]> Git Repo - J-linux.git/blob - drivers/spi/spi-cadence-quadspi.c
Merge tag 'kbuild-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[J-linux.git] / drivers / spi / spi-cadence-quadspi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
32
33 #define CQSPI_NAME                      "cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT            4
35
36 static_assert(CQSPI_MAX_CHIPSELECT <= SPI_CS_CNT_MAX);
37
38 /* Quirks */
39 #define CQSPI_NEEDS_WR_DELAY            BIT(0)
40 #define CQSPI_DISABLE_DAC_MODE          BIT(1)
41 #define CQSPI_SUPPORT_EXTERNAL_DMA      BIT(2)
42 #define CQSPI_NO_SUPPORT_WR_COMPLETION  BIT(3)
43 #define CQSPI_SLOW_SRAM         BIT(4)
44 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR  BIT(5)
45
46 /* Capabilities */
47 #define CQSPI_SUPPORTS_OCTAL            BIT(0)
48
49 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
50
51 enum {
52         CLK_QSPI_APB = 0,
53         CLK_QSPI_AHB,
54         CLK_QSPI_NUM,
55 };
56
57 struct cqspi_st;
58
59 struct cqspi_flash_pdata {
60         struct cqspi_st *cqspi;
61         u32             clk_rate;
62         u32             read_delay;
63         u32             tshsl_ns;
64         u32             tsd2d_ns;
65         u32             tchsh_ns;
66         u32             tslch_ns;
67         u8              cs;
68 };
69
70 struct cqspi_st {
71         struct platform_device  *pdev;
72         struct spi_controller   *host;
73         struct clk              *clk;
74         struct clk              *clks[CLK_QSPI_NUM];
75         unsigned int            sclk;
76
77         void __iomem            *iobase;
78         void __iomem            *ahb_base;
79         resource_size_t         ahb_size;
80         struct completion       transfer_complete;
81
82         struct dma_chan         *rx_chan;
83         struct completion       rx_dma_complete;
84         dma_addr_t              mmap_phys_base;
85
86         int                     current_cs;
87         unsigned long           master_ref_clk_hz;
88         bool                    is_decoded_cs;
89         u32                     fifo_depth;
90         u32                     fifo_width;
91         u32                     num_chipselect;
92         bool                    rclk_en;
93         u32                     trigger_address;
94         u32                     wr_delay;
95         bool                    use_direct_mode;
96         bool                    use_direct_mode_wr;
97         struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
98         bool                    use_dma_read;
99         u32                     pd_dev_id;
100         bool                    wr_completion;
101         bool                    slow_sram;
102         bool                    apb_ahb_hazard;
103
104         bool                    is_jh7110; /* Flag for StarFive JH7110 SoC */
105 };
106
107 struct cqspi_driver_platdata {
108         u32 hwcaps_mask;
109         u8 quirks;
110         int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
111                                  u_char *rxbuf, loff_t from_addr, size_t n_rx);
112         u32 (*get_dma_status)(struct cqspi_st *cqspi);
113         int (*jh7110_clk_init)(struct platform_device *pdev,
114                                struct cqspi_st *cqspi);
115 };
116
117 /* Operation timeout value */
118 #define CQSPI_TIMEOUT_MS                        500
119 #define CQSPI_READ_TIMEOUT_MS                   10
120
121 /* Runtime_pm autosuspend delay */
122 #define CQSPI_AUTOSUSPEND_TIMEOUT               2000
123
124 #define CQSPI_DUMMY_CLKS_PER_BYTE               8
125 #define CQSPI_DUMMY_BYTES_MAX                   4
126 #define CQSPI_DUMMY_CLKS_MAX                    31
127
128 #define CQSPI_STIG_DATA_LEN_MAX                 8
129
130 /* Register map */
131 #define CQSPI_REG_CONFIG                        0x00
132 #define CQSPI_REG_CONFIG_ENABLE_MASK            BIT(0)
133 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL       BIT(7)
134 #define CQSPI_REG_CONFIG_DECODE_MASK            BIT(9)
135 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB         10
136 #define CQSPI_REG_CONFIG_DMA_MASK               BIT(15)
137 #define CQSPI_REG_CONFIG_BAUD_LSB               19
138 #define CQSPI_REG_CONFIG_DTR_PROTO              BIT(24)
139 #define CQSPI_REG_CONFIG_DUAL_OPCODE            BIT(30)
140 #define CQSPI_REG_CONFIG_IDLE_LSB               31
141 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK        0xF
142 #define CQSPI_REG_CONFIG_BAUD_MASK              0xF
143
144 #define CQSPI_REG_RD_INSTR                      0x04
145 #define CQSPI_REG_RD_INSTR_OPCODE_LSB           0
146 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB       8
147 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB        12
148 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB        16
149 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB          20
150 #define CQSPI_REG_RD_INSTR_DUMMY_LSB            24
151 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK      0x3
152 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK       0x3
153 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK       0x3
154 #define CQSPI_REG_RD_INSTR_DUMMY_MASK           0x1F
155
156 #define CQSPI_REG_WR_INSTR                      0x08
157 #define CQSPI_REG_WR_INSTR_OPCODE_LSB           0
158 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB        12
159 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB        16
160
161 #define CQSPI_REG_DELAY                         0x0C
162 #define CQSPI_REG_DELAY_TSLCH_LSB               0
163 #define CQSPI_REG_DELAY_TCHSH_LSB               8
164 #define CQSPI_REG_DELAY_TSD2D_LSB               16
165 #define CQSPI_REG_DELAY_TSHSL_LSB               24
166 #define CQSPI_REG_DELAY_TSLCH_MASK              0xFF
167 #define CQSPI_REG_DELAY_TCHSH_MASK              0xFF
168 #define CQSPI_REG_DELAY_TSD2D_MASK              0xFF
169 #define CQSPI_REG_DELAY_TSHSL_MASK              0xFF
170
171 #define CQSPI_REG_READCAPTURE                   0x10
172 #define CQSPI_REG_READCAPTURE_BYPASS_LSB        0
173 #define CQSPI_REG_READCAPTURE_DELAY_LSB         1
174 #define CQSPI_REG_READCAPTURE_DELAY_MASK        0xF
175
176 #define CQSPI_REG_SIZE                          0x14
177 #define CQSPI_REG_SIZE_ADDRESS_LSB              0
178 #define CQSPI_REG_SIZE_PAGE_LSB                 4
179 #define CQSPI_REG_SIZE_BLOCK_LSB                16
180 #define CQSPI_REG_SIZE_ADDRESS_MASK             0xF
181 #define CQSPI_REG_SIZE_PAGE_MASK                0xFFF
182 #define CQSPI_REG_SIZE_BLOCK_MASK               0x3F
183
184 #define CQSPI_REG_SRAMPARTITION                 0x18
185 #define CQSPI_REG_INDIRECTTRIGGER               0x1C
186
187 #define CQSPI_REG_DMA                           0x20
188 #define CQSPI_REG_DMA_SINGLE_LSB                0
189 #define CQSPI_REG_DMA_BURST_LSB                 8
190 #define CQSPI_REG_DMA_SINGLE_MASK               0xFF
191 #define CQSPI_REG_DMA_BURST_MASK                0xFF
192
193 #define CQSPI_REG_REMAP                         0x24
194 #define CQSPI_REG_MODE_BIT                      0x28
195
196 #define CQSPI_REG_SDRAMLEVEL                    0x2C
197 #define CQSPI_REG_SDRAMLEVEL_RD_LSB             0
198 #define CQSPI_REG_SDRAMLEVEL_WR_LSB             16
199 #define CQSPI_REG_SDRAMLEVEL_RD_MASK            0xFFFF
200 #define CQSPI_REG_SDRAMLEVEL_WR_MASK            0xFFFF
201
202 #define CQSPI_REG_WR_COMPLETION_CTRL            0x38
203 #define CQSPI_REG_WR_DISABLE_AUTO_POLL          BIT(14)
204
205 #define CQSPI_REG_IRQSTATUS                     0x40
206 #define CQSPI_REG_IRQMASK                       0x44
207
208 #define CQSPI_REG_INDIRECTRD                    0x60
209 #define CQSPI_REG_INDIRECTRD_START_MASK         BIT(0)
210 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK        BIT(1)
