]> Git Repo - J-linux.git/blob - drivers/spi/spi-cadence-quadspi.c
Merge tag 'for-6.12/io_uring-20240922' of git://git.kernel.dk/linux
[J-linux.git] / drivers / spi / spi-cadence-quadspi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
32
33 #define CQSPI_NAME                      "cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT            4
35
36 static_assert(CQSPI_MAX_CHIPSELECT <= SPI_CS_CNT_MAX);
37
38 /* Quirks */
39 #define CQSPI_NEEDS_WR_DELAY            BIT(0)
40 #define CQSPI_DISABLE_DAC_MODE          BIT(1)
41 #define CQSPI_SUPPORT_EXTERNAL_DMA      BIT(2)
42 #define CQSPI_NO_SUPPORT_WR_COMPLETION  BIT(3)
43 #define CQSPI_SLOW_SRAM         BIT(4)
44 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR  BIT(5)
45 #define CQSPI_RD_NO_IRQ                 BIT(6)
46
47 /* Capabilities */
48 #define CQSPI_SUPPORTS_OCTAL            BIT(0)
49
50 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
51
52 enum {
53         CLK_QSPI_APB = 0,
54         CLK_QSPI_AHB,
55         CLK_QSPI_NUM,
56 };
57
58 struct cqspi_st;
59
60 struct cqspi_flash_pdata {
61         struct cqspi_st *cqspi;
62         u32             clk_rate;
63         u32             read_delay;
64         u32             tshsl_ns;
65         u32             tsd2d_ns;
66         u32             tchsh_ns;
67         u32             tslch_ns;
68         u8              cs;
69 };
70
71 struct cqspi_st {
72         struct platform_device  *pdev;
73         struct spi_controller   *host;
74         struct clk              *clk;
75         struct clk              *clks[CLK_QSPI_NUM];
76         unsigned int            sclk;
77
78         void __iomem            *iobase;
79         void __iomem            *ahb_base;
80         resource_size_t         ahb_size;
81         struct completion       transfer_complete;
82
83         struct dma_chan         *rx_chan;
84         struct completion       rx_dma_complete;
85         dma_addr_t              mmap_phys_base;
86
87         int                     current_cs;
88         unsigned long           master_ref_clk_hz;
89         bool                    is_decoded_cs;
90         u32                     fifo_depth;
91         u32                     fifo_width;
92         u32                     num_chipselect;
93         bool                    rclk_en;
94         u32                     trigger_address;
95         u32                     wr_delay;
96         bool                    use_direct_mode;
97         bool                    use_direct_mode_wr;
98         struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
99         bool                    use_dma_read;
100         u32                     pd_dev_id;
101         bool                    wr_completion;
102         bool                    slow_sram;
103         bool                    apb_ahb_hazard;
104
105         bool                    is_jh7110; /* Flag for StarFive JH7110 SoC */
106
107         const struct cqspi_driver_platdata *ddata;
108 };
109
110 struct cqspi_driver_platdata {
111         u32 hwcaps_mask;
112         u8 quirks;
113         int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
114                                  u_char *rxbuf, loff_t from_addr, size_t n_rx);
115         u32 (*get_dma_status)(struct cqspi_st *cqspi);
116         int (*jh7110_clk_init)(struct platform_device *pdev,
117                                struct cqspi_st *cqspi);
118 };
119
120 /* Operation timeout value */
121 #define CQSPI_TIMEOUT_MS                        500
122 #define CQSPI_READ_TIMEOUT_MS                   10
123 #define CQSPI_BUSYWAIT_TIMEOUT_US               500
124
125 /* Runtime_pm autosuspend delay */
126 #define CQSPI_AUTOSUSPEND_TIMEOUT               2000
127
128 #define CQSPI_DUMMY_CLKS_PER_BYTE               8
129 #define CQSPI_DUMMY_BYTES_MAX                   4
130 #define CQSPI_DUMMY_CLKS_MAX                    31
131
132 #define CQSPI_STIG_DATA_LEN_MAX                 8
133
134 /* Register map */
135 #define CQSPI_REG_CONFIG                        0x00
136 #define CQSPI_REG_CONFIG_ENABLE_MASK            BIT(0)
137 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL       BIT(7)
138 #define CQSPI_REG_CONFIG_DECODE_MASK            BIT(9)
139 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB         10
140 #define CQSPI_REG_CONFIG_DMA_MASK               BIT(15)
141 #define CQSPI_REG_CONFIG_BAUD_LSB               19
142 #define CQSPI_REG_CONFIG_DTR_PROTO              BIT(24)
143 #define CQSPI_REG_CONFIG_DUAL_OPCODE            BIT(30)
144 #define CQSPI_REG_CONFIG_IDLE_LSB               31
145 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK        0xF
146 #define CQSPI_REG_CONFIG_BAUD_MASK              0xF
147
148 #define CQSPI_REG_RD_INSTR                      0x04
149 #define CQSPI_REG_RD_INSTR_OPCODE_LSB           0
150 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB       8
151 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB        12
152 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB        16
153 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB          20
154 #define CQSPI_REG_RD_INSTR_DUMMY_LSB            24
155 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK      0x3
156 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK       0x3
157 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK       0x3
158 #define CQSPI_REG_RD_INSTR_DUMMY_MASK           0x1F
159
160 #define CQSPI_REG_WR_INSTR                      0x08
161 #define CQSPI_REG_WR_INSTR_OPCODE_LSB           0
162 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB        12
163 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB        16
164
165 #define CQSPI_REG_DELAY                         0x0C
166 #define CQSPI_REG_DELAY_TSLCH_LSB               0
167 #define CQSPI_REG_DELAY_TCHSH_LSB               8
168 #define CQSPI_REG_DELAY_TSD2D_LSB               16
169 #define CQSPI_REG_DELAY_TSHSL_LSB               24
170 #define CQSPI_REG_DELAY_TSLCH_MASK              0xFF
171 #define CQSPI_REG_DELAY_TCHSH_MASK              0xFF
172 #define CQSPI_REG_DELAY_TSD2D_MASK              0xFF
173 #define CQSPI_REG_DELAY_TSHSL_MASK              0xFF
174
175 #define CQSPI_REG_READCAPTURE                   0x10
176 #define CQSPI_REG_READCAPTURE_BYPASS_LSB        0
177 #define CQSPI_REG_READCAPTURE_DELAY_LSB         1
178 #define CQSPI_REG_READCAPTURE_DELAY_MASK        0xF
179
180 #define CQSPI_REG_SIZE                          0x14
181 #define CQSPI_REG_SIZE_ADDRESS_LSB              0
182 #define CQSPI_REG_SIZE_PAGE_LSB                 4
183 #define CQSPI_REG_SIZE_BLOCK_LSB                16
184 #define CQSPI_REG_SIZE_ADDRESS_MASK             0xF
185 #define CQSPI_REG_SIZE_PAGE_MASK                0xFFF
186 #define CQSPI_REG_SIZE_BLOCK_MASK               0x3F
187
188 #define CQSPI_REG_SRAMPARTITION                 0x18
189 #define CQSPI_REG_INDIRECTTRIGGER               0x1C
190
191 #define CQSPI_REG_DMA                           0x20
192 #define CQSPI_REG_DMA_SINGLE_LSB                0
193 #define CQSPI_REG_DMA_BURST_LSB                 8
194 #define CQSPI_REG_DMA_SINGLE_MASK               0xFF
195 #define CQSPI_REG_DMA_BURST_MASK                0xFF
196
197 #define CQSPI_REG_REMAP                         0x24
198 #define CQSPI_REG_MODE_BIT                      0x28
199
200 #define CQSPI_REG_SDRAMLEVEL                    0x2C
201 #define CQSPI_REG_SDRAMLEVEL_RD_LSB             0
202 #define CQSPI_REG_SDRAMLEVEL_WR_LSB             16
203 #define CQSPI_REG_SDRAMLEVEL_RD_MASK            0xFFFF
204 #define CQSPI_REG_SDRAMLEVEL_WR_MASK            0xFFFF
205
206 #define CQSPI_REG_WR_COMPLETION_CTRL            0x38
207 #define CQSPI_REG_WR_DISABLE_AUTO_POLL          BIT(14)
208
209 #define CQSPI_REG_IRQSTATUS                     0x40
210 #define CQSPI_REG_IRQMASK                       0x44
211
212 #define CQSPI_REG_INDIRECTRD                    0x60
213 #define CQSPI_REG_INDIRECTRD_START_MASK         BIT(0)
214 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK        BIT(1)
215 #define CQSPI_REG_INDIRECTRD_DONE_MASK          BIT(5)
216
217 #define CQSPI_REG_INDIRECTRDWATERMARK           0x64
218 #define CQSPI_REG_INDIRECTRDSTARTADDR           0x68
