]> Git Repo - J-linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c
Merge tag 'amd-drm-next-6.11-2024-06-22' of https://gitlab.freedesktop.org/agd5f...
[J-linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <[email protected]>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50
51 #include <drm/amdgpu_drm.h>
52
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63
64 MODULE_IMPORT_NS(DMA_BUF);
65
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ     ((size_t)128)
67
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69                                    struct ttm_tt *ttm,
70                                    struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72                                       struct ttm_tt *ttm);
73
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75                                     unsigned int type,
76                                     uint64_t size_in_page)
77 {
78         return ttm_range_man_init(&adev->mman.bdev, type,
79                                   false, size_in_page);
80 }
81
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91                                 struct ttm_placement *placement)
92 {
93         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94         struct amdgpu_bo *abo;
95         static const struct ttm_place placements = {
96                 .fpfn = 0,
97                 .lpfn = 0,
98                 .mem_type = TTM_PL_SYSTEM,
99                 .flags = 0
100         };
101
102         /* Don't handle scatter gather BOs */
103         if (bo->type == ttm_bo_type_sg) {
104                 placement->num_placement = 0;
105                 return;
106         }
107
108         /* Object isn't an AMDGPU object so ignore */
109         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110                 placement->placement = &placements;
111                 placement->num_placement = 1;
112                 return;
113         }
114
115         abo = ttm_to_amdgpu_bo(bo);
116         if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117                 placement->num_placement = 0;
118                 return;
119         }
120
121         switch (bo->resource->mem_type) {
122         case AMDGPU_PL_GDS:
123         case AMDGPU_PL_GWS:
124         case AMDGPU_PL_OA:
125         case AMDGPU_PL_DOORBELL:
126                 placement->num_placement = 0;
127                 return;
128
129         case TTM_PL_VRAM:
130                 if (!adev->mman.buffer_funcs_enabled) {
131                         /* Move to system memory */
132                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133
134                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136                            amdgpu_res_cpu_visible(adev, bo->resource)) {
137
138                         /* Try evicting to the CPU inaccessible part of VRAM
139                          * first, but only set GTT as busy placement, so this
140                          * BO will be evicted to GTT rather than causing other
141                          * BOs to be evicted from VRAM
142                          */
143                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144                                                         AMDGPU_GEM_DOMAIN_GTT |
145                                                         AMDGPU_GEM_DOMAIN_CPU);
146                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147                         abo->placements[0].lpfn = 0;
148                         abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149                 } else {
150                         /* Move to GTT memory */
151                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152                                                         AMDGPU_GEM_DOMAIN_CPU);
153                 }
154                 break;
155         case TTM_PL_TT:
156         case AMDGPU_PL_PREEMPT:
157         default:
158                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159                 break;
160         }
161         *placement = abo->placement;
162 }
163
164 /**
165  * amdgpu_ttm_map_buffer - Map memory into the GART windows
166  * @bo: buffer object to map
167  * @mem: memory object to map
168  * @mm_cur: range to map
169  * @window: which GART window to use
170  * @ring: DMA ring to use for the copy
171  * @tmz: if we should setup a TMZ enabled mapping
172  * @size: in number of bytes to map, out number of bytes mapped
173  * @addr: resulting address inside the MC address space
174  *
175  * Setup one of the GART windows to access a specific piece of memory or return
176  * the physical address for local memory.
177  */
178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179                                  struct ttm_resource *mem,
180                                  struct amdgpu_res_cursor *mm_cur,
181                                  unsigned int window, struct amdgpu_ring *ring,
182                                  bool tmz, uint64_t *size, uint64_t *addr)
183 {
184         struct amdgpu_device *adev = ring->adev;
185         unsigned int offset, num_pages, num_dw, num_bytes;
186         uint64_t src_addr, dst_addr;
187         struct amdgpu_job *job;
188         void *cpu_addr;
189         uint64_t flags;
190         unsigned int i;
191         int r;
192
193         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195
196         if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197                 return -EINVAL;
198
199         /* Map only what can't be accessed directly */
200         if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201                 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202                         mm_cur->start;
203                 return 0;
204         }
205
206
207         /*
208          * If start begins at an offset inside the page, then adjust the size
209          * and addr accordingly
210          */
211         offset = mm_cur->start & ~PAGE_MASK;
212
213         num_pages = PFN_UP(*size + offset);
214         num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215
216         *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217
218         *addr = adev->gmc.gart_start;
219         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220                 AMDGPU_GPU_PAGE_SIZE;
221         *addr += offset;
222
223         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224         num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225
226         r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227                                      AMDGPU_FENCE_OWNER_UNDEFINED,
228                                      num_dw * 4 + num_bytes,
229                                      AMDGPU_IB_POOL_DELAYED, &job);
230         if (r)
231                 return r;
232
233         src_addr = num_dw * 4;
234         src_addr += job->ibs[0].gpu_addr;
235
236         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239                                 dst_addr, num_bytes, 0);
240
241         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242         WARN_ON(job->ibs[0].length_dw > num_dw);
243
244         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245         if (tmz)
246                 flags |= AMDGPU_PTE_TMZ;
247
248         cpu_addr = &job->ibs[0].ptr[num_dw];
249
250         if (mem->mem_type == TTM_PL_TT) {
251                 dma_addr_t *dma_addr;
252
253                 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254                 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255         } else {
256                 dma_addr_t dma_address;
257
258                 dma_address = mm_cur->start;
259                 dma_address += adev->vm_manager.vram_base_offset;
260
261                 for (i = 0; i < num_pages; ++i) {
262                         amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263                                         flags, cpu_addr);
264                         dma_address += PAGE_SIZE;
265                 }
266         }
267
268         dma_fence_put(amdgpu_job_submit(job));
269         return 0;
270 }
271
272 /**
273  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274  * @adev: amdgpu device
275  * @src: buffer/address where to read from
276  * @dst: buffer/address where to write to
277  * @size: number of bytes to copy
278  * @tmz: if a secure copy should be used
279  * @resv: resv object to sync to
280  * @f: Returns the last fence if multiple jobs are submitted.
281  *
282  * The function copies @size bytes from {src->mem + src->offset} to
283  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284  * move and different for a BO to BO copy.
285  *
286  */
287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288                                const struct amdgpu_copy_mem *src,
289                                const struct amdgpu_copy_mem *dst,
290                                uint64_t size, bool tmz,
291                                struct dma_resv *resv,
292                                struct dma_fence **f)
293 {
294         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295         struct amdgpu_res_cursor src_mm, dst_mm;
296         struct dma_fence *fence = NULL;
297         int r = 0;
298         uint32_t copy_flags = 0;
299         struct amdgpu_bo *abo_src, *abo_dst;
300
301         if (!adev->mman.buffer_funcs_enabled) {
302                 DRM_ERROR("Trying to move memory with ring turned off.\n");
303                 return -EINVAL;
304         }
305
306         amdgpu_res_first(src->mem, src->offset, size, &src_mm);
307         amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
308
309         mutex_lock(&adev->mman.gtt_window_lock);
310         while (src_mm.remaining) {
311                 uint64_t from, to, cur_size;
312                 struct dma_fence *next;
313
314                 /* Never copy more than 256MiB at once to avoid a timeout */
315                 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
316
317                 /* Map src to window 0 and dst to window 1. */
318                 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
319                                           0, ring, tmz, &cur_size, &from);
320                 if (r)
321                         goto error;
322
323                 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
324                                           1, ring, tmz, &cur_size, &to);
325                 if (r)
326                         goto error;
327
328                 abo_src = ttm_to_amdgpu_bo(src->bo);
329                 abo_dst = ttm_to_amdgpu_bo(dst->bo);
330                 if (tmz)
331                         copy_flags |= AMDGPU_COPY_FLAGS_TMZ;
332                 if (abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC)
333                         copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED;
334                 if (abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC)
335                         copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED;
336
337                 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv,
338                                        &next, false, true, copy_flags);
339                 if (r)
340                         goto error;
341
342                 dma_fence_put(fence);
343                 fence = next;
344
345                 amdgpu_res_next(&src_mm, cur_size);
346                 amdgpu_res_next(&dst_mm, cur_size);
347         }
348 error:
349         mutex_unlock(&adev->mman.gtt_window_lock);
350         if (f)
351                 *f = dma_fence_get(fence);
352         dma_fence_put(fence);
353         return r;
354 }
355
356 /*
357  * amdgpu_move_blit - Copy an entire buffer to another buffer
358  *
359  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
360  * help move buffers to and from VRAM.
