]> Git Repo - J-linux.git/blob - drivers/gpu/drm/amd/amdkfd/kfd_device.c
drm/amdkfd: Enable GWS based on FW Support
[J-linux.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
32
33 #define MQD_SIZE_ALIGNED 768
34
35 /*
36  * kfd_locked is used to lock the kfd driver during suspend or reset
37  * once locked, kfd driver will stop any further GPU execution.
38  * create process (open) will return -EAGAIN.
39  */
40 static atomic_t kfd_locked = ATOMIC_INIT(0);
41
42 #ifdef CONFIG_DRM_AMDGPU_CIK
43 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
44 #endif
45 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
46 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
47 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
48 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
49
50 static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
51 #ifdef KFD_SUPPORT_IOMMU_V2
52 #ifdef CONFIG_DRM_AMDGPU_CIK
53         [CHIP_KAVERI] = &gfx_v7_kfd2kgd,
54 #endif
55         [CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
56         [CHIP_RAVEN] = &gfx_v9_kfd2kgd,
57 #endif
58 #ifdef CONFIG_DRM_AMDGPU_CIK
59         [CHIP_HAWAII] = &gfx_v7_kfd2kgd,
60 #endif
61         [CHIP_TONGA] = &gfx_v8_kfd2kgd,
62         [CHIP_FIJI] = &gfx_v8_kfd2kgd,
63         [CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
64         [CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
65         [CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
66         [CHIP_VEGAM] = &gfx_v8_kfd2kgd,
67         [CHIP_VEGA10] = &gfx_v9_kfd2kgd,
68         [CHIP_VEGA12] = &gfx_v9_kfd2kgd,
69         [CHIP_VEGA20] = &gfx_v9_kfd2kgd,
70         [CHIP_RENOIR] = &gfx_v9_kfd2kgd,
71         [CHIP_ARCTURUS] = &arcturus_kfd2kgd,
72         [CHIP_NAVI10] = &gfx_v10_kfd2kgd,
73         [CHIP_NAVI12] = &gfx_v10_kfd2kgd,
74         [CHIP_NAVI14] = &gfx_v10_kfd2kgd,
75 };
76
77 #ifdef KFD_SUPPORT_IOMMU_V2
78 static const struct kfd_device_info kaveri_device_info = {
79         .asic_family = CHIP_KAVERI,
80         .asic_name = "kaveri",
81         .max_pasid_bits = 16,
82         /* max num of queues for KV.TODO should be a dynamic value */
83         .max_no_of_hqd  = 24,
84         .doorbell_size  = 4,
85         .ih_ring_entry_size = 4 * sizeof(uint32_t),
86         .event_interrupt_class = &event_interrupt_class_cik,
87         .num_of_watch_points = 4,
88         .mqd_size_aligned = MQD_SIZE_ALIGNED,
89         .supports_cwsr = false,
90         .needs_iommu_device = true,
91         .needs_pci_atomics = false,
92         .num_sdma_engines = 2,
93         .num_xgmi_sdma_engines = 0,
94         .num_sdma_queues_per_engine = 2,
95 };
96
97 static const struct kfd_device_info carrizo_device_info = {
98         .asic_family = CHIP_CARRIZO,
99         .asic_name = "carrizo",
100         .max_pasid_bits = 16,
101         /* max num of queues for CZ.TODO should be a dynamic value */
102         .max_no_of_hqd  = 24,
103         .doorbell_size  = 4,
104         .ih_ring_entry_size = 4 * sizeof(uint32_t),
105         .event_interrupt_class = &event_interrupt_class_cik,
106         .num_of_watch_points = 4,
107         .mqd_size_aligned = MQD_SIZE_ALIGNED,
108         .supports_cwsr = true,
109         .needs_iommu_device = true,
110         .needs_pci_atomics = false,
111         .num_sdma_engines = 2,
112         .num_xgmi_sdma_engines = 0,
113         .num_sdma_queues_per_engine = 2,
114 };
115
116 static const struct kfd_device_info raven_device_info = {
117         .asic_family = CHIP_RAVEN,
118         .asic_name = "raven",
119         .max_pasid_bits = 16,
120         .max_no_of_hqd  = 24,
121         .doorbell_size  = 8,
122         .ih_ring_entry_size = 8 * sizeof(uint32_t),
123         .event_interrupt_class = &event_interrupt_class_v9,
124         .num_of_watch_points = 4,
125         .mqd_size_aligned = MQD_SIZE_ALIGNED,
126         .supports_cwsr = true,
127         .needs_iommu_device = true,
128         .needs_pci_atomics = true,
129         .num_sdma_engines = 1,
130         .num_xgmi_sdma_engines = 0,
131         .num_sdma_queues_per_engine = 2,
132 };
133 #endif
134
135 static const struct kfd_device_info hawaii_device_info = {
136         .asic_family = CHIP_HAWAII,
137         .asic_name = "hawaii",
138         .max_pasid_bits = 16,
139         /* max num of queues for KV.TODO should be a dynamic value */
140         .max_no_of_hqd  = 24,
141         .doorbell_size  = 4,
142         .ih_ring_entry_size = 4 * sizeof(uint32_t),
143         .event_interrupt_class = &event_interrupt_class_cik,
144         .num_of_watch_points = 4,
145         .mqd_size_aligned = MQD_SIZE_ALIGNED,
146         .supports_cwsr = false,
147         .needs_iommu_device = false,
148         .needs_pci_atomics = false,
149         .num_sdma_engines = 2,
150         .num_xgmi_sdma_engines = 0,
