1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bvec.h>
4 #include <linux/fault-inject-usercopy.h>
6 #include <linux/pagemap.h>
7 #include <linux/highmem.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/splice.h>
11 #include <linux/compat.h>
12 #include <linux/scatterlist.h>
13 #include <linux/instrumented.h>
14 #include <linux/iov_iter.h>
16 static __always_inline
17 size_t copy_to_user_iter(void __user *iter_to, size_t progress,
18 size_t len, void *from, void *priv2)
20 if (should_fail_usercopy())
22 if (access_ok(iter_to, len)) {
24 instrument_copy_to_user(iter_to, from, len);
25 len = raw_copy_to_user(iter_to, from, len);
30 static __always_inline
31 size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress,
32 size_t len, void *from, void *priv2)
36 if (should_fail_usercopy())
40 res = copy_to_user_nofault(iter_to, from, len);
41 return res < 0 ? len : res;
44 static __always_inline
45 size_t copy_from_user_iter(void __user *iter_from, size_t progress,
46 size_t len, void *to, void *priv2)
50 if (should_fail_usercopy())
52 if (access_ok(iter_from, len)) {
54 instrument_copy_from_user_before(to, iter_from, len);
55 res = raw_copy_from_user(to, iter_from, len);
56 instrument_copy_from_user_after(to, iter_from, len, res);
61 static __always_inline
62 size_t memcpy_to_iter(void *iter_to, size_t progress,
63 size_t len, void *from, void *priv2)
65 memcpy(iter_to, from + progress, len);
69 static __always_inline
70 size_t memcpy_from_iter(void *iter_from, size_t progress,
71 size_t len, void *to, void *priv2)
73 memcpy(to + progress, iter_from, len);
78 * fault_in_iov_iter_readable - fault in iov iterator for reading
80 * @size: maximum length
82 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
83 * @size. For each iovec, fault in each page that constitutes the iovec.
85 * Returns the number of bytes not faulted in (like copy_to_user() and
88 * Always returns 0 for non-userspace iterators.
90 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
92 if (iter_is_ubuf(i)) {
93 size_t n = min(size, iov_iter_count(i));
94 n -= fault_in_readable(i->ubuf + i->iov_offset, n);
96 } else if (iter_is_iovec(i)) {
97 size_t count = min(size, iov_iter_count(i));
98 const struct iovec *p;
102 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
103 size_t len = min(count, p->iov_len - skip);
108 ret = fault_in_readable(p->iov_base + skip, len);
117 EXPORT_SYMBOL(fault_in_iov_iter_readable);
120 * fault_in_iov_iter_writeable - fault in iov iterator for writing
122 * @size: maximum length
124 * Faults in the iterator using get_user_pages(), i.e., without triggering
125 * hardware page faults. This is primarily useful when we already know that
126 * some or all of the pages in @i aren't in memory.
128 * Returns the number of bytes not faulted in, like copy_to_user() and
131 * Always returns 0 for non-user-space iterators.
133 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
135 if (iter_is_ubuf(i)) {
136 size_t n = min(size, iov_iter_count(i));
137 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
139 } else if (iter_is_iovec(i)) {
140 size_t count = min(size, iov_iter_count(i));
141 const struct iovec *p;
145 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
146 size_t len = min(count, p->iov_len - skip);
151 ret = fault_in_safe_writeable(p->iov_base + skip, len);
160 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
162 void iov_iter_init(struct iov_iter *i, unsigned int direction,
163 const struct iovec *iov, unsigned long nr_segs,
166 WARN_ON(direction & ~(READ | WRITE));
167 *i = (struct iov_iter) {
168 .iter_type = ITER_IOVEC,
170 .data_source = direction,
177 EXPORT_SYMBOL(iov_iter_init);
179 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
181 if (WARN_ON_ONCE(i->data_source))
183 if (user_backed_iter(i))
185 return iterate_and_advance(i, bytes, (void *)addr,
186 copy_to_user_iter, memcpy_to_iter);
188 EXPORT_SYMBOL(_copy_to_iter);
190 #ifdef CONFIG_ARCH_HAS_COPY_MC
191 static __always_inline
192 size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress,
193 size_t len, void *from, void *priv2)
195 if (access_ok(iter_to, len)) {
197 instrument_copy_to_user(iter_to, from, len);
198 len = copy_mc_to_user(iter_to, from, len);
203 static __always_inline
204 size_t memcpy_to_iter_mc(void *iter_to, size_t progress,
205 size_t len, void *from, void *priv2)
207 return copy_mc_to_kernel(iter_to, from + progress, len);
211 * _copy_mc_to_iter - copy to iter with source memory error exception handling
212 * @addr: source kernel address
213 * @bytes: total transfer length
214 * @i: destination iterator
216 * The pmem driver deploys this for the dax operation
217 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
218 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
219 * successfully copied.
221 * The main differences between this and typical _copy_to_iter().
223 * * Typical tail/residue handling after a fault retries the copy
224 * byte-by-byte until the fault happens again. Re-triggering machine
225 * checks is potentially fatal so the implementation uses source
226 * alignment and poison alignment assumptions to avoid re-triggering
227 * hardware exceptions.
