]> Git Repo - J-linux.git/blob - drivers/net/wireless/ath/wil6210/main.c
Merge tag 'kbuild-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[J-linux.git] / drivers / net / wireless / ath / wil6210 / main.c
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
4  * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
5  */
6
7 #include <linux/moduleparam.h>
8 #include <linux/if_arp.h>
9 #include <linux/etherdevice.h>
10 #include <linux/rtnetlink.h>
11
12 #include "wil6210.h"
13 #include "txrx.h"
14 #include "txrx_edma.h"
15 #include "wmi.h"
16 #include "boot_loader.h"
17
18 #define WAIT_FOR_HALP_VOTE_MS 100
19 #define WAIT_FOR_SCAN_ABORT_MS 1000
20 #define WIL_DEFAULT_NUM_RX_STATUS_RINGS 1
21 #define WIL_BOARD_FILE_MAX_NAMELEN 128
22
23 bool debug_fw; /* = false; */
24 module_param(debug_fw, bool, 0444);
25 MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug");
26
27 static u8 oob_mode;
28 module_param(oob_mode, byte, 0444);
29 MODULE_PARM_DESC(oob_mode,
30                  " enable out of the box (OOB) mode in FW, for diagnostics and certification");
31
32 bool no_fw_recovery;
33 module_param(no_fw_recovery, bool, 0644);
34 MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery");
35
36 /* if not set via modparam, will be set to default value of 1/8 of
37  * rx ring size during init flow
38  */
39 unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT;
40 module_param(rx_ring_overflow_thrsh, ushort, 0444);
41 MODULE_PARM_DESC(rx_ring_overflow_thrsh,
42                  " RX ring overflow threshold in descriptors.");
43
44 /* We allow allocation of more than 1 page buffers to support large packets.
45  * It is suboptimal behavior performance wise in case MTU above page size.
46  */
47 unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
48 static int mtu_max_set(const char *val, const struct kernel_param *kp)
49 {
50         int ret;
51
52         /* sets mtu_max directly. no need to restore it in case of
53          * illegal value since we assume this will fail insmod
54          */
55         ret = param_set_uint(val, kp);
56         if (ret)
57                 return ret;
58
59         if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU)
60                 ret = -EINVAL;
61
62         return ret;
63 }
64
65 static const struct kernel_param_ops mtu_max_ops = {
66         .set = mtu_max_set,
67         .get = param_get_uint,
68 };
69
70 module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444);
71 MODULE_PARM_DESC(mtu_max, " Max MTU value.");
72
73 static uint rx_ring_order;
74 static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT;
75 static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT;
76
77 static int ring_order_set(const char *val, const struct kernel_param *kp)
78 {
79         int ret;
80         uint x;
81
82         ret = kstrtouint(val, 0, &x);
83         if (ret)
84                 return ret;
85
86         if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX))
87                 return -EINVAL;
88
89         *((uint *)kp->arg) = x;
90
91         return 0;
92 }
93
94 static const struct kernel_param_ops ring_order_ops = {
95         .set = ring_order_set,
96         .get = param_get_uint,
97 };
98
99 module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444);
100 MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order");
101 module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444);
102 MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order");
103 module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444);
104 MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order");
105
106 enum {
107         WIL_BOOT_ERR,
108         WIL_BOOT_VANILLA,
109         WIL_BOOT_PRODUCTION,
110         WIL_BOOT_DEVELOPMENT,
111 };
112
113 enum {
114         WIL_SIG_STATUS_VANILLA = 0x0,
115         WIL_SIG_STATUS_DEVELOPMENT = 0x1,
116         WIL_SIG_STATUS_PRODUCTION = 0x2,
117         WIL_SIG_STATUS_CORRUPTED_PRODUCTION = 0x3,
118 };
119
120 #define RST_DELAY (20) /* msec, for loop in @wil_wait_device_ready */
121 #define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */
122
123 #define PMU_READY_DELAY_MS (4) /* ms, for sleep in @wil_wait_device_ready */
124
125 #define OTP_HW_DELAY (200) /* usec, loop in @wil_wait_device_ready_talyn_mb */
126 /* round up to be above 2 ms total */
127 #define OTP_HW_COUNT (1 + 2000 / OTP_HW_DELAY)
128
129 /*
130  * Due to a hardware issue,
131  * one has to read/write to/from NIC in 32-bit chunks;
132  * regular memcpy_fromio and siblings will
133  * not work on 64-bit platform - it uses 64-bit transactions
134  *
135  * Force 32-bit transactions to enable NIC on 64-bit platforms
136  *
137  * To avoid byte swap on big endian host, __raw_{read|write}l
138  * should be used - {read|write}l would swap bytes to provide
139  * little endian on PCI value in host endianness.
140  */
141 void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src,
142                           size_t count)
143 {
144         u32 *d = dst;
145         const volatile u32 __iomem *s = src;
146
147         for (; count >= 4; count -= 4)
148                 *d++ = __raw_readl(s++);
149
150         if (unlikely(count)) {
151                 /* count can be 1..3 */
152                 u32 tmp = __raw_readl(s);
153
154                 memcpy(d, &tmp, count);
155         }
156 }
157
158 void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src,
159                         size_t count)
160 {
161         volatile u32 __iomem *d = dst;
162         const u32 *s = src;
163
164         for (; count >= 4; count -= 4)
165                 __raw_writel(*s++, d++);
166
167         if (unlikely(count)) {
168                 /* count can be 1..3 */
169                 u32 tmp = 0;
170
171                 memcpy(&tmp, s, count);
172                 __raw_writel(tmp, d);
173         }
174 }
175
176 /* Device memory access is prohibited while reset or suspend.
177  * wil_mem_access_lock protects accessing device memory in these cases
178  */
179 int wil_mem_access_lock(struct wil6210_priv *wil)
180 {
181         if (!down_read_trylock(&wil->mem_lock))
182                 return -EBUSY;
183
184         if (test_bit(wil_status_suspending, wil->status) ||
185             test_bit(wil_status_suspended, wil->status)) {
186                 up_read(&wil->mem_lock);
187                 return -EBUSY;
188         }
189
190         return 0;
191 }
192
193 void wil_mem_access_unlock(struct wil6210_priv *wil)
194 {
195         up_read(&wil->mem_lock);
196 }
197
198 static void wil_ring_fini_tx(struct wil6210_priv *wil, int id)
199 {
200         struct wil_ring *ring = &wil->ring_tx[id];
201         struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
202
203         lockdep_assert_held(&wil->mutex);
204
205         if (!ring->va)
206                 return;
207
208         wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id);
209
210         spin_lock_bh(&txdata->lock);
211         txdata->dot1x_open = false;
212         txdata->mid = U8_MAX;
213         txdata->enabled = 0; /* no Tx can be in progress or start anew */
214         spin_unlock_bh(&txdata->lock);
215         /* napi_synchronize waits for completion of the current NAPI but will
216          * not prevent the next NAPI run.