151         .num_sdma_queues_per_engine = 2,
152 };
153
154 static const struct kfd_device_info tonga_device_info = {
155         .asic_family = CHIP_TONGA,
156         .asic_name = "tonga",
157         .max_pasid_bits = 16,
158         .max_no_of_hqd  = 24,
159         .doorbell_size  = 4,
160         .ih_ring_entry_size = 4 * sizeof(uint32_t),
161         .event_interrupt_class = &event_interrupt_class_cik,
162         .num_of_watch_points = 4,
163         .mqd_size_aligned = MQD_SIZE_ALIGNED,
164         .supports_cwsr = false,
165         .needs_iommu_device = false,
166         .needs_pci_atomics = true,
167         .num_sdma_engines = 2,
168         .num_xgmi_sdma_engines = 0,
169         .num_sdma_queues_per_engine = 2,
170 };
171
172 static const struct kfd_device_info fiji_device_info = {
173         .asic_family = CHIP_FIJI,
174         .asic_name = "fiji",
175         .max_pasid_bits = 16,
176         .max_no_of_hqd  = 24,
177         .doorbell_size  = 4,
178         .ih_ring_entry_size = 4 * sizeof(uint32_t),
179         .event_interrupt_class = &event_interrupt_class_cik,
180         .num_of_watch_points = 4,
181         .mqd_size_aligned = MQD_SIZE_ALIGNED,
182         .supports_cwsr = true,
183         .needs_iommu_device = false,
184         .needs_pci_atomics = true,
185         .num_sdma_engines = 2,
186         .num_xgmi_sdma_engines = 0,
187         .num_sdma_queues_per_engine = 2,
188 };
189
190 static const struct kfd_device_info fiji_vf_device_info = {
191         .asic_family = CHIP_FIJI,
192         .asic_name = "fiji",
193         .max_pasid_bits = 16,
194         .max_no_of_hqd  = 24,
195         .doorbell_size  = 4,
196         .ih_ring_entry_size = 4 * sizeof(uint32_t),
197         .event_interrupt_class = &event_interrupt_class_cik,
198         .num_of_watch_points = 4,
199         .mqd_size_aligned = MQD_SIZE_ALIGNED,
200         .supports_cwsr = true,
201         .needs_iommu_device = false,
202         .needs_pci_atomics = false,
203         .num_sdma_engines = 2,
204         .num_xgmi_sdma_engines = 0,
205         .num_sdma_queues_per_engine = 2,
206 };
207
208
209 static const struct kfd_device_info polaris10_device_info = {
210         .asic_family = CHIP_POLARIS10,
211         .asic_name = "polaris10",
212         .max_pasid_bits = 16,
213         .max_no_of_hqd  = 24,
214         .doorbell_size  = 4,
215         .ih_ring_entry_size = 4 * sizeof(uint32_t),
216         .event_interrupt_class = &event_interrupt_class_cik,
217         .num_of_watch_points = 4,
218         .mqd_size_aligned = MQD_SIZE_ALIGNED,
219         .supports_cwsr = true,
220         .needs_iommu_device = false,
221         .needs_pci_atomics = true,
222         .num_sdma_engines = 2,
223         .num_xgmi_sdma_engines = 0,
224         .num_sdma_queues_per_engine = 2,
225 };
226
227 static const struct kfd_device_info polaris10_vf_device_info = {
228         .asic_family = CHIP_POLARIS10,
229         .asic_name = "polaris10",
230         .max_pasid_bits = 16,
231         .max_no_of_hqd  = 24,
232         .doorbell_size  = 4,
233         .ih_ring_entry_size = 4 * sizeof(uint32_t),
234         .event_interrupt_class = &event_interrupt_class_cik,
235         .num_of_watch_points = 4,
236         .mqd_size_aligned = MQD_SIZE_ALIGNED,
237         .supports_cwsr = true,
238         .needs_iommu_device = false,
239         .needs_pci_atomics = false,
240         .num_sdma_engines = 2,
241         .num_xgmi_sdma_engines = 0,
242         .num_sdma_queues_per_engine = 2,
243 };
244
245 static const struct kfd_device_info polaris11_device_info = {
246         .asic_family = CHIP_POLARIS11,
247         .asic_name = "polaris11",
248         .max_pasid_bits = 16,
249         .max_no_of_hqd  = 24,
250         .doorbell_size  = 4,
251         .ih_ring_entry_size = 4 * sizeof(uint32_t),
252         .event_interrupt_class = &event_interrupt_class_cik,
253         .num_of_watch_points = 4,
254         .mqd_size_aligned = MQD_SIZE_ALIGNED,
255         .supports_cwsr = true,
256         .needs_iommu_device = false,
257         .needs_pci_atomics = true,
258         .num_sdma_engines = 2,
259         .num_xgmi_sdma_engines = 0,
260         .num_sdma_queues_per_engine = 2,
261 };
262
263 static const struct kfd_device_info polaris12_device_info = {
264         .asic_family = CHIP_POLARIS12,
265         .asic_name = "polaris12",
266         .max_pasid_bits = 16,
267         .max_no_of_hqd  = 24,
268         .doorbell_size  = 4,
269         .ih_ring_entry_size = 4 * sizeof(uint32_t),
270         .event_interrupt_class = &event_interrupt_class_cik,
271         .num_of_watch_points = 4,
272         .mqd_size_aligned = MQD_SIZE_ALIGNED,
273         .supports_cwsr = true,
274         .needs_iommu_device = false,
275         .needs_pci_atomics = true,
276         .num_sdma_engines = 2,
277         .num_xgmi_sdma_engines = 0,