219 #define CQSPI_REG_INDIRECTRDBYTES               0x6C
220
221 #define CQSPI_REG_CMDCTRL                       0x90
222 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK          BIT(0)
223 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK       BIT(1)
224 #define CQSPI_REG_CMDCTRL_DUMMY_LSB             7
225 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB          12
226 #define CQSPI_REG_CMDCTRL_WR_EN_LSB             15
227 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB         16
228 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB           19
229 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB          20
230 #define CQSPI_REG_CMDCTRL_RD_EN_LSB             23
231 #define CQSPI_REG_CMDCTRL_OPCODE_LSB            24
232 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK         0x7
233 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK        0x3
234 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK         0x7
235 #define CQSPI_REG_CMDCTRL_DUMMY_MASK            0x1F
236
237 #define CQSPI_REG_INDIRECTWR                    0x70
238 #define CQSPI_REG_INDIRECTWR_START_MASK         BIT(0)
239 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK        BIT(1)
240 #define CQSPI_REG_INDIRECTWR_DONE_MASK          BIT(5)
241
242 #define CQSPI_REG_INDIRECTWRWATERMARK           0x74
243 #define CQSPI_REG_INDIRECTWRSTARTADDR           0x78
244 #define CQSPI_REG_INDIRECTWRBYTES               0x7C
245
246 #define CQSPI_REG_INDTRIG_ADDRRANGE             0x80
247
248 #define CQSPI_REG_CMDADDRESS                    0x94
249 #define CQSPI_REG_CMDREADDATALOWER              0xA0
250 #define CQSPI_REG_CMDREADDATAUPPER              0xA4
251 #define CQSPI_REG_CMDWRITEDATALOWER             0xA8
252 #define CQSPI_REG_CMDWRITEDATAUPPER             0xAC
253
254 #define CQSPI_REG_POLLING_STATUS                0xB0
255 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB      16
256
257 #define CQSPI_REG_OP_EXT_LOWER                  0xE0
258 #define CQSPI_REG_OP_EXT_READ_LSB               24
259 #define CQSPI_REG_OP_EXT_WRITE_LSB              16
260 #define CQSPI_REG_OP_EXT_STIG_LSB               0
261
262 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR           0x1000
263
264 #define CQSPI_REG_VERSAL_DMA_DST_ADDR           0x1800
265 #define CQSPI_REG_VERSAL_DMA_DST_SIZE           0x1804
266
267 #define CQSPI_REG_VERSAL_DMA_DST_CTRL           0x180C
268
269 #define CQSPI_REG_VERSAL_DMA_DST_I_STS          0x1814
270 #define CQSPI_REG_VERSAL_DMA_DST_I_EN           0x1818
271 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS          0x181C
272 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK      BIT(1)
273
274 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB       0x1828
275
276 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL       0xF43FFA00
277 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL    0x6
278
279 /* Interrupt status bits */
280 #define CQSPI_REG_IRQ_MODE_ERR                  BIT(0)
281 #define CQSPI_REG_IRQ_UNDERFLOW                 BIT(1)
282 #define CQSPI_REG_IRQ_IND_COMP                  BIT(2)
283 #define CQSPI_REG_IRQ_IND_RD_REJECT             BIT(3)
284 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR          BIT(4)
285 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR           BIT(5)
286 #define CQSPI_REG_IRQ_WATERMARK                 BIT(6)
287 #define CQSPI_REG_IRQ_IND_SRAM_FULL             BIT(12)
288
289 #define CQSPI_IRQ_MASK_RD               (CQSPI_REG_IRQ_WATERMARK        | \
290                                          CQSPI_REG_IRQ_IND_SRAM_FULL    | \
291                                          CQSPI_REG_IRQ_IND_COMP)
292
293 #define CQSPI_IRQ_MASK_WR               (CQSPI_REG_IRQ_IND_COMP         | \
294                                          CQSPI_REG_IRQ_WATERMARK        | \
295                                          CQSPI_REG_IRQ_UNDERFLOW)
296
297 #define CQSPI_IRQ_STATUS_MASK           0x1FFFF
298 #define CQSPI_DMA_UNALIGN               0x3
299
300 #define CQSPI_REG_VERSAL_DMA_VAL                0x602
301
302 static int cqspi_wait_for_bit(const struct cqspi_driver_platdata *ddata,
303                               void __iomem *reg, const u32 mask, bool clr,
304                               bool busywait)
305 {
306         u64 timeout_us = CQSPI_TIMEOUT_MS * USEC_PER_MSEC;
307         u32 val;
308
309         if (busywait) {
310                 int ret = readl_relaxed_poll_timeout(reg, val,
311                                                      (((clr ? ~val : val) & mask) == mask),
312                                                      0, CQSPI_BUSYWAIT_TIMEOUT_US);
313
314                 if (ret != -ETIMEDOUT)
315                         return ret;
316
317                 timeout_us -= CQSPI_BUSYWAIT_TIMEOUT_US;
318         }
319
320         return readl_relaxed_poll_timeout(reg, val,
321                                           (((clr ? ~val : val) & mask) == mask),
322                                           10, timeout_us);
323 }
324
325 static bool cqspi_is_idle(struct cqspi_st *cqspi)
326 {
327         u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
328
329         return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
330 }
331
332 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
333 {
334         u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
335
336         reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
337         return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
338 }
339
340 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
341 {
342         u32 dma_status;
343
344         dma_status = readl(cqspi->iobase +
345                                            CQSPI_REG_VERSAL_DMA_DST_I_STS);
346         writel(dma_status, cqspi->iobase +
347                    CQSPI_REG_VERSAL_DMA_DST_I_STS);
348
349         return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
350 }
351
352 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
353 {
354         struct cqspi_st *cqspi = dev;
355         const struct cqspi_driver_platdata *ddata = cqspi->ddata;
356         unsigned int irq_status;
357
358         /* Read interrupt status */
359         irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
360
361         /* Clear interrupt */
362         writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
363
364         if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
365                 if (ddata->get_dma_status(cqspi)) {
366                         complete(&cqspi->transfer_complete);
367                         return IRQ_HANDLED;
368                 }
369         }
370
371         else if (!cqspi->slow_sram)
372                 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
373         else
374                 irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
375
376         if (irq_status)
377                 complete(&cqspi->transfer_complete);
378
379         return IRQ_HANDLED;
380 }
381
382 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
383 {
384         u32 rdreg = 0;
385
386         rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
387         rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
388         rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
389
390         return rdreg;
391 }
392
393 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
394 {
395         unsigned int dummy_clk;
396
397         if (!op->dummy.nbytes)
398                 return 0;
399
400         dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
401         if (op->cmd.dtr)
402                 dummy_clk /= 2;
403
404         return dummy_clk;
405 }
406
407 static int cqspi_wait_idle(struct cqspi_st *cqspi)
408 {
409         const unsigned int poll_idle_retry = 3;
410         unsigned int count = 0;
411         unsigned long timeout;
412
413         timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
414         while (1) {
415                 /*
416                  * Read few times in succession to ensure the controller
417                  * is indeed idle, that is, the bit does not transition
418                  * low again.