217          * Add a memory barrier to guarantee that txdata->enabled is zeroed
218          * before napi_synchronize so that the next scheduled NAPI will not
219          * handle this vring
220          */
221         wmb();
222         /* make sure NAPI won't touch this vring */
223         if (test_bit(wil_status_napi_en, wil->status))
224                 napi_synchronize(&wil->napi_tx);
225
226         wil->txrx_ops.ring_fini_tx(wil, ring);
227 }
228
229 static bool wil_vif_is_connected(struct wil6210_priv *wil, u8 mid)
230 {
231         int i;
232
233         for (i = 0; i < wil->max_assoc_sta; i++) {
234                 if (wil->sta[i].mid == mid &&
235                     wil->sta[i].status == wil_sta_connected)
236                         return true;
237         }
238
239         return false;
240 }
241
242 static void wil_disconnect_cid_complete(struct wil6210_vif *vif, int cid,
243                                         u16 reason_code)
244 __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
245 {
246         uint i;
247         struct wil6210_priv *wil = vif_to_wil(vif);
248         struct net_device *ndev = vif_to_ndev(vif);
249         struct wireless_dev *wdev = vif_to_wdev(vif);
250         struct wil_sta_info *sta = &wil->sta[cid];
251         int min_ring_id = wil_get_min_tx_ring_id(wil);
252
253         might_sleep();
254         wil_dbg_misc(wil,
255                      "disconnect_cid_complete: CID %d, MID %d, status %d\n",
256                      cid, sta->mid, sta->status);
257         /* inform upper layers */
258         if (sta->status != wil_sta_unused) {
259                 if (vif->mid != sta->mid) {
260                         wil_err(wil, "STA MID mismatch with VIF MID(%d)\n",
261                                 vif->mid);
262                 }
263
264                 switch (wdev->iftype) {
265                 case NL80211_IFTYPE_AP:
266                 case NL80211_IFTYPE_P2P_GO:
267                         /* AP-like interface */
268                         cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL);
269                         break;
270                 default:
271                         break;
272                 }
273                 sta->status = wil_sta_unused;
274                 sta->mid = U8_MAX;
275         }
276         /* reorder buffers */
277         for (i = 0; i < WIL_STA_TID_NUM; i++) {
278                 struct wil_tid_ampdu_rx *r;
279
280                 spin_lock_bh(&sta->tid_rx_lock);
281
282                 r = sta->tid_rx[i];
283                 sta->tid_rx[i] = NULL;
284                 wil_tid_ampdu_rx_free(wil, r);
285
286                 spin_unlock_bh(&sta->tid_rx_lock);
287         }
288         /* crypto context */
289         memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx));
290         memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx));
291         /* release vrings */
292         for (i = min_ring_id; i < ARRAY_SIZE(wil->ring_tx); i++) {
293                 if (wil->ring2cid_tid[i][0] == cid)
294                         wil_ring_fini_tx(wil, i);
295         }
296         /* statistics */
297         memset(&sta->stats, 0, sizeof(sta->stats));
298         sta->stats.tx_latency_min_us = U32_MAX;
299 }
300
301 static void _wil6210_disconnect_complete(struct wil6210_vif *vif,
302                                          const u8 *bssid, u16 reason_code)
303 {
304         struct wil6210_priv *wil = vif_to_wil(vif);
305         int cid = -ENOENT;
306         struct net_device *ndev;
307         struct wireless_dev *wdev;
308
309         ndev = vif_to_ndev(vif);
310         wdev = vif_to_wdev(vif);
311
312         might_sleep();
313         wil_info(wil, "disconnect_complete: bssid=%pM, reason=%d\n",
314                  bssid, reason_code);
315
316         /* Cases are:
317          * - disconnect single STA, still connected
318          * - disconnect single STA, already disconnected
319          * - disconnect all
320          *
321          * For "disconnect all", there are 3 options:
322          * - bssid == NULL
323          * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
324          * - bssid is our MAC address
325          */
326         if (bssid && !is_broadcast_ether_addr(bssid) &&
327             !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
328                 cid = wil_find_cid(wil, vif->mid, bssid);
329                 wil_dbg_misc(wil,
330                              "Disconnect complete %pM, CID=%d, reason=%d\n",
331                              bssid, cid, reason_code);
332                 if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
333                         wil_disconnect_cid_complete(vif, cid, reason_code);
334         } else { /* all */
335                 wil_dbg_misc(wil, "Disconnect complete all\n");
336                 for (cid = 0; cid < wil->max_assoc_sta; cid++)
337                         wil_disconnect_cid_complete(vif, cid, reason_code);
338         }
339
340         /* link state */
341         switch (wdev->iftype) {
342         case NL80211_IFTYPE_STATION:
343         case NL80211_IFTYPE_P2P_CLIENT:
344                 wil_bcast_fini(vif);
345                 wil_update_net_queues_bh(wil, vif, NULL, true);
346                 netif_carrier_off(ndev);
347                 if (!wil_has_other_active_ifaces(wil, ndev, false, true))
348                         wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
349
350                 if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) {
351                         atomic_dec(&wil->connected_vifs);
352                         cfg80211_disconnected(ndev, reason_code,
353                                               NULL, 0,
354                                               vif->locally_generated_disc,
355                                               GFP_KERNEL);
356                         vif->locally_generated_disc = false;
357                 } else if (test_bit(wil_vif_fwconnecting, vif->status)) {
358                         cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0,
359                                                 WLAN_STATUS_UNSPECIFIED_FAILURE,
360                                                 GFP_KERNEL);
361                         vif->bss = NULL;
362                 }
363                 clear_bit(wil_vif_fwconnecting, vif->status);
364                 clear_bit(wil_vif_ft_roam, vif->status);
365                 vif->ptk_rekey_state = WIL_REKEY_IDLE;
366
367                 break;
368         case NL80211_IFTYPE_AP:
369         case NL80211_IFTYPE_P2P_GO:
370                 if (!wil_vif_is_connected(wil, vif->mid)) {
371                         wil_update_net_queues_bh(wil, vif, NULL, true);
372                         if (test_and_clear_bit(wil_vif_fwconnected,
373                                                vif->status))
374                                 atomic_dec(&wil->connected_vifs);
375                 } else {
376                         wil_update_net_queues_bh(wil, vif, NULL, false);
377                 }
378                 break;
379         default:
380                 break;
381         }
382 }
383
384 static int wil_disconnect_cid(struct wil6210_vif *vif, int cid,
385                               u16 reason_code)
386 {
387         struct wil6210_priv *wil = vif_to_wil(vif);
388         struct wireless_dev *wdev = vif_to_wdev(vif);
389         struct wil_sta_info *sta = &wil->sta[cid];
390         bool del_sta = false;
391
392         might_sleep();
393         wil_dbg_misc(wil, "disconnect_cid: CID %d, MID %d, status %d\n",
394                      cid, sta->mid, sta->status);
395
396         if (sta->status == wil_sta_unused)
397                 return 0;
398
399         if (vif->mid != sta->mid) {
400                 wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", vif->mid);
401                 return -EINVAL;
402         }
403
404         /* inform lower layers */
405         if (wdev->iftype == NL80211_IFTYPE_AP && disable_ap_sme)
406                 del_sta = true;
407
408         /* disconnect by sending command disconnect/del_sta and wait
409          * synchronously for WMI_DISCONNECT_EVENTID event.