211 #define CQSPI_REG_INDIRECTRD_DONE_MASK          BIT(5)
212
213 #define CQSPI_REG_INDIRECTRDWATERMARK           0x64
214 #define CQSPI_REG_INDIRECTRDSTARTADDR           0x68
215 #define CQSPI_REG_INDIRECTRDBYTES               0x6C
216
217 #define CQSPI_REG_CMDCTRL                       0x90
218 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK          BIT(0)
219 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK       BIT(1)
220 #define CQSPI_REG_CMDCTRL_DUMMY_LSB             7
221 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB          12
222 #define CQSPI_REG_CMDCTRL_WR_EN_LSB             15
223 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB         16
224 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB           19
225 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB          20
226 #define CQSPI_REG_CMDCTRL_RD_EN_LSB             23
227 #define CQSPI_REG_CMDCTRL_OPCODE_LSB            24
228 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK         0x7
229 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK        0x3
230 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK         0x7
231 #define CQSPI_REG_CMDCTRL_DUMMY_MASK            0x1F
232
233 #define CQSPI_REG_INDIRECTWR                    0x70
234 #define CQSPI_REG_INDIRECTWR_START_MASK         BIT(0)
235 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK        BIT(1)
236 #define CQSPI_REG_INDIRECTWR_DONE_MASK          BIT(5)
237
238 #define CQSPI_REG_INDIRECTWRWATERMARK           0x74
239 #define CQSPI_REG_INDIRECTWRSTARTADDR           0x78
240 #define CQSPI_REG_INDIRECTWRBYTES               0x7C
241
242 #define CQSPI_REG_INDTRIG_ADDRRANGE             0x80
243
244 #define CQSPI_REG_CMDADDRESS                    0x94
245 #define CQSPI_REG_CMDREADDATALOWER              0xA0
246 #define CQSPI_REG_CMDREADDATAUPPER              0xA4
247 #define CQSPI_REG_CMDWRITEDATALOWER             0xA8
248 #define CQSPI_REG_CMDWRITEDATAUPPER             0xAC
249
250 #define CQSPI_REG_POLLING_STATUS                0xB0
251 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB      16
252
253 #define CQSPI_REG_OP_EXT_LOWER                  0xE0
254 #define CQSPI_REG_OP_EXT_READ_LSB               24
255 #define CQSPI_REG_OP_EXT_WRITE_LSB              16
256 #define CQSPI_REG_OP_EXT_STIG_LSB               0
257
258 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR           0x1000
259
260 #define CQSPI_REG_VERSAL_DMA_DST_ADDR           0x1800
261 #define CQSPI_REG_VERSAL_DMA_DST_SIZE           0x1804
262
263 #define CQSPI_REG_VERSAL_DMA_DST_CTRL           0x180C
264
265 #define CQSPI_REG_VERSAL_DMA_DST_I_STS          0x1814
266 #define CQSPI_REG_VERSAL_DMA_DST_I_EN           0x1818
267 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS          0x181C
268 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK      BIT(1)
269
270 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB       0x1828
271
272 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL       0xF43FFA00
273 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL    0x6
274
275 /* Interrupt status bits */
276 #define CQSPI_REG_IRQ_MODE_ERR                  BIT(0)
277 #define CQSPI_REG_IRQ_UNDERFLOW                 BIT(1)
278 #define CQSPI_REG_IRQ_IND_COMP                  BIT(2)
279 #define CQSPI_REG_IRQ_IND_RD_REJECT             BIT(3)
280 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR          BIT(4)
281 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR           BIT(5)
282 #define CQSPI_REG_IRQ_WATERMARK                 BIT(6)
283 #define CQSPI_REG_IRQ_IND_SRAM_FULL             BIT(12)
284
285 #define CQSPI_IRQ_MASK_RD               (CQSPI_REG_IRQ_WATERMARK        | \
286                                          CQSPI_REG_IRQ_IND_SRAM_FULL    | \
287                                          CQSPI_REG_IRQ_IND_COMP)
288
289 #define CQSPI_IRQ_MASK_WR               (CQSPI_REG_IRQ_IND_COMP         | \
290                                          CQSPI_REG_IRQ_WATERMARK        | \
291                                          CQSPI_REG_IRQ_UNDERFLOW)
292
293 #define CQSPI_IRQ_STATUS_MASK           0x1FFFF
294 #define CQSPI_DMA_UNALIGN               0x3
295
296 #define CQSPI_REG_VERSAL_DMA_VAL                0x602
297
298 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
299 {
300         u32 val;
301
302         return readl_relaxed_poll_timeout(reg, val,
303                                           (((clr ? ~val : val) & mask) == mask),
304                                           10, CQSPI_TIMEOUT_MS * 1000);
305 }
306
307 static bool cqspi_is_idle(struct cqspi_st *cqspi)
308 {
309         u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
310
311         return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
312 }
313
314 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
315 {
316         u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
317
318         reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
319         return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
320 }
321
322 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
323 {
324         u32 dma_status;
325
326         dma_status = readl(cqspi->iobase +
327                                            CQSPI_REG_VERSAL_DMA_DST_I_STS);
328         writel(dma_status, cqspi->iobase +
329                    CQSPI_REG_VERSAL_DMA_DST_I_STS);
330
331         return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
332 }
333
334 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
335 {
336         struct cqspi_st *cqspi = dev;
337         unsigned int irq_status;
338         struct device *device = &cqspi->pdev->dev;
339         const struct cqspi_driver_platdata *ddata;
340
341         ddata = of_device_get_match_data(device);
342
343         /* Read interrupt status */
344         irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
345
346         /* Clear interrupt */
347         writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
348
349         if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
350                 if (ddata->get_dma_status(cqspi)) {
351                         complete(&cqspi->transfer_complete);
352                         return IRQ_HANDLED;
353                 }
354         }
355
356         else if (!cqspi->slow_sram)
357                 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
358         else
359                 irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
360
361         if (irq_status)
362                 complete(&cqspi->transfer_complete);
363
364         return IRQ_HANDLED;
365 }
366
367 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
368 {
369         u32 rdreg = 0;
370
371         rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
372         rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
373         rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
374
375         return rdreg;
376 }
377
378 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
379 {
380         unsigned int dummy_clk;
381
382         if (!op->dummy.nbytes)
383                 return 0;
384
385         dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
386         if (op->cmd.dtr)
387                 dummy_clk /= 2;
388
389         return dummy_clk;
390 }
391
392 static int cqspi_wait_idle(struct cqspi_st *cqspi)
393 {
394         const unsigned int poll_idle_retry = 3;
395         unsigned int count = 0;
396         unsigned long timeout;
397
398         timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
399         while (1) {
400                 /*
401                  * Read few times in succession to ensure the controller
402                  * is indeed idle, that is, the bit does not transition
403                  * low again.