229 * * ITER_KVEC and ITER_BVEC can return short copies. Compare to
230 * copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
232 * Return: number of bytes copied (may be %0)
234 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
236 if (WARN_ON_ONCE(i->data_source))
238 if (user_backed_iter(i))
240 return iterate_and_advance(i, bytes, (void *)addr,
241 copy_to_user_iter_mc, memcpy_to_iter_mc);
243 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
244 #endif /* CONFIG_ARCH_HAS_COPY_MC */
246 static __always_inline
247 size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
249 return iterate_and_advance(i, bytes, addr,
250 copy_from_user_iter, memcpy_from_iter);
253 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
255 if (WARN_ON_ONCE(!i->data_source))
258 if (user_backed_iter(i))
260 return __copy_from_iter(addr, bytes, i);
262 EXPORT_SYMBOL(_copy_from_iter);
264 static __always_inline
265 size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress,
266 size_t len, void *to, void *priv2)
268 return __copy_from_user_inatomic_nocache(to + progress, iter_from, len);
271 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
273 if (WARN_ON_ONCE(!i->data_source))
276 return iterate_and_advance(i, bytes, addr,
277 copy_from_user_iter_nocache,
280 EXPORT_SYMBOL(_copy_from_iter_nocache);
282 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
283 static __always_inline
284 size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress,
285 size_t len, void *to, void *priv2)
287 return __copy_from_user_flushcache(to + progress, iter_from, len);
290 static __always_inline
291 size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress,
292 size_t len, void *to, void *priv2)
294 memcpy_flushcache(to + progress, iter_from, len);
299 * _copy_from_iter_flushcache - write destination through cpu cache
300 * @addr: destination kernel address
301 * @bytes: total transfer length
302 * @i: source iterator
304 * The pmem driver arranges for filesystem-dax to use this facility via
305 * dax_copy_from_iter() for ensuring that writes to persistent memory
306 * are flushed through the CPU cache. It is differentiated from
307 * _copy_from_iter_nocache() in that guarantees all data is flushed for
308 * all iterator types. The _copy_from_iter_nocache() only attempts to
309 * bypass the cache for the ITER_IOVEC case, and on some archs may use
310 * instructions that strand dirty-data in the cache.
312 * Return: number of bytes copied (may be %0)
314 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
316 if (WARN_ON_ONCE(!i->data_source))
319 return iterate_and_advance(i, bytes, addr,
320 copy_from_user_iter_flushcache,
321 memcpy_from_iter_flushcache);
323 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
326 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
329 size_t v = n + offset;
332 * The general case needs to access the page order in order
333 * to compute the page size.
334 * However, we mostly deal with order-0 pages and thus can
335 * avoid a possible cache line miss for requests that fit all
338 if (n <= v && v <= PAGE_SIZE)
341 head = compound_head(page);
342 v += (page - head) << PAGE_SHIFT;
344 if (WARN_ON(n > v || v > page_size(head)))
349 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
353 if (!page_copy_sane(page, offset, bytes))
355 if (WARN_ON_ONCE(i->data_source))
357 page += offset / PAGE_SIZE; // first subpage
360 void *kaddr = kmap_local_page(page);
361 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
362 n = _copy_to_iter(kaddr + offset, n, i);
369 if (offset == PAGE_SIZE) {
376 EXPORT_SYMBOL(copy_page_to_iter);
378 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
383 if (!page_copy_sane(page, offset, bytes))
385 if (WARN_ON_ONCE(i->data_source))
387 page += offset / PAGE_SIZE; // first subpage
390 void *kaddr = kmap_local_page(page);
391 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
393 n = iterate_and_advance(i, n, kaddr + offset,
394 copy_to_user_iter_nofault,
402 if (offset == PAGE_SIZE) {
409 EXPORT_SYMBOL(copy_page_to_iter_nofault);
411 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
415 if (!page_copy_sane(page, offset, bytes))
417 page += offset / PAGE_SIZE; // first subpage
420 void *kaddr = kmap_local_page(page);
421 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
422 n = _copy_from_iter(kaddr + offset, n, i);
429 if (offset == PAGE_SIZE) {
436 EXPORT_SYMBOL(copy_page_from_iter);
438 static __always_inline
439 size_t zero_to_user_iter(void __user *iter_to, size_t progress,
440 size_t len, void *priv, void *priv2)
442 return clear_user(iter_to, len);
445 static __always_inline
446 size_t zero_to_iter(void *iter_to, size_t progress,
447 size_t len, void *priv, void *priv2)
449 memset(iter_to, 0, len);
453 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
455 return iterate_and_advance(i, bytes, NULL,
456 zero_to_user_iter, zero_to_iter);
458 EXPORT_SYMBOL(iov_iter_zero);
