]> Git Repo - J-linux.git/blob - drivers/pwm/pwm-stm32.c
Merge tag 'pinctrl-v6.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[J-linux.git] / drivers / pwm / pwm-stm32.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2016
4  *
5  * Author: Gerald Baeza <[email protected]>
6  *
7  * Inspired by timer-stm32.c from Maxime Coquelin
8  *             pwm-atmel.c from Bo Shen
9  */
10
11 #include <linux/bitfield.h>
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/pinctrl/consumer.h>
16 #include <linux/platform_device.h>
17 #include <linux/pwm.h>
18
19 #define CCMR_CHANNEL_SHIFT 8
20 #define CCMR_CHANNEL_MASK  0xFF
21 #define MAX_BREAKINPUT 2
22
23 struct stm32_breakinput {
24         u32 index;
25         u32 level;
26         u32 filter;
27 };
28
29 struct stm32_pwm {
30         struct mutex lock; /* protect pwm config/enable */
31         struct clk *clk;
32         struct regmap *regmap;
33         u32 max_arr;
34         bool have_complementary_output;
35         struct stm32_breakinput breakinputs[MAX_BREAKINPUT];
36         unsigned int num_breakinputs;
37         u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
38 };
39
40 static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
41 {
42         return pwmchip_get_drvdata(chip);
43 }
44
45 static u32 active_channels(struct stm32_pwm *dev)
46 {
47         u32 ccer;
48
49         regmap_read(dev->regmap, TIM_CCER, &ccer);
50
51         return ccer & TIM_CCER_CCXE;
52 }
53
54 #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
55 #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
56 #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
57 #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
58
59 /*
60  * Capture using PWM input mode:
61  *                              ___          ___
62  * TI[1, 2, 3 or 4]: ........._|   |________|
63  *                             ^0  ^1       ^2
64  *                              .   .        .
65  *                              .   .        XXXXX
66  *                              .   .   XXXXX     |
67  *                              .  XXXXX     .    |
68  *                            XXXXX .        .    |
69  * COUNTER:        ______XXXXX  .   .        .    |_XXX
70  *                 start^       .   .        .        ^stop
71  *                      .       .   .        .
72  *                      v       v   .        v
73  *                                  v
74  * CCR1/CCR3:       tx..........t0...........t2
75  * CCR2/CCR4:       tx..............t1.........
76  *
77  * DMA burst transfer:          |            |
78  *                              v            v
79  * DMA buffer:                  { t0, tx }   { t2, t1 }
80  * DMA done:                                 ^
81  *
82  * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
83  *    + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
84  * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
85  * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
86  *    + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
87  *
88  * DMA done, compute:
89  * - Period     = t2 - t0
90  * - Duty cycle = t1 - t0
91  */
92 static int stm32_pwm_raw_capture(struct pwm_chip *chip, struct pwm_device *pwm,
93                                  unsigned long tmo_ms, u32 *raw_prd,
94                                  u32 *raw_dty)
95 {
96         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
97         struct device *parent = pwmchip_parent(chip)->parent;
98         enum stm32_timers_dmas dma_id;
99         u32 ccen, ccr;
100         int ret;
101
102         /* Ensure registers have been updated, enable counter and capture */
103         regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
104         regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
105
106         /* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
107         dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
108         ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
109         ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
110         regmap_set_bits(priv->regmap, TIM_CCER, ccen);
111
112         /*
113          * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
114          * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
115          * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
116          * or { CCR3, CCR4 }, { CCR3, CCR4 }
117          */
118         ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
119                                           2, tmo_ms);
120         if (ret)
121                 goto stop;
122
123         /* Period: t2 - t0 (take care of counter overflow) */
124         if (priv->capture[0] <= priv->capture[2])
125                 *raw_prd = priv->capture[2] - priv->capture[0];
126         else
127                 *raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
128
129         /* Duty cycle capture requires at least two capture units */
130         if (pwm->chip->npwm < 2)
131                 *raw_dty = 0;
132         else if (priv->capture[0] <= priv->capture[3])
133                 *raw_dty = priv->capture[3] - priv->capture[0];
134         else
135                 *raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
136
137         if (*raw_dty > *raw_prd) {
138                 /*
139                  * Race beetween PWM input and DMA: it may happen
140                  * falling edge triggers new capture on TI2/4 before DMA
141                  * had a chance to read CCR2/4. It means capture[1]
142                  * contains period + duty_cycle. So, subtract period.