419                  */
420                 if (cqspi_is_idle(cqspi))
421                         count++;
422                 else
423                         count = 0;
424
425                 if (count >= poll_idle_retry)
426                         return 0;
427
428                 if (time_after(jiffies, timeout)) {
429                         /* Timeout, in busy mode. */
430                         dev_err(&cqspi->pdev->dev,
431                                 "QSPI is still busy after %dms timeout.\n",
432                                 CQSPI_TIMEOUT_MS);
433                         return -ETIMEDOUT;
434                 }
435
436                 cpu_relax();
437         }
438 }
439
440 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
441 {
442         void __iomem *reg_base = cqspi->iobase;
443         int ret;
444
445         /* Write the CMDCTRL without start execution. */
446         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
447         /* Start execute */
448         reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
449         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
450
451         /* Polling for completion. */
452         ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_CMDCTRL,
453                                  CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1, true);
454         if (ret) {
455                 dev_err(&cqspi->pdev->dev,
456                         "Flash command execution timed out.\n");
457                 return ret;
458         }
459
460         /* Polling QSPI idle status. */
461         return cqspi_wait_idle(cqspi);
462 }
463
464 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
465                                   const struct spi_mem_op *op,
466                                   unsigned int shift)
467 {
468         struct cqspi_st *cqspi = f_pdata->cqspi;
469         void __iomem *reg_base = cqspi->iobase;
470         unsigned int reg;
471         u8 ext;
472
473         if (op->cmd.nbytes != 2)
474                 return -EINVAL;
475
476         /* Opcode extension is the LSB. */
477         ext = op->cmd.opcode & 0xff;
478
479         reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
480         reg &= ~(0xff << shift);
481         reg |= ext << shift;
482         writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
483
484         return 0;
485 }
486
487 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
488                             const struct spi_mem_op *op, unsigned int shift)
489 {
490         struct cqspi_st *cqspi = f_pdata->cqspi;
491         void __iomem *reg_base = cqspi->iobase;
492         unsigned int reg;
493         int ret;
494
495         reg = readl(reg_base + CQSPI_REG_CONFIG);
496
497         /*
498          * We enable dual byte opcode here. The callers have to set up the
499          * extension opcode based on which type of operation it is.
500          */
501         if (op->cmd.dtr) {
502                 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
503                 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
504
505                 /* Set up command opcode extension. */
506                 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
507                 if (ret)
508                         return ret;
509         } else {
510                 unsigned int mask = CQSPI_REG_CONFIG_DTR_PROTO | CQSPI_REG_CONFIG_DUAL_OPCODE;
511                 /* Shortcut if DTR is already disabled. */
512                 if ((reg & mask) == 0)
513                         return 0;
514                 reg &= ~mask;
515         }
516
517         writel(reg, reg_base + CQSPI_REG_CONFIG);
518
519         return cqspi_wait_idle(cqspi);
520 }
521
522 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
523                               const struct spi_mem_op *op)
524 {
525         struct cqspi_st *cqspi = f_pdata->cqspi;
526         void __iomem *reg_base = cqspi->iobase;
527         u8 *rxbuf = op->data.buf.in;
528         u8 opcode;
529         size_t n_rx = op->data.nbytes;
530         unsigned int rdreg;
531         unsigned int reg;
532         unsigned int dummy_clk;
533         size_t read_len;
534         int status;
535
536         status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
537         if (status)
538                 return status;
539
540         if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
541                 dev_err(&cqspi->pdev->dev,
542                         "Invalid input argument, len %zu rxbuf 0x%p\n",
543                         n_rx, rxbuf);
544                 return -EINVAL;
545         }
546
547         if (op->cmd.dtr)
548                 opcode = op->cmd.opcode >> 8;
549         else
550                 opcode = op->cmd.opcode;
551
552         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
553
554         rdreg = cqspi_calc_rdreg(op);
555         writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
556
557         dummy_clk = cqspi_calc_dummy(op);
558         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
559                 return -EOPNOTSUPP;
560
561         if (dummy_clk)
562                 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
563                      << CQSPI_REG_CMDCTRL_DUMMY_LSB;
564
565         reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
566
567         /* 0 means 1 byte. */
568         reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
569                 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
570
571         /* setup ADDR BIT field */
572         if (op->addr.nbytes) {
573                 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
574                 reg |= ((op->addr.nbytes - 1) &
575                         CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
576                         << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
577
578                 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
579         }
580
581         status = cqspi_exec_flash_cmd(cqspi, reg);
582         if (status)
583                 return status;
584
585         reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
586
587         /* Put the read value into rx_buf */
588         read_len = (n_rx > 4) ? 4 : n_rx;
589         memcpy(rxbuf, &reg, read_len);
590         rxbuf += read_len;
591
592         if (n_rx > 4) {
593                 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
594
595                 read_len = n_rx - read_len;
596                 memcpy(rxbuf, &reg, read_len);
597         }
598
599         /* Reset CMD_CTRL Reg once command read completes */
600         writel(0, reg_base + CQSPI_REG_CMDCTRL);
601
602         return 0;
603 }
604
605 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
606                                const struct spi_mem_op *op)
607 {
608         struct cqspi_st *cqspi = f_pdata->cqspi;
609         void __iomem *reg_base = cqspi->iobase;
610         u8 opcode;
611         const u8 *txbuf = op->data.buf.out;
612         size_t n_tx = op->data.nbytes;
613         unsigned int reg;
614         unsigned int data;
615         size_t write_len;
616         int ret;
617
618         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
619         if (ret)
620                 return ret;
621
622         if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
623                 dev_err(&cqspi->pdev->dev,
624                         "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
625                         n_tx, txbuf);
626                 return -EINVAL;
627         }
628
629         reg = cqspi_calc_rdreg(op);
630         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
631
632         if (op->cmd.dtr)
633                 opcode = op->cmd.opcode >> 8;
634         else
635                 opcode = op->cmd.opcode;
636
637         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
638
639         if (op->addr.nbytes) {
640                 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
641                 reg |= ((op->addr.nbytes - 1) &
642                         CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
643                         << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
644
645                 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
646         }
647
648         if (n_tx) {
649                 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
650                 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
651                         << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
652                 data = 0;
653                 write_len = (n_tx > 4) ? 4 : n_tx;
654                 memcpy(&data, txbuf, write_len);
655                 txbuf += write_len;
656                 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
657
658                 if (n_tx > 4) {
659                         data = 0;
660                         write_len = n_tx - 4;
661                         memcpy(&data, txbuf, write_len);
662                         writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
663                 }
664         }
665
666         ret = cqspi_exec_flash_cmd(cqspi, reg);
667
668         /* Reset CMD_CTRL Reg once command write completes */
669         writel(0, reg_base + CQSPI_REG_CMDCTRL);
670
671         return ret;
672 }
673
674 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
675                             const struct spi_mem_op *op)
676 {
677         struct cqspi_st *cqspi = f_pdata->cqspi;
678         void __iomem *reg_base = cqspi->iobase;
679         unsigned int dummy_clk = 0;
680         unsigned int reg;
681         int ret;
682         u8 opcode;
683
684         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
685         if (ret)
686                 return ret;
687
688         if (op->cmd.dtr)
689                 opcode = op->cmd.opcode >> 8;
690         else
691                 opcode = op->cmd.opcode;
692
693         reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
694         reg |= cqspi_calc_rdreg(op);
695
696         /* Setup dummy clock cycles */
697         dummy_clk = cqspi_calc_dummy(op);
698
699         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
700                 return -EOPNOTSUPP;
701
702         if (dummy_clk)
703                 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
704                        << CQSPI_REG_RD_INSTR_DUMMY_LSB;
705
706         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
707
708         /* Set address width */
709         reg = readl(reg_base + CQSPI_REG_SIZE);
710         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
711         reg |= (op->addr.nbytes - 1);
712         writel(reg, reg_base + CQSPI_REG_SIZE);
713         return 0;
714 }
715
716 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
717                                        u8 *rxbuf, loff_t from_addr,
718                                        const size_t n_rx)
719 {
720         struct cqspi_st *cqspi = f_pdata->cqspi;
721         bool use_irq = !(cqspi->ddata && cqspi->ddata->quirks & CQSPI_RD_NO_IRQ);
722         struct device *dev = &cqspi->pdev->dev;
723         void __iomem *reg_base = cqspi->iobase;
724         void __iomem *ahb_base = cqspi->ahb_base;
725         unsigned int remaining = n_rx;
726         unsigned int mod_bytes = n_rx % 4;
727         unsigned int bytes_to_read = 0;
728         u8 *rxbuf_end = rxbuf + n_rx;
729         int ret = 0;
730
731         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
732         writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
733
734         /* Clear all interrupts. */
735         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
736
737         /*
738          * On SoCFPGA platform reading the SRAM is slow due to
739          * hardware limitation and causing read interrupt storm to CPU,
740          * so enabling only watermark interrupt to disable all read
741          * interrupts later as we want to run "bytes to read" loop with
742          * all the read interrupts disabled for max performance.