460 size_t copy_page_from_iter_atomic(struct page *page, size_t offset,
461 size_t bytes, struct iov_iter *i)
463 size_t n, copied = 0;
464 bool uses_kmap = IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) ||
467 if (!page_copy_sane(page, offset, bytes))
469 if (WARN_ON_ONCE(!i->data_source))
477 page += offset / PAGE_SIZE;
479 n = min_t(size_t, n, PAGE_SIZE - offset);
482 p = kmap_atomic(page) + offset;
483 n = __copy_from_iter(p, n, i);
487 } while (uses_kmap && copied != bytes && n > 0);
491 EXPORT_SYMBOL(copy_page_from_iter_atomic);
493 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
495 const struct bio_vec *bvec, *end;
501 size += i->iov_offset;
503 for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
504 if (likely(size < bvec->bv_len))
506 size -= bvec->bv_len;
508 i->iov_offset = size;
509 i->nr_segs -= bvec - i->bvec;
513 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
515 const struct iovec *iov, *end;
521 size += i->iov_offset; // from beginning of current segment
522 for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
523 if (likely(size < iov->iov_len))
525 size -= iov->iov_len;
527 i->iov_offset = size;
528 i->nr_segs -= iov - iter_iov(i);
532 static void iov_iter_folioq_advance(struct iov_iter *i, size_t size)
534 const struct folio_queue *folioq = i->folioq;
535 unsigned int slot = i->folioq_slot;
541 if (slot >= folioq_nr_slots(folioq)) {
542 folioq = folioq->next;
546 size += i->iov_offset; /* From beginning of current segment. */
548 size_t fsize = folioq_folio_size(folioq, slot);
550 if (likely(size < fsize))
554 if (slot >= folioq_nr_slots(folioq) && folioq->next) {
555 folioq = folioq->next;
560 i->iov_offset = size;
561 i->folioq_slot = slot;
565 void iov_iter_advance(struct iov_iter *i, size_t size)
567 if (unlikely(i->count < size))
569 if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
570 i->iov_offset += size;
572 } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
573 /* iovec and kvec have identical layouts */
574 iov_iter_iovec_advance(i, size);
575 } else if (iov_iter_is_bvec(i)) {
576 iov_iter_bvec_advance(i, size);
577 } else if (iov_iter_is_folioq(i)) {
578 iov_iter_folioq_advance(i, size);
579 } else if (iov_iter_is_discard(i)) {
583 EXPORT_SYMBOL(iov_iter_advance);
585 static void iov_iter_folioq_revert(struct iov_iter *i, size_t unroll)
587 const struct folio_queue *folioq = i->folioq;
588 unsigned int slot = i->folioq_slot;
594 folioq = folioq->prev;
595 slot = folioq_nr_slots(folioq);
599 fsize = folioq_folio_size(folioq, slot);
600 if (unroll <= fsize) {
601 i->iov_offset = fsize - unroll;
607 i->folioq_slot = slot;
611 void iov_iter_revert(struct iov_iter *i, size_t unroll)
615 if (WARN_ON(unroll > MAX_RW_COUNT))
618 if (unlikely(iov_iter_is_discard(i)))
620 if (unroll <= i->iov_offset) {
621 i->iov_offset -= unroll;
624 unroll -= i->iov_offset;
625 if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
626 BUG(); /* We should never go beyond the start of the specified
627 * range since we might then be straying into pages that
630 } else if (iov_iter_is_bvec(i)) {
631 const struct bio_vec *bvec = i->bvec;
633 size_t n = (--bvec)->bv_len;
637 i->iov_offset = n - unroll;
642 } else if (iov_iter_is_folioq(i)) {
644 iov_iter_folioq_revert(i, unroll);
645 } else { /* same logics for iovec and kvec */
646 const struct iovec *iov = iter_iov(i);
648 size_t n = (--iov)->iov_len;
652 i->iov_offset = n - unroll;
659 EXPORT_SYMBOL(iov_iter_revert);
662 * Return the count of just the current iov_iter segment.
664 size_t iov_iter_single_seg_count(const struct iov_iter *i)
666 if (i->nr_segs > 1) {
667 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
668 return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
669 if (iov_iter_is_bvec(i))
670 return min(i->count, i->bvec->bv_len - i->iov_offset);
672 if (unlikely(iov_iter_is_folioq(i)))
673 return !i->count ? 0 :
674 umin(folioq_folio_size(i->folioq, i->folioq_slot), i->count);
677 EXPORT_SYMBOL(iov_iter_single_seg_count);
679 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
680 const struct kvec *kvec, unsigned long nr_segs,
683 WARN_ON(direction & ~(READ | WRITE));
684 *i = (struct iov_iter){
685 .iter_type = ITER_KVEC,
686 .data_source = direction,
693 EXPORT_SYMBOL(iov_iter_kvec);
695 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
696 const struct bio_vec *bvec, unsigned long nr_segs,
699 WARN_ON(direction & ~(READ | WRITE));
700 *i = (struct iov_iter){
701 .iter_type = ITER_BVEC,
702 .data_source = direction,
709 EXPORT_SYMBOL(iov_iter_bvec);
712 * iov_iter_folio_queue - Initialise an I/O iterator to use the folios in a folio queue
713 * @i: The iterator to initialise.
714 * @direction: The direction of the transfer.
715 * @folioq: The starting point in the folio queue.
716 * @first_slot: The first slot in the folio queue to use
717 * @offset: The offset into the folio in the first slot to start at
718 * @count: The size of the I/O buffer in bytes.