361  */
362 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
363                             bool evict,
364                             struct ttm_resource *new_mem,
365                             struct ttm_resource *old_mem)
366 {
367         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
368         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
369         struct amdgpu_copy_mem src, dst;
370         struct dma_fence *fence = NULL;
371         int r;
372
373         src.bo = bo;
374         dst.bo = bo;
375         src.mem = old_mem;
376         dst.mem = new_mem;
377         src.offset = 0;
378         dst.offset = 0;
379
380         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
381                                        new_mem->size,
382                                        amdgpu_bo_encrypted(abo),
383                                        bo->base.resv, &fence);
384         if (r)
385                 goto error;
386
387         /* clear the space being freed */
388         if (old_mem->mem_type == TTM_PL_VRAM &&
389             (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
390                 struct dma_fence *wipe_fence = NULL;
391
392                 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence,
393                                        false);
394                 if (r) {
395                         goto error;
396                 } else if (wipe_fence) {
397                         amdgpu_vram_mgr_set_cleared(bo->resource);
398                         dma_fence_put(fence);
399                         fence = wipe_fence;
400                 }
401         }
402
403         /* Always block for VM page tables before committing the new location */
404         if (bo->type == ttm_bo_type_kernel)
405                 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
406         else
407                 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
408         dma_fence_put(fence);
409         return r;
410
411 error:
412         if (fence)
413                 dma_fence_wait(fence, false);
414         dma_fence_put(fence);
415         return r;
416 }
417
418 /**
419  * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
420  * @adev: amdgpu device
421  * @res: the resource to check
422  *
423  * Returns: true if the full resource is CPU visible, false otherwise.
424  */
425 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
426                             struct ttm_resource *res)
427 {
428         struct amdgpu_res_cursor cursor;
429
430         if (!res)
431                 return false;
432
433         if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
434             res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
435                 return true;
436
437         if (res->mem_type != TTM_PL_VRAM)
438                 return false;
439
440         amdgpu_res_first(res, 0, res->size, &cursor);
441         while (cursor.remaining) {
442                 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
443                         return false;
444                 amdgpu_res_next(&cursor, cursor.size);
445         }
446
447         return true;
448 }
449
450 /*
451  * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
452  *
453  * Called by amdgpu_bo_move()
454  */
455 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
456                                 struct ttm_resource *mem)
457 {
458         if (!amdgpu_res_cpu_visible(adev, mem))
459                 return false;
460
461         /* ttm_resource_ioremap only supports contiguous memory */
462         if (mem->mem_type == TTM_PL_VRAM &&
463             !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
464                 return false;
465
466         return true;
467 }
468
469 /*
470  * amdgpu_bo_move - Move a buffer object to a new memory location
471  *
472  * Called by ttm_bo_handle_move_mem()
473  */
474 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
475                           struct ttm_operation_ctx *ctx,
476                           struct ttm_resource *new_mem,
477                           struct ttm_place *hop)
478 {
479         struct amdgpu_device *adev;
480         struct amdgpu_bo *abo;
481         struct ttm_resource *old_mem = bo->resource;
482         int r;
483
484         if (new_mem->mem_type == TTM_PL_TT ||
485             new_mem->mem_type == AMDGPU_PL_PREEMPT) {
486                 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
487                 if (r)
488                         return r;
489         }
490
491         abo = ttm_to_amdgpu_bo(bo);
492         adev = amdgpu_ttm_adev(bo->bdev);
493
494         if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
495                          bo->ttm == NULL)) {
496                 amdgpu_bo_move_notify(bo, evict, new_mem);
497                 ttm_bo_move_null(bo, new_mem);
498                 return 0;
499         }
500         if (old_mem->mem_type == TTM_PL_SYSTEM &&
501             (new_mem->mem_type == TTM_PL_TT ||
502              new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
503                 amdgpu_bo_move_notify(bo, evict, new_mem);
504                 ttm_bo_move_null(bo, new_mem);
505                 return 0;
506         }
507         if ((old_mem->mem_type == TTM_PL_TT ||
508              old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
509             new_mem->mem_type == TTM_PL_SYSTEM) {
510                 r = ttm_bo_wait_ctx(bo, ctx);
511                 if (r)
512                         return r;
513
514                 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
515                 amdgpu_bo_move_notify(bo, evict, new_mem);
516                 ttm_resource_free(bo, &bo->resource);
517                 ttm_bo_assign_mem(bo, new_mem);
518                 return 0;
519         }
520
521         if (old_mem->mem_type == AMDGPU_PL_GDS ||
522             old_mem->mem_type == AMDGPU_PL_GWS ||
523             old_mem->mem_type == AMDGPU_PL_OA ||
524             old_mem->mem_type == AMDGPU_PL_DOORBELL ||
525             new_mem->mem_type == AMDGPU_PL_GDS ||
526             new_mem->mem_type == AMDGPU_PL_GWS ||
527             new_mem->mem_type == AMDGPU_PL_OA ||
528             new_mem->mem_type == AMDGPU_PL_DOORBELL) {
529                 /* Nothing to save here */
530                 amdgpu_bo_move_notify(bo, evict, new_mem);
531                 ttm_bo_move_null(bo, new_mem);
532                 return 0;
533         }
534
535         if (bo->type == ttm_bo_type_device &&
536             new_mem->mem_type == TTM_PL_VRAM &&
537             old_mem->mem_type != TTM_PL_VRAM) {
538                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
539                  * accesses the BO after it's moved.
540                  */
541                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
542         }
543
544         if (adev->mman.buffer_funcs_enabled &&
545             ((old_mem->mem_type == TTM_PL_SYSTEM &&
546               new_mem->mem_type == TTM_PL_VRAM) ||
547              (old_mem->mem_type == TTM_PL_VRAM &&
548               new_mem->mem_type == TTM_PL_SYSTEM))) {
549                 hop->fpfn = 0;
550                 hop->lpfn = 0;
551                 hop->mem_type = TTM_PL_TT;
552                 hop->flags = TTM_PL_FLAG_TEMPORARY;
553                 return -EMULTIHOP;
554         }
555
556         amdgpu_bo_move_notify(bo, evict, new_mem);
557         if (adev->mman.buffer_funcs_enabled)
558                 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
559         else
560                 r = -ENODEV;
561
562         if (r) {
563                 /* Check that all memory is CPU accessible */
564                 if (!amdgpu_res_copyable(adev, old_mem) ||
565                     !amdgpu_res_copyable(adev, new_mem)) {
566                         pr_err("Move buffer fallback to memcpy unavailable\n");
567                         return r;
568                 }
569
570                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
571                 if (r)
572                         return r;
573         }
574
575         /* update statistics after the move */
576         if (evict)
577                 atomic64_inc(&adev->num_evictions);
578         atomic64_add(bo->base.size, &adev->num_bytes_moved);
579         return 0;
580 }
581
582 /*
583  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
584  *
585  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
586  */
587 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
588                                      struct ttm_resource *mem)
589 {
590         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
591
592         switch (mem->mem_type) {
593         case TTM_PL_SYSTEM:
594                 /* system memory */
595                 return 0;
596         case TTM_PL_TT:
597         case AMDGPU_PL_PREEMPT:
598                 break;
599         case TTM_PL_VRAM:
600                 mem->bus.offset = mem->start << PAGE_SHIFT;
601
602                 if (adev->mman.aper_base_kaddr &&
603                     mem->placement & TTM_PL_FLAG_CONTIGUOUS)
604                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
605                                         mem->bus.offset;
606
607                 mem->bus.offset += adev->gmc.aper_base;
608                 mem->bus.is_iomem = true;
609                 break;
610         case AMDGPU_PL_DOORBELL:
611                 mem->bus.offset = mem->start << PAGE_SHIFT;
612                 mem->bus.offset += adev->doorbell.base;
613                 mem->bus.is_iomem = true;
614                 mem->bus.caching = ttm_uncached;
615                 break;
616         default:
617                 return -EINVAL;
618         }
619         return 0;
620 }
621
622 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
623                                            unsigned long page_offset)
624 {
625         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
626         struct amdgpu_res_cursor cursor;
627
628         amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
629                          &cursor);
630
631         if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
632                 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
633
634         return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
635 }
636
637 /**
638  * amdgpu_ttm_domain_start - Returns GPU start address
639  * @adev: amdgpu device object
640  * @type: type of the memory
641  *
642  * Returns:
643  * GPU start address of a memory domain
644  */
645
646 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
647 {
648         switch (type) {
649         case TTM_PL_TT:
650                 return adev->gmc.gart_start;
651         case TTM_PL_VRAM:
652                 return adev->gmc.vram_start;
653         }
654
655         return 0;
656 }
657
658 /*
659  * TTM backend functions.