278         .num_sdma_queues_per_engine = 2,
279 };
280
281 static const struct kfd_device_info vegam_device_info = {
282         .asic_family = CHIP_VEGAM,
283         .asic_name = "vegam",
284         .max_pasid_bits = 16,
285         .max_no_of_hqd  = 24,
286         .doorbell_size  = 4,
287         .ih_ring_entry_size = 4 * sizeof(uint32_t),
288         .event_interrupt_class = &event_interrupt_class_cik,
289         .num_of_watch_points = 4,
290         .mqd_size_aligned = MQD_SIZE_ALIGNED,
291         .supports_cwsr = true,
292         .needs_iommu_device = false,
293         .needs_pci_atomics = true,
294         .num_sdma_engines = 2,
295         .num_xgmi_sdma_engines = 0,
296         .num_sdma_queues_per_engine = 2,
297 };
298
299 static const struct kfd_device_info vega10_device_info = {
300         .asic_family = CHIP_VEGA10,
301         .asic_name = "vega10",
302         .max_pasid_bits = 16,
303         .max_no_of_hqd  = 24,
304         .doorbell_size  = 8,
305         .ih_ring_entry_size = 8 * sizeof(uint32_t),
306         .event_interrupt_class = &event_interrupt_class_v9,
307         .num_of_watch_points = 4,
308         .mqd_size_aligned = MQD_SIZE_ALIGNED,
309         .supports_cwsr = true,
310         .needs_iommu_device = false,
311         .needs_pci_atomics = false,
312         .num_sdma_engines = 2,
313         .num_xgmi_sdma_engines = 0,
314         .num_sdma_queues_per_engine = 2,
315 };
316
317 static const struct kfd_device_info vega10_vf_device_info = {
318         .asic_family = CHIP_VEGA10,
319         .asic_name = "vega10",
320         .max_pasid_bits = 16,
321         .max_no_of_hqd  = 24,
322         .doorbell_size  = 8,
323         .ih_ring_entry_size = 8 * sizeof(uint32_t),
324         .event_interrupt_class = &event_interrupt_class_v9,
325         .num_of_watch_points = 4,
326         .mqd_size_aligned = MQD_SIZE_ALIGNED,
327         .supports_cwsr = true,
328         .needs_iommu_device = false,
329         .needs_pci_atomics = false,
330         .num_sdma_engines = 2,
331         .num_xgmi_sdma_engines = 0,
332         .num_sdma_queues_per_engine = 2,
333 };
334
335 static const struct kfd_device_info vega12_device_info = {
336         .asic_family = CHIP_VEGA12,
337         .asic_name = "vega12",
338         .max_pasid_bits = 16,
339         .max_no_of_hqd  = 24,
340         .doorbell_size  = 8,
341         .ih_ring_entry_size = 8 * sizeof(uint32_t),
342         .event_interrupt_class = &event_interrupt_class_v9,
343         .num_of_watch_points = 4,
344         .mqd_size_aligned = MQD_SIZE_ALIGNED,
345         .supports_cwsr = true,
346         .needs_iommu_device = false,
347         .needs_pci_atomics = false,
348         .num_sdma_engines = 2,
349         .num_xgmi_sdma_engines = 0,
350         .num_sdma_queues_per_engine = 2,
351 };
352
353 static const struct kfd_device_info vega20_device_info = {
354         .asic_family = CHIP_VEGA20,
355         .asic_name = "vega20",
356         .max_pasid_bits = 16,
357         .max_no_of_hqd  = 24,
358         .doorbell_size  = 8,
359         .ih_ring_entry_size = 8 * sizeof(uint32_t),
360         .event_interrupt_class = &event_interrupt_class_v9,
361         .num_of_watch_points = 4,
362         .mqd_size_aligned = MQD_SIZE_ALIGNED,
363         .supports_cwsr = true,
364         .needs_iommu_device = false,
365         .needs_pci_atomics = false,
366         .num_sdma_engines = 2,
367         .num_xgmi_sdma_engines = 0,
368         .num_sdma_queues_per_engine = 8,
369 };
370
371 static const struct kfd_device_info arcturus_device_info = {
372         .asic_family = CHIP_ARCTURUS,
373         .asic_name = "arcturus",
374         .max_pasid_bits = 16,
375         .max_no_of_hqd  = 24,
376         .doorbell_size  = 8,
377         .ih_ring_entry_size = 8 * sizeof(uint32_t),
378         .event_interrupt_class = &event_interrupt_class_v9,
379         .num_of_watch_points = 4,
380         .mqd_size_aligned = MQD_SIZE_ALIGNED,
381         .supports_cwsr = true,
382         .needs_iommu_device = false,
383         .needs_pci_atomics = false,
384         .num_sdma_engines = 2,
385         .num_xgmi_sdma_engines = 6,
386         .num_sdma_queues_per_engine = 8,
387 };
388
389 static const struct kfd_device_info renoir_device_info = {
390         .asic_family = CHIP_RENOIR,
391         .asic_name = "renoir",
392         .max_pasid_bits = 16,
393         .max_no_of_hqd  = 24,
394         .doorbell_size  = 8,
395         .ih_ring_entry_size = 8 * sizeof(uint32_t),
396         .event_interrupt_class = &event_interrupt_class_v9,
397         .num_of_watch_points = 4,
398         .mqd_size_aligned = MQD_SIZE_ALIGNED,
399         .supports_cwsr = true,
400         .needs_iommu_device = false,
401         .needs_pci_atomics = false,
402         .num_sdma_engines = 1,
403         .num_xgmi_sdma_engines = 0,
