1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
4 #include <net/xdp_sock_drv.h>
7 #include "ice_dcb_lib.h"
11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
18 unsigned int offset, i;
20 mutex_lock(qs_cfg->qs_mutex);
21 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
22 0, qs_cfg->q_count, 0);
23 if (offset >= qs_cfg->pf_map_size) {
24 mutex_unlock(qs_cfg->qs_mutex);
28 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
29 for (i = 0; i < qs_cfg->q_count; i++)
30 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
31 mutex_unlock(qs_cfg->qs_mutex);
37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
44 unsigned int i, index = 0;
46 mutex_lock(qs_cfg->qs_mutex);
47 for (i = 0; i < qs_cfg->q_count; i++) {
48 index = find_next_zero_bit(qs_cfg->pf_map,
49 qs_cfg->pf_map_size, index);
50 if (index >= qs_cfg->pf_map_size)
52 set_bit(index, qs_cfg->pf_map);
53 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
55 mutex_unlock(qs_cfg->qs_mutex);
59 for (index = 0; index < i; index++) {
60 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
61 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
63 mutex_unlock(qs_cfg->qs_mutex);
69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
70 * @pf: the PF being configured
72 * @ena: enable or disable state of the queue
74 * This routine will wait for the given Rx queue of the PF to reach the
75 * enabled or disabled state.
76 * Returns -ETIMEDOUT in case of failing to reach the requested state after
77 * multiple retries; else will return 0 in case of success.
79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
83 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
84 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
85 QRX_CTRL_QENA_STAT_M))
95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
96 * @vsi: the VSI being configured
97 * @v_idx: index of the vector in the VSI struct
99 * We allocate one q_vector and set default value for ITR setting associated
100 * with this q_vector. If allocation fails we return -ENOMEM.
102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
104 struct ice_pf *pf = vsi->back;
105 struct ice_q_vector *q_vector;
108 /* allocate q_vector */
109 q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
114 q_vector->v_idx = v_idx;
115 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
116 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
117 q_vector->tx.itr_mode = ITR_DYNAMIC;
118 q_vector->rx.itr_mode = ITR_DYNAMIC;
119 q_vector->tx.type = ICE_TX_CONTAINER;
120 q_vector->rx.type = ICE_RX_CONTAINER;
121 q_vector->irq.index = -ENOENT;
123 if (vsi->type == ICE_VSI_VF) {
124 q_vector->reg_idx = ice_calc_vf_reg_idx(vsi->vf, q_vector);
126 } else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
127 struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
130 if (unlikely(!ctrl_vsi->q_vectors)) {
132 goto err_free_q_vector;
135 q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
140 q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
141 if (q_vector->irq.index < 0) {
143 goto err_free_q_vector;
147 q_vector->reg_idx = q_vector->irq.index;
149 /* only set affinity_mask if the CPU is online */
150 if (cpu_online(v_idx))
151 cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
153 /* This will not be called in the driver load path because the netdev
154 * will not be created yet. All other cases with register the NAPI
155 * handler here (i.e. resume, reset/rebuild, etc.)
158 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll);
161 /* tie q_vector and VSI together */
162 vsi->q_vectors[v_idx] = q_vector;
173 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
174 * @vsi: VSI having the memory freed
175 * @v_idx: index of the vector to be freed
177 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
179 struct ice_q_vector *q_vector;
180 struct ice_pf *pf = vsi->back;
181 struct ice_tx_ring *tx_ring;
182 struct ice_rx_ring *rx_ring;
185 dev = ice_pf_to_dev(pf);
186 if (!vsi->q_vectors[v_idx]) {
187 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
190 q_vector = vsi->q_vectors[v_idx];
192 ice_for_each_tx_ring(tx_ring, q_vector->tx)
193 tx_ring->q_vector = NULL;
194 ice_for_each_rx_ring(rx_ring, q_vector->rx)
195 rx_ring->q_vector = NULL;
197 /* only VSI with an associated netdev is set up with NAPI */
199 netif_napi_del(&q_vector->napi);
201 /* release MSIX interrupt if q_vector had interrupt allocated */
202 if (q_vector->irq.index < 0)
205 /* only free last VF ctrl vsi interrupt */
206 if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
207 ice_get_vf_ctrl_vsi(pf, vsi))
210 ice_free_irq(pf, q_vector->irq);
214 vsi->q_vectors[v_idx] = NULL;
218 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
219 * @hw: board specific structure
221 static void ice_cfg_itr_gran(struct ice_hw *hw)
223 u32 regval = rd32(hw, GLINT_CTL);
225 /* no need to update global register if ITR gran is already set */
226 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
227 (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
228 GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
229 (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
230 GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
231 (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
232 GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
233 (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
234 GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
237 regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
238 GLINT_CTL_ITR_GRAN_200_M) |
239 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
240 GLINT_CTL_ITR_GRAN_100_M) |
241 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
242 GLINT_CTL_ITR_GRAN_50_M) |
243 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
244 GLINT_CTL_ITR_GRAN_25_M);
245 wr32(hw, GLINT_CTL, regval);
249 * ice_calc_txq_handle - calculate the queue handle
250 * @vsi: VSI that ring belongs to
251 * @ring: ring to get the absolute queue index
252 * @tc: traffic class number
254 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
256 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
259 return ring->q_index - ring->ch->base_q;
261 /* Idea here for calculation is that we subtract the number of queue
262 * count from TC that ring belongs to from it's absolute queue index
263 * and as a result we get the queue's index within TC.