660  */
661 struct amdgpu_ttm_tt {
662         struct ttm_tt   ttm;
663         struct drm_gem_object   *gobj;
664         u64                     offset;
665         uint64_t                userptr;
666         struct task_struct      *usertask;
667         uint32_t                userflags;
668         bool                    bound;
669         int32_t                 pool_id;
670 };
671
672 #define ttm_to_amdgpu_ttm_tt(ptr)       container_of(ptr, struct amdgpu_ttm_tt, ttm)
673
674 #ifdef CONFIG_DRM_AMDGPU_USERPTR
675 /*
676  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
677  * memory and start HMM tracking CPU page table update
678  *
679  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
680  * once afterwards to stop HMM tracking
681  */
682 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
683                                  struct hmm_range **range)
684 {
685         struct ttm_tt *ttm = bo->tbo.ttm;
686         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
687         unsigned long start = gtt->userptr;
688         struct vm_area_struct *vma;
689         struct mm_struct *mm;
690         bool readonly;
691         int r = 0;
692
693         /* Make sure get_user_pages_done() can cleanup gracefully */
694         *range = NULL;
695
696         mm = bo->notifier.mm;
697         if (unlikely(!mm)) {
698                 DRM_DEBUG_DRIVER("BO is not registered?\n");
699                 return -EFAULT;
700         }
701
702         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
703                 return -ESRCH;
704
705         mmap_read_lock(mm);
706         vma = vma_lookup(mm, start);
707         if (unlikely(!vma)) {
708                 r = -EFAULT;
709                 goto out_unlock;
710         }
711         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
712                 vma->vm_file)) {
713                 r = -EPERM;
714                 goto out_unlock;
715         }
716
717         readonly = amdgpu_ttm_tt_is_readonly(ttm);
718         r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
719                                        readonly, NULL, pages, range);
720 out_unlock:
721         mmap_read_unlock(mm);
722         if (r)
723                 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
724
725         mmput(mm);
726
727         return r;
728 }
729
730 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
731  */
732 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
733                                       struct hmm_range *range)
734 {
735         struct amdgpu_ttm_tt *gtt = (void *)ttm;
736
737         if (gtt && gtt->userptr && range)
738                 amdgpu_hmm_range_get_pages_done(range);
739 }
740
741 /*
742  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
743  * Check if the pages backing this ttm range have been invalidated
744  *
745  * Returns: true if pages are still valid
746  */
747 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
748                                        struct hmm_range *range)
749 {
750         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
751
752         if (!gtt || !gtt->userptr || !range)
753                 return false;
754
755         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
756                 gtt->userptr, ttm->num_pages);
757
758         WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
759
760         return !amdgpu_hmm_range_get_pages_done(range);
761 }
762 #endif
763
764 /*
765  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
766  *
767  * Called by amdgpu_cs_list_validate(). This creates the page list
768  * that backs user memory and will ultimately be mapped into the device
769  * address space.
770  */
771 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
772 {
773         unsigned long i;
774
775         for (i = 0; i < ttm->num_pages; ++i)
776                 ttm->pages[i] = pages ? pages[i] : NULL;
777 }
778
779 /*
780  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
781  *
782  * Called by amdgpu_ttm_backend_bind()
783  **/
784 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
785                                      struct ttm_tt *ttm)
786 {
787         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
788         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
789         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
790         enum dma_data_direction direction = write ?
791                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
792         int r;
793
794         /* Allocate an SG array and squash pages into it */
795         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
796                                       (u64)ttm->num_pages << PAGE_SHIFT,
797                                       GFP_KERNEL);
798         if (r)
799                 goto release_sg;
800
801         /* Map SG to device */
802         r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
803         if (r)
804                 goto release_sg;
805
806         /* convert SG to linear array of pages and dma addresses */
807         drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
808                                        ttm->num_pages);
809
810         return 0;
811
812 release_sg:
813         kfree(ttm->sg);
814         ttm->sg = NULL;
815         return r;
816 }
817
818 /*
819  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
820  */
821 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
822                                         struct ttm_tt *ttm)
823 {
824         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
825         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
826         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
827         enum dma_data_direction direction = write ?
828                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
829
830         /* double check that we don't free the table twice */
831         if (!ttm->sg || !ttm->sg->sgl)
832                 return;
833
834         /* unmap the pages mapped to the device */
835         dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
836         sg_free_table(ttm->sg);
837 }
838
839 /*
840  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
841  * MQDn+CtrlStackn where n is the number of XCCs per partition.
842  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
843  * and uses memory type default, UC. The rest of pages_per_xcc are
844  * Ctrl stack and modify their memory type to NC.
845  */
846 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
847                                 struct ttm_tt *ttm, uint64_t flags)
848 {
849         struct amdgpu_ttm_tt *gtt = (void *)ttm;
850         uint64_t total_pages = ttm->num_pages;
851         int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
852         uint64_t page_idx, pages_per_xcc;
853         int i;
854         uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC);
855
856         pages_per_xcc = total_pages;
857         do_div(pages_per_xcc, num_xcc);
858
859         for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
860                 /* MQD page: use default flags */
861                 amdgpu_gart_bind(adev,
862                                 gtt->offset + (page_idx << PAGE_SHIFT),
863                                 1, &gtt->ttm.dma_address[page_idx], flags);
864                 /*
865                  * Ctrl pages - modify the memory type to NC (ctrl_flags) from
866                  * the second page of the BO onward.
867                  */
868                 amdgpu_gart_bind(adev,
869                                 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
870                                 pages_per_xcc - 1,
871                                 &gtt->ttm.dma_address[page_idx + 1],
872                                 ctrl_flags);
873         }
874 }
875
876 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
877                                  struct ttm_buffer_object *tbo,
878                                  uint64_t flags)
879 {
880         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
881         struct ttm_tt *ttm = tbo->ttm;
882         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
883
884         if (amdgpu_bo_encrypted(abo))
885                 flags |= AMDGPU_PTE_TMZ;
886
887         if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
888                 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
889         } else {
890                 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
891                                  gtt->ttm.dma_address, flags);
892         }
893         gtt->bound = true;
894 }
895
896 /*
897  * amdgpu_ttm_backend_bind - Bind GTT memory
898  *
899  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
900  * This handles binding GTT memory to the device address space.
901  */
902 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
903                                    struct ttm_tt *ttm,
904                                    struct ttm_resource *bo_mem)
905 {
906         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
907         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
908         uint64_t flags;
909         int r;
910
911         if (!bo_mem)
912                 return -EINVAL;
913
914         if (gtt->bound)
915                 return 0;
916
917         if (gtt->userptr) {
918                 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
919                 if (r) {
920                         DRM_ERROR("failed to pin userptr\n");
921                         return r;
922                 }
923         } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
924                 if (!ttm->sg) {
925                         struct dma_buf_attachment *attach;
926                         struct sg_table *sgt;
927
928                         attach = gtt->gobj->import_attach;
929                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
930                         if (IS_ERR(sgt))
931                                 return PTR_ERR(sgt);
932
933                         ttm->sg = sgt;
934                 }
935
936                 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
937                                                ttm->num_pages);
938         }
939
940         if (!ttm->num_pages) {
941                 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
942                      ttm->num_pages, bo_mem, ttm);
943         }
944
945         if (bo_mem->mem_type != TTM_PL_TT ||
946             !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
947                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
948                 return 0;
949         }
950
951         /* compute PTE flags relevant to this BO memory */
952         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
953
954         /* bind pages into GART page tables */
955         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
956         amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
957                          gtt->ttm.dma_address, flags);
958         gtt->bound = true;
959         return 0;
960 }
961
962 /*
963  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
964  * through AGP or GART aperture.
965  *
966  * If bo is accessible through AGP aperture, then use AGP aperture
967  * to access bo; otherwise allocate logical space in GART aperture
968  * and map bo to GART aperture.
969  */
970 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
971 {
972         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
973         struct ttm_operation_ctx ctx = { false, false };
974         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
975         struct ttm_placement placement;
976         struct ttm_place placements;
977         struct ttm_resource *tmp;
978         uint64_t addr, flags;
979         int r;
980
981         if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
982                 return 0;
983
984         addr = amdgpu_gmc_agp_addr(bo);
985         if (addr != AMDGPU_BO_INVALID_OFFSET)
986                 return 0;
987
988         /* allocate GART space */
989         placement.num_placement = 1;
990         placement.placement = &placements;
991         placements.fpfn = 0;
992         placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
993         placements.mem_type = TTM_PL_TT;
994         placements.flags = bo->resource->placement;
995
996         r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
997         if (unlikely(r))
998                 return r;
999
1000         /* compute PTE flags for this buffer object */
1001         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1002
1003         /* Bind pages */
1004         gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1005         amdgpu_ttm_gart_bind(adev, bo, flags);
1006         amdgpu_gart_invalidate_tlb(adev);
1007         ttm_resource_free(bo, &bo->resource);
1008         ttm_bo_assign_mem(bo, tmp);
1009
1010         return 0;
1011 }
1012
1013 /*
1014  * amdgpu_ttm_recover_gart - Rebind GTT pages
1015  *
1016  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1017  * rebind GTT pages during a GPU reset.
1018  */
1019 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1020 {
1021         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1022         uint64_t flags;
1023
1024         if (!tbo->ttm)
1025                 return;
1026
1027         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1028         amdgpu_ttm_gart_bind(adev, tbo, flags);
1029 }
1030
1031 /*
1032  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1033  *
1034  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1035  * ttm_tt_destroy().