404         .num_sdma_queues_per_engine = 2,
405 };
406
407 static const struct kfd_device_info navi10_device_info = {
408         .asic_family = CHIP_NAVI10,
409         .asic_name = "navi10",
410         .max_pasid_bits = 16,
411         .max_no_of_hqd  = 24,
412         .doorbell_size  = 8,
413         .ih_ring_entry_size = 8 * sizeof(uint32_t),
414         .event_interrupt_class = &event_interrupt_class_v9,
415         .num_of_watch_points = 4,
416         .mqd_size_aligned = MQD_SIZE_ALIGNED,
417         .needs_iommu_device = false,
418         .supports_cwsr = true,
419         .needs_pci_atomics = false,
420         .num_sdma_engines = 2,
421         .num_xgmi_sdma_engines = 0,
422         .num_sdma_queues_per_engine = 8,
423 };
424
425 static const struct kfd_device_info navi12_device_info = {
426         .asic_family = CHIP_NAVI12,
427         .asic_name = "navi12",
428         .max_pasid_bits = 16,
429         .max_no_of_hqd  = 24,
430         .doorbell_size  = 8,
431         .ih_ring_entry_size = 8 * sizeof(uint32_t),
432         .event_interrupt_class = &event_interrupt_class_v9,
433         .num_of_watch_points = 4,
434         .mqd_size_aligned = MQD_SIZE_ALIGNED,
435         .needs_iommu_device = false,
436         .supports_cwsr = true,
437         .needs_pci_atomics = false,
438         .num_sdma_engines = 2,
439         .num_xgmi_sdma_engines = 0,
440         .num_sdma_queues_per_engine = 8,
441 };
442
443 static const struct kfd_device_info navi14_device_info = {
444         .asic_family = CHIP_NAVI14,
445         .asic_name = "navi14",
446         .max_pasid_bits = 16,
447         .max_no_of_hqd  = 24,
448         .doorbell_size  = 8,
449         .ih_ring_entry_size = 8 * sizeof(uint32_t),
450         .event_interrupt_class = &event_interrupt_class_v9,
451         .num_of_watch_points = 4,
452         .mqd_size_aligned = MQD_SIZE_ALIGNED,
453         .needs_iommu_device = false,
454         .supports_cwsr = true,
455         .needs_pci_atomics = false,
456         .num_sdma_engines = 2,
457         .num_xgmi_sdma_engines = 0,
458         .num_sdma_queues_per_engine = 8,
459 };
460
461 /* For each entry, [0] is regular and [1] is virtualisation device. */
462 static const struct kfd_device_info *kfd_supported_devices[][2] = {
463 #ifdef KFD_SUPPORT_IOMMU_V2
464         [CHIP_KAVERI] = {&kaveri_device_info, NULL},
465         [CHIP_CARRIZO] = {&carrizo_device_info, NULL},
466         [CHIP_RAVEN] = {&raven_device_info, NULL},
467 #endif
468         [CHIP_HAWAII] = {&hawaii_device_info, NULL},
469         [CHIP_TONGA] = {&tonga_device_info, NULL},
470         [CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
471         [CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
472         [CHIP_POLARIS11] = {&polaris11_device_info, NULL},
473         [CHIP_POLARIS12] = {&polaris12_device_info, NULL},
474         [CHIP_VEGAM] = {&vegam_device_info, NULL},
475         [CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
476         [CHIP_VEGA12] = {&vega12_device_info, NULL},
477         [CHIP_VEGA20] = {&vega20_device_info, NULL},
478         [CHIP_RENOIR] = {&renoir_device_info, NULL},
479         [CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
480         [CHIP_NAVI10] = {&navi10_device_info, NULL},
481         [CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
482         [CHIP_NAVI14] = {&navi14_device_info, NULL},
483 };
484
485 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
486                                 unsigned int chunk_size);
487 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
488
489 static int kfd_resume(struct kfd_dev *kfd);
490
491 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
492         struct pci_dev *pdev, unsigned int asic_type, bool vf)
493 {
494         struct kfd_dev *kfd;
495         const struct kfd_device_info *device_info;
496         const struct kfd2kgd_calls *f2g;
497
498         if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
499                 || asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
500                 dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
501                 return NULL; /* asic_type out of range */
502         }
503
504         device_info = kfd_supported_devices[asic_type][vf];
505         f2g = kfd2kgd_funcs[asic_type];
506
507         if (!device_info || !f2g) {
508                 dev_err(kfd_device, "%s %s not supported in kfd\n",
509                         amdgpu_asic_name[asic_type], vf ? "VF" : "");
510                 return NULL;
511         }
512
513         kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
514         if (!kfd)
515                 return NULL;
516
517         /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
518          * 32 and 64-bit requests are possible and must be
519          * supported.
