]> Git Repo - J-linux.git/blob - arch/powerpc/lib/code-patching.c
Merge branch 'topic/qspinlock' into next
[J-linux.git] / arch / powerpc / lib / code-patching.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright 2008 Michael Ellerman, IBM Corporation.
4  */
5
6 #include <linux/kprobes.h>
7 #include <linux/mmu_context.h>
8 #include <linux/random.h>
9 #include <linux/vmalloc.h>
10 #include <linux/init.h>
11 #include <linux/cpuhotplug.h>
12 #include <linux/uaccess.h>
13 #include <linux/jump_label.h>
14
15 #include <asm/debug.h>
16 #include <asm/pgalloc.h>
17 #include <asm/tlb.h>
18 #include <asm/tlbflush.h>
19 #include <asm/page.h>
20 #include <asm/code-patching.h>
21 #include <asm/inst.h>
22
23 static int __patch_instruction(u32 *exec_addr, ppc_inst_t instr, u32 *patch_addr)
24 {
25         if (!ppc_inst_prefixed(instr)) {
26                 u32 val = ppc_inst_val(instr);
27
28                 __put_kernel_nofault(patch_addr, &val, u32, failed);
29         } else {
30                 u64 val = ppc_inst_as_ulong(instr);
31
32                 __put_kernel_nofault(patch_addr, &val, u64, failed);
33         }
34
35         asm ("dcbst 0, %0; sync; icbi 0,%1; sync; isync" :: "r" (patch_addr),
36                                                             "r" (exec_addr));
37
38         return 0;
39
40 failed:
41         return -EPERM;
42 }
43
44 int raw_patch_instruction(u32 *addr, ppc_inst_t instr)
45 {
46         return __patch_instruction(addr, instr, addr);
47 }
48
49 #ifdef CONFIG_STRICT_KERNEL_RWX
50
51 struct patch_context {
52         union {
53                 struct vm_struct *area;
54                 struct mm_struct *mm;
55         };
56         unsigned long addr;
57         pte_t *pte;
58 };
59
60 static DEFINE_PER_CPU(struct patch_context, cpu_patching_context);
61
62 static int map_patch_area(void *addr, unsigned long text_poke_addr);
63 static void unmap_patch_area(unsigned long addr);
64
65 static bool mm_patch_enabled(void)
66 {
67         return IS_ENABLED(CONFIG_SMP) && radix_enabled();
68 }
69
70 /*
71  * The following applies for Radix MMU. Hash MMU has different requirements,
72  * and so is not supported.
73  *
74  * Changing mm requires context synchronising instructions on both sides of
75  * the context switch, as well as a hwsync between the last instruction for
76  * which the address of an associated storage access was translated using
77  * the current context.
78  *
79  * switch_mm_irqs_off() performs an isync after the context switch. It is
80  * the responsibility of the caller to perform the CSI and hwsync before
81  * starting/stopping the temp mm.
82  */
83 static struct mm_struct *start_using_temp_mm(struct mm_struct *temp_mm)
84 {
85         struct mm_struct *orig_mm = current->active_mm;
86
87         lockdep_assert_irqs_disabled();
88         switch_mm_irqs_off(orig_mm, temp_mm, current);
89
90         WARN_ON(!mm_is_thread_local(temp_mm));
91
92         suspend_breakpoints();
93         return orig_mm;
94 }
95
96 static void stop_using_temp_mm(struct mm_struct *temp_mm,
97                                struct mm_struct *orig_mm)
98 {
99         lockdep_assert_irqs_disabled();
100         switch_mm_irqs_off(temp_mm, orig_mm, current);
101         restore_breakpoints();
102 }
103
104 static int text_area_cpu_up(unsigned int cpu)
105 {
106         struct vm_struct *area;
107         unsigned long addr;
108         int err;
109
110         area = get_vm_area(PAGE_SIZE, VM_ALLOC);
111         if (!area) {
112                 WARN_ONCE(1, "Failed to create text area for cpu %d\n",
113                         cpu);
114                 return -1;
115         }
116
117         // Map/unmap the area to ensure all page tables are pre-allocated
118         addr = (unsigned long)area->addr;
119         err = map_patch_area(empty_zero_page, addr);
120         if (err)
121                 return err;
122
123         unmap_patch_area(addr);
124
125         this_cpu_write(cpu_patching_context.area, area);
126         this_cpu_write(cpu_patching_context.addr, addr);
127         this_cpu_write(cpu_patching_context.pte, virt_to_kpte(addr));
128
129         return 0;
130 }
131
132 static int text_area_cpu_down(unsigned int cpu)
133 {
134         free_vm_area(this_cpu_read(cpu_patching_context.area));
135         this_cpu_write(cpu_patching_context.area, NULL);
136         this_cpu_write(cpu_patching_context.addr, 0);
137         this_cpu_write(cpu_patching_context.pte, NULL);
138         return 0;
139 }
140
141 static void put_patching_mm(struct mm_struct *mm, unsigned long patching_addr)
142 {
143         struct mmu_gather tlb;
144
145         tlb_gather_mmu(&tlb, mm);
146         free_pgd_range(&tlb, patching_addr, patching_addr + PAGE_SIZE, 0, 0);
147         mmput(mm);
148 }
149
150 static int text_area_cpu_up_mm(unsigned int cpu)
151 {
152         struct mm_struct *mm;
153         unsigned long addr;
154         pte_t *pte;
155         spinlock_t *ptl;
156
157         mm = mm_alloc();
158         if (WARN_ON(!mm))
159                 goto fail_no_mm;
160
161         /*
162          * Choose a random page-aligned address from the interval
163          * [PAGE_SIZE .. DEFAULT_MAP_WINDOW - PAGE_SIZE].