404                  */
405                 if (cqspi_is_idle(cqspi))
406                         count++;
407                 else
408                         count = 0;
409
410                 if (count >= poll_idle_retry)
411                         return 0;
412
413                 if (time_after(jiffies, timeout)) {
414                         /* Timeout, in busy mode. */
415                         dev_err(&cqspi->pdev->dev,
416                                 "QSPI is still busy after %dms timeout.\n",
417                                 CQSPI_TIMEOUT_MS);
418                         return -ETIMEDOUT;
419                 }
420
421                 cpu_relax();
422         }
423 }
424
425 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
426 {
427         void __iomem *reg_base = cqspi->iobase;
428         int ret;
429
430         /* Write the CMDCTRL without start execution. */
431         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
432         /* Start execute */
433         reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
434         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
435
436         /* Polling for completion. */
437         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
438                                  CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
439         if (ret) {
440                 dev_err(&cqspi->pdev->dev,
441                         "Flash command execution timed out.\n");
442                 return ret;
443         }
444
445         /* Polling QSPI idle status. */
446         return cqspi_wait_idle(cqspi);
447 }
448
449 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
450                                   const struct spi_mem_op *op,
451                                   unsigned int shift)
452 {
453         struct cqspi_st *cqspi = f_pdata->cqspi;
454         void __iomem *reg_base = cqspi->iobase;
455         unsigned int reg;
456         u8 ext;
457
458         if (op->cmd.nbytes != 2)
459                 return -EINVAL;
460
461         /* Opcode extension is the LSB. */
462         ext = op->cmd.opcode & 0xff;
463
464         reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
465         reg &= ~(0xff << shift);
466         reg |= ext << shift;
467         writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
468
469         return 0;
470 }
471
472 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
473                             const struct spi_mem_op *op, unsigned int shift)
474 {
475         struct cqspi_st *cqspi = f_pdata->cqspi;
476         void __iomem *reg_base = cqspi->iobase;
477         unsigned int reg;
478         int ret;
479
480         reg = readl(reg_base + CQSPI_REG_CONFIG);
481
482         /*
483          * We enable dual byte opcode here. The callers have to set up the
484          * extension opcode based on which type of operation it is.
485          */
486         if (op->cmd.dtr) {
487                 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
488                 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
489
490                 /* Set up command opcode extension. */
491                 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
492                 if (ret)
493                         return ret;
494         } else {
495                 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
496                 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
497         }
498
499         writel(reg, reg_base + CQSPI_REG_CONFIG);
500
501         return cqspi_wait_idle(cqspi);
502 }
503
504 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
505                               const struct spi_mem_op *op)
506 {
507         struct cqspi_st *cqspi = f_pdata->cqspi;
508         void __iomem *reg_base = cqspi->iobase;
509         u8 *rxbuf = op->data.buf.in;
510         u8 opcode;
511         size_t n_rx = op->data.nbytes;
512         unsigned int rdreg;
513         unsigned int reg;
514         unsigned int dummy_clk;
515         size_t read_len;
516         int status;
517
518         status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
519         if (status)
520                 return status;
521
522         if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
523                 dev_err(&cqspi->pdev->dev,
524                         "Invalid input argument, len %zu rxbuf 0x%p\n",
525                         n_rx, rxbuf);
526                 return -EINVAL;
527         }
528
529         if (op->cmd.dtr)
530                 opcode = op->cmd.opcode >> 8;
531         else
532                 opcode = op->cmd.opcode;
533
534         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
535
536         rdreg = cqspi_calc_rdreg(op);
537         writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
538
539         dummy_clk = cqspi_calc_dummy(op);
540         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
541                 return -EOPNOTSUPP;
542
543         if (dummy_clk)
544                 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
545                      << CQSPI_REG_CMDCTRL_DUMMY_LSB;
546
547         reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
548
549         /* 0 means 1 byte. */
550         reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
551                 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
552
553         /* setup ADDR BIT field */
554         if (op->addr.nbytes) {
555                 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
556                 reg |= ((op->addr.nbytes - 1) &
557                         CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
558                         << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
559
560                 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
561         }
562
563         status = cqspi_exec_flash_cmd(cqspi, reg);
564         if (status)
565                 return status;
566
567         reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
568
569         /* Put the read value into rx_buf */
570         read_len = (n_rx > 4) ? 4 : n_rx;
571         memcpy(rxbuf, &reg, read_len);
572         rxbuf += read_len;
573
574         if (n_rx > 4) {
575                 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
576
577                 read_len = n_rx - read_len;
578                 memcpy(rxbuf, &reg, read_len);
579         }
580
581         /* Reset CMD_CTRL Reg once command read completes */
582         writel(0, reg_base + CQSPI_REG_CMDCTRL);
583
584         return 0;
585 }
586
587 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
588                                const struct spi_mem_op *op)
589 {
590         struct cqspi_st *cqspi = f_pdata->cqspi;
591         void __iomem *reg_base = cqspi->iobase;
592         u8 opcode;
593         const u8 *txbuf = op->data.buf.out;
594         size_t n_tx = op->data.nbytes;
595         unsigned int reg;
596         unsigned int data;
597         size_t write_len;
598         int ret;
599
600         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
601         if (ret)
602                 return ret;
603
604         if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
605                 dev_err(&cqspi->pdev->dev,
606                         "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
607                         n_tx, txbuf);
608                 return -EINVAL;
609         }
610
611         reg = cqspi_calc_rdreg(op);
612         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
613
614         if (op->cmd.dtr)
615                 opcode = op->cmd.opcode >> 8;
616         else
617                 opcode = op->cmd.opcode;
618
619         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
620
621         if (op->addr.nbytes) {
622                 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
623                 reg |= ((op->addr.nbytes - 1) &
624                         CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
625                         << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
626
627                 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
628         }
629
630         if (n_tx) {
631                 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
632                 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
633                         << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
634                 data = 0;
635                 write_len = (n_tx > 4) ? 4 : n_tx;
636                 memcpy(&data, txbuf, write_len);
637                 txbuf += write_len;
638                 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
639
640                 if (n_tx > 4) {
641                         data = 0;
642                         write_len = n_tx - 4;
643                         memcpy(&data, txbuf, write_len);
644                         writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
645                 }
646         }
647
648         ret = cqspi_exec_flash_cmd(cqspi, reg);
649
650         /* Reset CMD_CTRL Reg once command write completes */
651         writel(0, reg_base + CQSPI_REG_CMDCTRL);
652
653         return ret;
654 }
655
656 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
657                             const struct spi_mem_op *op)
658 {
659         struct cqspi_st *cqspi = f_pdata->cqspi;
660         void __iomem *reg_base = cqspi->iobase;
661         unsigned int dummy_clk = 0;
662         unsigned int reg;
663         int ret;
664         u8 opcode;
665
666         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
667         if (ret)
668                 return ret;
669
670         if (op->cmd.dtr)
671                 opcode = op->cmd.opcode >> 8;
672         else
673                 opcode = op->cmd.opcode;
674
675         reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
676         reg |= cqspi_calc_rdreg(op);
677
678         /* Setup dummy clock cycles */
679         dummy_clk = cqspi_calc_dummy(op);
680
681         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
682                 return -EOPNOTSUPP;
683
684         if (dummy_clk)
685                 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
686                        << CQSPI_REG_RD_INSTR_DUMMY_LSB;
687
688         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
689
690         /* Set address width */
691         reg = readl(reg_base + CQSPI_REG_SIZE);
692         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
693         reg |= (op->addr.nbytes - 1);
694         writel(reg, reg_base + CQSPI_REG_SIZE);
695         return 0;
696 }
697
698 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
699                                        u8 *rxbuf, loff_t from_addr,
700                                        const size_t n_rx)
701 {
702         struct cqspi_st *cqspi = f_pdata->cqspi;
703         struct device *dev = &cqspi->pdev->dev;
704         void __iomem *reg_base = cqspi->iobase;
705         void __iomem *ahb_base = cqspi->ahb_base;
706         unsigned int remaining = n_rx;
707         unsigned int mod_bytes = n_rx % 4;
708         unsigned int bytes_to_read = 0;
709         u8 *rxbuf_end = rxbuf + n_rx;
710         int ret = 0;
711
712         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
713         writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
714
715         /* Clear all interrupts. */
716         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
717
718         /*
719          * On SoCFPGA platform reading the SRAM is slow due to
720          * hardware limitation and causing read interrupt storm to CPU,
721          * so enabling only watermark interrupt to disable all read
722          * interrupts later as we want to run "bytes to read" loop with
723          * all the read interrupts disabled for max performance.