520          */
521         kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
522         if (device_info->needs_pci_atomics &&
523             !kfd->pci_atomic_requested) {
524                 dev_info(kfd_device,
525                          "skipped device %x:%x, PCI rejects atomics\n",
526                          pdev->vendor, pdev->device);
527                 kfree(kfd);
528                 return NULL;
529         }
530
531         kfd->kgd = kgd;
532         kfd->device_info = device_info;
533         kfd->pdev = pdev;
534         kfd->init_complete = false;
535         kfd->kfd2kgd = f2g;
536         atomic_set(&kfd->compute_profile, 0);
537
538         mutex_init(&kfd->doorbell_mutex);
539         memset(&kfd->doorbell_available_index, 0,
540                 sizeof(kfd->doorbell_available_index));
541
542         atomic_set(&kfd->sram_ecc_flag, 0);
543
544         return kfd;
545 }
546
547 static void kfd_cwsr_init(struct kfd_dev *kfd)
548 {
549         if (cwsr_enable && kfd->device_info->supports_cwsr) {
550                 if (kfd->device_info->asic_family < CHIP_VEGA10) {
551                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
552                         kfd->cwsr_isa = cwsr_trap_gfx8_hex;
553                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
554                 } else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
555                         BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
556                         kfd->cwsr_isa = cwsr_trap_arcturus_hex;
557                         kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
558                 } else if (kfd->device_info->asic_family < CHIP_NAVI10) {
559                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
560                         kfd->cwsr_isa = cwsr_trap_gfx9_hex;
561                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
562                 } else {
563                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
564                         kfd->cwsr_isa = cwsr_trap_gfx10_hex;
565                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
566                 }
567
568                 kfd->cwsr_enabled = true;
569         }
570 }
571
572 static int kfd_gws_init(struct kfd_dev *kfd)
573 {
574         int ret = 0;
575
576         if (kfd->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
577                 return 0;
578
579         if (hws_gws_support
580                 || (kfd->device_info->asic_family >= CHIP_VEGA10
581                         && kfd->device_info->asic_family <= CHIP_RAVEN
582                         && kfd->mec2_fw_version >= 0x1b3))
583                 ret = amdgpu_amdkfd_alloc_gws(kfd->kgd,
584                                 amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws);
585
586         return ret;
587 }
588
589 bool kgd2kfd_device_init(struct kfd_dev *kfd,
590                          struct drm_device *ddev,
591                          const struct kgd2kfd_shared_resources *gpu_resources)
592 {
593         unsigned int size;
594
595         kfd->ddev = ddev;
596         kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
597                         KGD_ENGINE_MEC1);
598         kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
599                         KGD_ENGINE_MEC2);
600         kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
601                         KGD_ENGINE_SDMA1);
602         kfd->shared_resources = *gpu_resources;
603
604         kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
605         kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
606         kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
607                         - kfd->vm_info.first_vmid_kfd + 1;
608
609         /* Verify module parameters regarding mapped process number*/
610         if ((hws_max_conc_proc < 0)
611                         || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
612                 dev_err(kfd_device,
613                         "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
614                         hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
615                         kfd->vm_info.vmid_num_kfd);
616                 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
617         } else
618                 kfd->max_proc_per_quantum = hws_max_conc_proc;
619
620         /* calculate max size of mqds needed for queues */
621         size = max_num_of_queues_per_device *
622                         kfd->device_info->mqd_size_aligned;
623
624         /*
625          * calculate max size of runlist packet.
