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2092         }
2093
2094         /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2095         host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2096         host->stop_abort.arg = 0;
2097         host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2098
2099         /* We support these PM capabilities. */
2100         mmc->pm_caps |= MMC_PM_KEEP_POWER;
2101
2102         /*
2103          * We can do SGIO
2104          */
2105         mmc->max_segs = NR_SG;
2106
2107         /*
2108          * Since only a certain number of bits are valid in the data length
2109          * register, we must ensure that we don't exceed 2^num-1 bytes in a
2110          * single request.
2111          */
2112         mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2113
2114         /*
2115          * Set the maximum segment size.  Since we aren't doing DMA
2116          * (yet) we are only limited by the data length register.
2117          */
2118         mmc->max_seg_size = mmc->max_req_size;
2119
2120         /*
2121          * Block size can be up to 2048 bytes, but must be a power of two.
2122          */
2123         mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2124
2125         /*
2126          * Limit the number of blocks transferred so that we don't overflow
2127          * the maximum request size.
2128          */
2129         mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2130
2131         spin_lock_init(&host->lock);
2132
2133         writel(0, host->base + MMCIMASK0);
2134
2135         if (variant->mmcimask1)
2136                 writel(0, host->base + MMCIMASK1);
2137
2138         writel(0xfff, host->base + MMCICLEAR);
2139
2140         /*
2141          * If:
2142          * - not using DT but using a descriptor table, or
2143          * - using a table of descriptors ALONGSIDE DT, or
2144          * look up these descriptors named "cd" and "wp" right here, fail
2145          * silently of these do not exist
2146          */
2147         if (!np) {
2148                 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2149                 if (ret == -EPROBE_DEFER)
2150                         goto clk_disable;
2151
2152                 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2153                 if (ret == -EPROBE_DEFER)
2154                         goto clk_disable;
2155         }
2156
2157         ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2158                                         mmci_irq_thread, IRQF_SHARED,
2159                                         DRIVER_NAME " (cmd)", host);
2160         if (ret)
2161                 goto clk_disable;
2162
2163         if (!dev->irq[1])
2164                 host->singleirq = true;
2165         else {
2166                 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2167                                 IRQF_SHARED, DRIVER_NAME " (pio)", host);
2168                 if (ret)
2169                         goto clk_disable;
2170         }
2171
2172         writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2173
2174         amba_set_drvdata(dev, mmc);
2175
2176         dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2177                  mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2178                  amba_rev(dev), (unsigned long long)dev->res.start,
2179                  dev->irq[0], dev->irq[1]);
2180
2181         mmci_dma_setup(host);
2182
2183         pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2184         pm_runtime_use_autosuspend(&dev->dev);
2185
2186         mmc_add_host(mmc);
2187
2188         pm_runtime_put(&dev->dev);
2189         return 0;
2190
2191  clk_disable:
2192         clk_disable_unprepare(host->clk);
2193  host_free:
2194         mmc_free_host(mmc);
2195         return ret;
2196 }
2197
2198 static void mmci_remove(struct amba_device *dev)
2199 {
2200         struct mmc_host *mmc = amba_get_drvdata(dev);
2201
2202         if (mmc) {
2203                 struct mmci_host *host = mmc_priv(mmc);
2204                 struct variant_data *variant = host->variant;
2205
2206                 /*
2207                  * Undo pm_runtime_put() in probe.  We use the _sync
2208                  * version here so that we can access the primecell.