410          */
411         return wmi_disconnect_sta(vif, sta->addr, reason_code, del_sta);
412 }
413
414 static void _wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
415                                 u16 reason_code)
416 {
417         struct wil6210_priv *wil;
418         struct net_device *ndev;
419         int cid = -ENOENT;
420
421         if (unlikely(!vif))
422                 return;
423
424         wil = vif_to_wil(vif);
425         ndev = vif_to_ndev(vif);
426
427         might_sleep();
428         wil_info(wil, "disconnect bssid=%pM, reason=%d\n", bssid, reason_code);
429
430         /* Cases are:
431          * - disconnect single STA, still connected
432          * - disconnect single STA, already disconnected
433          * - disconnect all
434          *
435          * For "disconnect all", there are 3 options:
436          * - bssid == NULL
437          * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
438          * - bssid is our MAC address
439          */
440         if (bssid && !is_broadcast_ether_addr(bssid) &&
441             !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
442                 cid = wil_find_cid(wil, vif->mid, bssid);
443                 wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n",
444                              bssid, cid, reason_code);
445                 if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
446                         wil_disconnect_cid(vif, cid, reason_code);
447         } else { /* all */
448                 wil_dbg_misc(wil, "Disconnect all\n");
449                 for (cid = 0; cid < wil->max_assoc_sta; cid++)
450                         wil_disconnect_cid(vif, cid, reason_code);
451         }
452
453         /* call event handler manually after processing wmi_call,
454          * to avoid deadlock - disconnect event handler acquires
455          * wil->mutex while it is already held here
456          */
457         _wil6210_disconnect_complete(vif, bssid, reason_code);
458 }
459
460 void wil_disconnect_worker(struct work_struct *work)
461 {
462         struct wil6210_vif *vif = container_of(work,
463                         struct wil6210_vif, disconnect_worker);
464         struct wil6210_priv *wil = vif_to_wil(vif);
465         struct net_device *ndev = vif_to_ndev(vif);
466         int rc;
467         struct {
468                 struct wmi_cmd_hdr wmi;
469                 struct wmi_disconnect_event evt;
470         } __packed reply;
471
472         if (test_bit(wil_vif_fwconnected, vif->status))
473                 /* connect succeeded after all */
474                 return;
475
476         if (!test_bit(wil_vif_fwconnecting, vif->status))
477                 /* already disconnected */
478                 return;
479
480         memset(&reply, 0, sizeof(reply));
481
482         rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0,
483                       WMI_DISCONNECT_EVENTID, &reply, sizeof(reply),
484                       WIL6210_DISCONNECT_TO_MS);
485         if (rc) {
486                 wil_err(wil, "disconnect error %d\n", rc);
487                 return;
488         }
489
490         wil_update_net_queues_bh(wil, vif, NULL, true);
491         netif_carrier_off(ndev);
492         cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0,
493                                 WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL);
494         clear_bit(wil_vif_fwconnecting, vif->status);
495 }
496
497 static int wil_wait_for_recovery(struct wil6210_priv *wil)
498 {
499         if (wait_event_interruptible(wil->wq, wil->recovery_state !=
500                                      fw_recovery_pending)) {
501                 wil_err(wil, "Interrupt, canceling recovery\n");
502                 return -ERESTARTSYS;
503         }
504         if (wil->recovery_state != fw_recovery_running) {
505                 wil_info(wil, "Recovery cancelled\n");
506                 return -EINTR;
507         }
508         wil_info(wil, "Proceed with recovery\n");
509         return 0;
510 }
511
512 void wil_set_recovery_state(struct wil6210_priv *wil, int state)
513 {
514         wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n",
515                      wil->recovery_state, state);
516
517         wil->recovery_state = state;
518         wake_up_interruptible(&wil->wq);
519 }
520
521 bool wil_is_recovery_blocked(struct wil6210_priv *wil)
522 {
523         return no_fw_recovery && (wil->recovery_state == fw_recovery_pending);
524 }
525
526 static void wil_fw_error_worker(struct work_struct *work)
527 {
528         struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
529                                                 fw_error_worker);
530         struct net_device *ndev = wil->main_ndev;
531         struct wireless_dev *wdev;
532
533         wil_dbg_misc(wil, "fw error worker\n");
534
535         if (!ndev || !(ndev->flags & IFF_UP)) {
536                 wil_info(wil, "No recovery - interface is down\n");
537                 return;
538         }
539         wdev = ndev->ieee80211_ptr;
540
541         /* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO
542          * passed since last recovery attempt
543          */
544         if (time_is_after_jiffies(wil->last_fw_recovery +
545                                   WIL6210_FW_RECOVERY_TO))
546                 wil->recovery_count++;
547         else
548                 wil->recovery_count = 1; /* fw was alive for a long time */
549
550         if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) {
551                 wil_err(wil, "too many recovery attempts (%d), giving up\n",
552                         wil->recovery_count);
553                 return;
554         }
555
556         wil->last_fw_recovery = jiffies;
557
558         wil_info(wil, "fw error recovery requested (try %d)...\n",
559                  wil->recovery_count);
560         if (!no_fw_recovery)
561                 wil->recovery_state = fw_recovery_running;
562         if (wil_wait_for_recovery(wil) != 0)
563                 return;
564
565         rtnl_lock();
566         mutex_lock(&wil->mutex);
567         /* Needs adaptation for multiple VIFs
568          * need to go over all VIFs and consider the appropriate
569          * recovery because each one can have different iftype.
570          */
571         switch (wdev->iftype) {
572         case NL80211_IFTYPE_STATION:
573         case NL80211_IFTYPE_P2P_CLIENT:
574         case NL80211_IFTYPE_MONITOR:
575                 /* silent recovery, upper layers will see disconnect */
576                 __wil_down(wil);
577                 __wil_up(wil);
578                 break;
579         case NL80211_IFTYPE_AP:
580         case NL80211_IFTYPE_P2P_GO:
581                 if (no_fw_recovery) /* upper layers do recovery */
582                         break;
583                 /* silent recovery, upper layers will see disconnect */
584                 __wil_down(wil);
585                 __wil_up(wil);
586                 mutex_unlock(&wil->mutex);
587                 wil_cfg80211_ap_recovery(wil);
588                 mutex_lock(&wil->mutex);
589                 wil_info(wil, "... completed\n");
590                 break;
591         default:
592                 wil_err(wil, "No recovery - unknown interface type %d\n",
593                         wdev->iftype);
594                 break;
595         }
596
597         mutex_unlock(&wil->mutex);
598         rtnl_unlock();
599 }
600
601 static int wil_find_free_ring(struct wil6210_priv *wil)
602 {
603         int i;
604         int min_ring_id = wil_get_min_tx_ring_id(wil);
605
606         for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
607                 if (!wil->ring_tx[i].va)
608                         return i;
609         }
610         return -EINVAL;
611 }
612
613 int wil_ring_init_tx(struct wil6210_vif *vif, int cid)
614 {
615         struct wil6210_priv *wil = vif_to_wil(vif);
616         int rc = -EINVAL, ringid;
617
618         if (cid < 0) {
619                 wil_err(wil, "No connection pending\n");
620                 goto out;
621         }
622         ringid = wil_find_free_ring(wil);
623         if (ringid < 0) {
624                 wil_err(wil, "No free vring found\n");
625                 goto out;
626         }
627
628         wil_dbg_wmi(wil, "Configure for connection CID %d MID %d ring %d\n",
629                     cid, vif->mid, ringid);
630
631         rc = wil->txrx_ops.ring_init_tx(vif, ringid, 1 << tx_ring_order,
632                                         cid, 0);
633         if (rc)
634                 wil_err(wil, "init TX for CID %d MID %d vring %d failed\n",
635                         cid, vif->mid, ringid);
636
637 out:
638         return rc;
639 }
640
641 int wil_bcast_init(struct wil6210_vif *vif)
642 {
643         struct wil6210_priv *wil = vif_to_wil(vif);
644         int ri = vif->bcast_ring, rc;
645
646         if (ri >= 0 && wil->ring_tx[ri].va)
647                 return 0;
648
649         ri = wil_find_free_ring(wil);
650         if (ri < 0)
651                 return ri;
652
653         vif->bcast_ring = ri;
654         rc = wil->txrx_ops.ring_init_bcast(vif, ri, 1 << bcast_ring_order);
655         if (rc)
656                 vif->bcast_ring = -1;
657
658         return rc;
659 }
660
661 void wil_bcast_fini(struct wil6210_vif *vif)
662 {
663         struct wil6210_priv *wil = vif_to_wil(vif);
664         int ri = vif->bcast_ring;
665
666         if (ri < 0)
667                 return;
668
669         vif->bcast_ring = -1;
670         wil_ring_fini_tx(wil, ri);
671 }
672
673 void wil_bcast_fini_all(struct wil6210_priv *wil)
674 {
675         int i;
676         struct wil6210_vif *vif;
677
678         for (i = 0; i < GET_MAX_VIFS(wil); i++) {
679                 vif = wil->vifs[i];
680                 if (vif)
681                         wil_bcast_fini(vif);
682         }
683 }
684
685 int wil_priv_init(struct wil6210_priv *wil)
686 {
687         uint i;
688
689         wil_dbg_misc(wil, "priv_init\n");
690
691         memset(wil->sta, 0, sizeof(wil->sta));
692         for (i = 0; i < WIL6210_MAX_CID; i++) {
693                 spin_lock_init(&wil->sta[i].tid_rx_lock);
694                 wil->sta[i].mid = U8_MAX;
695         }
696
697         for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
698                 spin_lock_init(&wil->ring_tx_data[i].lock);
699                 wil->ring2cid_tid[i][0] = WIL6210_MAX_CID;
700         }
701
702         mutex_init(&wil->mutex);
703         mutex_init(&wil->vif_mutex);
704         mutex_init(&wil->wmi_mutex);
705         mutex_init(&wil->halp.lock);
706
707         init_completion(&wil->wmi_ready);
708         init_completion(&wil->wmi_call);
709         init_completion(&wil->halp.comp);
710
711         INIT_WORK(&wil->wmi_event_worker, wmi_event_worker);
712         INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker);
713
714         INIT_LIST_HEAD(&wil->pending_wmi_ev);
715         spin_lock_init(&wil->wmi_ev_lock);
716         spin_lock_init(&wil->net_queue_lock);
717         spin_lock_init(&wil->eap_lock);
718
719         init_waitqueue_head(&wil->wq);
720         init_rwsem(&wil->mem_lock);
721
722         wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi");
723         if (!wil->wmi_wq)
724                 return -EAGAIN;
725
726         wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service");
727         if (!wil->wq_service)
728                 goto out_wmi_wq;
729
730         wil->last_fw_recovery = jiffies;
731         wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT;
732         wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT;
733         wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT;
734         wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT;
735
736         if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT)
737                 rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT;
738
739         wil->ps_profile =  WMI_PS_PROFILE_TYPE_DEFAULT;
740
741         wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST |
742                               WMI_WAKEUP_TRIGGER_BCAST;
743         memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats));
744         wil->ring_idle_trsh = 16;
745
746         wil->reply_mid = U8_MAX;
747         wil->max_vifs = 1;
748         wil->max_assoc_sta = max_assoc_sta;
749
750         /* edma configuration can be updated via debugfs before allocation */
751         wil->num_rx_status_rings = WIL_DEFAULT_NUM_RX_STATUS_RINGS;
752         wil->tx_status_ring_order = WIL_TX_SRING_SIZE_ORDER_DEFAULT;
753
754         /* Rx status ring size should be bigger than the number of RX buffers
755          * in order to prevent backpressure on the status ring, which may
756          * cause HW freeze.