626          * There can be only 2 packets at once
627          */
628         size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
629                 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
630                 + sizeof(struct pm4_mes_runlist)) * 2;
631
632         /* Add size of HIQ & DIQ */
633         size += KFD_KERNEL_QUEUE_SIZE * 2;
634
635         /* add another 512KB for all other allocations on gart (HPD, fences) */
636         size += 512 * 1024;
637
638         if (amdgpu_amdkfd_alloc_gtt_mem(
639                         kfd->kgd, size, &kfd->gtt_mem,
640                         &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
641                         false)) {
642                 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
643                 goto alloc_gtt_mem_failure;
644         }
645
646         dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
647
648         /* Initialize GTT sa with 512 byte chunk size */
649         if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
650                 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
651                 goto kfd_gtt_sa_init_error;
652         }
653
654         if (kfd_doorbell_init(kfd)) {
655                 dev_err(kfd_device,
656                         "Error initializing doorbell aperture\n");
657                 goto kfd_doorbell_error;
658         }
659
660         if (kfd->kfd2kgd->get_hive_id)
661                 kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
662
663         if (kfd->kfd2kgd->get_unique_id)
664                 kfd->unique_id = kfd->kfd2kgd->get_unique_id(kfd->kgd);
665
666         if (kfd_interrupt_init(kfd)) {
667                 dev_err(kfd_device, "Error initializing interrupts\n");
668                 goto kfd_interrupt_error;
669         }
670
671         kfd->dqm = device_queue_manager_init(kfd);
672         if (!kfd->dqm) {
673                 dev_err(kfd_device, "Error initializing queue manager\n");
674                 goto device_queue_manager_error;
675         }
676
677         /* If supported on this device, allocate global GWS that is shared
678          * by all KFD processes
679          */
680         if (kfd_gws_init(kfd)) {
681                 dev_err(kfd_device, "Could not allocate %d gws\n",
682                         amdgpu_amdkfd_get_num_gws(kfd->kgd));
683                 goto gws_error;
684         }
685
686         if (kfd_iommu_device_init(kfd)) {
687                 dev_err(kfd_device, "Error initializing iommuv2\n");
688                 goto device_iommu_error;
689         }
690
691         kfd_cwsr_init(kfd);
692
693         if (kfd_resume(kfd))
694                 goto kfd_resume_error;
695
696         kfd->dbgmgr = NULL;
697
698         if (kfd_topology_add_device(kfd)) {
699                 dev_err(kfd_device, "Error adding device to topology\n");
700                 goto kfd_topology_add_device_error;
701         }
702
703         kfd->init_complete = true;
704         dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
705                  kfd->pdev->device);
706
707         pr_debug("Starting kfd with the following scheduling policy %d\n",
708                 kfd->dqm->sched_policy);
709
710         goto out;
711
712 kfd_topology_add_device_error:
713 kfd_resume_error:
714 device_iommu_error:
715 gws_error:
716         device_queue_manager_uninit(kfd->dqm);
717 device_queue_manager_error:
718         kfd_interrupt_exit(kfd);
719 kfd_interrupt_error:
720         kfd_doorbell_fini(kfd);
721 kfd_doorbell_error:
722         kfd_gtt_sa_fini(kfd);
723 kfd_gtt_sa_init_error:
724         amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
725 alloc_gtt_mem_failure:
726         if (kfd->gws)
727                 amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
728         dev_err(kfd_device,
729                 "device %x:%x NOT added due to errors\n",
730                 kfd->pdev->vendor, kfd->pdev->device);
731 out:
732         return kfd->init_complete;
733 }
734
735 void kgd2kfd_device_exit(struct kfd_dev *kfd)
736 {
737         if (kfd->init_complete) {
738                 kgd2kfd_suspend(kfd, false);
739                 device_queue_manager_uninit(kfd->dqm);
740                 kfd_interrupt_exit(kfd);
741                 kfd_topology_remove_device(kfd);
742                 kfd_doorbell_fini(kfd);
743                 kfd_gtt_sa_fini(kfd);
744                 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
745                 if (kfd->gws)
746                         amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
747         }
748
749         kfree(kfd);
750 }
751
752 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
753 {
754         if (!kfd->init_complete)
755                 return 0;
756
757         kfd->dqm->ops.pre_reset(kfd->dqm);
758
759         kgd2kfd_suspend(kfd, false);
760
761         kfd_signal_reset_event(kfd);
762         return 0;
763 }
764
765 /*
766  * Fix me. KFD won't be able to resume existing process for now.
767  * We will keep all existing process in a evicted state and
768  * wait the process to be terminated.
769  */
770
771 int kgd2kfd_post_reset(struct kfd_dev *kfd)
772 {
773         int ret;
774
775         if (!kfd->init_complete)
776                 return 0;
777
778         ret = kfd_resume(kfd);
779         if (ret)
780                 return ret;
781         atomic_dec(&kfd_locked);
782
783         atomic_set(&kfd->sram_ecc_flag, 0);
784
785         return 0;
786 }
787
788 bool kfd_is_locked(void)
789 {
790         return  (atomic_read(&kfd_locked) > 0);
791 }
792
793 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
794 {
795         if (!kfd->init_complete)
796                 return;
797
798         /* for runtime suspend, skip locking kfd */
799         if (!run_pm) {
800                 /* For first KFD device suspend all the KFD processes */
801                 if (atomic_inc_return(&kfd_locked) == 1)
802                         kfd_suspend_all_processes();
803         }
804
805         kfd->dqm->ops.stop(kfd->dqm);
806         kfd_iommu_suspend(kfd);
807 }
808
809 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
810 {
811         int ret, count;
812
813         if (!kfd->init_complete)
814                 return 0;
815
816         ret = kfd_resume(kfd);
817         if (ret)
818                 return ret;
819
820         /* for runtime resume, skip unlocking kfd */
821         if (!run_pm) {
822                 count = atomic_dec_return(&kfd_locked);
823                 WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
824                 if (count == 0)
825                         ret = kfd_resume_all_processes();
826         }
827
828         return ret;
829 }
830
831 static int kfd_resume(struct kfd_dev *kfd)
832 {
833         int err = 0;
834
835         err = kfd_iommu_resume(kfd);
836         if (err) {
837                 dev_err(kfd_device,
838                         "Failed to resume IOMMU for device %x:%x\n",
839                         kfd->pdev->vendor, kfd->pdev->device);
840                 return err;
841         }
842
843         err = kfd->dqm->ops.start(kfd->dqm);
844         if (err) {
845                 dev_err(kfd_device,
846                         "Error starting queue manager for device %x:%x\n",
847                         kfd->pdev->vendor, kfd->pdev->device);
848                 goto dqm_start_error;
849         }
850
851         return err;
852
853 dqm_start_error:
854         kfd_iommu_suspend(kfd);
855         return err;
856 }
857
858 static inline void kfd_queue_work(struct workqueue_struct *wq,
859                                   struct work_struct *work)
860 {
861         int cpu, new_cpu;
862
863         cpu = new_cpu = smp_processor_id();
864         do {
865                 new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
866                 if (cpu_to_node(new_cpu) == numa_node_id())
867                         break;
868         } while (cpu != new_cpu);
869
870         queue_work_on(new_cpu, wq, work);
871 }
872
873 /* This is called directly from KGD at ISR. */
874 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
875 {
876         uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
877         bool is_patched = false;
878         unsigned long flags;
879
880         if (!kfd->init_complete)
881                 return;
882
883         if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
884                 dev_err_once(kfd_device, "Ring entry too small\n");
885                 return;
886         }
887
888         spin_lock_irqsave(&kfd->interrupt_lock, flags);
889
890         if (kfd->interrupts_active
891             && interrupt_is_wanted(kfd, ih_ring_entry,
892                                    patched_ihre, &is_patched)
893             && enqueue_ih_ring_entry(kfd,
894                                      is_patched ? patched_ihre : ih_ring_entry))
895                 kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work);
896
897         spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
898 }
899
900 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
901 {
902         struct kfd_process *p;
903         int r;
904
905         /* Because we are called from arbitrary context (workqueue) as opposed
906          * to process context, kfd_process could attempt to exit while we are
907          * running so the lookup function increments the process ref count.