143                  */
144                 *raw_dty -= *raw_prd;
145         }
146
147 stop:
148         regmap_clear_bits(priv->regmap, TIM_CCER, ccen);
149         regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
150
151         return ret;
152 }
153
154 static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
155                              struct pwm_capture *result, unsigned long tmo_ms)
156 {
157         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
158         unsigned long long prd, div, dty;
159         unsigned long rate;
160         unsigned int psc = 0, icpsc, scale;
161         u32 raw_prd = 0, raw_dty = 0;
162         int ret = 0;
163
164         mutex_lock(&priv->lock);
165
166         if (active_channels(priv)) {
167                 ret = -EBUSY;
168                 goto unlock;
169         }
170
171         ret = clk_enable(priv->clk);
172         if (ret) {
173                 dev_err(pwmchip_parent(chip), "failed to enable counter clock\n");
174                 goto unlock;
175         }
176
177         rate = clk_get_rate(priv->clk);
178         if (!rate) {
179                 ret = -EINVAL;
180                 goto clk_dis;
181         }
182
183         /* prescaler: fit timeout window provided by upper layer */
184         div = (unsigned long long)rate * (unsigned long long)tmo_ms;
185         do_div(div, MSEC_PER_SEC);
186         prd = div;
187         while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
188                 psc++;
189                 div = prd;
190                 do_div(div, psc + 1);
191         }
192         regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
193         regmap_write(priv->regmap, TIM_PSC, psc);
194
195         /* Reset input selector to its default input and disable slave mode */
196         regmap_write(priv->regmap, TIM_TISEL, 0x0);
197         regmap_write(priv->regmap, TIM_SMCR, 0x0);
198
199         /* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
200         regmap_update_bits(priv->regmap,
201                            pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
202                            TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
203                            TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
204                            TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
205
206         /* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
207         regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
208                            TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
209                            TIM_CCER_CC2P : TIM_CCER_CC4P);
210
211         ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty);
212         if (ret)
213                 goto stop;
214
215         /*
216          * Got a capture. Try to improve accuracy at high rates:
217          * - decrease counter clock prescaler, scale up to max rate.
218          * - use input prescaler, capture once every /2 /4 or /8 edges.
219          */
220         if (raw_prd) {
221                 u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
222
223                 scale = max_arr / min(max_arr, raw_prd);
224         } else {
225                 scale = priv->max_arr; /* bellow resolution, use max scale */
226         }
227
228         if (psc && scale > 1) {
229                 /* 2nd measure with new scale */
230                 psc /= scale;
231                 regmap_write(priv->regmap, TIM_PSC, psc);
232                 ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd,
233                                             &raw_dty);
234                 if (ret)
235                         goto stop;
236         }
237
238         /* Compute intermediate period not to exceed timeout at low rates */
239         prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
240         do_div(prd, rate);
241
242         for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
243                 /* input prescaler: also keep arbitrary margin */
244                 if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
245                         break;
246                 if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
247                         break;
248         }
249
250         if (!icpsc)
251                 goto done;
252
253         /* Last chance to improve period accuracy, using input prescaler */
254         regmap_update_bits(priv->regmap,
255                            pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
256                            TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
257                            FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
258                            FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));
259
260         ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty);
261         if (ret)
262                 goto stop;
263
264         if (raw_dty >= (raw_prd >> icpsc)) {
265                 /*
266                  * We may fall here using input prescaler, when input
267                  * capture starts on high side (before falling edge).