743          */
744
745         if (use_irq && cqspi->slow_sram)
746                 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
747         else if (use_irq)
748                 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
749         else
750                 writel(0, reg_base + CQSPI_REG_IRQMASK);
751
752         reinit_completion(&cqspi->transfer_complete);
753         writel(CQSPI_REG_INDIRECTRD_START_MASK,
754                reg_base + CQSPI_REG_INDIRECTRD);
755
756         while (remaining > 0) {
757                 if (use_irq &&
758                     !wait_for_completion_timeout(&cqspi->transfer_complete,
759                                                  msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
760                         ret = -ETIMEDOUT;
761
762                 /*
763                  * Disable all read interrupts until
764                  * we are out of "bytes to read"
765                  */
766                 if (cqspi->slow_sram)
767                         writel(0x0, reg_base + CQSPI_REG_IRQMASK);
768
769                 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
770
771                 if (ret && bytes_to_read == 0) {
772                         dev_err(dev, "Indirect read timeout, no bytes\n");
773                         goto failrd;
774                 }
775
776                 while (bytes_to_read != 0) {
777                         unsigned int word_remain = round_down(remaining, 4);
778
779                         bytes_to_read *= cqspi->fifo_width;
780                         bytes_to_read = bytes_to_read > remaining ?
781                                         remaining : bytes_to_read;
782                         bytes_to_read = round_down(bytes_to_read, 4);
783                         /* Read 4 byte word chunks then single bytes */
784                         if (bytes_to_read) {
785                                 ioread32_rep(ahb_base, rxbuf,
786                                              (bytes_to_read / 4));
787                         } else if (!word_remain && mod_bytes) {
788                                 unsigned int temp = ioread32(ahb_base);
789
790                                 bytes_to_read = mod_bytes;
791                                 memcpy(rxbuf, &temp, min((unsigned int)
792                                                          (rxbuf_end - rxbuf),
793                                                          bytes_to_read));
794                         }
795                         rxbuf += bytes_to_read;
796                         remaining -= bytes_to_read;
797                         bytes_to_read = cqspi_get_rd_sram_level(cqspi);
798                 }
799
800                 if (use_irq && remaining > 0) {
801                         reinit_completion(&cqspi->transfer_complete);
802                         if (cqspi->slow_sram)
803                                 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
804                 }
805         }
806
807         /* Check indirect done status */
808         ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTRD,
809                                  CQSPI_REG_INDIRECTRD_DONE_MASK, 0, true);
810         if (ret) {
811                 dev_err(dev, "Indirect read completion error (%i)\n", ret);
812                 goto failrd;
813         }
814
815         /* Disable interrupt */
816         writel(0, reg_base + CQSPI_REG_IRQMASK);
817
818         /* Clear indirect completion status */
819         writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
820
821         return 0;
822
823 failrd:
824         /* Disable interrupt */
825         writel(0, reg_base + CQSPI_REG_IRQMASK);
826
827         /* Cancel the indirect read */
828         writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
829                reg_base + CQSPI_REG_INDIRECTRD);
830         return ret;
831 }
832
833 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
834 {
835         void __iomem *reg_base = cqspi->iobase;
836         unsigned int reg;
837
838         reg = readl(reg_base + CQSPI_REG_CONFIG);
839
840         if (enable)
841                 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
842         else
843                 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
844
845         writel(reg, reg_base + CQSPI_REG_CONFIG);
846 }
847
848 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
849                                           u_char *rxbuf, loff_t from_addr,
850                                           size_t n_rx)
851 {
852         struct cqspi_st *cqspi = f_pdata->cqspi;
853         struct device *dev = &cqspi->pdev->dev;
854         void __iomem *reg_base = cqspi->iobase;
855         u32 reg, bytes_to_dma;
856         loff_t addr = from_addr;
857         void *buf = rxbuf;
858         dma_addr_t dma_addr;
859         u8 bytes_rem;
860         int ret = 0;
861
862         bytes_rem = n_rx % 4;
863         bytes_to_dma = (n_rx - bytes_rem);
864
865         if (!bytes_to_dma)
866                 goto nondmard;
867
868         ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
869         if (ret)
870                 return ret;
871
872         cqspi_controller_enable(cqspi, 0);
873
874         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
875         reg |= CQSPI_REG_CONFIG_DMA_MASK;
876         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
877
878         cqspi_controller_enable(cqspi, 1);
879
880         dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
881         if (dma_mapping_error(dev, dma_addr)) {
882                 dev_err(dev, "dma mapping failed\n");
883                 return -ENOMEM;
884         }
885
886         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
887         writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
888         writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
889                reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
890
891         /* Clear all interrupts. */
892         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
893
894         /* Enable DMA done interrupt */
895         writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
896                reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
897
898         /* Default DMA periph configuration */
899         writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
900
901         /* Configure DMA Dst address */
902         writel(lower_32_bits(dma_addr),
903                reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
904         writel(upper_32_bits(dma_addr),
905                reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
906
907         /* Configure DMA Src address */
908         writel(cqspi->trigger_address, reg_base +
909                CQSPI_REG_VERSAL_DMA_SRC_ADDR);
910
911         /* Set DMA destination size */
912         writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
913
914         /* Set DMA destination control */
915         writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
916                reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
917
918         writel(CQSPI_REG_INDIRECTRD_START_MASK,
919                reg_base + CQSPI_REG_INDIRECTRD);
920
921         reinit_completion(&cqspi->transfer_complete);
922
923         if (!wait_for_completion_timeout(&cqspi->transfer_complete,
924                                          msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
925                 ret = -ETIMEDOUT;
926                 goto failrd;
927         }
928
929         /* Disable DMA interrupt */
930         writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
931
932         /* Clear indirect completion status */
933         writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
934                cqspi->iobase + CQSPI_REG_INDIRECTRD);
935         dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
936
937         cqspi_controller_enable(cqspi, 0);
938
939         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
940         reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
941         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
942
943         cqspi_controller_enable(cqspi, 1);
944
945         ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
946                                         PM_OSPI_MUX_SEL_LINEAR);
947         if (ret)
948                 return ret;
949
950 nondmard:
951         if (bytes_rem) {
952                 addr += bytes_to_dma;
953                 buf += bytes_to_dma;
954                 ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
955                                                   bytes_rem);
956                 if (ret)
957                         return ret;
958         }
959
960         return 0;
961
962 failrd:
963         /* Disable DMA interrupt */
964         writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
965
966         /* Cancel the indirect read */
967         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
968                reg_base + CQSPI_REG_INDIRECTRD);
969
970         dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
971
972         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
973         reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
974         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
975
976         zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
977
978         return ret;
979 }
980
981 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
982                              const struct spi_mem_op *op)
983 {
984         unsigned int reg;
985         int ret;
986         struct cqspi_st *cqspi = f_pdata->cqspi;
987         void __iomem *reg_base = cqspi->iobase;
988         u8 opcode;
989
990         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
991         if (ret)
992                 return ret;
993
994         if (op->cmd.dtr)
995                 opcode = op->cmd.opcode >> 8;
996         else
997                 opcode = op->cmd.opcode;
998
999         /* Set opcode. */
1000         reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
1001         reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
1002         reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
1003         writel(reg, reg_base + CQSPI_REG_WR_INSTR);
1004         reg = cqspi_calc_rdreg(op);
1005         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
1006
1007         /*
1008          * SPI NAND flashes require the address of the status register to be
1009          * passed in the Read SR command. Also, some SPI NOR flashes like the
1010          * cypress Semper flash expect a 4-byte dummy address in the Read SR
1011          * command in DTR mode.
1012          *
1013          * But this controller does not support address phase in the Read SR
1014          * command when doing auto-HW polling. So, disable write completion
1015          * polling on the controller's side. spinand and spi-nor will take
1016          * care of polling the status register.
1017          */
1018         if (cqspi->wr_completion) {
1019                 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1020                 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
1021                 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1022                 /*
1023                  * DAC mode require auto polling as flash needs to be polled
1024                  * for write completion in case of bubble in SPI transaction
1025                  * due to slow CPU/DMA master.
1026                  */
1027                 cqspi->use_direct_mode_wr = false;
1028         }
1029
1030         reg = readl(reg_base + CQSPI_REG_SIZE);
1031         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1032         reg |= (op->addr.nbytes - 1);
1033         writel(reg, reg_base + CQSPI_REG_SIZE);
1034         return 0;
1035 }
1036
1037 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1038                                         loff_t to_addr, const u8 *txbuf,
1039                                         const size_t n_tx)
1040 {
1041         struct cqspi_st *cqspi = f_pdata->cqspi;
1042         struct device *dev = &cqspi->pdev->dev;
1043         void __iomem *reg_base = cqspi->iobase;
1044         unsigned int remaining = n_tx;
1045         unsigned int write_bytes;
1046         int ret;
1047
1048         writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1049         writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1050
1051         /* Clear all interrupts. */
1052         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1053
1054         writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1055
1056         reinit_completion(&cqspi->transfer_complete);
1057         writel(CQSPI_REG_INDIRECTWR_START_MASK,
1058                reg_base + CQSPI_REG_INDIRECTWR);
1059         /*
1060          * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1061          * Controller programming sequence, couple of cycles of
1062          * QSPI_REF_CLK delay is required for the above bit to
1063          * be internally synchronized by the QSPI module. Provide 5
1064          * cycles of delay.