908          */
909         p = kfd_lookup_process_by_mm(mm);
910         if (!p)
911                 return -ESRCH;
912
913         r = kfd_process_evict_queues(p);
914
915         kfd_unref_process(p);
916         return r;
917 }
918
919 int kgd2kfd_resume_mm(struct mm_struct *mm)
920 {
921         struct kfd_process *p;
922         int r;
923
924         /* Because we are called from arbitrary context (workqueue) as opposed
925          * to process context, kfd_process could attempt to exit while we are
926          * running so the lookup function increments the process ref count.
927          */
928         p = kfd_lookup_process_by_mm(mm);
929         if (!p)
930                 return -ESRCH;
931
932         r = kfd_process_restore_queues(p);
933
934         kfd_unref_process(p);
935         return r;
936 }
937
938 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
939  *   prepare for safe eviction of KFD BOs that belong to the specified
940  *   process.
941  *
942  * @mm: mm_struct that identifies the specified KFD process
943  * @fence: eviction fence attached to KFD process BOs
944  *
945  */
946 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
947                                                struct dma_fence *fence)
948 {
949         struct kfd_process *p;
950         unsigned long active_time;
951         unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
952
953         if (!fence)
954                 return -EINVAL;
955
956         if (dma_fence_is_signaled(fence))
957                 return 0;
958
959         p = kfd_lookup_process_by_mm(mm);
960         if (!p)
961                 return -ENODEV;
962
963         if (fence->seqno == p->last_eviction_seqno)
964                 goto out;
965
966         p->last_eviction_seqno = fence->seqno;
967
968         /* Avoid KFD process starvation. Wait for at least
969          * PROCESS_ACTIVE_TIME_MS before evicting the process again
970          */
971         active_time = get_jiffies_64() - p->last_restore_timestamp;
972         if (delay_jiffies > active_time)
973                 delay_jiffies -= active_time;
974         else
975                 delay_jiffies = 0;
976
977         /* During process initialization eviction_work.dwork is initialized
978          * to kfd_evict_bo_worker
979          */
980         schedule_delayed_work(&p->eviction_work, delay_jiffies);
981 out:
982         kfd_unref_process(p);
983         return 0;
984 }
985
986 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
987                                 unsigned int chunk_size)
988 {
989         unsigned int num_of_longs;
990
991         if (WARN_ON(buf_size < chunk_size))
992                 return -EINVAL;
993         if (WARN_ON(buf_size == 0))
994                 return -EINVAL;
995         if (WARN_ON(chunk_size == 0))
996                 return -EINVAL;
997
998         kfd->gtt_sa_chunk_size = chunk_size;
999         kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1000
1001         num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
1002                 BITS_PER_LONG;
1003
1004         kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
1005
1006         if (!kfd->gtt_sa_bitmap)
1007                 return -ENOMEM;
1008
1009         pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1010                         kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1011
1012         mutex_init(&kfd->gtt_sa_lock);
1013
1014         return 0;
1015
1016 }
1017
1018 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1019 {
1020         mutex_destroy(&kfd->gtt_sa_lock);
1021         kfree(kfd->gtt_sa_bitmap);
1022 }
1023
1024 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1025                                                 unsigned int bit_num,
1026                                                 unsigned int chunk_size)
1027 {
1028         return start_addr + bit_num * chunk_size;
1029 }
1030
1031 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1032                                                 unsigned int bit_num,
1033                                                 unsigned int chunk_size)
1034 {
1035         return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1036 }
1037
1038 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1039                         struct kfd_mem_obj **mem_obj)
1040 {
1041         unsigned int found, start_search, cur_size;
1042
1043         if (size == 0)
1044                 return -EINVAL;
1045
1046         if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1047                 return -ENOMEM;
1048
1049         *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1050         if (!(*mem_obj))
1051                 return -ENOMEM;
1052
1053         pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1054
1055         start_search = 0;
1056
1057         mutex_lock(&kfd->gtt_sa_lock);
1058
1059 kfd_gtt_restart_search:
1060         /* Find the first chunk that is free */
1061         found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1062                                         kfd->gtt_sa_num_of_chunks,
1063                                         start_search);
1064
1065         pr_debug("Found = %d\n", found);
1066
1067         /* If there wasn't any free chunk, bail out */
1068         if (found == kfd->gtt_sa_num_of_chunks)