268                  * Example with icpsc to capture on each 4 events:
269                  *
270                  *       start   1st capture                     2nd capture
271                  *         v     v                               v
272                  *         ___   _____   _____   _____   _____   ____
273                  * TI1..4     |__|    |__|    |__|    |__|    |__|
274                  *            v  v    .  .    .  .    .       v  v
275                  * icpsc1/3:  .  0    .  1    .  2    .  3    .  0
276                  * icpsc2/4:  0       1       2       3       0
277                  *            v  v                            v  v
278                  * CCR1/3  ......t0..............................t2
279                  * CCR2/4  ..t1..............................t1'...
280                  *               .                            .  .
281                  * Capture0:     .<----------------------------->.
282                  * Capture1:     .<-------------------------->.  .
283                  *               .                            .  .
284                  * Period:       .<------>                    .  .
285                  * Low side:                                  .<>.
286                  *
287                  * Result:
288                  * - Period = Capture0 / icpsc
289                  * - Duty = Period - Low side = Period - (Capture0 - Capture1)
290                  */
291                 raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
292         }
293
294 done:
295         prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
296         result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
297         dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
298         result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
299 stop:
300         regmap_write(priv->regmap, TIM_CCER, 0);
301         regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
302         regmap_write(priv->regmap, TIM_PSC, 0);
303 clk_dis:
304         clk_disable(priv->clk);
305 unlock:
306         mutex_unlock(&priv->lock);
307
308         return ret;
309 }
310
311 static int stm32_pwm_config(struct stm32_pwm *priv, unsigned int ch,
312                             u64 duty_ns, u64 period_ns)
313 {
314         unsigned long long prd, dty;
315         unsigned long long prescaler;
316         u32 ccmr, mask, shift;
317
318         /*
319          * .probe() asserted that clk_get_rate() is not bigger than 1 GHz, so
320          * the calculations here won't overflow.
321          * First we need to find the minimal value for prescaler such that
322          *
323          *        period_ns * clkrate
324          *   ------------------------------
325          *   NSEC_PER_SEC * (prescaler + 1)
326          *
327          * isn't bigger than max_arr.
328          */
329
330         prescaler = mul_u64_u64_div_u64(period_ns, clk_get_rate(priv->clk),
331                                         (u64)NSEC_PER_SEC * priv->max_arr);
332         if (prescaler > 0)
333                 prescaler -= 1;
334
335         if (prescaler > MAX_TIM_PSC)
336                 return -EINVAL;
337
338         prd = mul_u64_u64_div_u64(period_ns, clk_get_rate(priv->clk),
339                                   (u64)NSEC_PER_SEC * (prescaler + 1));
340
341         /*
342          * All channels share the same prescaler and counter so when two
343          * channels are active at the same time we can't change them
344          */
345         if (active_channels(priv) & ~(1 << ch * 4)) {
346                 u32 psc, arr;
347
348                 regmap_read(priv->regmap, TIM_PSC, &psc);
349                 regmap_read(priv->regmap, TIM_ARR, &arr);
350
351                 if ((psc != prescaler) || (arr != prd - 1))
352                         return -EBUSY;
353         }
354
355         regmap_write(priv->regmap, TIM_PSC, prescaler);
356         regmap_write(priv->regmap, TIM_ARR, prd - 1);
357         regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE);
358
359         /* Calculate the duty cycles */
360         dty = mul_u64_u64_div_u64(duty_ns, clk_get_rate(priv->clk),
361                                   (u64)NSEC_PER_SEC * (prescaler + 1));
362
363         regmap_write(priv->regmap, TIM_CCR1 + 4 * ch, dty);
364
365         /* Configure output mode */