1036  */
1037 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1038                                       struct ttm_tt *ttm)
1039 {
1040         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1041         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1042
1043         /* if the pages have userptr pinning then clear that first */
1044         if (gtt->userptr) {
1045                 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1046         } else if (ttm->sg && gtt->gobj->import_attach) {
1047                 struct dma_buf_attachment *attach;
1048
1049                 attach = gtt->gobj->import_attach;
1050                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1051                 ttm->sg = NULL;
1052         }
1053
1054         if (!gtt->bound)
1055                 return;
1056
1057         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1058                 return;
1059
1060         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1061         amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1062         gtt->bound = false;
1063 }
1064
1065 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1066                                        struct ttm_tt *ttm)
1067 {
1068         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1069
1070         if (gtt->usertask)
1071                 put_task_struct(gtt->usertask);
1072
1073         ttm_tt_fini(&gtt->ttm);
1074         kfree(gtt);
1075 }
1076
1077 /**
1078  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1079  *
1080  * @bo: The buffer object to create a GTT ttm_tt object around
1081  * @page_flags: Page flags to be added to the ttm_tt object
1082  *
1083  * Called by ttm_tt_create().
1084  */
1085 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1086                                            uint32_t page_flags)
1087 {
1088         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1089         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1090         struct amdgpu_ttm_tt *gtt;
1091         enum ttm_caching caching;
1092
1093         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1094         if (!gtt)
1095                 return NULL;
1096
1097         gtt->gobj = &bo->base;
1098         if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1099                 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1100         else
1101                 gtt->pool_id = abo->xcp_id;
1102
1103         if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1104                 caching = ttm_write_combined;
1105         else
1106                 caching = ttm_cached;
1107
1108         /* allocate space for the uninitialized page entries */
1109         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1110                 kfree(gtt);
1111                 return NULL;
1112         }
1113         return &gtt->ttm;
1114 }
1115
1116 /*
1117  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1118  *
1119  * Map the pages of a ttm_tt object to an address space visible
1120  * to the underlying device.
1121  */
1122 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1123                                   struct ttm_tt *ttm,
1124                                   struct ttm_operation_ctx *ctx)
1125 {
1126         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1127         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1128         struct ttm_pool *pool;
1129         pgoff_t i;
1130         int ret;
1131
1132         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1133         if (gtt->userptr) {
1134                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1135                 if (!ttm->sg)
1136                         return -ENOMEM;
1137                 return 0;
1138         }
1139
1140         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1141                 return 0;
1142
1143         if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1144                 pool = &adev->mman.ttm_pools[gtt->pool_id];
1145         else
1146                 pool = &adev->mman.bdev.pool;
1147         ret = ttm_pool_alloc(pool, ttm, ctx);
1148         if (ret)
1149                 return ret;
1150
1151         for (i = 0; i < ttm->num_pages; ++i)
1152                 ttm->pages[i]->mapping = bdev->dev_mapping;
1153
1154         return 0;
1155 }
1156
1157 /*
1158  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1159  *
1160  * Unmaps pages of a ttm_tt object from the device address space and
1161  * unpopulates the page array backing it.
1162  */
1163 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1164                                      struct ttm_tt *ttm)
1165 {
1166         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1167         struct amdgpu_device *adev;
1168         struct ttm_pool *pool;
1169         pgoff_t i;
1170
1171         amdgpu_ttm_backend_unbind(bdev, ttm);
1172
1173         if (gtt->userptr) {
1174                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1175                 kfree(ttm->sg);
1176                 ttm->sg = NULL;
1177                 return;
1178         }
1179
1180         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1181                 return;
1182
1183         for (i = 0; i < ttm->num_pages; ++i)
1184                 ttm->pages[i]->mapping = NULL;
1185
1186         adev = amdgpu_ttm_adev(bdev);
1187
1188         if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1189                 pool = &adev->mman.ttm_pools[gtt->pool_id];
1190         else
1191                 pool = &adev->mman.bdev.pool;
1192
1193         return ttm_pool_free(pool, ttm);
1194 }
1195
1196 /**
1197  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1198  * task
1199  *
1200  * @tbo: The ttm_buffer_object that contains the userptr
1201  * @user_addr:  The returned value
1202  */
1203 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1204                               uint64_t *user_addr)
1205 {
1206         struct amdgpu_ttm_tt *gtt;
1207
1208         if (!tbo->ttm)
1209                 return -EINVAL;
1210
1211         gtt = (void *)tbo->ttm;
1212         *user_addr = gtt->userptr;
1213         return 0;
1214 }
1215
1216 /**
1217  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1218  * task
1219  *
1220  * @bo: The ttm_buffer_object to bind this userptr to
1221  * @addr:  The address in the current tasks VM space to use
1222  * @flags: Requirements of userptr object.
1223  *
1224  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1225  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1226  * initialize GPU VM for a KFD process.
1227  */
1228 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1229                               uint64_t addr, uint32_t flags)
1230 {
1231         struct amdgpu_ttm_tt *gtt;
1232
1233         if (!bo->ttm) {
1234                 /* TODO: We want a separate TTM object type for userptrs */
1235                 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1236                 if (bo->ttm == NULL)
1237                         return -ENOMEM;
1238         }
1239
1240         /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1241         bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1242
1243         gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1244         gtt->userptr = addr;
1245         gtt->userflags = flags;
1246
1247         if (gtt->usertask)
1248                 put_task_struct(gtt->usertask);
1249         gtt->usertask = current->group_leader;
1250         get_task_struct(gtt->usertask);
1251
1252         return 0;
1253 }
1254
1255 /*
1256  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1257  */
1258 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1259 {
1260         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1261
1262         if (gtt == NULL)
1263                 return NULL;
1264
1265         if (gtt->usertask == NULL)
1266                 return NULL;
1267
1268         return gtt->usertask->mm;
1269 }
1270
1271 /*
1272  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1273  * address range for the current task.
1274  *
1275  */
1276 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1277                                   unsigned long end, unsigned long *userptr)
1278 {
1279         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1280         unsigned long size;
1281
1282         if (gtt == NULL || !gtt->userptr)
1283                 return false;
1284
1285         /* Return false if no part of the ttm_tt object lies within
1286          * the range
1287          */
1288         size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1289         if (gtt->userptr > end || gtt->userptr + size <= start)
1290                 return false;
1291
1292         if (userptr)
1293                 *userptr = gtt->userptr;
1294         return true;
1295 }
1296
1297 /*
1298  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1299  */
1300 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1301 {
1302         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1303
1304         if (gtt == NULL || !gtt->userptr)
1305                 return false;
1306
1307         return true;
1308 }
1309
1310 /*
1311  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1312  */
1313 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1314 {
1315         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1316
1317         if (gtt == NULL)
1318                 return false;
1319
1320         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1321 }
1322
1323 /**
1324  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1325  *
1326  * @ttm: The ttm_tt object to compute the flags for
1327  * @mem: The memory registry backing this ttm_tt object
1328  *
1329  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1330  */
1331 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1332 {
1333         uint64_t flags = 0;
1334
1335         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1336                 flags |= AMDGPU_PTE_VALID;
1337
1338         if (mem && (mem->mem_type == TTM_PL_TT ||
1339                     mem->mem_type == AMDGPU_PL_DOORBELL ||
1340                     mem->mem_type == AMDGPU_PL_PREEMPT)) {
1341                 flags |= AMDGPU_PTE_SYSTEM;
1342
1343                 if (ttm->caching == ttm_cached)
1344                         flags |= AMDGPU_PTE_SNOOPED;
1345         }
1346
1347         if (mem && mem->mem_type == TTM_PL_VRAM &&
1348                         mem->bus.caching == ttm_cached)
1349                 flags |= AMDGPU_PTE_SNOOPED;
1350
1351         return flags;
1352 }
1353
1354 /**
1355  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1356  *
1357  * @adev: amdgpu_device pointer
1358  * @ttm: The ttm_tt object to compute the flags for
1359  * @mem: The memory registry backing this ttm_tt object
1360  *
1361  * Figure out the flags to use for a VM PTE (Page Table Entry).
1362  */
1363 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1364                                  struct ttm_resource *mem)
1365 {
1366         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1367
1368         flags |= adev->gart.gart_pte_flags;
1369         flags |= AMDGPU_PTE_READABLE;
1370
1371         if (!amdgpu_ttm_tt_is_readonly(ttm))
1372                 flags |= AMDGPU_PTE_WRITEABLE;
1373
1374         return flags;
1375 }
1376
1377 /*
1378  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1379  * object.
1380  *
1381  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1382  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1383  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1384  * used to clean out a memory space.
1385  */
1386 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1387                                             const struct ttm_place *place)
1388 {
1389         struct dma_resv_iter resv_cursor;
1390         struct dma_fence *f;
1391
1392         if (!amdgpu_bo_is_amdgpu_bo(bo))
1393                 return ttm_bo_eviction_valuable(bo, place);
1394
1395         /* Swapout? */
1396         if (bo->resource->mem_type == TTM_PL_SYSTEM)
1397                 return true;
1398
1399         if (bo->type == ttm_bo_type_kernel &&
1400             !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1401                 return false;
1402
1403         /* If bo is a KFD BO, check if the bo belongs to the current process.