724          */
725
726         if (!cqspi->slow_sram)
727                 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
728         else
729                 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
730
731         reinit_completion(&cqspi->transfer_complete);
732         writel(CQSPI_REG_INDIRECTRD_START_MASK,
733                reg_base + CQSPI_REG_INDIRECTRD);
734
735         while (remaining > 0) {
736                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
737                                                  msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
738                         ret = -ETIMEDOUT;
739
740                 /*
741                  * Disable all read interrupts until
742                  * we are out of "bytes to read"
743                  */
744                 if (cqspi->slow_sram)
745                         writel(0x0, reg_base + CQSPI_REG_IRQMASK);
746
747                 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
748
749                 if (ret && bytes_to_read == 0) {
750                         dev_err(dev, "Indirect read timeout, no bytes\n");
751                         goto failrd;
752                 }
753
754                 while (bytes_to_read != 0) {
755                         unsigned int word_remain = round_down(remaining, 4);
756
757                         bytes_to_read *= cqspi->fifo_width;
758                         bytes_to_read = bytes_to_read > remaining ?
759                                         remaining : bytes_to_read;
760                         bytes_to_read = round_down(bytes_to_read, 4);
761                         /* Read 4 byte word chunks then single bytes */
762                         if (bytes_to_read) {
763                                 ioread32_rep(ahb_base, rxbuf,
764                                              (bytes_to_read / 4));
765                         } else if (!word_remain && mod_bytes) {
766                                 unsigned int temp = ioread32(ahb_base);
767
768                                 bytes_to_read = mod_bytes;
769                                 memcpy(rxbuf, &temp, min((unsigned int)
770                                                          (rxbuf_end - rxbuf),
771                                                          bytes_to_read));
772                         }
773                         rxbuf += bytes_to_read;
774                         remaining -= bytes_to_read;
775                         bytes_to_read = cqspi_get_rd_sram_level(cqspi);
776                 }
777
778                 if (remaining > 0) {
779                         reinit_completion(&cqspi->transfer_complete);
780                         if (cqspi->slow_sram)
781                                 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
782                 }
783         }
784
785         /* Check indirect done status */
786         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
787                                  CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
788         if (ret) {
789                 dev_err(dev, "Indirect read completion error (%i)\n", ret);
790                 goto failrd;
791         }
792
793         /* Disable interrupt */
794         writel(0, reg_base + CQSPI_REG_IRQMASK);
795
796         /* Clear indirect completion status */
797         writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
798
799         return 0;
800
801 failrd:
802         /* Disable interrupt */
803         writel(0, reg_base + CQSPI_REG_IRQMASK);
804
805         /* Cancel the indirect read */
806         writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
807                reg_base + CQSPI_REG_INDIRECTRD);
808         return ret;
809 }
810
811 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
812 {
813         void __iomem *reg_base = cqspi->iobase;
814         unsigned int reg;
815
816         reg = readl(reg_base + CQSPI_REG_CONFIG);
817
818         if (enable)
819                 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
820         else
821                 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
822
823         writel(reg, reg_base + CQSPI_REG_CONFIG);
824 }
825
826 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
827                                           u_char *rxbuf, loff_t from_addr,
828                                           size_t n_rx)
829 {
830         struct cqspi_st *cqspi = f_pdata->cqspi;
831         struct device *dev = &cqspi->pdev->dev;
832         void __iomem *reg_base = cqspi->iobase;
833         u32 reg, bytes_to_dma;
834         loff_t addr = from_addr;
835         void *buf = rxbuf;
836         dma_addr_t dma_addr;
837         u8 bytes_rem;
838         int ret = 0;
839
840         bytes_rem = n_rx % 4;
841         bytes_to_dma = (n_rx - bytes_rem);
842
843         if (!bytes_to_dma)
844                 goto nondmard;
845
846         ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
847         if (ret)
848                 return ret;
849
850         cqspi_controller_enable(cqspi, 0);
851
852         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
853         reg |= CQSPI_REG_CONFIG_DMA_MASK;
854         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
855
856         cqspi_controller_enable(cqspi, 1);
857
858         dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
859         if (dma_mapping_error(dev, dma_addr)) {
860                 dev_err(dev, "dma mapping failed\n");
861                 return -ENOMEM;
862         }
863
864         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
865         writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
866         writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
867                reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
868
869         /* Clear all interrupts. */
870         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
871
872         /* Enable DMA done interrupt */
873         writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
874                reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
875
876         /* Default DMA periph configuration */
877         writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
878
879         /* Configure DMA Dst address */
880         writel(lower_32_bits(dma_addr),
881                reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
882         writel(upper_32_bits(dma_addr),
883                reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
884
885         /* Configure DMA Src address */
886         writel(cqspi->trigger_address, reg_base +
887                CQSPI_REG_VERSAL_DMA_SRC_ADDR);
888
889         /* Set DMA destination size */
890         writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
891
892         /* Set DMA destination control */
893         writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
894                reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
895
896         writel(CQSPI_REG_INDIRECTRD_START_MASK,
897                reg_base + CQSPI_REG_INDIRECTRD);
898
899         reinit_completion(&cqspi->transfer_complete);
900
901         if (!wait_for_completion_timeout(&cqspi->transfer_complete,
902                                          msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
903                 ret = -ETIMEDOUT;
904                 goto failrd;
905         }
906
907         /* Disable DMA interrupt */
908         writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
909
910         /* Clear indirect completion status */
911         writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
912                cqspi->iobase + CQSPI_REG_INDIRECTRD);
913         dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
914
915         cqspi_controller_enable(cqspi, 0);
916
917         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
918         reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
919         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
920
921         cqspi_controller_enable(cqspi, 1);
922
923         ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
924                                         PM_OSPI_MUX_SEL_LINEAR);
925         if (ret)
926                 return ret;
927
928 nondmard:
929         if (bytes_rem) {
930                 addr += bytes_to_dma;
931                 buf += bytes_to_dma;
932                 ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
933                                                   bytes_rem);
934                 if (ret)
935                         return ret;
936         }
937
938         return 0;
939
940 failrd:
941         /* Disable DMA interrupt */
942         writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
943
944         /* Cancel the indirect read */
945         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
946                reg_base + CQSPI_REG_INDIRECTRD);
947
948         dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
949
950         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
951         reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
952         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
953
954         zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
955
956         return ret;
957 }
958
959 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
960                              const struct spi_mem_op *op)
961 {
962         unsigned int reg;
963         int ret;
964         struct cqspi_st *cqspi = f_pdata->cqspi;
965         void __iomem *reg_base = cqspi->iobase;
966         u8 opcode;
967
968         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
969         if (ret)
970                 return ret;
971
972         if (op->cmd.dtr)
973                 opcode = op->cmd.opcode >> 8;
974         else
975                 opcode = op->cmd.opcode;
976
977         /* Set opcode. */
978         reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
979         reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
980         reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
981         writel(reg, reg_base + CQSPI_REG_WR_INSTR);
982         reg = cqspi_calc_rdreg(op);
983         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
984
985         /*
986          * SPI NAND flashes require the address of the status register to be
987          * passed in the Read SR command. Also, some SPI NOR flashes like the
988          * cypress Semper flash expect a 4-byte dummy address in the Read SR
989          * command in DTR mode.
990          *
991          * But this controller does not support address phase in the Read SR
992          * command when doing auto-HW polling. So, disable write completion
993          * polling on the controller's side. spinand and spi-nor will take
994          * care of polling the status register.
995          */
996         if (cqspi->wr_completion) {
997                 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
998                 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
999                 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1000                 /*
1001                  * DAC mode require auto polling as flash needs to be polled
1002                  * for write completion in case of bubble in SPI transaction
1003                  * due to slow CPU/DMA master.