265 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
269 * ice_eswitch_calc_txq_handle
270 * @ring: pointer to ring which unique index is needed
272 * To correctly work with many netdevs ring->q_index of Tx rings on switchdev
273 * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it
274 * here by finding index in vsi->tx_rings of this ring.
276 * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen,
277 * because VSI is get from ring->vsi, so it has to be present in this VSI.
279 static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring)
281 struct ice_vsi *vsi = ring->vsi;
284 ice_for_each_txq(vsi, i) {
285 if (vsi->tx_rings[i] == ring)
289 return ICE_INVAL_Q_INDEX;
293 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
294 * @ring: The Tx ring to configure
296 * This enables/disables XPS for a given Tx descriptor ring
297 * based on the TCs enabled for the VSI that ring belongs to.
299 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
301 if (!ring->q_vector || !ring->netdev)
304 /* We only initialize XPS once, so as not to overwrite user settings */
305 if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
308 netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
313 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
314 * @ring: The Tx ring to configure
315 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
316 * @pf_q: queue index in the PF space
318 * Configure the Tx descriptor ring in TLAN context.
321 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
323 struct ice_vsi *vsi = ring->vsi;
324 struct ice_hw *hw = &vsi->back->hw;
326 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
328 tlan_ctx->port_num = vsi->port_info->lport;
330 /* Transmit Queue Length */
331 tlan_ctx->qlen = ring->count;
333 ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
336 tlan_ctx->pf_num = hw->pf_id;
338 /* queue belongs to a specific VSI type
339 * VF / VM index should be programmed per vmvf_type setting:
340 * for vmvf_type = VF, it is VF number between 0-256
341 * for vmvf_type = VM, it is VM number between 0-767
342 * for PF or EMP this field should be set to zero
349 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
351 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
354 /* Firmware expects vmvf_num to be absolute VF ID */
355 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
356 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
358 case ICE_VSI_SWITCHDEV_CTRL:
359 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
365 /* make sure the context is associated with the right VSI */
367 tlan_ctx->src_vsi = ring->ch->vsi_num;
369 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
371 /* Restrict Tx timestamps to the PF VSI */
374 tlan_ctx->tsyn_ena = 1;
380 tlan_ctx->tso_ena = ICE_TX_LEGACY;
381 tlan_ctx->tso_qnum = pf_q;
383 /* Legacy or Advanced Host Interface:
384 * 0: Advanced Host Interface
385 * 1: Legacy Host Interface
387 tlan_ctx->legacy_int = ICE_TX_LEGACY;
391 * ice_rx_offset - Return expected offset into page to access data
392 * @rx_ring: Ring we are requesting offset of
394 * Returns the offset value for ring into the data buffer.
396 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
398 if (ice_ring_uses_build_skb(rx_ring))
404 * ice_setup_rx_ctx - Configure a receive ring context
405 * @ring: The Rx ring to configure
407 * Configure the Rx descriptor ring in RLAN context.
409 static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
411 int chain_len = ICE_MAX_CHAINED_RX_BUFS;
412 struct ice_vsi *vsi = ring->vsi;
413 u32 rxdid = ICE_RXDID_FLEX_NIC;
414 struct ice_rlan_ctx rlan_ctx;
421 /* what is Rx queue number in global space of 2K Rx queues */
422 pf_q = vsi->rxq_map[ring->q_index];
424 /* clear the context structure first */
425 memset(&rlan_ctx, 0, sizeof(rlan_ctx));
427 /* Receive Queue Base Address.
428 * Indicates the starting address of the descriptor queue defined in
431 rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
433 rlan_ctx.qlen = ring->count;
435 /* Receive Packet Data Buffer Size.
436 * The Packet Data Buffer Size is defined in 128 byte units.