1404          * If true, then return false as any KFD process needs all its BOs to
1405          * be resident to run successfully
1406          */
1407         dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1408                                 DMA_RESV_USAGE_BOOKKEEP, f) {
1409                 if (amdkfd_fence_check_mm(f, current->mm) &&
1410                     !(place->flags & TTM_PL_FLAG_CONTIGUOUS))
1411                         return false;
1412         }
1413
1414         /* Preemptible BOs don't own system resources managed by the
1415          * driver (pages, VRAM, GART space). They point to resources
1416          * owned by someone else (e.g. pageable memory in user mode
1417          * or a DMABuf). They are used in a preemptible context so we
1418          * can guarantee no deadlocks and good QoS in case of MMU
1419          * notifiers or DMABuf move notifiers from the resource owner.
1420          */
1421         if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1422                 return false;
1423
1424         if (bo->resource->mem_type == TTM_PL_TT &&
1425             amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1426                 return false;
1427
1428         return ttm_bo_eviction_valuable(bo, place);
1429 }
1430
1431 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1432                                       void *buf, size_t size, bool write)
1433 {
1434         while (size) {
1435                 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1436                 uint64_t bytes = 4 - (pos & 0x3);
1437                 uint32_t shift = (pos & 0x3) * 8;
1438                 uint32_t mask = 0xffffffff << shift;
1439                 uint32_t value = 0;
1440
1441                 if (size < bytes) {
1442                         mask &= 0xffffffff >> (bytes - size) * 8;
1443                         bytes = size;
1444                 }
1445
1446                 if (mask != 0xffffffff) {
1447                         amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1448                         if (write) {
1449                                 value &= ~mask;
1450                                 value |= (*(uint32_t *)buf << shift) & mask;
1451                                 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1452                         } else {
1453                                 value = (value & mask) >> shift;
1454                                 memcpy(buf, &value, bytes);
1455                         }
1456                 } else {
1457                         amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1458                 }
1459
1460                 pos += bytes;
1461                 buf += bytes;
1462                 size -= bytes;
1463         }
1464 }
1465
1466 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1467                                         unsigned long offset, void *buf,
1468                                         int len, int write)
1469 {
1470         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1471         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1472         struct amdgpu_res_cursor src_mm;
1473         struct amdgpu_job *job;
1474         struct dma_fence *fence;
1475         uint64_t src_addr, dst_addr;
1476         unsigned int num_dw;
1477         int r, idx;
1478
1479         if (len != PAGE_SIZE)
1480                 return -EINVAL;
1481
1482         if (!adev->mman.sdma_access_ptr)
1483                 return -EACCES;
1484
1485         if (!drm_dev_enter(adev_to_drm(adev), &idx))
1486                 return -ENODEV;
1487
1488         if (write)
1489                 memcpy(adev->mman.sdma_access_ptr, buf, len);
1490
1491         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1492         r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1493                                      AMDGPU_FENCE_OWNER_UNDEFINED,
1494                                      num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1495                                      &job);
1496         if (r)
1497                 goto out;
1498
1499         amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1500         src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1501                 src_mm.start;
1502         dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1503         if (write)
1504                 swap(src_addr, dst_addr);
1505
1506         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1507                                 PAGE_SIZE, 0);
1508
1509         amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1510         WARN_ON(job->ibs[0].length_dw > num_dw);
1511
1512         fence = amdgpu_job_submit(job);
1513
1514         if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1515                 r = -ETIMEDOUT;
1516         dma_fence_put(fence);
1517
1518         if (!(r || write))
1519                 memcpy(buf, adev->mman.sdma_access_ptr, len);
1520 out:
1521         drm_dev_exit(idx);
1522         return r;
1523 }
1524
1525 /**
1526  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1527  *
1528  * @bo:  The buffer object to read/write
1529  * @offset:  Offset into buffer object
1530  * @buf:  Secondary buffer to write/read from
1531  * @len: Length in bytes of access
1532  * @write:  true if writing
1533  *
1534  * This is used to access VRAM that backs a buffer object via MMIO
1535  * access for debugging purposes.
1536  */
1537 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1538                                     unsigned long offset, void *buf, int len,
1539                                     int write)
1540 {
1541         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1542         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1543         struct amdgpu_res_cursor cursor;
1544         int ret = 0;
1545
1546         if (bo->resource->mem_type != TTM_PL_VRAM)
1547                 return -EIO;
1548
1549         if (amdgpu_device_has_timeouts_enabled(adev) &&
1550                         !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1551                 return len;
1552
1553         amdgpu_res_first(bo->resource, offset, len, &cursor);
1554         while (cursor.remaining) {
1555                 size_t count, size = cursor.size;
1556                 loff_t pos = cursor.start;
1557
1558                 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1559                 size -= count;
1560                 if (size) {
1561                         /* using MM to access rest vram and handle un-aligned address */
1562                         pos += count;
1563                         buf += count;
1564                         amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1565                 }
1566
1567                 ret += cursor.size;
1568                 buf += cursor.size;
1569                 amdgpu_res_next(&cursor, cursor.size);
1570         }
1571
1572         return ret;
1573 }
1574
1575 static void
1576 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1577 {
1578         amdgpu_bo_move_notify(bo, false, NULL);
1579 }
1580
1581 static struct ttm_device_funcs amdgpu_bo_driver = {
1582         .ttm_tt_create = &amdgpu_ttm_tt_create,
1583         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1584         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1585         .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1586         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1587         .evict_flags = &amdgpu_evict_flags,
1588         .move = &amdgpu_bo_move,
1589         .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1590         .release_notify = &amdgpu_bo_release_notify,
1591         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1592         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1593         .access_memory = &amdgpu_ttm_access_memory,
1594 };
1595
1596 /*
1597  * Firmware Reservation functions
1598  */
1599 /**
1600  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1601  *
1602  * @adev: amdgpu_device pointer
1603  *
1604  * free fw reserved vram if it has been reserved.
1605  */
1606 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1607 {
1608         amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1609                 NULL, &adev->mman.fw_vram_usage_va);
1610 }
1611
1612 /*
1613  * Driver Reservation functions
1614  */
1615 /**
1616  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1617  *
1618  * @adev: amdgpu_device pointer
1619  *
1620  * free drv reserved vram if it has been reserved.
1621  */
1622 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1623 {
1624         amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1625                                                   NULL,
1626                                                   &adev->mman.drv_vram_usage_va);
1627 }
1628
1629 /**
1630  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1631  *
1632  * @adev: amdgpu_device pointer
1633  *
1634  * create bo vram reservation from fw.
1635  */
1636 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1637 {
1638         uint64_t vram_size = adev->gmc.visible_vram_size;
1639
1640         adev->mman.fw_vram_usage_va = NULL;
1641         adev->mman.fw_vram_usage_reserved_bo = NULL;
1642
1643         if (adev->mman.fw_vram_usage_size == 0 ||
1644             adev->mman.fw_vram_usage_size > vram_size)
1645                 return 0;
1646
1647         return amdgpu_bo_create_kernel_at(adev,
1648                                           adev->mman.fw_vram_usage_start_offset,
1649                                           adev->mman.fw_vram_usage_size,
1650                                           &adev->mman.fw_vram_usage_reserved_bo,
1651                                           &adev->mman.fw_vram_usage_va);
1652 }
1653
1654 /**
1655  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1656  *
1657  * @adev: amdgpu_device pointer
1658  *
1659  * create bo vram reservation from drv.
1660  */
1661 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1662 {
1663         u64 vram_size = adev->gmc.visible_vram_size;
1664
1665         adev->mman.drv_vram_usage_va = NULL;
1666         adev->mman.drv_vram_usage_reserved_bo = NULL;
1667
1668         if (adev->mman.drv_vram_usage_size == 0 ||
1669             adev->mman.drv_vram_usage_size > vram_size)
1670                 return 0;
1671
1672         return amdgpu_bo_create_kernel_at(adev,
1673                                           adev->mman.drv_vram_usage_start_offset,
1674                                           adev->mman.drv_vram_usage_size,
1675                                           &adev->mman.drv_vram_usage_reserved_bo,
1676                                           &adev->mman.drv_vram_usage_va);
1677 }
1678
1679 /*
1680  * Memoy training reservation functions
1681  */
1682
1683 /**
1684  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1685  *
1686  * @adev: amdgpu_device pointer
1687  *
1688  * free memory training reserved vram if it has been reserved.
1689  */
1690 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1691 {
1692         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1693
1694         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1695         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1696         ctx->c2p_bo = NULL;
1697
1698         return 0;
1699 }
1700
1701 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1702                                                 uint32_t reserve_size)
1703 {
1704         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1705
1706         memset(ctx, 0, sizeof(*ctx));
1707
1708         ctx->c2p_train_data_offset =
1709                 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1710         ctx->p2c_train_data_offset =
1711                 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1712         ctx->train_data_size =
1713                 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1714
1715         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1716                         ctx->train_data_size,
1717                         ctx->p2c_train_data_offset,
1718                         ctx->c2p_train_data_offset);
1719 }
1720
1721 /*
1722  * reserve TMR memory at the top of VRAM which holds
1723  * IP Discovery data and is protected by PSP.