164          * The lower address bound is PAGE_SIZE to avoid the zero-page.
165          */
166         addr = (1 + (get_random_long() % (DEFAULT_MAP_WINDOW / PAGE_SIZE - 2))) << PAGE_SHIFT;
167
168         /*
169          * PTE allocation uses GFP_KERNEL which means we need to
170          * pre-allocate the PTE here because we cannot do the
171          * allocation during patching when IRQs are disabled.
172          *
173          * Using get_locked_pte() to avoid open coding, the lock
174          * is unnecessary.
175          */
176         pte = get_locked_pte(mm, addr, &ptl);
177         if (!pte)
178                 goto fail_no_pte;
179         pte_unmap_unlock(pte, ptl);
180
181         this_cpu_write(cpu_patching_context.mm, mm);
182         this_cpu_write(cpu_patching_context.addr, addr);
183         this_cpu_write(cpu_patching_context.pte, pte);
184
185         return 0;
186
187 fail_no_pte:
188         put_patching_mm(mm, addr);
189 fail_no_mm:
190         return -ENOMEM;
191 }
192
193 static int text_area_cpu_down_mm(unsigned int cpu)
194 {
195         put_patching_mm(this_cpu_read(cpu_patching_context.mm),
196                         this_cpu_read(cpu_patching_context.addr));
197
198         this_cpu_write(cpu_patching_context.mm, NULL);
199         this_cpu_write(cpu_patching_context.addr, 0);
200         this_cpu_write(cpu_patching_context.pte, NULL);
201
202         return 0;
203 }
204
205 static __ro_after_init DEFINE_STATIC_KEY_FALSE(poking_init_done);
206
207 void __init poking_init(void)
208 {
209         int ret;
210
211         if (mm_patch_enabled())
212                 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
213                                         "powerpc/text_poke_mm:online",
214                                         text_area_cpu_up_mm,
215                                         text_area_cpu_down_mm);
216         else
217                 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
218                                         "powerpc/text_poke:online",
219                                         text_area_cpu_up,
220                                         text_area_cpu_down);
221
222         /* cpuhp_setup_state returns >= 0 on success */
223         if (WARN_ON(ret < 0))
224                 return;
225
226         static_branch_enable(&poking_init_done);
227 }
228
229 static unsigned long get_patch_pfn(void *addr)
230 {
231         if (IS_ENABLED(CONFIG_MODULES) && is_vmalloc_or_module_addr(addr))
232                 return vmalloc_to_pfn(addr);
233         else
234                 return __pa_symbol(addr) >> PAGE_SHIFT;
235 }
236
237 /*
238  * This can be called for kernel text or a module.