438 rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
440 /* use 32 byte descriptors */
443 /* Strip the Ethernet CRC bytes before the packet is posted to host
446 rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
448 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor
449 * and it needs to remain 1 for non-DVM capable configurations to not
450 * break backward compatibility for VF drivers. Setting this field to 0
451 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
452 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
453 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
456 if (ice_is_dvm_ena(hw))
457 if (vsi->type == ICE_VSI_VF &&
458 ice_vf_is_port_vlan_ena(vsi->vf))
465 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
466 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
467 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
469 /* This controls whether VLAN is stripped from inner headers
470 * The VLAN in the inner L2 header is stripped to the receive
471 * descriptor if enabled by this flag.
475 /* For AF_XDP ZC, we disallow packets to span on
476 * multiple buffers, thus letting us skip that
477 * handling in the fast-path.
481 /* Max packet size for this queue - must not be set to a larger value
484 rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
485 chain_len * ring->rx_buf_len);
487 /* Rx queue threshold in units of 64 */
488 rlan_ctx.lrxqthresh = 1;
490 /* Enable Flexible Descriptors in the queue context which
491 * allows this driver to select a specific receive descriptor format
492 * increasing context priority to pick up profile ID; default is 0x01;
493 * setting to 0x03 to ensure profile is programming if prev context is
496 if (vsi->type != ICE_VSI_VF)
497 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
499 ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
502 /* Absolute queue number out of 2K needs to be passed */
503 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
505 dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
510 if (vsi->type == ICE_VSI_VF)
513 /* configure Rx buffer alignment */
514 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
515 ice_clear_ring_build_skb_ena(ring);
517 ice_set_ring_build_skb_ena(ring);
519 ring->rx_offset = ice_rx_offset(ring);
521 /* init queue specific tail register */
522 ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
523 writel(0, ring->tail);
529 * ice_vsi_cfg_rxq - Configure an Rx queue
530 * @ring: the ring being configured
532 * Return 0 on success and a negative value on error.
534 int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
536 struct device *dev = ice_pf_to_dev(ring->vsi->back);
537 u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
540 ring->rx_buf_len = ring->vsi->rx_buf_len;
542 if (ring->vsi->type == ICE_VSI_PF) {
543 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
544 /* coverity[check_return] */
545 __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
547 ring->q_vector->napi.napi_id,
548 ring->vsi->rx_buf_len);
550 ring->xsk_pool = ice_xsk_pool(ring);
551 if (ring->xsk_pool) {
552 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
555 xsk_pool_get_rx_frame_size(ring->xsk_pool);
556 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
557 MEM_TYPE_XSK_BUFF_POOL,
561 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
563 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
566 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
567 /* coverity[check_return] */
568 __xdp_rxq_info_reg(&ring->xdp_rxq,
571 ring->q_vector->napi.napi_id,
572 ring->vsi->rx_buf_len);
574 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
575 MEM_TYPE_PAGE_SHARED,
582 xdp_init_buff(&ring->xdp, ice_rx_pg_size(ring) / 2, &ring->xdp_rxq);
583 ring->xdp.data = NULL;
584 err = ice_setup_rx_ctx(ring);
586 dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
591 if (ring->xsk_pool) {
594 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
595 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
596 num_bufs, ring->q_index);
597 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
602 ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
604 u16 pf_q = ring->vsi->rxq_map[ring->q_index];
606 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
607 ring->q_index, pf_q);
613 ice_alloc_rx_bufs(ring, num_bufs);
619 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
620 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
622 * This function first tries to find contiguous space. If it is not successful,
623 * it tries with the scatter approach.
625 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
627 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
631 ret = __ice_vsi_get_qs_contig(qs_cfg);
633 /* contig failed, so try with scatter approach */
634 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
635 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
636 qs_cfg->scatter_count);
637 ret = __ice_vsi_get_qs_sc(qs_cfg);
643 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
644 * @vsi: the VSI being configured
645 * @ena: start or stop the Rx ring
646 * @rxq_idx: 0-based Rx queue index for the VSI passed in
647 * @wait: wait or don't wait for configuration to finish in hardware
649 * Return 0 on success and negative on error.