757          */
758         wil->rx_status_ring_order = WIL_RX_SRING_SIZE_ORDER_DEFAULT;
759         /* Number of RX buffer IDs should be bigger than the RX descriptor
760          * ring size as in HW reorder flow, the HW can consume additional
761          * buffers before releasing the previous ones.
762          */
763         wil->rx_buff_id_count = WIL_RX_BUFF_ARR_SIZE_DEFAULT;
764
765         wil->amsdu_en = true;
766
767         return 0;
768
769 out_wmi_wq:
770         destroy_workqueue(wil->wmi_wq);
771
772         return -EAGAIN;
773 }
774
775 void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps)
776 {
777         if (wil->platform_ops.bus_request) {
778                 wil->bus_request_kbps = kbps;
779                 wil->platform_ops.bus_request(wil->platform_handle, kbps);
780         }
781 }
782
783 /**
784  * wil6210_disconnect - disconnect one connection
785  * @vif: virtual interface context
786  * @bssid: peer to disconnect, NULL to disconnect all
787  * @reason_code: Reason code for the Disassociation frame
788  *
789  * Disconnect and release associated resources. Issue WMI
790  * command(s) to trigger MAC disconnect. When command was issued
791  * successfully, call the wil6210_disconnect_complete function
792  * to handle the event synchronously
793  */
794 void wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
795                         u16 reason_code)
796 {
797         struct wil6210_priv *wil = vif_to_wil(vif);
798
799         wil_dbg_misc(wil, "disconnecting\n");
800
801         del_timer_sync(&vif->connect_timer);
802         _wil6210_disconnect(vif, bssid, reason_code);
803 }
804
805 /**
806  * wil6210_disconnect_complete - handle disconnect event
807  * @vif: virtual interface context
808  * @bssid: peer to disconnect, NULL to disconnect all
809  * @reason_code: Reason code for the Disassociation frame
810  *
811  * Release associated resources and indicate upper layers the
812  * connection is terminated.
813  */
814 void wil6210_disconnect_complete(struct wil6210_vif *vif, const u8 *bssid,
815                                  u16 reason_code)
816 {
817         struct wil6210_priv *wil = vif_to_wil(vif);
818
819         wil_dbg_misc(wil, "got disconnect\n");
820
821         del_timer_sync(&vif->connect_timer);
822         _wil6210_disconnect_complete(vif, bssid, reason_code);
823 }
824
825 void wil_priv_deinit(struct wil6210_priv *wil)
826 {
827         wil_dbg_misc(wil, "priv_deinit\n");
828
829         wil_set_recovery_state(wil, fw_recovery_idle);
830         cancel_work_sync(&wil->fw_error_worker);
831         wmi_event_flush(wil);
832         destroy_workqueue(wil->wq_service);
833         destroy_workqueue(wil->wmi_wq);
834         kfree(wil->brd_info);
835 }
836
837 static void wil_shutdown_bl(struct wil6210_priv *wil)
838 {
839         u32 val;
840
841         wil_s(wil, RGF_USER_BL +
842               offsetof(struct bl_dedicated_registers_v1,
843                        bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD);
844
845         usleep_range(100, 150);
846
847         val = wil_r(wil, RGF_USER_BL +
848                     offsetof(struct bl_dedicated_registers_v1,
849                              bl_shutdown_handshake));
850         if (val & BL_SHUTDOWN_HS_RTD) {
851                 wil_dbg_misc(wil, "BL is ready for halt\n");
852                 return;
853         }
854
855         wil_err(wil, "BL did not report ready for halt\n");
856 }
857
858 /* this format is used by ARC embedded CPU for instruction memory */
859 static inline u32 ARC_me_imm32(u32 d)
860 {
861         return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16);
862 }
863
864 /* defines access to interrupt vectors for wil_freeze_bl */
865 #define ARC_IRQ_VECTOR_OFFSET(N)        ((N) * 8)
866 /* ARC long jump instruction */
867 #define ARC_JAL_INST                    (0x20200f80)
868
869 static void wil_freeze_bl(struct wil6210_priv *wil)
870 {
871         u32 jal, upc, saved;
872         u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3);
873
874         jal = wil_r(wil, wil->iccm_base + ivt3);
875         if (jal != ARC_me_imm32(ARC_JAL_INST)) {
876                 wil_dbg_misc(wil, "invalid IVT entry found, skipping\n");
877                 return;
878         }
879
880         /* prevent the target from entering deep sleep
881          * and disabling memory access
882          */
883         saved = wil_r(wil, RGF_USER_USAGE_8);
884         wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP);
885         usleep_range(20, 25); /* let the BL process the bit */
886
887         /* redirect to endless loop in the INT_L1 context and let it trap */
888         wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3));
889         usleep_range(20, 25); /* let the BL get into the trap */
890
891         /* verify the BL is frozen */
892         upc = wil_r(wil, RGF_USER_CPU_PC);
893         if (upc < ivt3 || (upc > (ivt3 + 8)))
894                 wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc);
895
896         wil_w(wil, RGF_USER_USAGE_8, saved);
897 }
898
899 static void wil_bl_prepare_halt(struct wil6210_priv *wil)
900 {
901         u32 tmp, ver;
902
903         /* before halting device CPU driver must make sure BL is not accessing
904          * host memory. This is done differently depending on BL version:
905          * 1. For very old BL versions the procedure is skipped
906          * (not supported).
907          * 2. For old BL version we use a special trick to freeze the BL
908          * 3. For new BL versions we shutdown the BL using handshake procedure.