239  */
240 static int map_patch_area(void *addr, unsigned long text_poke_addr)
241 {
242         unsigned long pfn = get_patch_pfn(addr);
243
244         return map_kernel_page(text_poke_addr, (pfn << PAGE_SHIFT), PAGE_KERNEL);
245 }
246
247 static void unmap_patch_area(unsigned long addr)
248 {
249         pte_t *ptep;
250         pmd_t *pmdp;
251         pud_t *pudp;
252         p4d_t *p4dp;
253         pgd_t *pgdp;
254
255         pgdp = pgd_offset_k(addr);
256         if (WARN_ON(pgd_none(*pgdp)))
257                 return;
258
259         p4dp = p4d_offset(pgdp, addr);
260         if (WARN_ON(p4d_none(*p4dp)))
261                 return;
262
263         pudp = pud_offset(p4dp, addr);
264         if (WARN_ON(pud_none(*pudp)))
265                 return;
266
267         pmdp = pmd_offset(pudp, addr);
268         if (WARN_ON(pmd_none(*pmdp)))
269                 return;
270
271         ptep = pte_offset_kernel(pmdp, addr);
272         if (WARN_ON(pte_none(*ptep)))
273                 return;
274
275         /*
276          * In hash, pte_clear flushes the tlb, in radix, we have to
277          */
278         pte_clear(&init_mm, addr, ptep);
279         flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
280 }
281
282 static int __do_patch_instruction_mm(u32 *addr, ppc_inst_t instr)
283 {
284         int err;
285         u32 *patch_addr;
286         unsigned long text_poke_addr;
287         pte_t *pte;
288         unsigned long pfn = get_patch_pfn(addr);
289         struct mm_struct *patching_mm;
290         struct mm_struct *orig_mm;
291
292         patching_mm = __this_cpu_read(cpu_patching_context.mm);
293         pte = __this_cpu_read(cpu_patching_context.pte);
294         text_poke_addr = __this_cpu_read(cpu_patching_context.addr);
295         patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
296
297         __set_pte_at(patching_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
298
299         /* order PTE update before use, also serves as the hwsync */
300         asm volatile("ptesync": : :"memory");
301
302         /* order context switch after arbitrary prior code */
303         isync();
304
305         orig_mm = start_using_temp_mm(patching_mm);
306
307         err = __patch_instruction(addr, instr, patch_addr);
308
309         /* hwsync performed by __patch_instruction (sync) if successful */
310         if (err)
311                 mb();  /* sync */
312
313         /* context synchronisation performed by __patch_instruction (isync or exception) */
314         stop_using_temp_mm(patching_mm, orig_mm);
315
316         pte_clear(patching_mm, text_poke_addr, pte);
317         /*
318          * ptesync to order PTE update before TLB invalidation done
319          * by radix__local_flush_tlb_page_psize (in _tlbiel_va)
320          */
321         local_flush_tlb_page_psize(patching_mm, text_poke_addr, mmu_virtual_psize);
322
323         return err;
324 }
325
326 static int __do_patch_instruction(u32 *addr, ppc_inst_t instr)
327 {
328         int err;
329         u32 *patch_addr;
330         unsigned long text_poke_addr;
331         pte_t *pte;
332         unsigned long pfn = get_patch_pfn(addr);
333
334         text_poke_addr = (unsigned long)__this_cpu_read(cpu_patching_context.addr) & PAGE_MASK;
335         patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
336
337         pte = __this_cpu_read(cpu_patching_context.pte);
338         __set_pte_at(&init_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
339         /* See ptesync comment in radix__set_pte_at() */
340         if (radix_enabled())
341                 asm volatile("ptesync": : :"memory");
342
343         err = __patch_instruction(addr, instr, patch_addr);
344
345         pte_clear(&init_mm, text_poke_addr, pte);
346         flush_tlb_kernel_range(text_poke_addr, text_poke_addr + PAGE_SIZE);
347
348         return err;
349 }
350
351 static int do_patch_instruction(u32 *addr, ppc_inst_t instr)
352 {
353         int err;
354         unsigned long flags;
355
356         /*
357          * During early early boot patch_instruction is called
358          * when text_poke_area is not ready, but we still need
359          * to allow patching. We just do the plain old patching
360          */
361         if (!static_branch_likely(&poking_init_done))
362                 return raw_patch_instruction(addr, instr);
363
364         local_irq_save(flags);
365         if (mm_patch_enabled())
366                 err = __do_patch_instruction_mm(addr, instr);
367         else
368                 err = __do_patch_instruction(addr, instr);
369         local_irq_restore(flags);
370
371         return err;
372 }
373 #else /* !CONFIG_STRICT_KERNEL_RWX */
374