366         shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
367         ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
368         mask = CCMR_CHANNEL_MASK << shift;
369
370         if (ch < 2)
371                 regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
372         else
373                 regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
374
375         regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE);
376
377         return 0;
378 }
379
380 static int stm32_pwm_set_polarity(struct stm32_pwm *priv, unsigned int ch,
381                                   enum pwm_polarity polarity)
382 {
383         u32 mask;
384
385         mask = TIM_CCER_CC1P << (ch * 4);
386         if (priv->have_complementary_output)
387                 mask |= TIM_CCER_CC1NP << (ch * 4);
388
389         regmap_update_bits(priv->regmap, TIM_CCER, mask,
390                            polarity == PWM_POLARITY_NORMAL ? 0 : mask);
391
392         return 0;
393 }
394
395 static int stm32_pwm_enable(struct stm32_pwm *priv, unsigned int ch)
396 {
397         u32 mask;
398         int ret;
399
400         ret = clk_enable(priv->clk);
401         if (ret)
402                 return ret;
403
404         /* Enable channel */
405         mask = TIM_CCER_CC1E << (ch * 4);
406         if (priv->have_complementary_output)
407                 mask |= TIM_CCER_CC1NE << (ch * 4);
408
409         regmap_set_bits(priv->regmap, TIM_CCER, mask);
410
411         /* Make sure that registers are updated */
412         regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
413
414         /* Enable controller */
415         regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
416
417         return 0;
418 }
419
420 static void stm32_pwm_disable(struct stm32_pwm *priv, unsigned int ch)
421 {
422         u32 mask;
423
424         /* Disable channel */
425         mask = TIM_CCER_CC1E << (ch * 4);
426         if (priv->have_complementary_output)
427                 mask |= TIM_CCER_CC1NE << (ch * 4);
428
429         regmap_clear_bits(priv->regmap, TIM_CCER, mask);
430
431         /* When all channels are disabled, we can disable the controller */
432         if (!active_channels(priv))
433                 regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
434
435         clk_disable(priv->clk);
436 }
437
438 static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
439                            const struct pwm_state *state)
440 {
441         bool enabled;
442         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
443         int ret;
444
445         enabled = pwm->state.enabled;
446
447         if (enabled && !state->enabled) {
448                 stm32_pwm_disable(priv, pwm->hwpwm);
449                 return 0;
450         }
451
452         if (state->polarity != pwm->state.polarity)
453                 stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
454
455         ret = stm32_pwm_config(priv, pwm->hwpwm,
456                                state->duty_cycle, state->period);
457         if (ret)
458                 return ret;
459
460         if (!enabled && state->enabled)
461                 ret = stm32_pwm_enable(priv, pwm->hwpwm);
462
463         return ret;
464 }
465
466 static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
467                                   const struct pwm_state *state)
468 {
469         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
470         int ret;
471
472         /* protect common prescaler for all active channels */
473         mutex_lock(&priv->lock);
474         ret = stm32_pwm_apply(chip, pwm, state);
475         mutex_unlock(&priv->lock);
476
477         return ret;
478 }
479
480 static int stm32_pwm_get_state(struct pwm_chip *chip,
481                                struct pwm_device *pwm, struct pwm_state *state)
482 {
483         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
484         int ch = pwm->hwpwm;
485         unsigned long rate;
486         u32 ccer, psc, arr, ccr;
487         u64 dty, prd;
488         int ret;
489
490         mutex_lock(&priv->lock);
491
492         ret = regmap_read(priv->regmap, TIM_CCER, &ccer);
493         if (ret)
494                 goto out;
495
496         state->enabled = ccer & (TIM_CCER_CC1E << (ch * 4));
497         state->polarity = (ccer & (TIM_CCER_CC1P << (ch * 4))) ?