1004                  */
1005                 cqspi->use_direct_mode_wr = false;
1006         }
1007
1008         reg = readl(reg_base + CQSPI_REG_SIZE);
1009         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1010         reg |= (op->addr.nbytes - 1);
1011         writel(reg, reg_base + CQSPI_REG_SIZE);
1012         return 0;
1013 }
1014
1015 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1016                                         loff_t to_addr, const u8 *txbuf,
1017                                         const size_t n_tx)
1018 {
1019         struct cqspi_st *cqspi = f_pdata->cqspi;
1020         struct device *dev = &cqspi->pdev->dev;
1021         void __iomem *reg_base = cqspi->iobase;
1022         unsigned int remaining = n_tx;
1023         unsigned int write_bytes;
1024         int ret;
1025
1026         writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1027         writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1028
1029         /* Clear all interrupts. */
1030         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1031
1032         writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1033
1034         reinit_completion(&cqspi->transfer_complete);
1035         writel(CQSPI_REG_INDIRECTWR_START_MASK,
1036                reg_base + CQSPI_REG_INDIRECTWR);
1037         /*
1038          * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1039          * Controller programming sequence, couple of cycles of
1040          * QSPI_REF_CLK delay is required for the above bit to
1041          * be internally synchronized by the QSPI module. Provide 5
1042          * cycles of delay.
1043          */
1044         if (cqspi->wr_delay)
1045                 ndelay(cqspi->wr_delay);
1046
1047         /*
1048          * If a hazard exists between the APB and AHB interfaces, perform a
1049          * dummy readback from the controller to ensure synchronization.
1050          */
1051         if (cqspi->apb_ahb_hazard)
1052                 readl(reg_base + CQSPI_REG_INDIRECTWR);
1053
1054         while (remaining > 0) {
1055                 size_t write_words, mod_bytes;
1056
1057                 write_bytes = remaining;
1058                 write_words = write_bytes / 4;
1059                 mod_bytes = write_bytes % 4;
1060                 /* Write 4 bytes at a time then single bytes. */
1061                 if (write_words) {
1062                         iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1063                         txbuf += (write_words * 4);
1064                 }
1065                 if (mod_bytes) {
1066                         unsigned int temp = 0xFFFFFFFF;
1067
1068                         memcpy(&temp, txbuf, mod_bytes);
1069                         iowrite32(temp, cqspi->ahb_base);
1070                         txbuf += mod_bytes;
1071                 }
1072
1073                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1074                                                  msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1075                         dev_err(dev, "Indirect write timeout\n");
1076                         ret = -ETIMEDOUT;
1077                         goto failwr;
1078                 }
1079
1080                 remaining -= write_bytes;
1081
1082                 if (remaining > 0)
1083                         reinit_completion(&cqspi->transfer_complete);
1084         }
1085
1086         /* Check indirect done status */
1087         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1088                                  CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1089         if (ret) {
1090                 dev_err(dev, "Indirect write completion error (%i)\n", ret);
1091                 goto failwr;
1092         }
1093
1094         /* Disable interrupt. */
1095         writel(0, reg_base + CQSPI_REG_IRQMASK);
1096
1097         /* Clear indirect completion status */
1098         writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1099
1100         cqspi_wait_idle(cqspi);
1101
1102         return 0;
1103
1104 failwr:
1105         /* Disable interrupt. */
1106         writel(0, reg_base + CQSPI_REG_IRQMASK);
1107
1108         /* Cancel the indirect write */
1109         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1110                reg_base + CQSPI_REG_INDIRECTWR);
1111         return ret;
1112 }
1113
1114 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1115 {
1116         struct cqspi_st *cqspi = f_pdata->cqspi;
1117         void __iomem *reg_base = cqspi->iobase;
1118         unsigned int chip_select = f_pdata->cs;
1119         unsigned int reg;
1120
1121         reg = readl(reg_base + CQSPI_REG_CONFIG);
1122         if (cqspi->is_decoded_cs) {
1123                 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1124         } else {
1125                 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1126
1127                 /* Convert CS if without decoder.
1128                  * CS0 to 4b'1110
1129                  * CS1 to 4b'1101
1130                  * CS2 to 4b'1011
1131                  * CS3 to 4b'0111
1132                  */
1133                 chip_select = 0xF & ~(1 << chip_select);
1134         }
1135
1136         reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1137                  << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1138         reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1139             << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1140         writel(reg, reg_base + CQSPI_REG_CONFIG);
1141 }
1142
1143 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1144                                            const unsigned int ns_val)
1145 {
1146         unsigned int ticks;
1147
1148         ticks = ref_clk_hz / 1000;      /* kHz */
1149         ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1150
1151         return ticks;
1152 }
1153
1154 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1155 {
1156         struct cqspi_st *cqspi = f_pdata->cqspi;
1157         void __iomem *iobase = cqspi->iobase;
1158         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1159         unsigned int tshsl, tchsh, tslch, tsd2d;
1160         unsigned int reg;
1161         unsigned int tsclk;
1162
1163         /* calculate the number of ref ticks for one sclk tick */
1164         tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1165
1166         tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1167         /* this particular value must be at least one sclk */
1168         if (tshsl < tsclk)
1169                 tshsl = tsclk;
1170
1171         tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1172         tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1173         tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1174
1175         reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1176                << CQSPI_REG_DELAY_TSHSL_LSB;
1177         reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1178                 << CQSPI_REG_DELAY_TCHSH_LSB;
1179         reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1180                 << CQSPI_REG_DELAY_TSLCH_LSB;
1181         reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1182                 << CQSPI_REG_DELAY_TSD2D_LSB;
1183         writel(reg, iobase + CQSPI_REG_DELAY);
1184 }
1185
1186 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1187 {
1188         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1189         void __iomem *reg_base = cqspi->iobase;
1190         u32 reg, div;
1191
1192         /* Recalculate the baudrate divisor based on QSPI specification. */
1193         div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1194
1195         /* Maximum baud divisor */
1196         if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1197                 div = CQSPI_REG_CONFIG_BAUD_MASK;
1198                 dev_warn(&cqspi->pdev->dev,
1199                         "Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1200                         cqspi->sclk, ref_clk_hz/((div+1)*2));
1201         }
1202
1203         reg = readl(reg_base + CQSPI_REG_CONFIG);
1204         reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1205         reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1206         writel(reg, reg_base + CQSPI_REG_CONFIG);
1207 }
1208
1209 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1210                                    const bool bypass,
1211                                    const unsigned int delay)
1212 {
1213         void __iomem *reg_base = cqspi->iobase;
1214         unsigned int reg;
1215
1216         reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1217
1218         if (bypass)
1219                 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1220         else
1221                 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1222
1223         reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1224                  << CQSPI_REG_READCAPTURE_DELAY_LSB);
1225
1226         reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1227                 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1228
1229         writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1230 }
1231
1232 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1233                             unsigned long sclk)
1234 {
1235         struct cqspi_st *cqspi = f_pdata->cqspi;
1236         int switch_cs = (cqspi->current_cs != f_pdata->cs);
1237         int switch_ck = (cqspi->sclk != sclk);
1238
1239         if (switch_cs || switch_ck)
1240                 cqspi_controller_enable(cqspi, 0);
1241
1242         /* Switch chip select. */
1243         if (switch_cs) {
1244                 cqspi->current_cs = f_pdata->cs;
1245                 cqspi_chipselect(f_pdata);
1246         }
1247
1248         /* Setup baudrate divisor and delays */
1249         if (switch_ck) {
1250                 cqspi->sclk = sclk;
1251                 cqspi_config_baudrate_div(cqspi);
1252                 cqspi_delay(f_pdata);
1253                 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1254                                        f_pdata->read_delay);
1255         }
1256
1257         if (switch_cs || switch_ck)
1258                 cqspi_controller_enable(cqspi, 1);
1259 }
1260
1261 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1262                            const struct spi_mem_op *op)
1263 {
1264         struct cqspi_st *cqspi = f_pdata->cqspi;
1265         loff_t to = op->addr.val;
1266         size_t len = op->data.nbytes;
1267         const u_char *buf = op->data.buf.out;
1268         int ret;
1269
1270         ret = cqspi_write_setup(f_pdata, op);
1271         if (ret)
1272                 return ret;
1273
1274         /*
1275          * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1276          * address (all 0s) with the read status register command in DTR mode.
1277          * But this controller does not support sending dummy address bytes to
1278          * the flash when it is polling the write completion register in DTR
1279          * mode. So, we can not use direct mode when in DTR mode for writing
1280          * data.