720 * Set up an I/O iterator to either draw data out of the pages attached to an
721 * inode or to inject data into those pages. The pages *must* be prevented
722 * from evaporation, either by taking a ref on them or locking them by the
725 void iov_iter_folio_queue(struct iov_iter *i, unsigned int direction,
726 const struct folio_queue *folioq, unsigned int first_slot,
727 unsigned int offset, size_t count)
729 BUG_ON(direction & ~1);
730 *i = (struct iov_iter) {
731 .iter_type = ITER_FOLIOQ,
732 .data_source = direction,
734 .folioq_slot = first_slot,
736 .iov_offset = offset,
739 EXPORT_SYMBOL(iov_iter_folio_queue);
742 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
743 * @i: The iterator to initialise.
744 * @direction: The direction of the transfer.
745 * @xarray: The xarray to access.
746 * @start: The start file position.
747 * @count: The size of the I/O buffer in bytes.
749 * Set up an I/O iterator to either draw data out of the pages attached to an
750 * inode or to inject data into those pages. The pages *must* be prevented
751 * from evaporation, either by taking a ref on them or locking them by the
754 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
755 struct xarray *xarray, loff_t start, size_t count)
757 BUG_ON(direction & ~1);
758 *i = (struct iov_iter) {
759 .iter_type = ITER_XARRAY,
760 .data_source = direction,
762 .xarray_start = start,
767 EXPORT_SYMBOL(iov_iter_xarray);
770 * iov_iter_discard - Initialise an I/O iterator that discards data
771 * @i: The iterator to initialise.
772 * @direction: The direction of the transfer.
773 * @count: The size of the I/O buffer in bytes.
775 * Set up an I/O iterator that just discards everything that's written to it.
776 * It's only available as a READ iterator.
778 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
780 BUG_ON(direction != READ);
781 *i = (struct iov_iter){
782 .iter_type = ITER_DISCARD,
783 .data_source = false,
788 EXPORT_SYMBOL(iov_iter_discard);
790 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
793 const struct iovec *iov = iter_iov(i);
794 size_t size = i->count;
795 size_t skip = i->iov_offset;
798 size_t len = iov->iov_len - skip;
804 if ((unsigned long)(iov->iov_base + skip) & addr_mask)
815 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
818 const struct bio_vec *bvec = i->bvec;
819 unsigned skip = i->iov_offset;
820 size_t size = i->count;
823 size_t len = bvec->bv_len;
829 if ((unsigned long)(bvec->bv_offset + skip) & addr_mask)
841 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
842 * are aligned to the parameters.
844 * @i: &struct iov_iter to restore
845 * @addr_mask: bit mask to check against the iov element's addresses
846 * @len_mask: bit mask to check against the iov element's lengths
848 * Return: false if any addresses or lengths intersect with the provided masks
850 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
853 if (likely(iter_is_ubuf(i))) {
854 if (i->count & len_mask)
856 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
861 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
862 return iov_iter_aligned_iovec(i, addr_mask, len_mask);
864 if (iov_iter_is_bvec(i))
865 return iov_iter_aligned_bvec(i, addr_mask, len_mask);
867 /* With both xarray and folioq types, we're dealing with whole folios. */
868 if (iov_iter_is_xarray(i)) {
869 if (i->count & len_mask)
871 if ((i->xarray_start + i->iov_offset) & addr_mask)
874 if (iov_iter_is_folioq(i)) {
875 if (i->count & len_mask)
877 if (i->iov_offset & addr_mask)
883 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
885 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
887 const struct iovec *iov = iter_iov(i);
888 unsigned long res = 0;
889 size_t size = i->count;
890 size_t skip = i->iov_offset;
893 size_t len = iov->iov_len - skip;
895 res |= (unsigned long)iov->iov_base + skip;
907 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
909 const struct bio_vec *bvec = i->bvec;
911 size_t size = i->count;
912 unsigned skip = i->iov_offset;
915 size_t len = bvec->bv_len - skip;
916 res |= (unsigned long)bvec->bv_offset + skip;
928 unsigned long iov_iter_alignment(const struct iov_iter *i)
930 if (likely(iter_is_ubuf(i))) {
931 size_t size = i->count;
933 return ((unsigned long)i->ubuf + i->iov_offset) | size;
937 /* iovec and kvec have identical layouts */
938 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
939 return iov_iter_alignment_iovec(i);
941 if (iov_iter_is_bvec(i))
942 return iov_iter_alignment_bvec(i);
944 /* With both xarray and folioq types, we're dealing with whole folios. */
945 if (iov_iter_is_folioq(i))
946 return i->iov_offset | i->count;
947 if (iov_iter_is_xarray(i))
948 return (i->xarray_start + i->iov_offset) | i->count;
952 EXPORT_SYMBOL(iov_iter_alignment);
954 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
956 unsigned long res = 0;
958 size_t size = i->count;
964 if (WARN_ON(!iter_is_iovec(i)))
967 for (k = 0; k < i->nr_segs; k++) {
968 const struct iovec *iov = iter_iov(i) + k;
970 unsigned long base = (unsigned long)iov->iov_base;
971 if (v) // if not the first one
972 res |= base | v; // this start | previous end
973 v = base + iov->iov_len;
974 if (size <= iov->iov_len)
976 size -= iov->iov_len;
981 EXPORT_SYMBOL(iov_iter_gap_alignment);
983 static int want_pages_array(struct page ***res, size_t size,
984 size_t start, unsigned int maxpages)
986 unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
988 if (count > maxpages)