498                           PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;
499         ret = regmap_read(priv->regmap, TIM_PSC, &psc);
500         if (ret)
501                 goto out;
502         ret = regmap_read(priv->regmap, TIM_ARR, &arr);
503         if (ret)
504                 goto out;
505         ret = regmap_read(priv->regmap, TIM_CCR1 + 4 * ch, &ccr);
506         if (ret)
507                 goto out;
508
509         rate = clk_get_rate(priv->clk);
510
511         prd = (u64)NSEC_PER_SEC * (psc + 1) * (arr + 1);
512         state->period = DIV_ROUND_UP_ULL(prd, rate);
513         dty = (u64)NSEC_PER_SEC * (psc + 1) * ccr;
514         state->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
515
516 out:
517         mutex_unlock(&priv->lock);
518         return ret;
519 }
520
521 static const struct pwm_ops stm32pwm_ops = {
522         .apply = stm32_pwm_apply_locked,
523         .get_state = stm32_pwm_get_state,
524         .capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
525 };
526
527 static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
528                                     const struct stm32_breakinput *bi)
529 {
530         u32 shift = TIM_BDTR_BKF_SHIFT(bi->index);
531         u32 bke = TIM_BDTR_BKE(bi->index);
532         u32 bkp = TIM_BDTR_BKP(bi->index);
533         u32 bkf = TIM_BDTR_BKF(bi->index);
534         u32 mask = bkf | bkp | bke;
535         u32 bdtr;
536
537         bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke;
538
539         if (bi->level)
540                 bdtr |= bkp;
541
542         regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
543
544         regmap_read(priv->regmap, TIM_BDTR, &bdtr);
545
546         return (bdtr & bke) ? 0 : -EINVAL;
547 }
548
549 static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv)
550 {
551         unsigned int i;
552         int ret;
553
554         for (i = 0; i < priv->num_breakinputs; i++) {
555                 ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]);
556                 if (ret < 0)
557                         return ret;
558         }
559
560         return 0;
561 }
562
563 static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv,
564                                        struct device_node *np)
565 {
566         int nb, ret, array_size;
567         unsigned int i;
568
569         nb = of_property_count_elems_of_size(np, "st,breakinput",
570                                              sizeof(struct stm32_breakinput));
571
572         /*
573          * Because "st,breakinput" parameter is optional do not make probe
574          * failed if it doesn't exist.
575          */
576         if (nb <= 0)
577                 return 0;
578
579         if (nb > MAX_BREAKINPUT)
580                 return -EINVAL;
581
582         priv->num_breakinputs = nb;
583         array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
584         ret = of_property_read_u32_array(np, "st,breakinput",
585                                          (u32 *)priv->breakinputs, array_size);
586         if (ret)
587                 return ret;
588
589         for (i = 0; i < priv->num_breakinputs; i++) {
590                 if (priv->breakinputs[i].index > 1 ||
591                     priv->breakinputs[i].level > 1 ||
592                     priv->breakinputs[i].filter > 15)
593                         return -EINVAL;
594         }
595
596         return stm32_pwm_apply_breakinputs(priv);
597 }
598
599 static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
600 {
601         u32 ccer;
602
603         /*
604          * If complementary bit doesn't exist writing 1 will have no
605          * effect so we can detect it.
606          */
607         regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
608         regmap_read(priv->regmap, TIM_CCER, &ccer);
609         regmap_clear_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
610
611         priv->have_complementary_output = (ccer != 0);
612 }
613
614 static unsigned int stm32_pwm_detect_channels(struct regmap *regmap,
615                                               unsigned int *num_enabled)
616 {
617         u32 ccer, ccer_backup;
618
619         /*
620          * If channels enable bits don't exist writing 1 will have no
621          * effect so we can detect and count them.