1724  */
1725 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1726 {
1727         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1728         bool mem_train_support = false;
1729         uint32_t reserve_size = 0;
1730         int ret;
1731
1732         if (adev->bios && !amdgpu_sriov_vf(adev)) {
1733                 if (amdgpu_atomfirmware_mem_training_supported(adev))
1734                         mem_train_support = true;
1735                 else
1736                         DRM_DEBUG("memory training does not support!\n");
1737         }
1738
1739         /*
1740          * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1741          * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1742          *
1743          * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1744          * discovery data and G6 memory training data respectively
1745          */
1746         if (adev->bios)
1747                 reserve_size =
1748                         amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1749
1750         if (!adev->bios &&
1751             (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
1752              amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)))
1753                 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1754         else if (!reserve_size)
1755                 reserve_size = DISCOVERY_TMR_OFFSET;
1756
1757         if (mem_train_support) {
1758                 /* reserve vram for mem train according to TMR location */
1759                 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1760                 ret = amdgpu_bo_create_kernel_at(adev,
1761                                                  ctx->c2p_train_data_offset,
1762                                                  ctx->train_data_size,
1763                                                  &ctx->c2p_bo,
1764                                                  NULL);
1765                 if (ret) {
1766                         DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1767                         amdgpu_ttm_training_reserve_vram_fini(adev);
1768                         return ret;
1769                 }
1770                 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1771         }
1772
1773         if (!adev->gmc.is_app_apu) {
1774                 ret = amdgpu_bo_create_kernel_at(
1775                         adev, adev->gmc.real_vram_size - reserve_size,
1776                         reserve_size, &adev->mman.fw_reserved_memory, NULL);
1777                 if (ret) {
1778                         DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1779                         amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1780                                               NULL, NULL);
1781                         return ret;
1782                 }
1783         } else {
1784                 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1785         }
1786
1787         return 0;
1788 }
1789
1790 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1791 {
1792         int i;
1793
1794         if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1795                 return 0;
1796
1797         adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1798                                        sizeof(*adev->mman.ttm_pools),
1799                                        GFP_KERNEL);
1800         if (!adev->mman.ttm_pools)
1801                 return -ENOMEM;
1802
1803         for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1804                 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1805                               adev->gmc.mem_partitions[i].numa.node,
1806                               false, false);
1807         }
1808         return 0;
1809 }
1810
1811 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1812 {
1813         int i;
1814
1815         if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1816                 return;
1817
1818         for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1819                 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1820
1821         kfree(adev->mman.ttm_pools);
1822         adev->mman.ttm_pools = NULL;
1823 }
1824
1825 /*
1826  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1827  * gtt/vram related fields.
1828  *
1829  * This initializes all of the memory space pools that the TTM layer
1830  * will need such as the GTT space (system memory mapped to the device),
1831  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1832  * can be mapped per VMID.
1833  */
1834 int amdgpu_ttm_init(struct amdgpu_device *adev)
1835 {
1836         uint64_t gtt_size;
1837         int r;
1838
1839         mutex_init(&adev->mman.gtt_window_lock);
1840
1841         /* No others user of address space so set it to 0 */
1842         r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1843                                adev_to_drm(adev)->anon_inode->i_mapping,
1844                                adev_to_drm(adev)->vma_offset_manager,
1845                                adev->need_swiotlb,
1846                                dma_addressing_limited(adev->dev));
1847         if (r) {
1848                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1849                 return r;
1850         }
1851
1852         r = amdgpu_ttm_pools_init(adev);
1853         if (r) {
1854                 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1855                 return r;
1856         }
1857         adev->mman.initialized = true;
1858
1859         /* Initialize VRAM pool with all of VRAM divided into pages */
1860         r = amdgpu_vram_mgr_init(adev);
1861         if (r) {
1862                 DRM_ERROR("Failed initializing VRAM heap.\n");
1863                 return r;
1864         }
1865
1866         /* Change the size here instead of the init above so only lpfn is affected */
1867         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1868 #ifdef CONFIG_64BIT
1869 #ifdef CONFIG_X86
1870         if (adev->gmc.xgmi.connected_to_cpu)
1871                 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1872                                 adev->gmc.visible_vram_size);
1873
1874         else if (adev->gmc.is_app_apu)
1875                 DRM_DEBUG_DRIVER(
1876                         "No need to ioremap when real vram size is 0\n");
1877         else
1878 #endif
1879                 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1880                                 adev->gmc.visible_vram_size);
1881 #endif
1882
1883         /*
1884          *The reserved vram for firmware must be pinned to the specified
1885          *place on the VRAM, so reserve it early.
1886          */
1887         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1888         if (r)
1889                 return r;
1890
1891         /*
1892          *The reserved vram for driver must be pinned to the specified
1893          *place on the VRAM, so reserve it early.
1894          */
1895         r = amdgpu_ttm_drv_reserve_vram_init(adev);
1896         if (r)
1897                 return r;
1898
1899         /*
1900          * only NAVI10 and onwards ASIC support for IP discovery.
1901          * If IP discovery enabled, a block of memory should be
1902          * reserved for IP discovey.
1903          */
1904         if (adev->mman.discovery_bin) {
1905                 r = amdgpu_ttm_reserve_tmr(adev);
1906                 if (r)
1907                         return r;
1908         }
1909
1910         /* allocate memory as required for VGA
1911          * This is used for VGA emulation and pre-OS scanout buffers to
1912          * avoid display artifacts while transitioning between pre-OS
1913          * and driver.
1914          */
1915         if (!adev->gmc.is_app_apu) {
1916                 r = amdgpu_bo_create_kernel_at(adev, 0,
1917                                                adev->mman.stolen_vga_size,
1918                                                &adev->mman.stolen_vga_memory,
1919                                                NULL);
1920                 if (r)
1921                         return r;
1922
1923                 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1924                                                adev->mman.stolen_extended_size,
1925                                                &adev->mman.stolen_extended_memory,
1926                                                NULL);
1927
1928                 if (r)
1929                         return r;
1930
1931                 r = amdgpu_bo_create_kernel_at(adev,
1932                                                adev->mman.stolen_reserved_offset,
1933                                                adev->mman.stolen_reserved_size,
1934                                                &adev->mman.stolen_reserved_memory,
1935                                                NULL);
1936                 if (r)
1937                         return r;
1938         } else {
1939                 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1940         }
1941
1942         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1943                  (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1944
1945         /* Compute GTT size, either based on TTM limit
1946          * or whatever the user passed on module init.
1947          */
1948         if (amdgpu_gtt_size == -1)
1949                 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1950         else
1951                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1952
1953         /* Initialize GTT memory pool */
1954         r = amdgpu_gtt_mgr_init(adev, gtt_size);
1955         if (r) {
1956                 DRM_ERROR("Failed initializing GTT heap.\n");
1957                 return r;
1958         }
1959         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1960                  (unsigned int)(gtt_size / (1024 * 1024)));
1961
1962         /* Initiailize doorbell pool on PCI BAR */
1963         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1964         if (r) {
1965                 DRM_ERROR("Failed initializing doorbell heap.\n");
1966                 return r;
1967         }
1968
1969         /* Create a boorbell page for kernel usages */
1970         r = amdgpu_doorbell_create_kernel_doorbells(adev);
1971         if (r) {
1972                 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1973                 return r;
1974         }
1975
1976         /* Initialize preemptible memory pool */
1977         r = amdgpu_preempt_mgr_init(adev);
1978         if (r) {
1979                 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1980                 return r;
1981         }
1982
1983         /* Initialize various on-chip memory pools */
1984         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1985         if (r) {
1986                 DRM_ERROR("Failed initializing GDS heap.\n");
1987                 return r;
1988         }
1989
1990         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1991         if (r) {
1992                 DRM_ERROR("Failed initializing gws heap.\n");
1993                 return r;
1994         }
1995
1996         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1997         if (r) {
1998                 DRM_ERROR("Failed initializing oa heap.\n");
1999                 return r;
2000         }
2001         if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2002                                 AMDGPU_GEM_DOMAIN_GTT,
2003                                 &adev->mman.sdma_access_bo, NULL,
2004                                 &adev->mman.sdma_access_ptr))
2005                 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2006
2007         return 0;
2008 }
2009
2010 /*
2011  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2012  */
2013 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2014 {
2015         int idx;
2016
2017         if (!adev->mman.initialized)
2018                 return;
2019
2020         amdgpu_ttm_pools_fini(adev);
2021
2022         amdgpu_ttm_training_reserve_vram_fini(adev);
2023         /* return the stolen vga memory back to VRAM */
2024         if (!adev->gmc.is_app_apu) {
2025                 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2026                 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2027                 /* return the FW reserved memory back to VRAM */
2028                 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2029                                       NULL);
2030                 if (adev->mman.stolen_reserved_size)
2031                         amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2032                                               NULL, NULL);
2033         }
2034         amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2035                                         &adev->mman.sdma_access_ptr);
2036         amdgpu_ttm_fw_reserve_vram_fini(adev);
2037         amdgpu_ttm_drv_reserve_vram_fini(adev);
2038
2039         if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2040
2041                 if (adev->mman.aper_base_kaddr)
2042                         iounmap(adev->mman.aper_base_kaddr);
2043                 adev->mman.aper_base_kaddr = NULL;
2044
2045                 drm_dev_exit(idx);
2046         }
2047
2048         amdgpu_vram_mgr_fini(adev);
2049         amdgpu_gtt_mgr_fini(adev);
2050         amdgpu_preempt_mgr_fini(adev);
2051         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2052         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2053         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2054         ttm_device_fini(&adev->mman.bdev);
2055         adev->mman.initialized = false;
2056         DRM_INFO("amdgpu: ttm finalized\n");
2057 }
2058
2059 /**
2060  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2061  *
2062  * @adev: amdgpu_device pointer
2063  * @enable: true when we can use buffer functions.