990 WARN_ON(!count); // caller should've prevented that
992 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
999 static ssize_t iter_folioq_get_pages(struct iov_iter *iter,
1000 struct page ***ppages, size_t maxsize,
1001 unsigned maxpages, size_t *_start_offset)
1003 const struct folio_queue *folioq = iter->folioq;
1004 struct page **pages;
1005 unsigned int slot = iter->folioq_slot;
1006 size_t extracted = 0, count = iter->count, iov_offset = iter->iov_offset;
1008 if (slot >= folioq_nr_slots(folioq)) {
1009 folioq = folioq->next;
1011 if (WARN_ON(iov_offset != 0))
1015 maxpages = want_pages_array(ppages, maxsize, iov_offset & ~PAGE_MASK, maxpages);
1018 *_start_offset = iov_offset & ~PAGE_MASK;
1022 struct folio *folio = folioq_folio(folioq, slot);
1023 size_t offset = iov_offset, fsize = folioq_folio_size(folioq, slot);
1024 size_t part = PAGE_SIZE - offset % PAGE_SIZE;
1026 if (offset < fsize) {
1027 part = umin(part, umin(maxsize - extracted, fsize - offset));
1032 *pages = folio_page(folio, offset / PAGE_SIZE);
1038 if (maxpages == 0 || extracted >= maxsize)
1041 if (iov_offset >= fsize) {
1044 if (slot == folioq_nr_slots(folioq) && folioq->next) {
1045 folioq = folioq->next;
1051 iter->count = count;
1052 iter->iov_offset = iov_offset;
1053 iter->folioq = folioq;
1054 iter->folioq_slot = slot;
1058 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1059 pgoff_t index, unsigned int nr_pages)
1061 XA_STATE(xas, xa, index);
1063 unsigned int ret = 0;
1066 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1067 if (xas_retry(&xas, page))
1070 /* Has the page moved or been split? */
1071 if (unlikely(page != xas_reload(&xas))) {
1076 pages[ret] = find_subpage(page, xas.xa_index);
1077 get_page(pages[ret]);
1078 if (++ret == nr_pages)
1085 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1086 struct page ***pages, size_t maxsize,
1087 unsigned maxpages, size_t *_start_offset)
1089 unsigned nr, offset, count;
1093 pos = i->xarray_start + i->iov_offset;
1094 index = pos >> PAGE_SHIFT;
1095 offset = pos & ~PAGE_MASK;
1096 *_start_offset = offset;
1098 count = want_pages_array(pages, maxsize, offset, maxpages);
1101 nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1105 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1106 i->iov_offset += maxsize;
1107 i->count -= maxsize;
1111 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1112 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1117 if (iter_is_ubuf(i))
1118 return (unsigned long)i->ubuf + i->iov_offset;
1120 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1121 const struct iovec *iov = iter_iov(i) + k;
1122 size_t len = iov->iov_len - skip;
1128 return (unsigned long)iov->iov_base + skip;
1130 BUG(); // if it had been empty, we wouldn't get called
1133 /* must be done on non-empty ITER_BVEC one */
1134 static struct page *first_bvec_segment(const struct iov_iter *i,
1135 size_t *size, size_t *start)
1138 size_t skip = i->iov_offset, len;
1140 len = i->bvec->bv_len - skip;
1143 skip += i->bvec->bv_offset;
1144 page = i->bvec->bv_page + skip / PAGE_SIZE;
1145 *start = skip % PAGE_SIZE;
1149 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1150 struct page ***pages, size_t maxsize,
1151 unsigned int maxpages, size_t *start)
1153 unsigned int n, gup_flags = 0;
1155 if (maxsize > i->count)
1159 if (maxsize > MAX_RW_COUNT)
1160 maxsize = MAX_RW_COUNT;
1162 if (likely(user_backed_iter(i))) {
1166 if (iov_iter_rw(i) != WRITE)
1167 gup_flags |= FOLL_WRITE;
1169 gup_flags |= FOLL_NOFAULT;
1171 addr = first_iovec_segment(i, &maxsize);
1172 *start = addr % PAGE_SIZE;
1174 n = want_pages_array(pages, maxsize, *start, maxpages);
1177 res = get_user_pages_fast(addr, n, gup_flags, *pages);
1178 if (unlikely(res <= 0))
1180 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1181 iov_iter_advance(i, maxsize);
1184 if (iov_iter_is_bvec(i)) {
1188 page = first_bvec_segment(i, &maxsize, start);
1189 n = want_pages_array(pages, maxsize, *start, maxpages);
1193 for (int k = 0; k < n; k++)
1194 get_page(p[k] = page + k);
1195 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1196 i->count -= maxsize;
1197 i->iov_offset += maxsize;
1198 if (i->iov_offset == i->bvec->bv_len) {
1205 if (iov_iter_is_folioq(i))
1206 return iter_folioq_get_pages(i, pages, maxsize, maxpages, start);
1207 if (iov_iter_is_xarray(i))
1208 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1212 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1213 size_t maxsize, unsigned maxpages, size_t *start)
1219 return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1221 EXPORT_SYMBOL(iov_iter_get_pages2);
1223 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1224 struct page ***pages, size_t maxsize, size_t *start)
1230 len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1237 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1239 static int iov_npages(const struct iov_iter *i, int maxpages)
1241 size_t skip = i->iov_offset, size = i->count;
1242 const struct iovec *p;
1245 for (p = iter_iov(i); size; skip = 0, p++) {
1246 unsigned offs = offset_in_page(p->iov_base + skip);
1247 size_t len = min(p->iov_len - skip, size);
1251 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1252 if (unlikely(npages > maxpages))
1259 static int bvec_npages(const struct iov_iter *i, int maxpages)
1261 size_t skip = i->iov_offset, size = i->count;
1262 const struct bio_vec *p;
1265 for (p = i->bvec; size; skip = 0, p++) {