1065          */
1066         if (cqspi->wr_delay)
1067                 ndelay(cqspi->wr_delay);
1068
1069         /*
1070          * If a hazard exists between the APB and AHB interfaces, perform a
1071          * dummy readback from the controller to ensure synchronization.
1072          */
1073         if (cqspi->apb_ahb_hazard)
1074                 readl(reg_base + CQSPI_REG_INDIRECTWR);
1075
1076         while (remaining > 0) {
1077                 size_t write_words, mod_bytes;
1078
1079                 write_bytes = remaining;
1080                 write_words = write_bytes / 4;
1081                 mod_bytes = write_bytes % 4;
1082                 /* Write 4 bytes at a time then single bytes. */
1083                 if (write_words) {
1084                         iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1085                         txbuf += (write_words * 4);
1086                 }
1087                 if (mod_bytes) {
1088                         unsigned int temp = 0xFFFFFFFF;
1089
1090                         memcpy(&temp, txbuf, mod_bytes);
1091                         iowrite32(temp, cqspi->ahb_base);
1092                         txbuf += mod_bytes;
1093                 }
1094
1095                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1096                                                  msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1097                         dev_err(dev, "Indirect write timeout\n");
1098                         ret = -ETIMEDOUT;
1099                         goto failwr;
1100                 }
1101
1102                 remaining -= write_bytes;
1103
1104                 if (remaining > 0)
1105                         reinit_completion(&cqspi->transfer_complete);
1106         }
1107
1108         /* Check indirect done status */
1109         ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTWR,
1110                                  CQSPI_REG_INDIRECTWR_DONE_MASK, 0, false);
1111         if (ret) {
1112                 dev_err(dev, "Indirect write completion error (%i)\n", ret);
1113                 goto failwr;
1114         }
1115
1116         /* Disable interrupt. */
1117         writel(0, reg_base + CQSPI_REG_IRQMASK);
1118
1119         /* Clear indirect completion status */
1120         writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1121
1122         cqspi_wait_idle(cqspi);
1123
1124         return 0;
1125
1126 failwr:
1127         /* Disable interrupt. */
1128         writel(0, reg_base + CQSPI_REG_IRQMASK);
1129
1130         /* Cancel the indirect write */
1131         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1132                reg_base + CQSPI_REG_INDIRECTWR);
1133         return ret;
1134 }
1135
1136 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1137 {
1138         struct cqspi_st *cqspi = f_pdata->cqspi;
1139         void __iomem *reg_base = cqspi->iobase;
1140         unsigned int chip_select = f_pdata->cs;
1141         unsigned int reg;
1142
1143         reg = readl(reg_base + CQSPI_REG_CONFIG);
1144         if (cqspi->is_decoded_cs) {
1145                 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1146         } else {
1147                 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1148
1149                 /* Convert CS if without decoder.
1150                  * CS0 to 4b'1110
1151                  * CS1 to 4b'1101
1152                  * CS2 to 4b'1011
1153                  * CS3 to 4b'0111
1154                  */
1155                 chip_select = 0xF & ~(1 << chip_select);
1156         }
1157
1158         reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1159                  << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1160         reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1161             << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1162         writel(reg, reg_base + CQSPI_REG_CONFIG);
1163 }
1164
1165 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1166                                            const unsigned int ns_val)
1167 {
1168         unsigned int ticks;
1169
1170         ticks = ref_clk_hz / 1000;      /* kHz */
1171         ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1172
1173         return ticks;
1174 }
1175
1176 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1177 {
1178         struct cqspi_st *cqspi = f_pdata->cqspi;
1179         void __iomem *iobase = cqspi->iobase;
1180         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1181         unsigned int tshsl, tchsh, tslch, tsd2d;
1182         unsigned int reg;
1183         unsigned int tsclk;
1184
1185         /* calculate the number of ref ticks for one sclk tick */
1186         tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1187
1188         tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1189         /* this particular value must be at least one sclk */
1190         if (tshsl < tsclk)
1191                 tshsl = tsclk;
1192
1193         tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1194         tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1195         tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1196
1197         reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1198                << CQSPI_REG_DELAY_TSHSL_LSB;
1199         reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1200                 << CQSPI_REG_DELAY_TCHSH_LSB;
1201         reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1202                 << CQSPI_REG_DELAY_TSLCH_LSB;
1203         reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1204                 << CQSPI_REG_DELAY_TSD2D_LSB;
1205         writel(reg, iobase + CQSPI_REG_DELAY);
1206 }
1207
1208 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1209 {
1210         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1211         void __iomem *reg_base = cqspi->iobase;
1212         u32 reg, div;
1213
1214         /* Recalculate the baudrate divisor based on QSPI specification. */
1215         div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1216
1217         /* Maximum baud divisor */
1218         if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1219                 div = CQSPI_REG_CONFIG_BAUD_MASK;
1220                 dev_warn(&cqspi->pdev->dev,
1221                         "Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1222                         cqspi->sclk, ref_clk_hz/((div+1)*2));
1223         }
1224
1225         reg = readl(reg_base + CQSPI_REG_CONFIG);
1226         reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1227         reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1228         writel(reg, reg_base + CQSPI_REG_CONFIG);
1229 }
1230
1231 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1232                                    const bool bypass,
1233                                    const unsigned int delay)
1234 {
1235         void __iomem *reg_base = cqspi->iobase;
1236         unsigned int reg;
1237
1238         reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1239
1240         if (bypass)
1241                 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1242         else
1243                 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1244
1245         reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1246                  << CQSPI_REG_READCAPTURE_DELAY_LSB);
1247
1248         reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1249                 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1250
1251         writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1252 }
1253
1254 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1255                             unsigned long sclk)
1256 {
1257         struct cqspi_st *cqspi = f_pdata->cqspi;
1258         int switch_cs = (cqspi->current_cs != f_pdata->cs);
1259         int switch_ck = (cqspi->sclk != sclk);
1260
1261         if (switch_cs || switch_ck)
1262                 cqspi_controller_enable(cqspi, 0);
1263
1264         /* Switch chip select. */
1265         if (switch_cs) {
1266                 cqspi->current_cs = f_pdata->cs;
1267                 cqspi_chipselect(f_pdata);
1268         }
1269
1270         /* Setup baudrate divisor and delays */
1271         if (switch_ck) {
1272                 cqspi->sclk = sclk;
1273                 cqspi_config_baudrate_div(cqspi);
1274                 cqspi_delay(f_pdata);
1275                 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1276                                        f_pdata->read_delay);
1277         }
1278
1279         if (switch_cs || switch_ck)
1280                 cqspi_controller_enable(cqspi, 1);
1281 }
1282
1283 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1284                            const struct spi_mem_op *op)
1285 {
1286         struct cqspi_st *cqspi = f_pdata->cqspi;
1287         loff_t to = op->addr.val;
1288         size_t len = op->data.nbytes;
1289         const u_char *buf = op->data.buf.out;
1290         int ret;
1291
1292         ret = cqspi_write_setup(f_pdata, op);
1293         if (ret)
1294                 return ret;
1295
1296         /*
1297          * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1298          * address (all 0s) with the read status register command in DTR mode.
1299          * But this controller does not support sending dummy address bytes to
1300          * the flash when it is polling the write completion register in DTR
1301          * mode. So, we can not use direct mode when in DTR mode for writing
1302          * data.
