]> Git Repo - J-linux.git/blob - drivers/pwm/pwm-sprd.c
pwm: Manage owner assignment implicitly for drivers
[J-linux.git] / drivers / pwm / pwm-sprd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Spreadtrum Communications Inc.
4  */
5
6 #include <linux/clk.h>
7 #include <linux/err.h>
8 #include <linux/io.h>
9 #include <linux/math64.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/module.h>
12 #include <linux/platform_device.h>
13 #include <linux/pwm.h>
14
15 #define SPRD_PWM_PRESCALE       0x0
16 #define SPRD_PWM_MOD            0x4
17 #define SPRD_PWM_DUTY           0x8
18 #define SPRD_PWM_ENABLE         0x18
19
20 #define SPRD_PWM_MOD_MAX        GENMASK(7, 0)
21 #define SPRD_PWM_DUTY_MSK       GENMASK(15, 0)
22 #define SPRD_PWM_PRESCALE_MSK   GENMASK(7, 0)
23 #define SPRD_PWM_ENABLE_BIT     BIT(0)
24
25 #define SPRD_PWM_CHN_NUM        4
26 #define SPRD_PWM_REGS_SHIFT     5
27 #define SPRD_PWM_CHN_CLKS_NUM   2
28 #define SPRD_PWM_CHN_OUTPUT_CLK 1
29
30 struct sprd_pwm_chn {
31         struct clk_bulk_data clks[SPRD_PWM_CHN_CLKS_NUM];
32         u32 clk_rate;
33 };
34
35 struct sprd_pwm_chip {
36         void __iomem *base;
37         struct device *dev;
38         struct pwm_chip chip;
39         int num_pwms;
40         struct sprd_pwm_chn chn[SPRD_PWM_CHN_NUM];
41 };
42
43 /*
44  * The list of clocks required by PWM channels, and each channel has 2 clocks:
45  * enable clock and pwm clock.
46  */
47 static const char * const sprd_pwm_clks[] = {
48         "enable0", "pwm0",
49         "enable1", "pwm1",
50         "enable2", "pwm2",
51         "enable3", "pwm3",
52 };
53
54 static u32 sprd_pwm_read(struct sprd_pwm_chip *spc, u32 hwid, u32 reg)
55 {
56         u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
57
58         return readl_relaxed(spc->base + offset);
59 }
60
61 static void sprd_pwm_write(struct sprd_pwm_chip *spc, u32 hwid,
62                            u32 reg, u32 val)
63 {
64         u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
65
66         writel_relaxed(val, spc->base + offset);
67 }
68
69 static int sprd_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
70                               struct pwm_state *state)
71 {
72         struct sprd_pwm_chip *spc =
73                 container_of(chip, struct sprd_pwm_chip, chip);
74         struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
75         u32 val, duty, prescale;
76         u64 tmp;
77         int ret;
78
79         /*
80          * The clocks to PWM channel has to be enabled first before
81          * reading to the registers.
82          */
83         ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
84         if (ret) {
85                 dev_err(spc->dev, "failed to enable pwm%u clocks\n",
86                         pwm->hwpwm);
87                 return ret;
88         }
89
90         val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_ENABLE);
91         if (val & SPRD_PWM_ENABLE_BIT)
92                 state->enabled = true;
93         else
94                 state->enabled = false;
95
96         /*
97          * The hardware provides a counter that is feed by the source clock.
98          * The period length is (PRESCALE + 1) * MOD counter steps.
99          * The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
100          * Thus the period_ns and duty_ns calculation formula should be:
101          * period_ns = NSEC_PER_SEC * (prescale + 1) * mod / clk_rate
102          * duty_ns = NSEC_PER_SEC * (prescale + 1) * duty / clk_rate
103          */
104         val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_PRESCALE);
105         prescale = val & SPRD_PWM_PRESCALE_MSK;
106         tmp = (prescale + 1) * NSEC_PER_SEC * SPRD_PWM_MOD_MAX;
107         state->period = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
108
109         val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_DUTY);
110         duty = val & SPRD_PWM_DUTY_MSK;
111         tmp = (prescale + 1) * NSEC_PER_SEC * duty;
112         state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
113         state->polarity = PWM_POLARITY_NORMAL;
114
115         /* Disable PWM clocks if the PWM channel is not in enable state. */
116         if (!state->enabled)
117                 clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
118
119         return 0;
120 }
121
122 static int sprd_pwm_config(struct sprd_pwm_chip *spc, struct pwm_device *pwm,
123                            int duty_ns, int period_ns)
124 {
125         struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
126         u32 prescale, duty;
127         u64 tmp;
128
129         /*
130          * The hardware provides a counter that is feed by the source clock.
131          * The period length is (PRESCALE + 1) * MOD counter steps.
132          * The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
133          *
134          * To keep the maths simple we're always using MOD = SPRD_PWM_MOD_MAX.
135          * The value for PRESCALE is selected such that the resulting period
136          * gets the maximal length not bigger than the requested one with the
137          * given settings (MOD = SPRD_PWM_MOD_MAX and input clock).
138          */
139         duty = duty_ns * SPRD_PWM_MOD_MAX / period_ns;
140
141         tmp = (u64)chn->clk_rate * period_ns;
142         do_div(tmp, NSEC_PER_SEC);
143         prescale = DIV_ROUND_CLOSEST_ULL(tmp, SPRD_PWM_MOD_MAX) - 1;
144         if (prescale > SPRD_PWM_PRESCALE_MSK)
145                 prescale = SPRD_PWM_PRESCALE_MSK;
146
147         /*
148          * Note: Writing DUTY triggers the hardware to actually apply the
149          * values written to MOD and DUTY to the output, so must keep writing
150          * DUTY last.