622          */
623         regmap_read(regmap, TIM_CCER, &ccer_backup);
624         regmap_set_bits(regmap, TIM_CCER, TIM_CCER_CCXE);
625         regmap_read(regmap, TIM_CCER, &ccer);
626         regmap_write(regmap, TIM_CCER, ccer_backup);
627
628         *num_enabled = hweight32(ccer_backup & TIM_CCER_CCXE);
629
630         return hweight32(ccer & TIM_CCER_CCXE);
631 }
632
633 static int stm32_pwm_probe(struct platform_device *pdev)
634 {
635         struct device *dev = &pdev->dev;
636         struct device_node *np = dev->of_node;
637         struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
638         struct pwm_chip *chip;
639         struct stm32_pwm *priv;
640         unsigned int npwm, num_enabled;
641         unsigned int i;
642         int ret;
643
644         npwm = stm32_pwm_detect_channels(ddata->regmap, &num_enabled);
645
646         chip = devm_pwmchip_alloc(dev, npwm, sizeof(*priv));
647         if (IS_ERR(chip))
648                 return PTR_ERR(chip);
649         priv = to_stm32_pwm_dev(chip);
650
651         mutex_init(&priv->lock);
652         priv->regmap = ddata->regmap;
653         priv->clk = ddata->clk;
654         priv->max_arr = ddata->max_arr;
655
656         if (!priv->regmap || !priv->clk)
657                 return dev_err_probe(dev, -EINVAL, "Failed to get %s\n",
658                                      priv->regmap ? "clk" : "regmap");
659
660         ret = stm32_pwm_probe_breakinputs(priv, np);
661         if (ret)
662                 return dev_err_probe(dev, ret,
663                                      "Failed to configure breakinputs\n");
664
665         stm32_pwm_detect_complementary(priv);
666
667         ret = devm_clk_rate_exclusive_get(dev, priv->clk);
668         if (ret)
669                 return dev_err_probe(dev, ret, "Failed to lock clock\n");
670
671         /*
672          * With the clk running with not more than 1 GHz the calculations in
673          * .apply() won't overflow.
674          */
675         if (clk_get_rate(priv->clk) > 1000000000)
676                 return dev_err_probe(dev, -EINVAL, "Failed to lock clock\n");
677
678         chip->ops = &stm32pwm_ops;
679
680         /* Initialize clock refcount to number of enabled PWM channels. */
681         for (i = 0; i < num_enabled; i++)
682                 clk_enable(priv->clk);
683
684         ret = devm_pwmchip_add(dev, chip);
685         if (ret < 0)
686                 return dev_err_probe(dev, ret,
687                                      "Failed to register pwmchip\n");
688
689         platform_set_drvdata(pdev, chip);
690
691         return 0;
692 }
693
694 static int stm32_pwm_suspend(struct device *dev)
695 {
696         struct pwm_chip *chip = dev_get_drvdata(dev);
697         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
698         unsigned int i;
699         u32 ccer, mask;
700
701         /* Look for active channels */
702         ccer = active_channels(priv);
703
704         for (i = 0; i < chip->npwm; i++) {
705                 mask = TIM_CCER_CC1E << (i * 4);
706                 if (ccer & mask) {
707                         dev_err(dev, "PWM %u still in use by consumer %s\n",
708                                 i, chip->pwms[i].label);
709                         return -EBUSY;
710                 }
711         }
712
713         return pinctrl_pm_select_sleep_state(dev);
714 }
715
716 static int stm32_pwm_resume(struct device *dev)
717 {
718         struct pwm_chip *chip = dev_get_drvdata(dev);
719         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
720         int ret;
721
722         ret = pinctrl_pm_select_default_state(dev);
723         if (ret)
724                 return ret;
725
726         /* restore breakinput registers that may have been lost in low power */
727         return stm32_pwm_apply_breakinputs(priv);
728 }
729
730 static DEFINE_SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume);
731
732 static const struct of_device_id stm32_pwm_of_match[] = {
733         { .compatible = "st,stm32-pwm", },
734         { /* end node */ },
735 };
736 MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
737
738 static struct platform_driver stm32_pwm_driver = {
739         .probe  = stm32_pwm_probe,
740         .driver = {
741                 .name = "stm32-pwm",
742                 .of_match_table = stm32_pwm_of_match,
743                 .pm = pm_ptr(&stm32_pwm_pm_ops),
744         },
745 };
746 module_platform_driver(stm32_pwm_driver);
747
748 MODULE_ALIAS("platform:stm32-pwm");
749 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
750 MODULE_LICENSE("GPL v2");
This page took 0.071981 seconds and 4 git commands to generate.