1266 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1267 size_t len = min(p->bv_len - skip, size);
1270 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1271 if (unlikely(npages > maxpages))
1277 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1279 if (unlikely(!i->count))
1281 if (likely(iter_is_ubuf(i))) {
1282 unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1283 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1284 return min(npages, maxpages);
1286 /* iovec and kvec have identical layouts */
1287 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1288 return iov_npages(i, maxpages);
1289 if (iov_iter_is_bvec(i))
1290 return bvec_npages(i, maxpages);
1291 if (iov_iter_is_folioq(i)) {
1292 unsigned offset = i->iov_offset % PAGE_SIZE;
1293 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1294 return min(npages, maxpages);
1296 if (iov_iter_is_xarray(i)) {
1297 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1298 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1299 return min(npages, maxpages);
1303 EXPORT_SYMBOL(iov_iter_npages);
1305 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1308 if (iov_iter_is_bvec(new))
1309 return new->bvec = kmemdup(new->bvec,
1310 new->nr_segs * sizeof(struct bio_vec),
1312 else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1313 /* iovec and kvec have identical layout */
1314 return new->__iov = kmemdup(new->__iov,
1315 new->nr_segs * sizeof(struct iovec),
1319 EXPORT_SYMBOL(dup_iter);
1321 static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1322 const struct iovec __user *uvec, u32 nr_segs)
1324 const struct compat_iovec __user *uiov =
1325 (const struct compat_iovec __user *)uvec;
1329 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1332 for (i = 0; i < nr_segs; i++) {
1336 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1337 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1339 /* check for compat_size_t not fitting in compat_ssize_t .. */
1344 iov[i].iov_base = compat_ptr(buf);
1345 iov[i].iov_len = len;
1354 static __noclone int copy_iovec_from_user(struct iovec *iov,
1355 const struct iovec __user *uiov, unsigned long nr_segs)
1359 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1366 unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1367 unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1369 /* check for size_t not fitting in ssize_t .. */
1370 if (unlikely(len < 0)) {
1374 iov->iov_base = buf;
1378 } while (--nr_segs);
1386 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1387 unsigned long nr_segs, unsigned long fast_segs,
1388 struct iovec *fast_iov, bool compat)
1390 struct iovec *iov = fast_iov;
1394 * SuS says "The readv() function *may* fail if the iovcnt argument was
1395 * less than or equal to 0, or greater than {IOV_MAX}. Linux has
1396 * traditionally returned zero for zero segments, so...
1400 if (nr_segs > UIO_MAXIOV)
1401 return ERR_PTR(-EINVAL);
1402 if (nr_segs > fast_segs) {
1403 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1405 return ERR_PTR(-ENOMEM);
1408 if (unlikely(compat))
1409 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1411 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1413 if (iov != fast_iov)
1415 return ERR_PTR(ret);
1422 * Single segment iovec supplied by the user, import it as ITER_UBUF.
1424 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1425 struct iovec **iovp, struct iov_iter *i,
1428 struct iovec *iov = *iovp;
1432 ret = copy_compat_iovec_from_user(iov, uvec, 1);
1434 ret = copy_iovec_from_user(iov, uvec, 1);
1438 ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1445 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1446 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1447 struct iov_iter *i, bool compat)
1449 ssize_t total_len = 0;
1454 return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1456 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1459 return PTR_ERR(iov);
1463 * According to the Single Unix Specification we should return EINVAL if
1464 * an element length is < 0 when cast to ssize_t or if the total length
1465 * would overflow the ssize_t return value of the system call.
1467 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1470 for (seg = 0; seg < nr_segs; seg++) {
1471 ssize_t len = (ssize_t)iov[seg].iov_len;
1473 if (!access_ok(iov[seg].iov_base, len)) {
1480 if (len > MAX_RW_COUNT - total_len) {
1481 len = MAX_RW_COUNT - total_len;
1482 iov[seg].iov_len = len;
1487 iov_iter_init(i, type, iov, nr_segs, total_len);
1496 * import_iovec() - Copy an array of &struct iovec from userspace
1497 * into the kernel, check that it is valid, and initialize a new
1498 * &struct iov_iter iterator to access it.
1500 * @type: One of %READ or %WRITE.
1501 * @uvec: Pointer to the userspace array.
1502 * @nr_segs: Number of elements in userspace array.
1503 * @fast_segs: Number of elements in @iov.
1504 * @iovp: (input and output parameter) Pointer to pointer to (usually small
1505 * on-stack) kernel array.
1506 * @i: Pointer to iterator that will be initialized on success.
1508 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1509 * then this function places %NULL in *@iov on return. Otherwise, a new
1510 * array will be allocated and the result placed in *@iov. This means that
1511 * the caller may call kfree() on *@iov regardless of whether the small
1512 * on-stack array was used or not (and regardless of whether this function
1513 * returns an error or not).