909          */
910         tmp = wil_r(wil, RGF_USER_BL +
911                     offsetof(struct bl_dedicated_registers_v0,
912                              boot_loader_struct_version));
913         if (!tmp) {
914                 wil_dbg_misc(wil, "old BL, skipping halt preparation\n");
915                 return;
916         }
917
918         tmp = wil_r(wil, RGF_USER_BL +
919                     offsetof(struct bl_dedicated_registers_v1,
920                              bl_shutdown_handshake));
921         ver = BL_SHUTDOWN_HS_PROT_VER(tmp);
922
923         if (ver > 0)
924                 wil_shutdown_bl(wil);
925         else
926                 wil_freeze_bl(wil);
927 }
928
929 static inline void wil_halt_cpu(struct wil6210_priv *wil)
930 {
931         if (wil->hw_version >= HW_VER_TALYN_MB) {
932                 wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB,
933                       BIT_USER_USER_CPU_MAN_RST);
934                 wil_w(wil, RGF_USER_MAC_CPU_0_TALYN_MB,
935                       BIT_USER_MAC_CPU_MAN_RST);
936         } else {
937                 wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST);
938                 wil_w(wil, RGF_USER_MAC_CPU_0,  BIT_USER_MAC_CPU_MAN_RST);
939         }
940 }
941
942 static inline void wil_release_cpu(struct wil6210_priv *wil)
943 {
944         /* Start CPU */
945         if (wil->hw_version >= HW_VER_TALYN_MB)
946                 wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 1);
947         else
948                 wil_w(wil, RGF_USER_USER_CPU_0, 1);
949 }
950
951 static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode)
952 {
953         wil_info(wil, "oob_mode to %d\n", mode);
954         switch (mode) {
955         case 0:
956                 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE |
957                       BIT_USER_OOB_R2_MODE);
958                 break;
959         case 1:
960                 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
961                 wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
962                 break;
963         case 2:
964                 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
965                 wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
966                 break;
967         default:
968                 wil_err(wil, "invalid oob_mode: %d\n", mode);
969         }
970 }
971
972 static int wil_wait_device_ready(struct wil6210_priv *wil, int no_flash)
973 {
974         int delay = 0;
975         u32 x, x1 = 0;
976
977         /* wait until device ready. */
978         if (no_flash) {
979                 msleep(PMU_READY_DELAY_MS);
980
981                 wil_dbg_misc(wil, "Reset completed\n");
982         } else {
983                 do {
984                         msleep(RST_DELAY);
985                         x = wil_r(wil, RGF_USER_BL +
986                                   offsetof(struct bl_dedicated_registers_v0,
987                                            boot_loader_ready));
988                         if (x1 != x) {
989                                 wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n",
990                                              x1, x);
991                                 x1 = x;
992                         }
993                         if (delay++ > RST_COUNT) {
994                                 wil_err(wil, "Reset not completed, bl.ready 0x%08x\n",
995                                         x);
996                                 return -ETIME;
997                         }
998                 } while (x != BL_READY);
999
1000                 wil_dbg_misc(wil, "Reset completed in %d ms\n",
1001                              delay * RST_DELAY);
1002         }
1003
1004         return 0;
1005 }
1006
1007 static int wil_wait_device_ready_talyn_mb(struct wil6210_priv *wil)
1008 {
1009         u32 otp_hw;
1010         u8 signature_status;
1011         bool otp_signature_err;
1012         bool hw_section_done;
1013         u32 otp_qc_secured;
1014         int delay = 0;
1015
1016         /* Wait for OTP signature test to complete */
1017         usleep_range(2000, 2200);
1018
1019         wil->boot_config = WIL_BOOT_ERR;
1020
1021         /* Poll until OTP signature status is valid.
1022          * In vanilla and development modes, when signature test is complete
1023          * HW sets BIT_OTP_SIGNATURE_ERR_TALYN_MB.
1024          * In production mode BIT_OTP_SIGNATURE_ERR_TALYN_MB remains 0, poll
1025          * for signature status change to 2 or 3.
1026          */
1027         do {
1028                 otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1029                 signature_status = WIL_GET_BITS(otp_hw, 8, 9);
1030                 otp_signature_err = otp_hw & BIT_OTP_SIGNATURE_ERR_TALYN_MB;
1031
1032                 if (otp_signature_err &&
1033                     signature_status == WIL_SIG_STATUS_VANILLA) {
1034                         wil->boot_config = WIL_BOOT_VANILLA;
1035                         break;
1036                 }
1037                 if (otp_signature_err &&
1038                     signature_status == WIL_SIG_STATUS_DEVELOPMENT) {
1039                         wil->boot_config = WIL_BOOT_DEVELOPMENT;
1040                         break;
1041                 }
1042                 if (!otp_signature_err &&
1043                     signature_status == WIL_SIG_STATUS_PRODUCTION) {
1044                         wil->boot_config = WIL_BOOT_PRODUCTION;
1045                         break;
1046                 }
1047                 if  (!otp_signature_err &&
1048                      signature_status ==
1049                      WIL_SIG_STATUS_CORRUPTED_PRODUCTION) {
1050                         /* Unrecognized OTP signature found. Possibly a
1051                          * corrupted production signature, access control
1052                          * is applied as in production mode, therefore
1053                          * do not fail
1054                          */
1055                         wil->boot_config = WIL_BOOT_PRODUCTION;
1056                         break;
1057                 }
1058                 if (delay++ > OTP_HW_COUNT)
1059                         break;
1060
1061                 usleep_range(OTP_HW_DELAY, OTP_HW_DELAY + 10);
1062         } while (!otp_signature_err && signature_status == 0);
1063
1064         if (wil->boot_config == WIL_BOOT_ERR) {
1065                 wil_err(wil,
1066                         "invalid boot config, signature_status %d otp_signature_err %d\n",
1067                         signature_status, otp_signature_err);
1068                 return -ETIME;
1069         }
1070
1071         wil_dbg_misc(wil,
1072                      "signature test done in %d usec, otp_hw 0x%x, boot_config %d\n",
1073                      delay * OTP_HW_DELAY, otp_hw, wil->boot_config);
1074
1075         if (wil->boot_config == WIL_BOOT_VANILLA)
1076                 /* Assuming not SPI boot (currently not supported) */
1077                 goto out;
1078
1079         hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1080         delay = 0;
1081
1082         while (!hw_section_done) {
1083                 msleep(RST_DELAY);
1084
1085                 otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1086                 hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1087
1088                 if (delay++ > RST_COUNT) {
1089                         wil_err(wil, "TO waiting for hw_section_done\n");
1090                         return -ETIME;
1091                 }
1092         }
1093
1094         wil_dbg_misc(wil, "HW section done in %d ms\n", delay * RST_DELAY);
1095
1096         otp_qc_secured = wil_r(wil, RGF_OTP_QC_SECURED);
1097         wil->secured_boot = otp_qc_secured & BIT_BOOT_FROM_ROM ? 1 : 0;
1098         wil_dbg_misc(wil, "secured boot is %sabled\n",
1099                      wil->secured_boot ? "en" : "dis");
1100
1101 out:
1102         wil_dbg_misc(wil, "Reset completed\n");
1103
1104         return 0;
1105 }
1106
1107 static int wil_target_reset(struct wil6210_priv *wil, int no_flash)
1108 {
1109         u32 x;
1110         int rc;
1111
1112         wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name);
1113
1114         if (wil->hw_version < HW_VER_TALYN) {
1115                 /* Clear MAC link up */
1116                 wil_s(wil, RGF_HP_CTRL, BIT(15));
1117                 wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0,
1118                       BIT_HPAL_PERST_FROM_PAD);
1119                 wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST);
1120         }
1121
1122         wil_halt_cpu(wil);
1123
1124         if (!no_flash) {
1125                 /* clear all boot loader "ready" bits */
1126                 wil_w(wil, RGF_USER_BL +
1127                       offsetof(struct bl_dedicated_registers_v0,
1128                                boot_loader_ready), 0);
1129                 /* this should be safe to write even with old BLs */
1130                 wil_w(wil, RGF_USER_BL +
1131                       offsetof(struct bl_dedicated_registers_v1,
1132                                bl_shutdown_handshake), 0);
1133         }
1134         /* Clear Fw Download notification */
1135         wil_c(wil, RGF_USER_USAGE_6, BIT(0));
1136
1137         wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN);
1138         /* XTAL stabilization should take about 3ms */
1139         usleep_range(5000, 7000);