1281          */
1282         if (!op->cmd.dtr && cqspi->use_direct_mode &&
1283             cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1284                 memcpy_toio(cqspi->ahb_base + to, buf, len);
1285                 return cqspi_wait_idle(cqspi);
1286         }
1287
1288         return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1289 }
1290
1291 static void cqspi_rx_dma_callback(void *param)
1292 {
1293         struct cqspi_st *cqspi = param;
1294
1295         complete(&cqspi->rx_dma_complete);
1296 }
1297
1298 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1299                                      u_char *buf, loff_t from, size_t len)
1300 {
1301         struct cqspi_st *cqspi = f_pdata->cqspi;
1302         struct device *dev = &cqspi->pdev->dev;
1303         enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1304         dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1305         int ret = 0;
1306         struct dma_async_tx_descriptor *tx;
1307         dma_cookie_t cookie;
1308         dma_addr_t dma_dst;
1309         struct device *ddev;
1310
1311         if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1312                 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1313                 return 0;
1314         }
1315
1316         ddev = cqspi->rx_chan->device->dev;
1317         dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1318         if (dma_mapping_error(ddev, dma_dst)) {
1319                 dev_err(dev, "dma mapping failed\n");
1320                 return -ENOMEM;
1321         }
1322         tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1323                                        len, flags);
1324         if (!tx) {
1325                 dev_err(dev, "device_prep_dma_memcpy error\n");
1326                 ret = -EIO;
1327                 goto err_unmap;
1328         }
1329
1330         tx->callback = cqspi_rx_dma_callback;
1331         tx->callback_param = cqspi;
1332         cookie = tx->tx_submit(tx);
1333         reinit_completion(&cqspi->rx_dma_complete);
1334
1335         ret = dma_submit_error(cookie);
1336         if (ret) {
1337                 dev_err(dev, "dma_submit_error %d\n", cookie);
1338                 ret = -EIO;
1339                 goto err_unmap;
1340         }
1341
1342         dma_async_issue_pending(cqspi->rx_chan);
1343         if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1344                                          msecs_to_jiffies(max_t(size_t, len, 500)))) {
1345                 dmaengine_terminate_sync(cqspi->rx_chan);
1346                 dev_err(dev, "DMA wait_for_completion_timeout\n");
1347                 ret = -ETIMEDOUT;
1348                 goto err_unmap;
1349         }
1350
1351 err_unmap:
1352         dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1353
1354         return ret;
1355 }
1356
1357 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1358                           const struct spi_mem_op *op)
1359 {
1360         struct cqspi_st *cqspi = f_pdata->cqspi;
1361         struct device *dev = &cqspi->pdev->dev;
1362         const struct cqspi_driver_platdata *ddata;
1363         loff_t from = op->addr.val;
1364         size_t len = op->data.nbytes;
1365         u_char *buf = op->data.buf.in;
1366         u64 dma_align = (u64)(uintptr_t)buf;
1367         int ret;
1368
1369         ddata = of_device_get_match_data(dev);
1370
1371         ret = cqspi_read_setup(f_pdata, op);
1372         if (ret)
1373                 return ret;
1374
1375         if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1376                 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1377
1378         if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1379             virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1380                 return ddata->indirect_read_dma(f_pdata, buf, from, len);
1381
1382         return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1383 }
1384
1385 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1386 {
1387         struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1388         struct cqspi_flash_pdata *f_pdata;
1389
1390         f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1391         cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1392
1393         if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1394         /*
1395          * Performing reads in DAC mode forces to read minimum 4 bytes
1396          * which is unsupported on some flash devices during register
1397          * reads, prefer STIG mode for such small reads.
1398          */
1399                 if (!op->addr.nbytes ||
1400                     op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
1401                         return cqspi_command_read(f_pdata, op);
1402
1403                 return cqspi_read(f_pdata, op);
1404         }
1405
1406         if (!op->addr.nbytes || !op->data.buf.out)
1407                 return cqspi_command_write(f_pdata, op);
1408
1409         return cqspi_write(f_pdata, op);
1410 }
1411
1412 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1413 {
1414         int ret;
1415         struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1416         struct device *dev = &cqspi->pdev->dev;
1417
1418         ret = pm_runtime_resume_and_get(dev);
1419         if (ret) {
1420                 dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1421                 return ret;
1422         }
1423
1424         ret = cqspi_mem_process(mem, op);
1425
1426         pm_runtime_mark_last_busy(dev);
1427         pm_runtime_put_autosuspend(dev);
1428
1429         if (ret)
1430                 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1431
1432         return ret;
1433 }
1434
1435 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1436                                   const struct spi_mem_op *op)
1437 {
1438         bool all_true, all_false;
1439
1440         /*
1441          * op->dummy.dtr is required for converting nbytes into ncycles.
1442          * Also, don't check the dtr field of the op phase having zero nbytes.
1443          */
1444         all_true = op->cmd.dtr &&
1445                    (!op->addr.nbytes || op->addr.dtr) &&
1446                    (!op->dummy.nbytes || op->dummy.dtr) &&
1447                    (!op->data.nbytes || op->data.dtr);
1448
1449         all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1450                     !op->data.dtr;
1451
1452         if (all_true) {
1453                 /* Right now we only support 8-8-8 DTR mode. */
1454                 if (op->cmd.nbytes && op->cmd.buswidth != 8)
1455                         return false;
1456                 if (op->addr.nbytes && op->addr.buswidth != 8)
1457                         return false;
1458                 if (op->data.nbytes && op->data.buswidth != 8)
1459                         return false;
1460         } else if (!all_false) {
1461                 /* Mixed DTR modes are not supported. */
1462                 return false;
1463         }
1464
1465         return spi_mem_default_supports_op(mem, op);
1466 }
1467
1468 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1469                                     struct cqspi_flash_pdata *f_pdata,
1470                                     struct device_node *np)
1471 {
1472         if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1473                 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1474                 return -ENXIO;
1475         }
1476
1477         if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1478                 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1479                 return -ENXIO;
1480         }
1481
1482         if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1483                 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1484                 return -ENXIO;
1485         }
1486
1487         if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1488                 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1489                 return -ENXIO;
1490         }
1491
1492         if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1493                 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1494                 return -ENXIO;
1495         }
1496
1497         if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1498                 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1499                 return -ENXIO;
1500         }
1501
1502         return 0;
1503 }
1504
1505 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1506 {
1507         struct device *dev = &cqspi->pdev->dev;
1508         struct device_node *np = dev->of_node;
1509         u32 id[2];
1510
1511         cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1512
1513         if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1514                 dev_err(dev, "couldn't determine fifo-depth\n");
1515                 return -ENXIO;
1516         }
1517
1518         if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1519                 dev_err(dev, "couldn't determine fifo-width\n");
1520                 return -ENXIO;
1521         }
1522
1523         if (of_property_read_u32(np, "cdns,trigger-address",
1524                                  &cqspi->trigger_address)) {
1525                 dev_err(dev, "couldn't determine trigger-address\n");
1526                 return -ENXIO;
1527         }
1528
1529         if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1530                 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1531
1532         cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1533
1534         if (!of_property_read_u32_array(np, "power-domains", id,
1535                                         ARRAY_SIZE(id)))