1303          */
1304         if (!op->cmd.dtr && cqspi->use_direct_mode &&
1305             cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1306                 memcpy_toio(cqspi->ahb_base + to, buf, len);
1307                 return cqspi_wait_idle(cqspi);
1308         }
1309
1310         return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1311 }
1312
1313 static void cqspi_rx_dma_callback(void *param)
1314 {
1315         struct cqspi_st *cqspi = param;
1316
1317         complete(&cqspi->rx_dma_complete);
1318 }
1319
1320 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1321                                      u_char *buf, loff_t from, size_t len)
1322 {
1323         struct cqspi_st *cqspi = f_pdata->cqspi;
1324         struct device *dev = &cqspi->pdev->dev;
1325         enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1326         dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1327         int ret = 0;
1328         struct dma_async_tx_descriptor *tx;
1329         dma_cookie_t cookie;
1330         dma_addr_t dma_dst;
1331         struct device *ddev;
1332
1333         if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1334                 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1335                 return 0;
1336         }
1337
1338         ddev = cqspi->rx_chan->device->dev;
1339         dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1340         if (dma_mapping_error(ddev, dma_dst)) {
1341                 dev_err(dev, "dma mapping failed\n");
1342                 return -ENOMEM;
1343         }
1344         tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1345                                        len, flags);
1346         if (!tx) {
1347                 dev_err(dev, "device_prep_dma_memcpy error\n");
1348                 ret = -EIO;
1349                 goto err_unmap;
1350         }
1351
1352         tx->callback = cqspi_rx_dma_callback;
1353         tx->callback_param = cqspi;
1354         cookie = tx->tx_submit(tx);
1355         reinit_completion(&cqspi->rx_dma_complete);
1356
1357         ret = dma_submit_error(cookie);
1358         if (ret) {
1359                 dev_err(dev, "dma_submit_error %d\n", cookie);
1360                 ret = -EIO;
1361                 goto err_unmap;
1362         }
1363
1364         dma_async_issue_pending(cqspi->rx_chan);
1365         if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1366                                          msecs_to_jiffies(max_t(size_t, len, 500)))) {
1367                 dmaengine_terminate_sync(cqspi->rx_chan);
1368                 dev_err(dev, "DMA wait_for_completion_timeout\n");
1369                 ret = -ETIMEDOUT;
1370                 goto err_unmap;
1371         }
1372
1373 err_unmap:
1374         dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1375
1376         return ret;
1377 }
1378
1379 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1380                           const struct spi_mem_op *op)
1381 {
1382         struct cqspi_st *cqspi = f_pdata->cqspi;
1383         const struct cqspi_driver_platdata *ddata = cqspi->ddata;
1384         loff_t from = op->addr.val;
1385         size_t len = op->data.nbytes;
1386         u_char *buf = op->data.buf.in;
1387         u64 dma_align = (u64)(uintptr_t)buf;
1388         int ret;
1389
1390         ret = cqspi_read_setup(f_pdata, op);
1391         if (ret)
1392                 return ret;
1393
1394         if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1395                 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1396
1397         if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1398             virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1399                 return ddata->indirect_read_dma(f_pdata, buf, from, len);
1400
1401         return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1402 }
1403
1404 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1405 {
1406         struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1407         struct cqspi_flash_pdata *f_pdata;
1408
1409         f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1410         cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1411
1412         if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1413         /*
1414          * Performing reads in DAC mode forces to read minimum 4 bytes
1415          * which is unsupported on some flash devices during register
1416          * reads, prefer STIG mode for such small reads.
1417          */
1418                 if (!op->addr.nbytes ||
1419                     op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
1420                         return cqspi_command_read(f_pdata, op);
1421
1422                 return cqspi_read(f_pdata, op);
1423         }
1424
1425         if (!op->addr.nbytes || !op->data.buf.out)
1426                 return cqspi_command_write(f_pdata, op);
1427
1428         return cqspi_write(f_pdata, op);
1429 }
1430
1431 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1432 {
1433         int ret;
1434         struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1435         struct device *dev = &cqspi->pdev->dev;
1436
1437         ret = pm_runtime_resume_and_get(dev);
1438         if (ret) {
1439                 dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1440                 return ret;
1441         }
1442
1443         ret = cqspi_mem_process(mem, op);
1444
1445         pm_runtime_mark_last_busy(dev);
1446         pm_runtime_put_autosuspend(dev);
1447
1448         if (ret)
1449                 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1450
1451         return ret;
1452 }
1453
1454 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1455                                   const struct spi_mem_op *op)
1456 {
1457         bool all_true, all_false;
1458
1459         /*
1460          * op->dummy.dtr is required for converting nbytes into ncycles.
1461          * Also, don't check the dtr field of the op phase having zero nbytes.
1462          */
1463         all_true = op->cmd.dtr &&
1464                    (!op->addr.nbytes || op->addr.dtr) &&
1465                    (!op->dummy.nbytes || op->dummy.dtr) &&
1466                    (!op->data.nbytes || op->data.dtr);
1467
1468         all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1469                     !op->data.dtr;
1470
1471         if (all_true) {
1472                 /* Right now we only support 8-8-8 DTR mode. */
1473                 if (op->cmd.nbytes && op->cmd.buswidth != 8)
1474                         return false;
1475                 if (op->addr.nbytes && op->addr.buswidth != 8)
1476                         return false;
1477                 if (op->data.nbytes && op->data.buswidth != 8)
1478                         return false;
1479         } else if (!all_false) {
1480                 /* Mixed DTR modes are not supported. */
1481                 return false;
1482         }
1483
1484         return spi_mem_default_supports_op(mem, op);
1485 }
1486
1487 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1488                                     struct cqspi_flash_pdata *f_pdata,
1489                                     struct device_node *np)
1490 {
1491         if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1492                 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1493                 return -ENXIO;
1494         }
1495
1496         if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1497                 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1498                 return -ENXIO;
1499         }
1500
1501         if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1502                 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1503                 return -ENXIO;
1504         }
1505
1506         if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1507                 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1508                 return -ENXIO;
1509         }
1510
1511         if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1512                 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1513                 return -ENXIO;
1514         }
1515
1516         if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1517                 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1518                 return -ENXIO;
1519         }
1520
1521         return 0;
1522 }
1523
1524 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1525 {
1526         struct device *dev = &cqspi->pdev->dev;
1527         struct device_node *np = dev->of_node;
1528         u32 id[2];
1529
1530         cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1531
1532         if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1533                 /* Zero signals FIFO depth should be runtime detected. */
1534                 cqspi->fifo_depth = 0;
1535         }
1536
1537         if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1538                 dev_err(dev, "couldn't determine fifo-width\n");
1539                 return -ENXIO;
1540         }
1541
1542         if (of_property_read_u32(np, "cdns,trigger-address",
1543                                  &cqspi->trigger_address)) {
1544                 dev_err(dev, "couldn't determine trigger-address\n");
1545                 return -ENXIO;
1546         }
1547
1548         if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1549                 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1550
1551         cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1552
1553         if (!of_property_read_u32_array(np, "power-domains", id,
1554                                         ARRAY_SIZE(id)))
1555                 cqspi->pd_dev_id = id[1];
1556
1557         return 0;
1558 }
1559
1560 static void cqspi_controller_init(struct cqspi_st *cqspi)
1561 {
1562         u32 reg;
1563
1564         /* Configure the remap address register, no remap */
1565         writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1566
1567         /* Disable all interrupts. */
1568         writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1569
1570         /* Configure the SRAM split to 1:1 . */
1571         writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1572
1573         /* Load indirect trigger address. */
1574         writel(cqspi->trigger_address,
1575                cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1576
1577         /* Program read watermark -- 1/2 of the FIFO. */
1578         writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1579                cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1580         /* Program write watermark -- 1/8 of the FIFO. */
1581         writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1582                cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1583
1584         /* Disable direct access controller */
1585         if (!cqspi->use_direct_mode) {
1586                 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1587                 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1588                 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1589         }
1590
1591         /* Enable DMA interface */
1592         if (cqspi->use_dma_read) {
1593                 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1594                 reg |= CQSPI_REG_CONFIG_DMA_MASK;
1595                 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1596         }
1597 }
1598
1599 static void cqspi_controller_detect_fifo_depth(struct cqspi_st *cqspi)
1600 {
1601         struct device *dev = &cqspi->pdev->dev;
1602         u32 reg, fifo_depth;
1603
1604         /*
1605          * Bits N-1:0 are writable while bits 31:N are read as zero, with 2^N
1606          * the FIFO depth.