2064  *
2065  * Enable/disable use of buffer functions during suspend/resume. This should
2066  * only be called at bootup or when userspace isn't running.
2067  */
2068 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2069 {
2070         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2071         uint64_t size;
2072         int r;
2073
2074         if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2075             adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2076                 return;
2077
2078         if (enable) {
2079                 struct amdgpu_ring *ring;
2080                 struct drm_gpu_scheduler *sched;
2081
2082                 ring = adev->mman.buffer_funcs_ring;
2083                 sched = &ring->sched;
2084                 r = drm_sched_entity_init(&adev->mman.high_pr,
2085                                           DRM_SCHED_PRIORITY_KERNEL, &sched,
2086                                           1, NULL);
2087                 if (r) {
2088                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2089                                   r);
2090                         return;
2091                 }
2092
2093                 r = drm_sched_entity_init(&adev->mman.low_pr,
2094                                           DRM_SCHED_PRIORITY_NORMAL, &sched,
2095                                           1, NULL);
2096                 if (r) {
2097                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2098                                   r);
2099                         goto error_free_entity;
2100                 }
2101         } else {
2102                 drm_sched_entity_destroy(&adev->mman.high_pr);
2103                 drm_sched_entity_destroy(&adev->mman.low_pr);
2104                 dma_fence_put(man->move);
2105                 man->move = NULL;
2106         }
2107
2108         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2109         if (enable)
2110                 size = adev->gmc.real_vram_size;
2111         else
2112                 size = adev->gmc.visible_vram_size;
2113         man->size = size;
2114         adev->mman.buffer_funcs_enabled = enable;
2115
2116         return;
2117
2118 error_free_entity:
2119         drm_sched_entity_destroy(&adev->mman.high_pr);
2120 }
2121
2122 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2123                                   bool direct_submit,
2124                                   unsigned int num_dw,
2125                                   struct dma_resv *resv,
2126                                   bool vm_needs_flush,
2127                                   struct amdgpu_job **job,
2128                                   bool delayed)
2129 {
2130         enum amdgpu_ib_pool_type pool = direct_submit ?
2131                 AMDGPU_IB_POOL_DIRECT :
2132                 AMDGPU_IB_POOL_DELAYED;
2133         int r;
2134         struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2135                                                     &adev->mman.high_pr;
2136         r = amdgpu_job_alloc_with_ib(adev, entity,
2137                                      AMDGPU_FENCE_OWNER_UNDEFINED,
2138                                      num_dw * 4, pool, job);
2139         if (r)
2140                 return r;
2141
2142         if (vm_needs_flush) {
2143                 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2144                                                         adev->gmc.pdb0_bo :
2145                                                         adev->gart.bo);
2146                 (*job)->vm_needs_flush = true;
2147         }
2148         if (!resv)
2149                 return 0;
2150
2151         return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2152                                                    DMA_RESV_USAGE_BOOKKEEP);
2153 }
2154
2155 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2156                        uint64_t dst_offset, uint32_t byte_count,
2157                        struct dma_resv *resv,
2158                        struct dma_fence **fence, bool direct_submit,
2159                        bool vm_needs_flush, uint32_t copy_flags)
2160 {
2161         struct amdgpu_device *adev = ring->adev;
2162         unsigned int num_loops, num_dw;
2163         struct amdgpu_job *job;
2164         uint32_t max_bytes;
2165         unsigned int i;
2166         int r;
2167
2168         if (!direct_submit && !ring->sched.ready) {
2169                 DRM_ERROR("Trying to move memory with ring turned off.\n");
2170                 return -EINVAL;
2171         }
2172
2173         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2174         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2175         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2176         r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2177                                    resv, vm_needs_flush, &job, false);
2178         if (r)
2179                 return r;
2180
2181         for (i = 0; i < num_loops; i++) {
2182                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2183
2184                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2185                                         dst_offset, cur_size_in_bytes, copy_flags);
2186                 src_offset += cur_size_in_bytes;
2187                 dst_offset += cur_size_in_bytes;
2188                 byte_count -= cur_size_in_bytes;
2189         }
2190
2191         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2192         WARN_ON(job->ibs[0].length_dw > num_dw);
2193         if (direct_submit)
2194                 r = amdgpu_job_submit_direct(job, ring, fence);
2195         else
2196                 *fence = amdgpu_job_submit(job);
2197         if (r)
2198                 goto error_free;
2199
2200         return r;
2201
2202 error_free:
2203         amdgpu_job_free(job);
2204         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2205         return r;
2206 }
2207
2208 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2209                                uint64_t dst_addr, uint32_t byte_count,
2210                                struct dma_resv *resv,
2211                                struct dma_fence **fence,
2212                                bool vm_needs_flush, bool delayed)
2213 {
2214         struct amdgpu_device *adev = ring->adev;
2215         unsigned int num_loops, num_dw;
2216         struct amdgpu_job *job;
2217         uint32_t max_bytes;
2218         unsigned int i;
2219         int r;
2220
2221         max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2222         num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2223         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2224         r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2225                                    &job, delayed);
2226         if (r)
2227                 return r;
2228
2229         for (i = 0; i < num_loops; i++) {
2230                 uint32_t cur_size = min(byte_count, max_bytes);
2231
2232                 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2233                                         cur_size);
2234
2235                 dst_addr += cur_size;
2236                 byte_count -= cur_size;
2237         }
2238
2239         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2240         WARN_ON(job->ibs[0].length_dw > num_dw);
2241         *fence = amdgpu_job_submit(job);
2242         return 0;
2243 }
2244
2245 /**
2246  * amdgpu_ttm_clear_buffer - clear memory buffers
2247  * @bo: amdgpu buffer object
2248  * @resv: reservation object
2249  * @fence: dma_fence associated with the operation
2250  *
2251  * Clear the memory buffer resource.
2252  *
2253  * Returns:
2254  * 0 for success or a negative error code on failure.
2255  */
2256 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo,
2257                             struct dma_resv *resv,
2258                             struct dma_fence **fence)
2259 {
2260         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2261         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2262         struct amdgpu_res_cursor cursor;
2263         u64 addr;
2264         int r;
2265
2266         if (!adev->mman.buffer_funcs_enabled)
2267                 return -EINVAL;
2268
2269         if (!fence)
2270                 return -EINVAL;
2271
2272         *fence = dma_fence_get_stub();
2273
2274         amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor);
2275
2276         mutex_lock(&adev->mman.gtt_window_lock);
2277         while (cursor.remaining) {
2278                 struct dma_fence *next = NULL;
2279                 u64 size;
2280
2281                 if (amdgpu_res_cleared(&cursor)) {
2282                         amdgpu_res_next(&cursor, cursor.size);
2283                         continue;
2284                 }
2285
2286                 /* Never clear more than 256MiB at once to avoid timeouts */
2287                 size = min(cursor.size, 256ULL << 20);
2288
2289                 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor,
2290                                           1, ring, false, &size, &addr);
2291                 if (r)
2292                         goto err;
2293
2294                 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv,
2295                                         &next, true, true);
2296                 if (r)
2297                         goto err;
2298
2299                 dma_fence_put(*fence);
2300                 *fence = next;
2301
2302                 amdgpu_res_next(&cursor, size);
2303         }
2304 err:
2305         mutex_unlock(&adev->mman.gtt_window_lock);
2306
2307         return r;
2308 }
2309
2310 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2311                         uint32_t src_data,
2312                         struct dma_resv *resv,
2313                         struct dma_fence **f,
2314                         bool delayed)
2315 {
2316         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2317         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2318         struct dma_fence *fence = NULL;
2319         struct amdgpu_res_cursor dst;
2320         int r;
2321
2322         if (!adev->mman.buffer_funcs_enabled) {
2323                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2324                 return -EINVAL;
2325         }
2326
2327         amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2328
2329         mutex_lock(&adev->mman.gtt_window_lock);
2330         while (dst.remaining) {
2331                 struct dma_fence *next;
2332                 uint64_t cur_size, to;
2333
2334                 /* Never fill more than 256MiB at once to avoid timeouts */
2335                 cur_size = min(dst.size, 256ULL << 20);
2336
2337                 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2338                                           1, ring, false, &cur_size, &to);
2339                 if (r)
2340                         goto error;
2341
2342                 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2343                                         &next, true, delayed);
2344                 if (r)
2345                         goto error;
2346
2347                 dma_fence_put(fence);
2348                 fence = next;
2349
2350                 amdgpu_res_next(&dst, cur_size);
2351         }
2352 error:
2353         mutex_unlock(&adev->mman.gtt_window_lock);
2354         if (f)
2355                 *f = dma_fence_get(fence);
2356         dma_fence_put(fence);
2357         return r;
2358 }
2359
2360 /**
2361  * amdgpu_ttm_evict_resources - evict memory buffers
2362  * @adev: amdgpu device object
2363  * @mem_type: evicted BO's memory type
2364  *
2365  * Evicts all @mem_type buffers on the lru list of the memory type.