1140         x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS);
1141         if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) {
1142                 wil_err(wil, "Xtal stabilization timeout\n"
1143                         "RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x);
1144                 return -ETIME;
1145         }
1146         /* switch 10k to XTAL*/
1147         wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF);
1148         /* 40 MHz */
1149         wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL);
1150
1151         wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f);
1152         wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf);
1153
1154         if (wil->hw_version >= HW_VER_TALYN_MB) {
1155                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x7e000000);
1156                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1157                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0xc00000f0);
1158                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1159         } else {
1160                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xfe000000);
1161                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1162                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0);
1163                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1164         }
1165
1166         wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0);
1167         wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0);
1168
1169         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0);
1170         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0);
1171         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0);
1172         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1173
1174         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003);
1175         /* reset A2 PCIE AHB */
1176         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000);
1177
1178         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1179
1180         if (wil->hw_version == HW_VER_TALYN_MB)
1181                 rc = wil_wait_device_ready_talyn_mb(wil);
1182         else
1183                 rc = wil_wait_device_ready(wil, no_flash);
1184         if (rc)
1185                 return rc;
1186
1187         wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD);
1188
1189         /* enable fix for HW bug related to the SA/DA swap in AP Rx */
1190         wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN |
1191               BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC);
1192
1193         if (wil->hw_version < HW_VER_TALYN_MB && no_flash) {
1194                 /* Reset OTP HW vectors to fit 40MHz */
1195                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001);
1196                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027);
1197                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1);
1198                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027);
1199                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003);
1200                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002);
1201                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001);
1202                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001);
1203                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001);
1204                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001);
1205                 wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57);
1206         }
1207
1208         return 0;
1209 }
1210
1211 static void wil_collect_fw_info(struct wil6210_priv *wil)
1212 {
1213         struct wiphy *wiphy = wil_to_wiphy(wil);
1214         u8 retry_short;
1215         int rc;
1216
1217         wil_refresh_fw_capabilities(wil);
1218
1219         rc = wmi_get_mgmt_retry(wil, &retry_short);
1220         if (!rc) {
1221                 wiphy->retry_short = retry_short;
1222                 wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short);
1223         }
1224 }
1225
1226 void wil_refresh_fw_capabilities(struct wil6210_priv *wil)
1227 {
1228         struct wiphy *wiphy = wil_to_wiphy(wil);
1229         int features;
1230
1231         wil->keep_radio_on_during_sleep =
1232                 test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND,
1233                          wil->platform_capa) &&
1234                 test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities);
1235
1236         wil_info(wil, "keep_radio_on_during_sleep (%d)\n",
1237                  wil->keep_radio_on_during_sleep);
1238
1239         if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
1240                 wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
1241         else
1242                 wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC;
1243
1244         if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) {
1245                 wiphy->max_sched_scan_reqs = 1;
1246                 wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM;
1247                 wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM;
1248                 wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN;
1249                 wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM;
1250         }
1251
1252         if (test_bit(WMI_FW_CAPABILITY_TX_REQ_EXT, wil->fw_capabilities))
1253                 wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX;
1254
1255         if (wil->platform_ops.set_features) {
1256                 features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL,
1257                                      wil->fw_capabilities) &&
1258                             test_bit(WIL_PLATFORM_CAPA_EXT_CLK,
1259                                      wil->platform_capa)) ?
1260                         BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0;
1261
1262                 if (wil->n_msi == 3)
1263                         features |= BIT(WIL_PLATFORM_FEATURE_TRIPLE_MSI);
1264
1265                 wil->platform_ops.set_features(wil->platform_handle, features);
1266         }
1267
1268         if (test_bit(WMI_FW_CAPABILITY_BACK_WIN_SIZE_64,
1269                      wil->fw_capabilities)) {
1270                 wil->max_agg_wsize = WIL_MAX_AGG_WSIZE_64;
1271                 wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE_128;
1272         } else {
1273                 wil->max_agg_wsize = WIL_MAX_AGG_WSIZE;
1274                 wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE;
1275         }
1276
1277         update_supported_bands(wil);
1278 }
1279
1280 void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r)
1281 {
1282         le32_to_cpus(&r->base);
1283         le16_to_cpus(&r->entry_size);
1284         le16_to_cpus(&r->size);
1285         le32_to_cpus(&r->tail);
1286         le32_to_cpus(&r->head);
1287 }
1288
1289 /* construct actual board file name to use */
1290 void wil_get_board_file(struct wil6210_priv *wil, char *buf, size_t len)
1291 {
1292         const char *board_file;
1293         const char *wil_talyn_fw_name = ftm_mode ? WIL_FW_NAME_FTM_TALYN :
1294                               WIL_FW_NAME_TALYN;
1295
1296         if (wil->board_file) {
1297                 board_file = wil->board_file;
1298         } else {
1299                 /* If specific FW file is used for Talyn,
1300                  * use specific board file
1301                  */
1302                 if (strcmp(wil->wil_fw_name, wil_talyn_fw_name) == 0)
1303                         board_file = WIL_BRD_NAME_TALYN;
1304                 else
1305                         board_file = WIL_BOARD_FILE_NAME;
1306         }
1307
1308         strscpy(buf, board_file, len);
1309 }
1310
1311 static int wil_get_bl_info(struct wil6210_priv *wil)
1312 {
1313         struct net_device *ndev = wil->main_ndev;
1314         struct wiphy *wiphy = wil_to_wiphy(wil);
1315         union {
1316                 struct bl_dedicated_registers_v0 bl0;
1317                 struct bl_dedicated_registers_v1 bl1;
1318         } bl;
1319         u32 bl_ver;
1320         u8 *mac;
1321         u16 rf_status;
1322
1323         wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL),
1324                              sizeof(bl));
1325         bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version);
1326         mac = bl.bl0.mac_address;
1327
1328         if (bl_ver == 0) {
1329                 le32_to_cpus(&bl.bl0.rf_type);
1330                 le32_to_cpus(&bl.bl0.baseband_type);
1331                 rf_status = 0; /* actually, unknown */
1332                 wil_info(wil,
1333                          "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n",
1334                          bl_ver, mac,
1335                          bl.bl0.rf_type, bl.bl0.baseband_type);
1336                 wil_info(wil, "Boot Loader build unknown for struct v0\n");
1337         } else {
1338                 le16_to_cpus(&bl.bl1.rf_type);
1339                 rf_status = le16_to_cpu(bl.bl1.rf_status);
1340                 le32_to_cpus(&bl.bl1.baseband_type);
1341                 le16_to_cpus(&bl.bl1.bl_version_subminor);
1342                 le16_to_cpus(&bl.bl1.bl_version_build);
1343                 wil_info(wil,
1344                          "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n",
1345                          bl_ver, mac,