2209                  */
2210                 pm_runtime_get_sync(&dev->dev);
2211
2212                 mmc_remove_host(mmc);
2213
2214                 writel(0, host->base + MMCIMASK0);
2215
2216                 if (variant->mmcimask1)
2217                         writel(0, host->base + MMCIMASK1);
2218
2219                 writel(0, host->base + MMCICOMMAND);
2220                 writel(0, host->base + MMCIDATACTRL);
2221
2222                 mmci_dma_release(host);
2223                 clk_disable_unprepare(host->clk);
2224                 mmc_free_host(mmc);
2225         }
2226 }
2227
2228 #ifdef CONFIG_PM
2229 static void mmci_save(struct mmci_host *host)
2230 {
2231         unsigned long flags;
2232
2233         spin_lock_irqsave(&host->lock, flags);
2234
2235         writel(0, host->base + MMCIMASK0);
2236         if (host->variant->pwrreg_nopower) {
2237                 writel(0, host->base + MMCIDATACTRL);
2238                 writel(0, host->base + MMCIPOWER);
2239                 writel(0, host->base + MMCICLOCK);
2240         }
2241         mmci_reg_delay(host);
2242
2243         spin_unlock_irqrestore(&host->lock, flags);
2244 }
2245
2246 static void mmci_restore(struct mmci_host *host)
2247 {
2248         unsigned long flags;
2249
2250         spin_lock_irqsave(&host->lock, flags);
2251
2252         if (host->variant->pwrreg_nopower) {
2253                 writel(host->clk_reg, host->base + MMCICLOCK);
2254                 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2255                 writel(host->pwr_reg, host->base + MMCIPOWER);
2256         }
2257         writel(MCI_IRQENABLE | host->variant->start_err,
2258                host->base + MMCIMASK0);
2259         mmci_reg_delay(host);
2260
2261         spin_unlock_irqrestore(&host->lock, flags);
2262 }
2263
2264 static int mmci_runtime_suspend(struct device *dev)
2265 {
2266         struct amba_device *adev = to_amba_device(dev);
2267         struct mmc_host *mmc = amba_get_drvdata(adev);
2268
2269         if (mmc) {
2270                 struct mmci_host *host = mmc_priv(mmc);
2271                 pinctrl_pm_select_sleep_state(dev);
2272                 mmci_save(host);
2273                 clk_disable_unprepare(host->clk);
2274         }
2275
2276         return 0;
2277 }
2278
2279 static int mmci_runtime_resume(struct device *dev)
2280 {
2281         struct amba_device *adev = to_amba_device(dev);
2282         struct mmc_host *mmc = amba_get_drvdata(adev);
2283
2284         if (mmc) {
2285                 struct mmci_host *host = mmc_priv(mmc);
2286                 clk_prepare_enable(host->clk);
2287                 mmci_restore(host);
2288                 pinctrl_select_default_state(dev);
2289         }
2290
2291         return 0;
2292 }
2293 #endif
2294
2295 static const struct dev_pm_ops mmci_dev_pm_ops = {
2296         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2297                                 pm_runtime_force_resume)
2298         SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2299 };
2300
2301 static const struct amba_id mmci_ids[] = {
2302         {
2303                 .id     = 0x00041180,
2304                 .mask   = 0xff0fffff,
2305                 .data   = &variant_arm,
2306         },
2307         {
2308                 .id     = 0x01041180,
2309                 .mask   = 0xff0fffff,
2310                 .data   = &variant_arm_extended_fifo,
2311         },
2312         {
2313                 .id     = 0x02041180,
2314                 .mask   = 0xff0fffff,
2315                 .data   = &variant_arm_extended_fifo_hwfc,
2316         },
2317         {
2318                 .id     = 0x00041181,
2319                 .mask   = 0x000fffff,
2320                 .data   = &variant_arm,
2321         },
2322         /* ST Micro variants */
2323         {
2324                 .id     = 0x00180180,
2325                 .mask   = 0x00ffffff,
2326                 .data   = &variant_u300,
2327         },
2328         {
2329                 .id     = 0x10180180,
2330                 .mask   = 0xf0ffffff,
2331                 .data   = &variant_nomadik,
2332         },
2333         {
2334                 .id     = 0x00280180,
2335                 .mask   = 0x00ffffff,
2336                 .data   = &variant_nomadik,
2337         },
2338         {
2339                 .id     = 0x00480180,
2340                 .mask   = 0xf0ffffff,
2341                 .data   = &variant_ux500,
2342         },
2343         {
2344                 .id     = 0x10480180,
2345                 .mask   = 0xf0ffffff,
2346                 .data   = &variant_ux500v2,
2347         },
2348         {
2349                 .id     = 0x00880180,
2350                 .mask   = 0x00ffffff,
2351                 .data   = &variant_stm32,
2352         },
2353         {
2354                 .id     = 0x10153180,
2355                 .mask   = 0xf0ffffff,
2356                 .data   = &variant_stm32_sdmmc,
2357         },
2358         {
2359                 .id     = 0x00253180,
2360                 .mask   = 0xf0ffffff,
2361                 .data   = &variant_stm32_sdmmcv2,
2362         },
2363         /* Qualcomm variants */
2364         {
2365                 .id     = 0x00051180,
2366                 .mask   = 0x000fffff,
2367                 .data   = &variant_qcom,
2368         },
2369         { 0, 0 },
2370 };
2371
2372 MODULE_DEVICE_TABLE(amba, mmci_ids);
2373
2374 static struct amba_driver mmci_driver = {
2375         .drv            = {
2376                 .name   = DRIVER_NAME,
2377                 .pm     = &mmci_dev_pm_ops,
2378         },
2379         .probe          = mmci_probe,
2380         .remove         = mmci_remove,
2381         .id_table       = mmci_ids,
2382 };
2383
2384 module_amba_driver(mmci_driver);
2385
2386 module_param(fmax, uint, 0444);
2387
2388 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2389 MODULE_LICENSE("GPL");
This page took 0.175199 seconds and 4 git commands to generate.