2366  *
2367  * Returns:
2368  * 0 for success or a negative error code on failure.
2369  */
2370 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2371 {
2372         struct ttm_resource_manager *man;
2373
2374         switch (mem_type) {
2375         case TTM_PL_VRAM:
2376         case TTM_PL_TT:
2377         case AMDGPU_PL_GWS:
2378         case AMDGPU_PL_GDS:
2379         case AMDGPU_PL_OA:
2380                 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2381                 break;
2382         default:
2383                 DRM_ERROR("Trying to evict invalid memory type\n");
2384                 return -EINVAL;
2385         }
2386
2387         return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2388 }
2389
2390 #if defined(CONFIG_DEBUG_FS)
2391
2392 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2393 {
2394         struct amdgpu_device *adev = m->private;
2395
2396         return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2397 }
2398
2399 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2400
2401 /*
2402  * amdgpu_ttm_vram_read - Linear read access to VRAM
2403  *
2404  * Accesses VRAM via MMIO for debugging purposes.
2405  */
2406 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2407                                     size_t size, loff_t *pos)
2408 {
2409         struct amdgpu_device *adev = file_inode(f)->i_private;
2410         ssize_t result = 0;
2411
2412         if (size & 0x3 || *pos & 0x3)
2413                 return -EINVAL;
2414
2415         if (*pos >= adev->gmc.mc_vram_size)
2416                 return -ENXIO;
2417
2418         size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2419         while (size) {
2420                 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2421                 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2422
2423                 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2424                 if (copy_to_user(buf, value, bytes))
2425                         return -EFAULT;
2426
2427                 result += bytes;
2428                 buf += bytes;
2429                 *pos += bytes;
2430                 size -= bytes;
2431         }
2432
2433         return result;
2434 }
2435
2436 /*
2437  * amdgpu_ttm_vram_write - Linear write access to VRAM
2438  *
2439  * Accesses VRAM via MMIO for debugging purposes.
2440  */
2441 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2442                                     size_t size, loff_t *pos)
2443 {
2444         struct amdgpu_device *adev = file_inode(f)->i_private;
2445         ssize_t result = 0;
2446         int r;
2447
2448         if (size & 0x3 || *pos & 0x3)
2449                 return -EINVAL;
2450
2451         if (*pos >= adev->gmc.mc_vram_size)
2452                 return -ENXIO;
2453
2454         while (size) {
2455                 uint32_t value;
2456
2457                 if (*pos >= adev->gmc.mc_vram_size)
2458                         return result;
2459
2460                 r = get_user(value, (uint32_t *)buf);
2461                 if (r)
2462                         return r;
2463
2464                 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2465
2466                 result += 4;
2467                 buf += 4;
2468                 *pos += 4;
2469                 size -= 4;
2470         }
2471
2472         return result;
2473 }
2474
2475 static const struct file_operations amdgpu_ttm_vram_fops = {
2476         .owner = THIS_MODULE,
2477         .read = amdgpu_ttm_vram_read,
2478         .write = amdgpu_ttm_vram_write,
2479         .llseek = default_llseek,
2480 };
2481
2482 /*
2483  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2484  *
2485  * This function is used to read memory that has been mapped to the
2486  * GPU and the known addresses are not physical addresses but instead
2487  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2488  */
2489 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2490                                  size_t size, loff_t *pos)
2491 {
2492         struct amdgpu_device *adev = file_inode(f)->i_private;
2493         struct iommu_domain *dom;
2494         ssize_t result = 0;
2495         int r;
2496
2497         /* retrieve the IOMMU domain if any for this device */
2498         dom = iommu_get_domain_for_dev(adev->dev);
2499
2500         while (size) {
2501                 phys_addr_t addr = *pos & PAGE_MASK;
2502                 loff_t off = *pos & ~PAGE_MASK;
2503                 size_t bytes = PAGE_SIZE - off;
2504                 unsigned long pfn;
2505                 struct page *p;
2506                 void *ptr;
2507
2508                 bytes = min(bytes, size);
2509
2510                 /* Translate the bus address to a physical address.  If
2511                  * the domain is NULL it means there is no IOMMU active
2512                  * and the address translation is the identity
2513                  */
2514                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2515
2516                 pfn = addr >> PAGE_SHIFT;
2517                 if (!pfn_valid(pfn))
2518                         return -EPERM;
2519
2520                 p = pfn_to_page(pfn);
2521                 if (p->mapping != adev->mman.bdev.dev_mapping)
2522                         return -EPERM;
2523
2524                 ptr = kmap_local_page(p);
2525                 r = copy_to_user(buf, ptr + off, bytes);
2526                 kunmap_local(ptr);
2527                 if (r)
2528                         return -EFAULT;
2529
2530                 size -= bytes;
2531                 *pos += bytes;
2532                 result += bytes;
2533         }
2534
2535         return result;
2536 }
2537
2538 /*
2539  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2540  *
2541  * This function is used to write memory that has been mapped to the
2542  * GPU and the known addresses are not physical addresses but instead
2543  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2544  */
2545 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2546                                  size_t size, loff_t *pos)
2547 {
2548         struct amdgpu_device *adev = file_inode(f)->i_private;
2549         struct iommu_domain *dom;
2550         ssize_t result = 0;
2551         int r;
2552
2553         dom = iommu_get_domain_for_dev(adev->dev);
2554
2555         while (size) {
2556                 phys_addr_t addr = *pos & PAGE_MASK;
2557                 loff_t off = *pos & ~PAGE_MASK;
2558                 size_t bytes = PAGE_SIZE - off;
2559                 unsigned long pfn;
2560                 struct page *p;
2561                 void *ptr;
2562
2563                 bytes = min(bytes, size);
2564
2565                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2566
2567                 pfn = addr >> PAGE_SHIFT;
2568                 if (!pfn_valid(pfn))
2569                         return -EPERM;
2570
2571                 p = pfn_to_page(pfn);
2572                 if (p->mapping != adev->mman.bdev.dev_mapping)
2573                         return -EPERM;
2574
2575                 ptr = kmap_local_page(p);
2576                 r = copy_from_user(ptr + off, buf, bytes);
2577                 kunmap_local(ptr);
2578                 if (r)
2579                         return -EFAULT;
2580
2581                 size -= bytes;
2582                 *pos += bytes;
2583                 result += bytes;
2584         }
2585
2586         return result;
2587 }
2588
2589 static const struct file_operations amdgpu_ttm_iomem_fops = {
2590         .owner = THIS_MODULE,
2591         .read = amdgpu_iomem_read,
2592         .write = amdgpu_iomem_write,
2593         .llseek = default_llseek
2594 };
2595
2596 #endif
2597
2598 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2599 {
2600 #if defined(CONFIG_DEBUG_FS)
2601         struct drm_minor *minor = adev_to_drm(adev)->primary;
2602         struct dentry *root = minor->debugfs_root;
2603
2604         debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2605                                  &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2606         debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2607                             &amdgpu_ttm_iomem_fops);
2608         debugfs_create_file("ttm_page_pool", 0444, root, adev,
2609                             &amdgpu_ttm_page_pool_fops);
2610         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2611                                                              TTM_PL_VRAM),
2612                                             root, "amdgpu_vram_mm");
2613         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2614                                                              TTM_PL_TT),
2615                                             root, "amdgpu_gtt_mm");
2616         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2617                                                              AMDGPU_PL_GDS),
2618                                             root, "amdgpu_gds_mm");
2619         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2620                                                              AMDGPU_PL_GWS),
2621                                             root, "amdgpu_gws_mm");
2622         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2623                                                              AMDGPU_PL_OA),
2624                                             root, "amdgpu_oa_mm");
2625
2626 #endif
2627 }
This page took 0.18808 seconds and 4 git commands to generate.