375 static int do_patch_instruction(u32 *addr, ppc_inst_t instr)
376 {
377         return raw_patch_instruction(addr, instr);
378 }
379
380 #endif /* CONFIG_STRICT_KERNEL_RWX */
381
382 __ro_after_init DEFINE_STATIC_KEY_FALSE(init_mem_is_free);
383
384 int patch_instruction(u32 *addr, ppc_inst_t instr)
385 {
386         /* Make sure we aren't patching a freed init section */
387         if (static_branch_likely(&init_mem_is_free) && init_section_contains(addr, 4))
388                 return 0;
389
390         return do_patch_instruction(addr, instr);
391 }
392 NOKPROBE_SYMBOL(patch_instruction);
393
394 int patch_branch(u32 *addr, unsigned long target, int flags)
395 {
396         ppc_inst_t instr;
397
398         if (create_branch(&instr, addr, target, flags))
399                 return -ERANGE;
400
401         return patch_instruction(addr, instr);
402 }
403
404 /*
405  * Helper to check if a given instruction is a conditional branch
406  * Derived from the conditional checks in analyse_instr()
407  */
408 bool is_conditional_branch(ppc_inst_t instr)
409 {
410         unsigned int opcode = ppc_inst_primary_opcode(instr);
411
412         if (opcode == 16)       /* bc, bca, bcl, bcla */
413                 return true;
414         if (opcode == 19) {
415                 switch ((ppc_inst_val(instr) >> 1) & 0x3ff) {
416                 case 16:        /* bclr, bclrl */
417                 case 528:       /* bcctr, bcctrl */
418                 case 560:       /* bctar, bctarl */
419                         return true;
420                 }
421         }
422         return false;
423 }
424 NOKPROBE_SYMBOL(is_conditional_branch);
425
426 int create_cond_branch(ppc_inst_t *instr, const u32 *addr,
427                        unsigned long target, int flags)
428 {
429         long offset;
430
431         offset = target;
432         if (! (flags & BRANCH_ABSOLUTE))
433                 offset = offset - (unsigned long)addr;
434
435         /* Check we can represent the target in the instruction format */
436         if (!is_offset_in_cond_branch_range(offset))
437                 return 1;
438
439         /* Mask out the flags and target, so they don't step on each other. */
440         *instr = ppc_inst(0x40000000 | (flags & 0x3FF0003) | (offset & 0xFFFC));
441
442         return 0;
443 }
444
445 int instr_is_relative_branch(ppc_inst_t instr)
446 {
447         if (ppc_inst_val(instr) & BRANCH_ABSOLUTE)
448                 return 0;
449
450         return instr_is_branch_iform(instr) || instr_is_branch_bform(instr);
451 }
452
453 int instr_is_relative_link_branch(ppc_inst_t instr)
454 {
455         return instr_is_relative_branch(instr) && (ppc_inst_val(instr) & BRANCH_SET_LINK);
456 }
457
458 static unsigned long branch_iform_target(const u32 *instr)
459 {
460         signed long imm;
461
462         imm = ppc_inst_val(ppc_inst_read(instr)) & 0x3FFFFFC;
463
464         /* If the top bit of the immediate value is set this is negative */
465         if (imm & 0x2000000)
466                 imm -= 0x4000000;
467
468         if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0)
469                 imm += (unsigned long)instr;
470
471         return (unsigned long)imm;
472 }
473
474 static unsigned long branch_bform_target(const u32 *instr)
475 {
476         signed long imm;
477
478         imm = ppc_inst_val(ppc_inst_read(instr)) & 0xFFFC;
479
480         /* If the top bit of the immediate value is set this is negative */
481         if (imm & 0x8000)
482                 imm -= 0x10000;
483
484         if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0)
485                 imm += (unsigned long)instr;
486
487         return (unsigned long)imm;
488 }
489
490 unsigned long branch_target(const u32 *instr)
491 {
492         if (instr_is_branch_iform(ppc_inst_read(instr)))
493                 return branch_iform_target(instr);
494         else if (instr_is_branch_bform(ppc_inst_read(instr)))
495                 return branch_bform_target(instr);
496
497         return 0;
498 }
499
500 int translate_branch(ppc_inst_t *instr, const u32 *dest, const u32 *src)
501 {
502         unsigned long target;
503         target = branch_target(src);
504
505         if (instr_is_branch_iform(ppc_inst_read(src)))
506                 return create_branch(instr, dest, target,
507                                      ppc_inst_val(ppc_inst_read(src)));
508         else if (instr_is_branch_bform(ppc_inst_read(src)))
509                 return create_cond_branch(instr, dest, target,
510                                           ppc_inst_val(ppc_inst_read(src)));
511
512         return 1;
513 }
This page took 0.086858 seconds and 4 git commands to generate.