652 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
654 int pf_q = vsi->rxq_map[rxq_idx];
655 struct ice_pf *pf = vsi->back;
656 struct ice_hw *hw = &pf->hw;
659 rx_reg = rd32(hw, QRX_CTRL(pf_q));
661 /* Skip if the queue is already in the requested state */
662 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
665 /* turn on/off the queue */
667 rx_reg |= QRX_CTRL_QENA_REQ_M;
669 rx_reg &= ~QRX_CTRL_QENA_REQ_M;
670 wr32(hw, QRX_CTRL(pf_q), rx_reg);
676 return ice_pf_rxq_wait(pf, pf_q, ena);
680 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
681 * @vsi: the VSI being configured
682 * @ena: true/false to verify Rx ring has been enabled/disabled respectively
683 * @rxq_idx: 0-based Rx queue index for the VSI passed in
685 * This routine will wait for the given Rx queue of the VSI to reach the
686 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
687 * the requested state after multiple retries; else will return 0 in case of
690 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
692 int pf_q = vsi->rxq_map[rxq_idx];
693 struct ice_pf *pf = vsi->back;
695 return ice_pf_rxq_wait(pf, pf_q, ena);
699 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
700 * @vsi: the VSI being configured
702 * We allocate one q_vector per queue interrupt. If allocation fails we
705 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
707 struct device *dev = ice_pf_to_dev(vsi->back);
711 if (vsi->q_vectors[0]) {
712 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
716 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
717 err = ice_vsi_alloc_q_vector(vsi, v_idx);
726 ice_free_q_vector(vsi, v_idx);
728 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
729 vsi->num_q_vectors, vsi->vsi_num, err);
730 vsi->num_q_vectors = 0;
735 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
736 * @vsi: the VSI being configured
738 * This function maps descriptor rings to the queue-specific vectors allotted
739 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
740 * and Rx rings to the vector as "efficiently" as possible.
742 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
744 int q_vectors = vsi->num_q_vectors;
745 u16 tx_rings_rem, rx_rings_rem;
748 /* initially assigning remaining rings count to VSIs num queue value */
749 tx_rings_rem = vsi->num_txq;
750 rx_rings_rem = vsi->num_rxq;
752 for (v_id = 0; v_id < q_vectors; v_id++) {
753 struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
754 u8 tx_rings_per_v, rx_rings_per_v;
757 /* Tx rings mapping to vector */
758 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
760 q_vector->num_ring_tx = tx_rings_per_v;
761 q_vector->tx.tx_ring = NULL;
762 q_vector->tx.itr_idx = ICE_TX_ITR;
763 q_base = vsi->num_txq - tx_rings_rem;
765 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
766 struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
768 tx_ring->q_vector = q_vector;
769 tx_ring->next = q_vector->tx.tx_ring;
770 q_vector->tx.tx_ring = tx_ring;
772 tx_rings_rem -= tx_rings_per_v;
774 /* Rx rings mapping to vector */
775 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
777 q_vector->num_ring_rx = rx_rings_per_v;
778 q_vector->rx.rx_ring = NULL;
779 q_vector->rx.itr_idx = ICE_RX_ITR;
780 q_base = vsi->num_rxq - rx_rings_rem;
782 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
783 struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
785 rx_ring->q_vector = q_vector;
786 rx_ring->next = q_vector->rx.rx_ring;
787 q_vector->rx.rx_ring = rx_ring;
789 rx_rings_rem -= rx_rings_per_v;
794 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
795 * @vsi: the VSI having memory freed
797 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
801 ice_for_each_q_vector(vsi, v_idx)
802 ice_free_q_vector(vsi, v_idx);
806 * ice_vsi_cfg_txq - Configure single Tx queue
807 * @vsi: the VSI that queue belongs to
808 * @ring: Tx ring to be configured
809 * @qg_buf: queue group buffer
812 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
813 struct ice_aqc_add_tx_qgrp *qg_buf)
815 u8 buf_len = struct_size(qg_buf, txqs, 1);
816 struct ice_tlan_ctx tlan_ctx = { 0 };
817 struct ice_aqc_add_txqs_perq *txq;
818 struct ice_channel *ch = ring->ch;
819 struct ice_pf *pf = vsi->back;
820 struct ice_hw *hw = &pf->hw;
826 ice_cfg_xps_tx_ring(ring);
828 pf_q = ring->reg_idx;
829 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
830 /* copy context contents into the qg_buf */
831 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
832 ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
835 /* init queue specific tail reg. It is referred as
836 * transmit comm scheduler queue doorbell.
838 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
840 if (IS_ENABLED(CONFIG_DCB))
845 /* Add unique software queue handle of the Tx queue per
846 * TC into the VSI Tx ring
848 if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
849 ring->q_handle = ice_eswitch_calc_txq_handle(ring);
851 if (ring->q_handle == ICE_INVAL_Q_INDEX)
854 ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
858 status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
859 ring->q_handle, 1, qg_buf, buf_len,
862 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
863 ring->q_handle, 1, qg_buf, buf_len,
866 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
871 /* Add Tx Queue TEID into the VSI Tx ring from the
872 * response. This will complete configuring and
873 * enabling the queue.