151          *
152          * The hardware can ensures that current running period is completed
153          * before changing a new configuration to avoid mixed settings.
154          */
155         sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_PRESCALE, prescale);
156         sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_MOD, SPRD_PWM_MOD_MAX);
157         sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_DUTY, duty);
158
159         return 0;
160 }
161
162 static int sprd_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
163                           const struct pwm_state *state)
164 {
165         struct sprd_pwm_chip *spc =
166                 container_of(chip, struct sprd_pwm_chip, chip);
167         struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
168         struct pwm_state *cstate = &pwm->state;
169         int ret;
170
171         if (state->polarity != PWM_POLARITY_NORMAL)
172                 return -EINVAL;
173
174         if (state->enabled) {
175                 if (!cstate->enabled) {
176                         /*
177                          * The clocks to PWM channel has to be enabled first
178                          * before writing to the registers.
179                          */
180                         ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM,
181                                                       chn->clks);
182                         if (ret) {
183                                 dev_err(spc->dev,
184                                         "failed to enable pwm%u clocks\n",
185                                         pwm->hwpwm);
186                                 return ret;
187                         }
188                 }
189
190                 ret = sprd_pwm_config(spc, pwm, state->duty_cycle,
191                                       state->period);
192                 if (ret)
193                         return ret;
194
195                 sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 1);
196         } else if (cstate->enabled) {
197                 /*
198                  * Note: After setting SPRD_PWM_ENABLE to zero, the controller
199                  * will not wait for current period to be completed, instead it
200                  * will stop the PWM channel immediately.
201                  */
202                 sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 0);
203
204                 clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
205         }
206
207         return 0;
208 }
209
210 static const struct pwm_ops sprd_pwm_ops = {
211         .apply = sprd_pwm_apply,
212         .get_state = sprd_pwm_get_state,
213 };
214
215 static int sprd_pwm_clk_init(struct sprd_pwm_chip *spc)
216 {
217         struct clk *clk_pwm;
218         int ret, i;
219
220         for (i = 0; i < SPRD_PWM_CHN_NUM; i++) {
221                 struct sprd_pwm_chn *chn = &spc->chn[i];
222                 int j;
223
224                 for (j = 0; j < SPRD_PWM_CHN_CLKS_NUM; ++j)
225                         chn->clks[j].id =
226                                 sprd_pwm_clks[i * SPRD_PWM_CHN_CLKS_NUM + j];
227
228                 ret = devm_clk_bulk_get(spc->dev, SPRD_PWM_CHN_CLKS_NUM,
229                                         chn->clks);
230                 if (ret) {
231                         if (ret == -ENOENT)
232                                 break;
233
234                         return dev_err_probe(spc->dev, ret,
235                                              "failed to get channel clocks\n");
236                 }
237
238                 clk_pwm = chn->clks[SPRD_PWM_CHN_OUTPUT_CLK].clk;
239                 chn->clk_rate = clk_get_rate(clk_pwm);
240         }
241
242         if (!i) {
243                 dev_err(spc->dev, "no available PWM channels\n");
244                 return -ENODEV;
245         }
246
247         spc->num_pwms = i;
248
249         return 0;
250 }
251
252 static int sprd_pwm_probe(struct platform_device *pdev)
253 {
254         struct sprd_pwm_chip *spc;
255         int ret;
256
257         spc = devm_kzalloc(&pdev->dev, sizeof(*spc), GFP_KERNEL);
258         if (!spc)
259                 return -ENOMEM;
260
261         spc->base = devm_platform_ioremap_resource(pdev, 0);
262         if (IS_ERR(spc->base))
263                 return PTR_ERR(spc->base);
264
265         spc->dev = &pdev->dev;
266         platform_set_drvdata(pdev, spc);
267
268         ret = sprd_pwm_clk_init(spc);
269         if (ret)
270                 return ret;
271
272         spc->chip.dev = &pdev->dev;
273         spc->chip.ops = &sprd_pwm_ops;
274         spc->chip.npwm = spc->num_pwms;
275
276         ret = pwmchip_add(&spc->chip);
277         if (ret)
278                 dev_err(&pdev->dev, "failed to add PWM chip\n");
279
280         return ret;
281 }
282
283 static void sprd_pwm_remove(struct platform_device *pdev)
284 {
285         struct sprd_pwm_chip *spc = platform_get_drvdata(pdev);
286
287         pwmchip_remove(&spc->chip);
288 }
289
290 static const struct of_device_id sprd_pwm_of_match[] = {
291         { .compatible = "sprd,ums512-pwm", },
292         { },
293 };
294 MODULE_DEVICE_TABLE(of, sprd_pwm_of_match);
295
296 static struct platform_driver sprd_pwm_driver = {
297         .driver = {
298                 .name = "sprd-pwm",
299                 .of_match_table = sprd_pwm_of_match,
300         },
301         .probe = sprd_pwm_probe,
302         .remove_new = sprd_pwm_remove,
303 };
304
305 module_platform_driver(sprd_pwm_driver);
306
307 MODULE_DESCRIPTION("Spreadtrum PWM Driver");
308 MODULE_LICENSE("GPL v2");
This page took 0.045343 seconds and 4 git commands to generate.