1346                          bl.bl1.rf_type, rf_status,
1347                          bl.bl1.baseband_type);
1348                 wil_info(wil, "Boot Loader build %d.%d.%d.%d\n",
1349                          bl.bl1.bl_version_major, bl.bl1.bl_version_minor,
1350                          bl.bl1.bl_version_subminor, bl.bl1.bl_version_build);
1351         }
1352
1353         if (!is_valid_ether_addr(mac)) {
1354                 wil_err(wil, "BL: Invalid MAC %pM\n", mac);
1355                 return -EINVAL;
1356         }
1357
1358         ether_addr_copy(ndev->perm_addr, mac);
1359         ether_addr_copy(wiphy->perm_addr, mac);
1360         if (!is_valid_ether_addr(ndev->dev_addr))
1361                 eth_hw_addr_set(ndev, mac);
1362
1363         if (rf_status) {/* bad RF cable? */
1364                 wil_err(wil, "RF communication error 0x%04x",
1365                         rf_status);
1366                 return -EAGAIN;
1367         }
1368
1369         return 0;
1370 }
1371
1372 static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err)
1373 {
1374         u32 bl_assert_code, bl_assert_blink, bl_magic_number;
1375         u32 bl_ver = wil_r(wil, RGF_USER_BL +
1376                            offsetof(struct bl_dedicated_registers_v0,
1377                                     boot_loader_struct_version));
1378
1379         if (bl_ver < 2)
1380                 return;
1381
1382         bl_assert_code = wil_r(wil, RGF_USER_BL +
1383                                offsetof(struct bl_dedicated_registers_v1,
1384                                         bl_assert_code));
1385         bl_assert_blink = wil_r(wil, RGF_USER_BL +
1386                                 offsetof(struct bl_dedicated_registers_v1,
1387                                          bl_assert_blink));
1388         bl_magic_number = wil_r(wil, RGF_USER_BL +
1389                                 offsetof(struct bl_dedicated_registers_v1,
1390                                          bl_magic_number));
1391
1392         if (is_err) {
1393                 wil_err(wil,
1394                         "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1395                         bl_assert_code, bl_assert_blink, bl_magic_number);
1396         } else {
1397                 wil_dbg_misc(wil,
1398                              "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1399                              bl_assert_code, bl_assert_blink, bl_magic_number);
1400         }
1401 }
1402
1403 static int wil_get_otp_info(struct wil6210_priv *wil)
1404 {
1405         struct net_device *ndev = wil->main_ndev;
1406         struct wiphy *wiphy = wil_to_wiphy(wil);
1407         u8 mac[8];
1408         int mac_addr;
1409
1410         /* OEM MAC has precedence */
1411         mac_addr = RGF_OTP_OEM_MAC;
1412         wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr), sizeof(mac));
1413
1414         if (is_valid_ether_addr(mac)) {
1415                 wil_info(wil, "using OEM MAC %pM\n", mac);
1416         } else {
1417                 if (wil->hw_version >= HW_VER_TALYN_MB)
1418                         mac_addr = RGF_OTP_MAC_TALYN_MB;
1419                 else
1420                         mac_addr = RGF_OTP_MAC;
1421
1422                 wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr),
1423                                      sizeof(mac));
1424         }
1425
1426         if (!is_valid_ether_addr(mac)) {
1427                 wil_err(wil, "Invalid MAC %pM\n", mac);
1428                 return -EINVAL;
1429         }
1430
1431         ether_addr_copy(ndev->perm_addr, mac);
1432         ether_addr_copy(wiphy->perm_addr, mac);
1433         if (!is_valid_ether_addr(ndev->dev_addr))
1434                 eth_hw_addr_set(ndev, mac);
1435
1436         return 0;
1437 }
1438
1439 static int wil_wait_for_fw_ready(struct wil6210_priv *wil)
1440 {
1441         ulong to = msecs_to_jiffies(2000);
1442         ulong left = wait_for_completion_timeout(&wil->wmi_ready, to);
1443
1444         if (0 == left) {
1445                 wil_err(wil, "Firmware not ready\n");
1446                 return -ETIME;
1447         } else {
1448                 wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n",
1449                          jiffies_to_msecs(to-left), wil->hw_version);
1450         }
1451         return 0;
1452 }
1453
1454 void wil_abort_scan(struct wil6210_vif *vif, bool sync)
1455 {
1456         struct wil6210_priv *wil = vif_to_wil(vif);
1457         int rc;
1458         struct cfg80211_scan_info info = {
1459                 .aborted = true,
1460         };
1461
1462         lockdep_assert_held(&wil->vif_mutex);
1463
1464         if (!vif->scan_request)
1465                 return;
1466
1467         wil_dbg_misc(wil, "Abort scan_request 0x%p\n", vif->scan_request);
1468         del_timer_sync(&vif->scan_timer);
1469         mutex_unlock(&wil->vif_mutex);
1470         rc = wmi_abort_scan(vif);
1471         if (!rc && sync)
1472                 wait_event_interruptible_timeout(wil->wq, !vif->scan_request,
1473                                                  msecs_to_jiffies(
1474                                                  WAIT_FOR_SCAN_ABORT_MS));
1475
1476         mutex_lock(&wil->vif_mutex);
1477         if (vif->scan_request) {
1478                 cfg80211_scan_done(vif->scan_request, &info);
1479                 vif->scan_request = NULL;
1480         }
1481 }
1482
1483 void wil_abort_scan_all_vifs(struct wil6210_priv *wil, bool sync)
1484 {
1485         int i;
1486
1487         lockdep_assert_held(&wil->vif_mutex);
1488
1489         for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1490                 struct wil6210_vif *vif = wil->vifs[i];
1491
1492                 if (vif)
1493                         wil_abort_scan(vif, sync);
1494         }
1495 }
1496
1497 int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile)
1498 {
1499         int rc;
1500
1501         if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) {
1502                 wil_err(wil, "set_power_mgmt not supported\n");
1503                 return -EOPNOTSUPP;
1504         }
1505
1506         rc  = wmi_ps_dev_profile_cfg(wil, ps_profile);
1507         if (rc)
1508                 wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc);
1509         else
1510                 wil->ps_profile = ps_profile;
1511
1512         return rc;
1513 }
1514
1515 static void wil_pre_fw_config(struct wil6210_priv *wil)
1516 {
1517         wil_clear_fw_log_addr(wil);
1518         /* Mark FW as loaded from host */
1519         wil_s(wil, RGF_USER_USAGE_6, 1);
1520
1521         /* clear any interrupts which on-card-firmware
1522          * may have set
1523          */
1524         wil6210_clear_irq(wil);
1525         /* CAF_ICR - clear and mask */
1526         /* it is W1C, clear by writing back same value */
1527         if (wil->hw_version < HW_VER_TALYN_MB) {
1528                 wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0);
1529                 wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0);
1530         }
1531         /* clear PAL_UNIT_ICR (potential D0->D3 leftover)
1532          * In Talyn-MB host cannot access this register due to
1533          * access control, hence PAL_UNIT_ICR is cleared by the FW
1534          */
1535         if (wil->hw_version < HW_VER_TALYN_MB)
1536                 wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR),
1537                       0);
1538
1539         if (wil->fw_calib_result > 0) {
1540                 __le32 val = cpu_to_le32(wil->fw_calib_result |
1541                                                 (CALIB_RESULT_SIGNATURE << 8));
1542                 wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val);
1543         }
1544 }
1545
1546 static int wil_restore_vifs(struct wil6210_priv *wil)
1547 {
1548         struct wil6210_vif *vif;
1549         struct net_device *ndev;
1550         struct wireless_dev *wdev;
1551         int i, rc;
1552
1553         for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1554                 vif = wil->vifs[i];
1555                 if (!vif)
1556                         continue;
1557                 vif->ap_isolate = 0;
1558                 if (vif->mid) {
1559                         ndev = vif_to_ndev(vif);
1560                         wdev = vif_to_wdev(vif);
1561                         rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr,
1562                                                wdev->iftype);
1563                         if (rc) {
1564                                 wil_err(wil, "fail to restore VIF %d type %d, rc %d\n",
1565                                         i, wdev->iftype, rc);
1566                                 return rc;
1567                         }
1568                 }
1569         }
1570
1571         return 0;
1572 }
1573
1574 /*
1575  * Clear FW and ucode log start addr to indicate FW log is not ready. The host
1576  * driver clears the addresses before FW starts and FW initializes the address
1577  * when it is ready to send logs.
1578  */
1579 void wil_clear_fw_log_addr(struct wil6210_priv *wil)
1580 {
1581         /* FW log addr */
1582         wil_w(wil, RGF_USER_USAGE_1, 0);
1583         /* ucode log addr */
1584         wil_w(wil, RGF_USER_USAGE_2, 0);
1585         wil_dbg_misc(wil, "Cleared FW and ucode log address");
1586 }
1587
1588 /*
1589  * We reset all the structures, and we reset the UMAC.
1590  * After calling this routine, you're expected to reload
1591  * the firmware.