1607          */
1608         writel(U32_MAX, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1609         reg = readl(cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1610         fifo_depth = reg + 1;
1611
1612         /* FIFO depth of zero means no value from devicetree was provided. */
1613         if (cqspi->fifo_depth == 0) {
1614                 cqspi->fifo_depth = fifo_depth;
1615                 dev_dbg(dev, "using FIFO depth of %u\n", fifo_depth);
1616         } else if (fifo_depth != cqspi->fifo_depth) {
1617                 dev_warn(dev, "detected FIFO depth (%u) different from config (%u)\n",
1618                          fifo_depth, cqspi->fifo_depth);
1619         }
1620 }
1621
1622 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1623 {
1624         dma_cap_mask_t mask;
1625
1626         dma_cap_zero(mask);
1627         dma_cap_set(DMA_MEMCPY, mask);
1628
1629         cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1630         if (IS_ERR(cqspi->rx_chan)) {
1631                 int ret = PTR_ERR(cqspi->rx_chan);
1632
1633                 cqspi->rx_chan = NULL;
1634                 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1635         }
1636         init_completion(&cqspi->rx_dma_complete);
1637
1638         return 0;
1639 }
1640
1641 static const char *cqspi_get_name(struct spi_mem *mem)
1642 {
1643         struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1644         struct device *dev = &cqspi->pdev->dev;
1645
1646         return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1647                               spi_get_chipselect(mem->spi, 0));
1648 }
1649
1650 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1651         .exec_op = cqspi_exec_mem_op,
1652         .get_name = cqspi_get_name,
1653         .supports_op = cqspi_supports_mem_op,
1654 };
1655
1656 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1657         .dtr = true,
1658 };
1659
1660 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1661 {
1662         unsigned int max_cs = cqspi->num_chipselect - 1;
1663         struct platform_device *pdev = cqspi->pdev;
1664         struct device *dev = &pdev->dev;
1665         struct cqspi_flash_pdata *f_pdata;
1666         unsigned int cs;
1667         int ret;
1668
1669         /* Get flash device data */
1670         for_each_available_child_of_node_scoped(dev->of_node, np) {
1671                 ret = of_property_read_u32(np, "reg", &cs);
1672                 if (ret) {
1673                         dev_err(dev, "Couldn't determine chip select.\n");
1674                         return ret;
1675                 }
1676
1677                 if (cs >= cqspi->num_chipselect) {
1678                         dev_err(dev, "Chip select %d out of range.\n", cs);
1679                         return -EINVAL;
1680                 } else if (cs < max_cs) {
1681                         max_cs = cs;
1682                 }
1683
1684                 f_pdata = &cqspi->f_pdata[cs];
1685                 f_pdata->cqspi = cqspi;
1686                 f_pdata->cs = cs;
1687
1688                 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1689                 if (ret)
1690                         return ret;
1691         }
1692
1693         cqspi->num_chipselect = max_cs + 1;
1694         return 0;
1695 }
1696
1697 static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1698 {
1699         static struct clk_bulk_data qspiclk[] = {
1700                 { .id = "apb" },
1701                 { .id = "ahb" },
1702         };
1703
1704         int ret = 0;
1705
1706         ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1707         if (ret) {
1708                 dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1709                 return ret;
1710         }
1711
1712         cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1713         cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1714
1715         ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1716         if (ret) {
1717                 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1718                 return ret;
1719         }
1720
1721         ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1722         if (ret) {
1723                 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1724                 goto disable_apb_clk;
1725         }
1726
1727         cqspi->is_jh7110 = true;
1728
1729         return 0;
1730
1731 disable_apb_clk:
1732         clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1733
1734         return ret;
1735 }
1736
1737 static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1738 {
1739         clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1740         clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1741 }
1742 static int cqspi_probe(struct platform_device *pdev)
1743 {
1744         const struct cqspi_driver_platdata *ddata;
1745         struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1746         struct device *dev = &pdev->dev;
1747         struct spi_controller *host;
1748         struct resource *res_ahb;
1749         struct cqspi_st *cqspi;
1750         int ret;
1751         int irq;
1752
1753         host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1754         if (!host)
1755                 return -ENOMEM;
1756
1757         host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1758         host->mem_ops = &cqspi_mem_ops;
1759         host->mem_caps = &cqspi_mem_caps;
1760         host->dev.of_node = pdev->dev.of_node;
1761
1762         cqspi = spi_controller_get_devdata(host);
1763
1764         cqspi->pdev = pdev;
1765         cqspi->host = host;
1766         cqspi->is_jh7110 = false;
1767         cqspi->ddata = ddata = of_device_get_match_data(dev);
1768         platform_set_drvdata(pdev, cqspi);
1769
1770         /* Obtain configuration from OF. */
1771         ret = cqspi_of_get_pdata(cqspi);
1772         if (ret) {
1773                 dev_err(dev, "Cannot get mandatory OF data.\n");
1774                 return -ENODEV;
1775         }
1776
1777         /* Obtain QSPI clock. */
1778         cqspi->clk = devm_clk_get(dev, NULL);
1779         if (IS_ERR(cqspi->clk)) {
1780                 dev_err(dev, "Cannot claim QSPI clock.\n");
1781                 ret = PTR_ERR(cqspi->clk);
1782                 return ret;
1783         }
1784
1785         /* Obtain and remap controller address. */
1786         cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1787         if (IS_ERR(cqspi->iobase)) {
1788                 dev_err(dev, "Cannot remap controller address.\n");
1789                 ret = PTR_ERR(cqspi->iobase);
1790                 return ret;
1791         }
1792
1793         /* Obtain and remap AHB address. */
1794         cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1795         if (IS_ERR(cqspi->ahb_base)) {
1796                 dev_err(dev, "Cannot remap AHB address.\n");
1797                 ret = PTR_ERR(cqspi->ahb_base);
1798                 return ret;
1799         }
1800         cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1801         cqspi->ahb_size = resource_size(res_ahb);
1802
1803         init_completion(&cqspi->transfer_complete);
1804
1805         /* Obtain IRQ line. */
1806         irq = platform_get_irq(pdev, 0);
1807         if (irq < 0)
1808                 return -ENXIO;
1809
1810         ret = pm_runtime_set_active(dev);
1811         if (ret)
1812                 return ret;
1813
1814
1815         ret = clk_prepare_enable(cqspi->clk);
1816         if (ret) {
1817                 dev_err(dev, "Cannot enable QSPI clock.\n");
1818                 goto probe_clk_failed;
1819         }
1820
1821         /* Obtain QSPI reset control */
1822         rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1823         if (IS_ERR(rstc)) {
1824                 ret = PTR_ERR(rstc);
1825                 dev_err(dev, "Cannot get QSPI reset.\n");
1826                 goto probe_reset_failed;
1827         }
1828
1829         rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1830         if (IS_ERR(rstc_ocp)) {
1831                 ret = PTR_ERR(rstc_ocp);
1832                 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1833                 goto probe_reset_failed;
1834         }
1835
1836         if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1837                 rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1838                 if (IS_ERR(rstc_ref)) {
1839                         ret = PTR_ERR(rstc_ref);
1840                         dev_err(dev, "Cannot get QSPI REF reset.\n");
1841                         goto probe_reset_failed;
1842                 }
1843                 reset_control_assert(rstc_ref);
1844                 reset_control_deassert(rstc_ref);
1845         }
1846
1847         reset_control_assert(rstc);
1848         reset_control_deassert(rstc);
1849
1850         reset_control_assert(rstc_ocp);
1851         reset_control_deassert(rstc_ocp);
1852
1853         cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1854         host->max_speed_hz = cqspi->master_ref_clk_hz;
1855
1856         /* write completion is supported by default */
1857         cqspi->wr_completion = true;
1858
1859         if (ddata) {
1860                 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1861                         cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1862                                                 cqspi->master_ref_clk_hz);
1863                 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1864                         host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1865                 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1866                         cqspi->use_direct_mode = true;