1515 * Return: Negative error code on error, bytes imported on success
1517 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1518 unsigned nr_segs, unsigned fast_segs,
1519 struct iovec **iovp, struct iov_iter *i)
1521 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1522 in_compat_syscall());
1524 EXPORT_SYMBOL(import_iovec);
1526 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1528 if (len > MAX_RW_COUNT)
1530 if (unlikely(!access_ok(buf, len)))
1533 iov_iter_ubuf(i, rw, buf, len);
1536 EXPORT_SYMBOL_GPL(import_ubuf);
1539 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1540 * iov_iter_save_state() was called.
1542 * @i: &struct iov_iter to restore
1543 * @state: state to restore from
1545 * Used after iov_iter_save_state() to bring restore @i, if operations may
1548 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1550 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1552 if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1553 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1555 i->iov_offset = state->iov_offset;
1556 i->count = state->count;
1557 if (iter_is_ubuf(i))
1560 * For the *vec iters, nr_segs + iov is constant - if we increment
1561 * the vec, then we also decrement the nr_segs count. Hence we don't
1562 * need to track both of these, just one is enough and we can deduct
1563 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1564 * size, so we can just increment the iov pointer as they are unionzed.
1565 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1566 * not. Be safe and handle it separately.
1568 BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1569 if (iov_iter_is_bvec(i))
1570 i->bvec -= state->nr_segs - i->nr_segs;
1572 i->__iov -= state->nr_segs - i->nr_segs;
1573 i->nr_segs = state->nr_segs;
1577 * Extract a list of contiguous pages from an ITER_FOLIOQ iterator. This does
1578 * not get references on the pages, nor does it get a pin on them.
1580 static ssize_t iov_iter_extract_folioq_pages(struct iov_iter *i,
1581 struct page ***pages, size_t maxsize,
1582 unsigned int maxpages,
1583 iov_iter_extraction_t extraction_flags,
1586 const struct folio_queue *folioq = i->folioq;
1588 unsigned int nr = 0;
1589 size_t extracted = 0, offset, slot = i->folioq_slot;
1591 if (slot >= folioq_nr_slots(folioq)) {
1592 folioq = folioq->next;
1594 if (WARN_ON(i->iov_offset != 0))
1598 offset = i->iov_offset & ~PAGE_MASK;
1601 maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1607 struct folio *folio = folioq_folio(folioq, slot);
1608 size_t offset = i->iov_offset, fsize = folioq_folio_size(folioq, slot);
1609 size_t part = PAGE_SIZE - offset % PAGE_SIZE;
1611 if (offset < fsize) {
1612 part = umin(part, umin(maxsize - extracted, fsize - offset));
1614 i->iov_offset += part;
1617 p[nr++] = folio_page(folio, offset / PAGE_SIZE);
1620 if (nr >= maxpages || extracted >= maxsize)
1623 if (i->iov_offset >= fsize) {
1626 if (slot == folioq_nr_slots(folioq) && folioq->next) {
1627 folioq = folioq->next;
1634 i->folioq_slot = slot;
1639 * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not
1640 * get references on the pages, nor does it get a pin on them.
1642 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1643 struct page ***pages, size_t maxsize,
1644 unsigned int maxpages,
1645 iov_iter_extraction_t extraction_flags,
1648 struct page *page, **p;
1649 unsigned int nr = 0, offset;
1650 loff_t pos = i->xarray_start + i->iov_offset;
1651 pgoff_t index = pos >> PAGE_SHIFT;
1652 XA_STATE(xas, i->xarray, index);
1654 offset = pos & ~PAGE_MASK;
1657 maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1663 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1664 if (xas_retry(&xas, page))
1667 /* Has the page moved or been split? */
1668 if (unlikely(page != xas_reload(&xas))) {
1673 p[nr++] = find_subpage(page, xas.xa_index);
1679 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1680 iov_iter_advance(i, maxsize);
1685 * Extract a list of virtually contiguous pages from an ITER_BVEC iterator.
1686 * This does not get references on the pages, nor does it get a pin on them.
1688 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1689 struct page ***pages, size_t maxsize,
1690 unsigned int maxpages,
1691 iov_iter_extraction_t extraction_flags,
1694 size_t skip = i->iov_offset, size = 0;
1695 struct bvec_iter bi;
1698 if (i->nr_segs == 0)
1701 if (i->iov_offset == i->bvec->bv_len) {
1708 bi.bi_size = maxsize;
1709 bi.bi_bvec_done = skip;
1711 maxpages = want_pages_array(pages, maxsize, skip, maxpages);
1713 while (bi.bi_size && bi.bi_idx < i->nr_segs) {
1714 struct bio_vec bv = bvec_iter_bvec(i->bvec, bi);
1717 * The iov_iter_extract_pages interface only allows an offset
1718 * into the first page. Break out of the loop if we see an
1719 * offset into subsequent pages, the caller will have to call
1720 * iov_iter_extract_pages again for the reminder.
1726 *offset0 = bv.bv_offset;
1729 (*pages)[k++] = bv.bv_page;
1736 * We are done when the end of the bvec doesn't align to a page
1737 * boundary as that would create a hole in the returned space.