1069                 goto kfd_gtt_no_free_chunk;
1070
1071         /* Update fields of mem_obj */
1072         (*mem_obj)->range_start = found;
1073         (*mem_obj)->range_end = found;
1074         (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1075                                         kfd->gtt_start_gpu_addr,
1076                                         found,
1077                                         kfd->gtt_sa_chunk_size);
1078         (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1079                                         kfd->gtt_start_cpu_ptr,
1080                                         found,
1081                                         kfd->gtt_sa_chunk_size);
1082
1083         pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1084                         (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1085
1086         /* If we need only one chunk, mark it as allocated and get out */
1087         if (size <= kfd->gtt_sa_chunk_size) {
1088                 pr_debug("Single bit\n");
1089                 set_bit(found, kfd->gtt_sa_bitmap);
1090                 goto kfd_gtt_out;
1091         }
1092
1093         /* Otherwise, try to see if we have enough contiguous chunks */
1094         cur_size = size - kfd->gtt_sa_chunk_size;
1095         do {
1096                 (*mem_obj)->range_end =
1097                         find_next_zero_bit(kfd->gtt_sa_bitmap,
1098                                         kfd->gtt_sa_num_of_chunks, ++found);
1099                 /*
1100                  * If next free chunk is not contiguous than we need to
1101                  * restart our search from the last free chunk we found (which
1102                  * wasn't contiguous to the previous ones
1103                  */
1104                 if ((*mem_obj)->range_end != found) {
1105                         start_search = found;
1106                         goto kfd_gtt_restart_search;
1107                 }
1108
1109                 /*
1110                  * If we reached end of buffer, bail out with error
1111                  */
1112                 if (found == kfd->gtt_sa_num_of_chunks)
1113                         goto kfd_gtt_no_free_chunk;
1114
1115                 /* Check if we don't need another chunk */
1116                 if (cur_size <= kfd->gtt_sa_chunk_size)
1117                         cur_size = 0;
1118                 else
1119                         cur_size -= kfd->gtt_sa_chunk_size;
1120
1121         } while (cur_size > 0);
1122
1123         pr_debug("range_start = %d, range_end = %d\n",
1124                 (*mem_obj)->range_start, (*mem_obj)->range_end);
1125
1126         /* Mark the chunks as allocated */
1127         for (found = (*mem_obj)->range_start;
1128                 found <= (*mem_obj)->range_end;
1129                 found++)
1130                 set_bit(found, kfd->gtt_sa_bitmap);
1131
1132 kfd_gtt_out:
1133         mutex_unlock(&kfd->gtt_sa_lock);
1134         return 0;
1135
1136 kfd_gtt_no_free_chunk:
1137         pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1138         mutex_unlock(&kfd->gtt_sa_lock);
1139         kfree(*mem_obj);
1140         return -ENOMEM;
1141 }
1142
1143 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1144 {
1145         unsigned int bit;
1146
1147         /* Act like kfree when trying to free a NULL object */
1148         if (!mem_obj)
1149                 return 0;
1150
1151         pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1152                         mem_obj, mem_obj->range_start, mem_obj->range_end);
1153
1154         mutex_lock(&kfd->gtt_sa_lock);
1155
1156         /* Mark the chunks as free */
1157         for (bit = mem_obj->range_start;
1158                 bit <= mem_obj->range_end;
1159                 bit++)
1160                 clear_bit(bit, kfd->gtt_sa_bitmap);
1161
1162         mutex_unlock(&kfd->gtt_sa_lock);
1163
1164         kfree(mem_obj);
1165         return 0;
1166 }
1167
1168 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1169 {
1170         if (kfd)
1171                 atomic_inc(&kfd->sram_ecc_flag);
1172 }
1173
1174 void kfd_inc_compute_active(struct kfd_dev *kfd)
1175 {
1176         if (atomic_inc_return(&kfd->compute_profile) == 1)
1177                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1178 }
1179
1180 void kfd_dec_compute_active(struct kfd_dev *kfd)
1181 {
1182         int count = atomic_dec_return(&kfd->compute_profile);
1183
1184         if (count == 0)
1185                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1186         WARN_ONCE(count < 0, "Compute profile ref. count error");
1187 }
1188
1189 #if defined(CONFIG_DEBUG_FS)
1190
1191 /* This function will send a package to HIQ to hang the HWS
1192  * which will trigger a GPU reset and bring the HWS back to normal state
1193  */
1194 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1195 {
1196         int r = 0;
1197
1198         if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1199                 pr_err("HWS is not enabled");
1200                 return -EINVAL;
1201         }
1202
1203         r = pm_debugfs_hang_hws(&dev->dqm->packets);
1204         if (!r)
1205                 r = dqm_debugfs_execute_queues(dev->dqm);
1206
1207         return r;
1208 }
1209
1210 #endif
This page took 0.106058 seconds and 4 git commands to generate.