1536                 cqspi->pd_dev_id = id[1];
1537
1538         return 0;
1539 }
1540
1541 static void cqspi_controller_init(struct cqspi_st *cqspi)
1542 {
1543         u32 reg;
1544
1545         cqspi_controller_enable(cqspi, 0);
1546
1547         /* Configure the remap address register, no remap */
1548         writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1549
1550         /* Disable all interrupts. */
1551         writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1552
1553         /* Configure the SRAM split to 1:1 . */
1554         writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1555
1556         /* Load indirect trigger address. */
1557         writel(cqspi->trigger_address,
1558                cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1559
1560         /* Program read watermark -- 1/2 of the FIFO. */
1561         writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1562                cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1563         /* Program write watermark -- 1/8 of the FIFO. */
1564         writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1565                cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1566
1567         /* Disable direct access controller */
1568         if (!cqspi->use_direct_mode) {
1569                 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1570                 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1571                 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1572         }
1573
1574         /* Enable DMA interface */
1575         if (cqspi->use_dma_read) {
1576                 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1577                 reg |= CQSPI_REG_CONFIG_DMA_MASK;
1578                 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1579         }
1580
1581         cqspi_controller_enable(cqspi, 1);
1582 }
1583
1584 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1585 {
1586         dma_cap_mask_t mask;
1587
1588         dma_cap_zero(mask);
1589         dma_cap_set(DMA_MEMCPY, mask);
1590
1591         cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1592         if (IS_ERR(cqspi->rx_chan)) {
1593                 int ret = PTR_ERR(cqspi->rx_chan);
1594
1595                 cqspi->rx_chan = NULL;
1596                 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1597         }
1598         init_completion(&cqspi->rx_dma_complete);
1599
1600         return 0;
1601 }
1602
1603 static const char *cqspi_get_name(struct spi_mem *mem)
1604 {
1605         struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1606         struct device *dev = &cqspi->pdev->dev;
1607
1608         return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1609                               spi_get_chipselect(mem->spi, 0));
1610 }
1611
1612 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1613         .exec_op = cqspi_exec_mem_op,
1614         .get_name = cqspi_get_name,
1615         .supports_op = cqspi_supports_mem_op,
1616 };
1617
1618 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1619         .dtr = true,
1620 };
1621
1622 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1623 {
1624         unsigned int max_cs = cqspi->num_chipselect - 1;
1625         struct platform_device *pdev = cqspi->pdev;
1626         struct device *dev = &pdev->dev;
1627         struct device_node *np = dev->of_node;
1628         struct cqspi_flash_pdata *f_pdata;
1629         unsigned int cs;
1630         int ret;
1631
1632         /* Get flash device data */
1633         for_each_available_child_of_node(dev->of_node, np) {
1634                 ret = of_property_read_u32(np, "reg", &cs);
1635                 if (ret) {
1636                         dev_err(dev, "Couldn't determine chip select.\n");
1637                         of_node_put(np);
1638                         return ret;
1639                 }
1640
1641                 if (cs >= cqspi->num_chipselect) {
1642                         dev_err(dev, "Chip select %d out of range.\n", cs);
1643                         of_node_put(np);
1644                         return -EINVAL;
1645                 } else if (cs < max_cs) {
1646                         max_cs = cs;
1647                 }
1648
1649                 f_pdata = &cqspi->f_pdata[cs];
1650                 f_pdata->cqspi = cqspi;
1651                 f_pdata->cs = cs;
1652
1653                 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1654                 if (ret) {
1655                         of_node_put(np);
1656                         return ret;
1657                 }
1658         }
1659
1660         cqspi->num_chipselect = max_cs + 1;
1661         return 0;
1662 }
1663
1664 static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1665 {
1666         static struct clk_bulk_data qspiclk[] = {
1667                 { .id = "apb" },
1668                 { .id = "ahb" },
1669         };
1670
1671         int ret = 0;
1672
1673         ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1674         if (ret) {
1675                 dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1676                 return ret;
1677         }
1678
1679         cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1680         cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1681
1682         ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1683         if (ret) {
1684                 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1685                 return ret;
1686         }
1687
1688         ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1689         if (ret) {
1690                 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1691                 goto disable_apb_clk;
1692         }
1693
1694         cqspi->is_jh7110 = true;
1695
1696         return 0;
1697
1698 disable_apb_clk:
1699         clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1700
1701         return ret;
1702 }
1703
1704 static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1705 {
1706         clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1707         clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1708 }
1709 static int cqspi_probe(struct platform_device *pdev)
1710 {
1711         const struct cqspi_driver_platdata *ddata;
1712         struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1713         struct device *dev = &pdev->dev;
1714         struct spi_controller *host;
1715         struct resource *res_ahb;
1716         struct cqspi_st *cqspi;
1717         int ret;
1718         int irq;
1719
1720         host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1721         if (!host)
1722                 return -ENOMEM;
1723
1724         host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1725         host->mem_ops = &cqspi_mem_ops;
1726         host->mem_caps = &cqspi_mem_caps;
1727         host->dev.of_node = pdev->dev.of_node;
1728
1729         cqspi = spi_controller_get_devdata(host);
1730
1731         cqspi->pdev = pdev;
1732         cqspi->host = host;
1733         cqspi->is_jh7110 = false;
1734         platform_set_drvdata(pdev, cqspi);
1735
1736         /* Obtain configuration from OF. */
1737         ret = cqspi_of_get_pdata(cqspi);
1738         if (ret) {
1739                 dev_err(dev, "Cannot get mandatory OF data.\n");
1740                 return -ENODEV;
1741         }
1742
1743         /* Obtain QSPI clock. */
1744         cqspi->clk = devm_clk_get(dev, NULL);
1745         if (IS_ERR(cqspi->clk)) {
1746                 dev_err(dev, "Cannot claim QSPI clock.\n");
1747                 ret = PTR_ERR(cqspi->clk);
1748                 return ret;
1749         }
1750
1751         /* Obtain and remap controller address. */
1752         cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1753         if (IS_ERR(cqspi->iobase)) {
1754                 dev_err(dev, "Cannot remap controller address.\n");
1755                 ret = PTR_ERR(cqspi->iobase);
1756                 return ret;
1757         }
1758
1759         /* Obtain and remap AHB address. */
1760         cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1761         if (IS_ERR(cqspi->ahb_base)) {
1762                 dev_err(dev, "Cannot remap AHB address.\n");
1763                 ret = PTR_ERR(cqspi->ahb_base);
1764                 return ret;
1765         }
1766         cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1767         cqspi->ahb_size = resource_size(res_ahb);
1768
1769         init_completion(&cqspi->transfer_complete);
1770
1771         /* Obtain IRQ line. */
1772         irq = platform_get_irq(pdev, 0);
1773         if (irq < 0)
1774                 return -ENXIO;
1775
1776         ret = pm_runtime_set_active(dev);
1777         if (ret)
1778                 return ret;
1779
1780
1781         ret = clk_prepare_enable(cqspi->clk);
1782         if (ret) {
1783                 dev_err(dev, "Cannot enable QSPI clock.\n");
1784                 goto probe_clk_failed;
1785         }
1786
1787         /* Obtain QSPI reset control */
1788         rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1789         if (IS_ERR(rstc)) {
1790                 ret = PTR_ERR(rstc);
1791                 dev_err(dev, "Cannot get QSPI reset.\n");
1792                 goto probe_reset_failed;
1793         }
1794
1795         rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1796         if (IS_ERR(rstc_ocp)) {
1797                 ret = PTR_ERR(rstc_ocp);
1798                 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1799                 goto probe_reset_failed;
1800         }
1801
1802         if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1803                 rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1804                 if (IS_ERR(rstc_ref)) {
1805                         ret = PTR_ERR(rstc_ref);