1738 * The caller will handle this with another call to
1739 * iov_iter_extract_pages.
1741 if (bv.bv_offset + bv.bv_len != PAGE_SIZE)
1744 bvec_iter_advance_single(i->bvec, &bi, bv.bv_len);
1747 iov_iter_advance(i, size);
1752 * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1753 * This does not get references on the pages, nor does it get a pin on them.
1755 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
1756 struct page ***pages, size_t maxsize,
1757 unsigned int maxpages,
1758 iov_iter_extraction_t extraction_flags,
1761 struct page **p, *page;
1763 size_t skip = i->iov_offset, offset, len, size;
1767 if (i->nr_segs == 0)
1769 size = min(maxsize, i->kvec->iov_len - skip);
1778 kaddr = i->kvec->iov_base + skip;
1779 offset = (unsigned long)kaddr & ~PAGE_MASK;
1782 maxpages = want_pages_array(pages, size, offset, maxpages);
1788 len = offset + size;
1789 for (k = 0; k < maxpages; k++) {
1790 size_t seg = min_t(size_t, len, PAGE_SIZE);
1792 if (is_vmalloc_or_module_addr(kaddr))
1793 page = vmalloc_to_page(kaddr);
1795 page = virt_to_page(kaddr);
1802 size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1803 iov_iter_advance(i, size);
1808 * Extract a list of contiguous pages from a user iterator and get a pin on
1809 * each of them. This should only be used if the iterator is user-backed
1812 * It does not get refs on the pages, but the pages must be unpinned by the
1813 * caller once the transfer is complete.
1815 * This is safe to be used where background IO/DMA *is* going to be modifying
1816 * the buffer; using a pin rather than a ref makes forces fork() to give the
1817 * child a copy of the page.
1819 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
1820 struct page ***pages,
1822 unsigned int maxpages,
1823 iov_iter_extraction_t extraction_flags,
1827 unsigned int gup_flags = 0;
1831 if (i->data_source == ITER_DEST)
1832 gup_flags |= FOLL_WRITE;
1833 if (extraction_flags & ITER_ALLOW_P2PDMA)
1834 gup_flags |= FOLL_PCI_P2PDMA;
1836 gup_flags |= FOLL_NOFAULT;
1838 addr = first_iovec_segment(i, &maxsize);
1839 *offset0 = offset = addr % PAGE_SIZE;
1841 maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1844 res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
1845 if (unlikely(res <= 0))
1847 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
1848 iov_iter_advance(i, maxsize);
1853 * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1854 * @i: The iterator to extract from
1855 * @pages: Where to return the list of pages
1856 * @maxsize: The maximum amount of iterator to extract
1857 * @maxpages: The maximum size of the list of pages
1858 * @extraction_flags: Flags to qualify request
1859 * @offset0: Where to return the starting offset into (*@pages)[0]
1861 * Extract a list of contiguous pages from the current point of the iterator,
1862 * advancing the iterator. The maximum number of pages and the maximum amount
1863 * of page contents can be set.
1865 * If *@pages is NULL, a page list will be allocated to the required size and
1866 * *@pages will be set to its base. If *@pages is not NULL, it will be assumed
1867 * that the caller allocated a page list at least @maxpages in size and this
1868 * will be filled in.
1870 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1871 * be allowed on the pages extracted.
1873 * The iov_iter_extract_will_pin() function can be used to query how cleanup
1874 * should be performed.
1876 * Extra refs or pins on the pages may be obtained as follows:
1878 * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1879 * added to the pages, but refs will not be taken.
1880 * iov_iter_extract_will_pin() will return true.
1882 * (*) If the iterator is ITER_KVEC, ITER_BVEC, ITER_FOLIOQ or ITER_XARRAY, the
1883 * pages are merely listed; no extra refs or pins are obtained.
1884 * iov_iter_extract_will_pin() will return 0.
1888 * (*) Use with ITER_DISCARD is not supported as that has no content.
1890 * On success, the function sets *@pages to the new pagelist, if allocated, and
1891 * sets *offset0 to the offset into the first page.
1893 * It may also return -ENOMEM and -EFAULT.
1895 ssize_t iov_iter_extract_pages(struct iov_iter *i,
1896 struct page ***pages,
1898 unsigned int maxpages,
1899 iov_iter_extraction_t extraction_flags,
1902 maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
1906 if (likely(user_backed_iter(i)))
1907 return iov_iter_extract_user_pages(i, pages, maxsize,
1908 maxpages, extraction_flags,
1910 if (iov_iter_is_kvec(i))
1911 return iov_iter_extract_kvec_pages(i, pages, maxsize,
1912 maxpages, extraction_flags,
1914 if (iov_iter_is_bvec(i))
1915 return iov_iter_extract_bvec_pages(i, pages, maxsize,
1916 maxpages, extraction_flags,
1918 if (iov_iter_is_folioq(i))
1919 return iov_iter_extract_folioq_pages(i, pages, maxsize,
1920 maxpages, extraction_flags,
1922 if (iov_iter_is_xarray(i))
1923 return iov_iter_extract_xarray_pages(i, pages, maxsize,
1924 maxpages, extraction_flags,
1928 EXPORT_SYMBOL_GPL(iov_iter_extract_pages);