875 txq = &qg_buf->txqs[0];
876 if (pf_q == le16_to_cpu(txq->txq_id))
877 ring->txq_teid = le32_to_cpu(txq->q_teid);
883 * ice_cfg_itr - configure the initial interrupt throttle values
884 * @hw: pointer to the HW structure
885 * @q_vector: interrupt vector that's being configured
887 * Configure interrupt throttling values for the ring containers that are
888 * associated with the interrupt vector passed in.
890 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
892 ice_cfg_itr_gran(hw);
894 if (q_vector->num_ring_rx)
895 ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
897 if (q_vector->num_ring_tx)
898 ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
900 ice_write_intrl(q_vector, q_vector->intrl);
904 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
905 * @vsi: the VSI being configured
906 * @txq: Tx queue being mapped to MSI-X vector
907 * @msix_idx: MSI-X vector index within the function
908 * @itr_idx: ITR index of the interrupt cause
910 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
911 * within the function space.
914 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
916 struct ice_pf *pf = vsi->back;
917 struct ice_hw *hw = &pf->hw;
920 itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
922 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
923 ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
925 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
926 if (ice_is_xdp_ena_vsi(vsi)) {
927 u32 xdp_txq = txq + vsi->num_xdp_txq;
929 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
936 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
937 * @vsi: the VSI being configured
938 * @rxq: Rx queue being mapped to MSI-X vector
939 * @msix_idx: MSI-X vector index within the function
940 * @itr_idx: ITR index of the interrupt cause
942 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
943 * within the function space.
946 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
948 struct ice_pf *pf = vsi->back;
949 struct ice_hw *hw = &pf->hw;
952 itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
954 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
955 ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
957 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
963 * ice_trigger_sw_intr - trigger a software interrupt
964 * @hw: pointer to the HW structure
965 * @q_vector: interrupt vector to trigger the software interrupt for
967 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
969 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
970 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
971 GLINT_DYN_CTL_SWINT_TRIG_M |
972 GLINT_DYN_CTL_INTENA_M);
976 * ice_vsi_stop_tx_ring - Disable single Tx ring
977 * @vsi: the VSI being configured
978 * @rst_src: reset source
979 * @rel_vmvf_num: Relative ID of VF/VM
980 * @ring: Tx ring to be stopped
981 * @txq_meta: Meta data of Tx ring to be stopped
984 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
985 u16 rel_vmvf_num, struct ice_tx_ring *ring,
986 struct ice_txq_meta *txq_meta)
988 struct ice_pf *pf = vsi->back;
989 struct ice_q_vector *q_vector;
990 struct ice_hw *hw = &pf->hw;
994 /* clear cause_ena bit for disabled queues */
995 val = rd32(hw, QINT_TQCTL(ring->reg_idx));
996 val &= ~QINT_TQCTL_CAUSE_ENA_M;
997 wr32(hw, QINT_TQCTL(ring->reg_idx), val);
999 /* software is expected to wait for 100 ns */
1002 /* trigger a software interrupt for the vector
1003 * associated to the queue to schedule NAPI handler
1005 q_vector = ring->q_vector;
1006 if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
1007 ice_trigger_sw_intr(hw, q_vector);
1009 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
1010 txq_meta->tc, 1, &txq_meta->q_handle,
1011 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
1012 rel_vmvf_num, NULL);
1014 /* if the disable queue command was exercised during an
1015 * active reset flow, -EBUSY is returned.
1016 * This is not an error as the reset operation disables
1017 * queues at the hardware level anyway.
1019 if (status == -EBUSY) {
1020 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
1021 } else if (status == -ENOENT) {
1022 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
1023 } else if (status) {
1024 dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
1033 * ice_fill_txq_meta - Prepare the Tx queue's meta data
1034 * @vsi: VSI that ring belongs to
1035 * @ring: ring that txq_meta will be based on
1036 * @txq_meta: a helper struct that wraps Tx queue's information
1038 * Set up a helper struct that will contain all the necessary fields that
1039 * are needed for stopping Tx queue
1042 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_tx_ring *ring,
1043 struct ice_txq_meta *txq_meta)
1045 struct ice_channel *ch = ring->ch;
1048 if (IS_ENABLED(CONFIG_DCB))
1053 txq_meta->q_id = ring->reg_idx;
1054 txq_meta->q_teid = ring->txq_teid;
1055 txq_meta->q_handle = ring->q_handle;
1057 txq_meta->vsi_idx = ch->ch_vsi->idx;
1060 txq_meta->vsi_idx = vsi->idx;