1806                         dev_err(dev, "Cannot get QSPI REF reset.\n");
1807                         goto probe_reset_failed;
1808                 }
1809                 reset_control_assert(rstc_ref);
1810                 reset_control_deassert(rstc_ref);
1811         }
1812
1813         reset_control_assert(rstc);
1814         reset_control_deassert(rstc);
1815
1816         reset_control_assert(rstc_ocp);
1817         reset_control_deassert(rstc_ocp);
1818
1819         cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1820         host->max_speed_hz = cqspi->master_ref_clk_hz;
1821
1822         /* write completion is supported by default */
1823         cqspi->wr_completion = true;
1824
1825         ddata  = of_device_get_match_data(dev);
1826         if (ddata) {
1827                 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1828                         cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1829                                                 cqspi->master_ref_clk_hz);
1830                 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1831                         host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1832                 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1833                         cqspi->use_direct_mode = true;
1834                         cqspi->use_direct_mode_wr = true;
1835                 }
1836                 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1837                         cqspi->use_dma_read = true;
1838                 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1839                         cqspi->wr_completion = false;
1840                 if (ddata->quirks & CQSPI_SLOW_SRAM)
1841                         cqspi->slow_sram = true;
1842                 if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1843                         cqspi->apb_ahb_hazard = true;
1844
1845                 if (ddata->jh7110_clk_init) {
1846                         ret = cqspi_jh7110_clk_init(pdev, cqspi);
1847                         if (ret)
1848                                 goto probe_reset_failed;
1849                 }
1850
1851                 if (of_device_is_compatible(pdev->dev.of_node,
1852                                             "xlnx,versal-ospi-1.0")) {
1853                         ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1854                         if (ret)
1855                                 goto probe_reset_failed;
1856                 }
1857         }
1858
1859         ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1860                                pdev->name, cqspi);
1861         if (ret) {
1862                 dev_err(dev, "Cannot request IRQ.\n");
1863                 goto probe_reset_failed;
1864         }
1865
1866         cqspi_wait_idle(cqspi);
1867         cqspi_controller_init(cqspi);
1868         cqspi->current_cs = -1;
1869         cqspi->sclk = 0;
1870
1871         ret = cqspi_setup_flash(cqspi);
1872         if (ret) {
1873                 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1874                 goto probe_setup_failed;
1875         }
1876
1877         host->num_chipselect = cqspi->num_chipselect;
1878
1879         if (cqspi->use_direct_mode) {
1880                 ret = cqspi_request_mmap_dma(cqspi);
1881                 if (ret == -EPROBE_DEFER)
1882                         goto probe_setup_failed;
1883         }
1884
1885         ret = devm_pm_runtime_enable(dev);
1886         if (ret) {
1887                 if (cqspi->rx_chan)
1888                         dma_release_channel(cqspi->rx_chan);
1889                 goto probe_setup_failed;
1890         }
1891
1892         pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1893         pm_runtime_use_autosuspend(dev);
1894         pm_runtime_get_noresume(dev);
1895
1896         ret = spi_register_controller(host);
1897         if (ret) {
1898                 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1899                 goto probe_setup_failed;
1900         }
1901
1902         pm_runtime_mark_last_busy(dev);
1903         pm_runtime_put_autosuspend(dev);
1904
1905         return 0;
1906 probe_setup_failed:
1907         cqspi_controller_enable(cqspi, 0);
1908 probe_reset_failed:
1909         if (cqspi->is_jh7110)
1910                 cqspi_jh7110_disable_clk(pdev, cqspi);
1911         clk_disable_unprepare(cqspi->clk);
1912 probe_clk_failed:
1913         return ret;
1914 }
1915
1916 static void cqspi_remove(struct platform_device *pdev)
1917 {
1918         struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1919
1920         spi_unregister_controller(cqspi->host);
1921         cqspi_controller_enable(cqspi, 0);
1922
1923         if (cqspi->rx_chan)
1924                 dma_release_channel(cqspi->rx_chan);
1925
1926         clk_disable_unprepare(cqspi->clk);
1927
1928         if (cqspi->is_jh7110)
1929                 cqspi_jh7110_disable_clk(pdev, cqspi);
1930
1931         pm_runtime_put_sync(&pdev->dev);
1932         pm_runtime_disable(&pdev->dev);
1933 }
1934
1935 static int cqspi_runtime_suspend(struct device *dev)
1936 {
1937         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1938
1939         cqspi_controller_enable(cqspi, 0);
1940         clk_disable_unprepare(cqspi->clk);
1941         return 0;
1942 }
1943
1944 static int cqspi_runtime_resume(struct device *dev)
1945 {
1946         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1947
1948         clk_prepare_enable(cqspi->clk);
1949         cqspi_wait_idle(cqspi);
1950         cqspi_controller_init(cqspi);
1951
1952         cqspi->current_cs = -1;
1953         cqspi->sclk = 0;
1954         return 0;
1955 }
1956
1957 static int cqspi_suspend(struct device *dev)
1958 {
1959         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1960
1961         return spi_controller_suspend(cqspi->host);
1962 }
1963
1964 static int cqspi_resume(struct device *dev)
1965 {
1966         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1967
1968         return spi_controller_resume(cqspi->host);
1969 }
1970
1971 static const struct dev_pm_ops cqspi_dev_pm_ops = {
1972         RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
1973         SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
1974 };
1975
1976 static const struct cqspi_driver_platdata cdns_qspi = {
1977         .quirks = CQSPI_DISABLE_DAC_MODE,
1978 };
1979
1980 static const struct cqspi_driver_platdata k2g_qspi = {
1981         .quirks = CQSPI_NEEDS_WR_DELAY,
1982 };
1983
1984 static const struct cqspi_driver_platdata am654_ospi = {
1985         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1986         .quirks = CQSPI_NEEDS_WR_DELAY,
1987 };
1988
1989 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1990         .quirks = CQSPI_DISABLE_DAC_MODE,
1991 };
1992
1993 static const struct cqspi_driver_platdata socfpga_qspi = {
1994         .quirks = CQSPI_DISABLE_DAC_MODE
1995                         | CQSPI_NO_SUPPORT_WR_COMPLETION
1996                         | CQSPI_SLOW_SRAM,
1997 };
1998
1999 static const struct cqspi_driver_platdata versal_ospi = {
2000         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2001         .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
2002         .indirect_read_dma = cqspi_versal_indirect_read_dma,
2003         .get_dma_status = cqspi_get_versal_dma_status,
2004 };
2005
2006 static const struct cqspi_driver_platdata jh7110_qspi = {
2007         .quirks = CQSPI_DISABLE_DAC_MODE,
2008         .jh7110_clk_init = cqspi_jh7110_clk_init,
2009 };
2010
2011 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2012         .quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2013 };
2014
2015 static const struct of_device_id cqspi_dt_ids[] = {
2016         {
2017                 .compatible = "cdns,qspi-nor",
2018                 .data = &cdns_qspi,
2019         },
2020         {
2021                 .compatible = "ti,k2g-qspi",
2022                 .data = &k2g_qspi,
2023         },
2024         {
2025                 .compatible = "ti,am654-ospi",
2026                 .data = &am654_ospi,
2027         },
2028         {
2029                 .compatible = "intel,lgm-qspi",
2030                 .data = &intel_lgm_qspi,
2031         },
2032         {
2033                 .compatible = "xlnx,versal-ospi-1.0",
2034                 .data = &versal_ospi,
2035         },
2036         {
2037                 .compatible = "intel,socfpga-qspi",
2038                 .data = &socfpga_qspi,
2039         },
2040         {
2041                 .compatible = "starfive,jh7110-qspi",
2042                 .data = &jh7110_qspi,
2043         },
2044         {
2045                 .compatible = "amd,pensando-elba-qspi",
2046                 .data = &pensando_cdns_qspi,
2047         },
2048         { /* end of table */ }
2049 };
2050
2051 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2052
2053 static struct platform_driver cqspi_platform_driver = {
2054         .probe = cqspi_probe,
2055         .remove_new = cqspi_remove,
2056         .driver = {
2057                 .name = CQSPI_NAME,
2058                 .pm = pm_ptr(&cqspi_dev_pm_ops),
2059                 .of_match_table = cqspi_dt_ids,
2060         },
2061 };
2062
2063 module_platform_driver(cqspi_platform_driver);
2064
2065 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2066 MODULE_LICENSE("GPL v2");
2067 MODULE_ALIAS("platform:" CQSPI_NAME);
2068 MODULE_AUTHOR("Ley Foon Tan <[email protected]>");
2069 MODULE_AUTHOR("Graham Moore <[email protected]>");
2070 MODULE_AUTHOR("Vadivel Murugan R <[email protected]>");
2071 MODULE_AUTHOR("Vignesh Raghavendra <[email protected]>");
2072 MODULE_AUTHOR("Pratyush Yadav <[email protected]>");
This page took 0.154336 seconds and 4 git commands to generate.