1867                         cqspi->use_direct_mode_wr = true;
1868                 }
1869                 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1870                         cqspi->use_dma_read = true;
1871                 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1872                         cqspi->wr_completion = false;
1873                 if (ddata->quirks & CQSPI_SLOW_SRAM)
1874                         cqspi->slow_sram = true;
1875                 if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1876                         cqspi->apb_ahb_hazard = true;
1877
1878                 if (ddata->jh7110_clk_init) {
1879                         ret = cqspi_jh7110_clk_init(pdev, cqspi);
1880                         if (ret)
1881                                 goto probe_reset_failed;
1882                 }
1883
1884                 if (of_device_is_compatible(pdev->dev.of_node,
1885                                             "xlnx,versal-ospi-1.0")) {
1886                         ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1887                         if (ret)
1888                                 goto probe_reset_failed;
1889                 }
1890         }
1891
1892         ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1893                                pdev->name, cqspi);
1894         if (ret) {
1895                 dev_err(dev, "Cannot request IRQ.\n");
1896                 goto probe_reset_failed;
1897         }
1898
1899         cqspi_wait_idle(cqspi);
1900         cqspi_controller_enable(cqspi, 0);
1901         cqspi_controller_detect_fifo_depth(cqspi);
1902         cqspi_controller_init(cqspi);
1903         cqspi_controller_enable(cqspi, 1);
1904         cqspi->current_cs = -1;
1905         cqspi->sclk = 0;
1906
1907         ret = cqspi_setup_flash(cqspi);
1908         if (ret) {
1909                 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1910                 goto probe_setup_failed;
1911         }
1912
1913         host->num_chipselect = cqspi->num_chipselect;
1914
1915         if (cqspi->use_direct_mode) {
1916                 ret = cqspi_request_mmap_dma(cqspi);
1917                 if (ret == -EPROBE_DEFER)
1918                         goto probe_setup_failed;
1919         }
1920
1921         ret = devm_pm_runtime_enable(dev);
1922         if (ret) {
1923                 if (cqspi->rx_chan)
1924                         dma_release_channel(cqspi->rx_chan);
1925                 goto probe_setup_failed;
1926         }
1927
1928         pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1929         pm_runtime_use_autosuspend(dev);
1930         pm_runtime_get_noresume(dev);
1931
1932         ret = spi_register_controller(host);
1933         if (ret) {
1934                 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1935                 goto probe_setup_failed;
1936         }
1937
1938         pm_runtime_mark_last_busy(dev);
1939         pm_runtime_put_autosuspend(dev);
1940
1941         return 0;
1942 probe_setup_failed:
1943         cqspi_controller_enable(cqspi, 0);
1944 probe_reset_failed:
1945         if (cqspi->is_jh7110)
1946                 cqspi_jh7110_disable_clk(pdev, cqspi);
1947         clk_disable_unprepare(cqspi->clk);
1948 probe_clk_failed:
1949         return ret;
1950 }
1951
1952 static void cqspi_remove(struct platform_device *pdev)
1953 {
1954         struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1955
1956         spi_unregister_controller(cqspi->host);
1957         cqspi_controller_enable(cqspi, 0);
1958
1959         if (cqspi->rx_chan)
1960                 dma_release_channel(cqspi->rx_chan);
1961
1962         clk_disable_unprepare(cqspi->clk);
1963
1964         if (cqspi->is_jh7110)
1965                 cqspi_jh7110_disable_clk(pdev, cqspi);
1966
1967         pm_runtime_put_sync(&pdev->dev);
1968         pm_runtime_disable(&pdev->dev);
1969 }
1970
1971 static int cqspi_runtime_suspend(struct device *dev)
1972 {
1973         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1974
1975         cqspi_controller_enable(cqspi, 0);
1976         clk_disable_unprepare(cqspi->clk);
1977         return 0;
1978 }
1979
1980 static int cqspi_runtime_resume(struct device *dev)
1981 {
1982         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1983
1984         clk_prepare_enable(cqspi->clk);
1985         cqspi_wait_idle(cqspi);
1986         cqspi_controller_enable(cqspi, 0);
1987         cqspi_controller_init(cqspi);
1988         cqspi_controller_enable(cqspi, 1);
1989
1990         cqspi->current_cs = -1;
1991         cqspi->sclk = 0;
1992         return 0;
1993 }
1994
1995 static int cqspi_suspend(struct device *dev)
1996 {
1997         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1998         int ret;
1999
2000         ret = spi_controller_suspend(cqspi->host);
2001         if (ret)
2002                 return ret;
2003
2004         return pm_runtime_force_suspend(dev);
2005 }
2006
2007 static int cqspi_resume(struct device *dev)
2008 {
2009         struct cqspi_st *cqspi = dev_get_drvdata(dev);
2010         int ret;
2011
2012         ret = pm_runtime_force_resume(dev);
2013         if (ret) {
2014                 dev_err(dev, "pm_runtime_force_resume failed on resume\n");
2015                 return ret;
2016         }
2017
2018         return spi_controller_resume(cqspi->host);
2019 }
2020
2021 static const struct dev_pm_ops cqspi_dev_pm_ops = {
2022         RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
2023         SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
2024 };
2025
2026 static const struct cqspi_driver_platdata cdns_qspi = {
2027         .quirks = CQSPI_DISABLE_DAC_MODE,
2028 };
2029
2030 static const struct cqspi_driver_platdata k2g_qspi = {
2031         .quirks = CQSPI_NEEDS_WR_DELAY,
2032 };
2033
2034 static const struct cqspi_driver_platdata am654_ospi = {
2035         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2036         .quirks = CQSPI_NEEDS_WR_DELAY,
2037 };
2038
2039 static const struct cqspi_driver_platdata intel_lgm_qspi = {
2040         .quirks = CQSPI_DISABLE_DAC_MODE,
2041 };
2042
2043 static const struct cqspi_driver_platdata socfpga_qspi = {
2044         .quirks = CQSPI_DISABLE_DAC_MODE
2045                         | CQSPI_NO_SUPPORT_WR_COMPLETION
2046                         | CQSPI_SLOW_SRAM,
2047 };
2048
2049 static const struct cqspi_driver_platdata versal_ospi = {
2050         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2051         .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
2052         .indirect_read_dma = cqspi_versal_indirect_read_dma,
2053         .get_dma_status = cqspi_get_versal_dma_status,
2054 };
2055
2056 static const struct cqspi_driver_platdata jh7110_qspi = {
2057         .quirks = CQSPI_DISABLE_DAC_MODE,
2058         .jh7110_clk_init = cqspi_jh7110_clk_init,
2059 };
2060
2061 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2062         .quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2063 };
2064
2065 static const struct cqspi_driver_platdata mobileye_eyeq5_ospi = {
2066         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2067         .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_NO_SUPPORT_WR_COMPLETION |
2068                         CQSPI_RD_NO_IRQ,
2069 };
2070
2071 static const struct of_device_id cqspi_dt_ids[] = {
2072         {
2073                 .compatible = "cdns,qspi-nor",
2074                 .data = &cdns_qspi,
2075         },
2076         {
2077                 .compatible = "ti,k2g-qspi",
2078                 .data = &k2g_qspi,
2079         },
2080         {
2081                 .compatible = "ti,am654-ospi",
2082                 .data = &am654_ospi,
2083         },
2084         {
2085                 .compatible = "intel,lgm-qspi",
2086                 .data = &intel_lgm_qspi,
2087         },
2088         {
2089                 .compatible = "xlnx,versal-ospi-1.0",
2090                 .data = &versal_ospi,
2091         },
2092         {
2093                 .compatible = "intel,socfpga-qspi",
2094                 .data = &socfpga_qspi,
2095         },
2096         {
2097                 .compatible = "starfive,jh7110-qspi",
2098                 .data = &jh7110_qspi,
2099         },
2100         {
2101                 .compatible = "amd,pensando-elba-qspi",
2102                 .data = &pensando_cdns_qspi,
2103         },
2104         {
2105                 .compatible = "mobileye,eyeq5-ospi",
2106                 .data = &mobileye_eyeq5_ospi,
2107         },
2108         { /* end of table */ }
2109 };
2110
2111 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2112
2113 static struct platform_driver cqspi_platform_driver = {
2114         .probe = cqspi_probe,
2115         .remove_new = cqspi_remove,
2116         .driver = {
2117                 .name = CQSPI_NAME,
2118                 .pm = pm_ptr(&cqspi_dev_pm_ops),
2119                 .of_match_table = cqspi_dt_ids,
2120         },
2121 };
2122
2123 module_platform_driver(cqspi_platform_driver);
2124
2125 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2126 MODULE_LICENSE("GPL v2");
2127 MODULE_ALIAS("platform:" CQSPI_NAME);
2128 MODULE_AUTHOR("Ley Foon Tan <[email protected]>");
2129 MODULE_AUTHOR("Graham Moore <[email protected]>");
2130 MODULE_AUTHOR("Vadivel Murugan R <[email protected]>");
2131 MODULE_AUTHOR("Vignesh Raghavendra <[email protected]>");
2132 MODULE_AUTHOR("Pratyush Yadav <[email protected]>");
This page took 0.16441 seconds and 4 git commands to generate.