1592  */
1593 int wil_reset(struct wil6210_priv *wil, bool load_fw)
1594 {
1595         int rc, i;
1596         unsigned long status_flags = BIT(wil_status_resetting);
1597         int no_flash;
1598         struct wil6210_vif *vif;
1599
1600         wil_dbg_misc(wil, "reset\n");
1601
1602         WARN_ON(!mutex_is_locked(&wil->mutex));
1603         WARN_ON(test_bit(wil_status_napi_en, wil->status));
1604
1605         if (debug_fw) {
1606                 static const u8 mac[ETH_ALEN] = {
1607                         0x00, 0xde, 0xad, 0x12, 0x34, 0x56,
1608                 };
1609                 struct net_device *ndev = wil->main_ndev;
1610
1611                 ether_addr_copy(ndev->perm_addr, mac);
1612                 eth_hw_addr_set(ndev, ndev->perm_addr);
1613                 return 0;
1614         }
1615
1616         if (wil->hw_version == HW_VER_UNKNOWN)
1617                 return -ENODEV;
1618
1619         if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa) &&
1620             wil->hw_version < HW_VER_TALYN_MB) {
1621                 wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n");
1622                 wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0);
1623         }
1624
1625         if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) {
1626                 wil_dbg_misc(wil, "Notify FW on ext clock configuration\n");
1627                 wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK);
1628         }
1629
1630         if (wil->platform_ops.notify) {
1631                 rc = wil->platform_ops.notify(wil->platform_handle,
1632                                               WIL_PLATFORM_EVT_PRE_RESET);
1633                 if (rc)
1634                         wil_err(wil, "PRE_RESET platform notify failed, rc %d\n",
1635                                 rc);
1636         }
1637
1638         set_bit(wil_status_resetting, wil->status);
1639         mutex_lock(&wil->vif_mutex);
1640         wil_abort_scan_all_vifs(wil, false);
1641         mutex_unlock(&wil->vif_mutex);
1642
1643         for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1644                 vif = wil->vifs[i];
1645                 if (vif) {
1646                         cancel_work_sync(&vif->disconnect_worker);
1647                         wil6210_disconnect(vif, NULL,
1648                                            WLAN_REASON_DEAUTH_LEAVING);
1649                         vif->ptk_rekey_state = WIL_REKEY_IDLE;
1650                 }
1651         }
1652         wil_bcast_fini_all(wil);
1653
1654         /* Disable device led before reset*/
1655         wmi_led_cfg(wil, false);
1656
1657         down_write(&wil->mem_lock);
1658
1659         /* prevent NAPI from being scheduled and prevent wmi commands */
1660         mutex_lock(&wil->wmi_mutex);
1661         if (test_bit(wil_status_suspending, wil->status))
1662                 status_flags |= BIT(wil_status_suspending);
1663         bitmap_and(wil->status, wil->status, &status_flags,
1664                    wil_status_last);
1665         wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status);
1666         mutex_unlock(&wil->wmi_mutex);
1667
1668         wil_mask_irq(wil);
1669
1670         wmi_event_flush(wil);
1671
1672         flush_workqueue(wil->wq_service);
1673         flush_workqueue(wil->wmi_wq);
1674
1675         no_flash = test_bit(hw_capa_no_flash, wil->hw_capa);
1676         if (!no_flash)
1677                 wil_bl_crash_info(wil, false);
1678         wil_disable_irq(wil);
1679         rc = wil_target_reset(wil, no_flash);
1680         wil6210_clear_irq(wil);
1681         wil_enable_irq(wil);
1682         wil->txrx_ops.rx_fini(wil);
1683         wil->txrx_ops.tx_fini(wil);
1684         if (rc) {
1685                 if (!no_flash)
1686                         wil_bl_crash_info(wil, true);
1687                 goto out;
1688         }
1689
1690         if (no_flash) {
1691                 rc = wil_get_otp_info(wil);
1692         } else {
1693                 rc = wil_get_bl_info(wil);
1694                 if (rc == -EAGAIN && !load_fw)
1695                         /* ignore RF error if not going up */
1696                         rc = 0;
1697         }
1698         if (rc)
1699                 goto out;
1700
1701         wil_set_oob_mode(wil, oob_mode);
1702         if (load_fw) {
1703                 char board_file[WIL_BOARD_FILE_MAX_NAMELEN];
1704
1705                 if  (wil->secured_boot) {
1706                         wil_err(wil, "secured boot is not supported\n");
1707                         up_write(&wil->mem_lock);
1708                         return -ENOTSUPP;
1709                 }
1710
1711                 board_file[0] = '\0';
1712                 wil_get_board_file(wil, board_file, sizeof(board_file));
1713                 wil_info(wil, "Use firmware <%s> + board <%s>\n",
1714                          wil->wil_fw_name, board_file);
1715
1716                 if (!no_flash)
1717                         wil_bl_prepare_halt(wil);
1718
1719                 wil_halt_cpu(wil);
1720                 memset(wil->fw_version, 0, sizeof(wil->fw_version));
1721                 /* Loading f/w from the file */
1722                 rc = wil_request_firmware(wil, wil->wil_fw_name, true);
1723                 if (rc)
1724                         goto out;
1725                 if (wil->num_of_brd_entries)
1726                         rc = wil_request_board(wil, board_file);
1727                 else
1728                         rc = wil_request_firmware(wil, board_file, true);
1729                 if (rc)
1730                         goto out;
1731
1732                 wil_pre_fw_config(wil);
1733                 wil_release_cpu(wil);
1734         }
1735
1736         /* init after reset */
1737         reinit_completion(&wil->wmi_ready);
1738         reinit_completion(&wil->wmi_call);
1739         reinit_completion(&wil->halp.comp);
1740
1741         clear_bit(wil_status_resetting, wil->status);
1742
1743         up_write(&wil->mem_lock);
1744
1745         if (load_fw) {
1746                 wil_unmask_irq(wil);
1747
1748                 /* we just started MAC, wait for FW ready */
1749                 rc = wil_wait_for_fw_ready(wil);
1750                 if (rc)
1751                         return rc;
1752
1753                 /* check FW is responsive */
1754                 rc = wmi_echo(wil);
1755                 if (rc) {
1756                         wil_err(wil, "wmi_echo failed, rc %d\n", rc);
1757                         return rc;
1758                 }
1759
1760                 wil->txrx_ops.configure_interrupt_moderation(wil);
1761
1762                 /* Enable OFU rdy valid bug fix, to prevent hang in oful34_rx
1763                  * while there is back-pressure from Host during RX
1764                  */
1765                 if (wil->hw_version >= HW_VER_TALYN_MB)
1766                         wil_s(wil, RGF_DMA_MISC_CTL,
1767                               BIT_OFUL34_RDY_VALID_BUG_FIX_EN);
1768
1769                 rc = wil_restore_vifs(wil);
1770                 if (rc) {
1771                         wil_err(wil, "failed to restore vifs, rc %d\n", rc);
1772                         return rc;
1773                 }
1774
1775                 wil_collect_fw_info(wil);
1776
1777                 if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT)
1778                         wil_ps_update(wil, wil->ps_profile);
1779
1780                 if (wil->platform_ops.notify) {
1781                         rc = wil->platform_ops.notify(wil->platform_handle,
1782                                                       WIL_PLATFORM_EVT_FW_RDY);
1783                         if (rc) {
1784                                 wil_err(wil, "FW_RDY notify failed, rc %d\n",
1785                                         rc);
1786                                 rc = 0;
1787                         }
1788                 }
1789         }
1790
1791         return rc;
1792
1793 out:
1794         up_write(&wil->mem_lock);
1795         clear_bit(wil_status_resetting, wil->status);
1796         return rc;
1797 }
1798
1799 void wil_fw_error_recovery(struct wil6210_priv *wil)
1800 {
1801         wil_dbg_misc(wil, "starting fw error recovery\n");
1802
1803         if (test_bit(wil_status_resetting, wil->status)) {
1804                 wil_info(wil, "Reset already in progress\n");
1805                 return;
1806         }
1807
1808         wil->recovery_state = fw_recovery_pending;
1809         schedule_work(&wil->fw_error_worker);
1810 }
1811
1812 int __wil_up(struct wil6210_priv *wil)
1813 {
1814         struct net_device *ndev = wil->main_ndev;
1815         struct wireless_dev *wdev = ndev->ieee80211_ptr;
1816         int rc;
1817
1818         WARN_ON(!mutex_is_locked(&wil->mutex));
1819
1820         rc = wil_reset(wil, true);
1821         if (rc)
1822                 return rc;
1823
1824         /* Rx RING. After MAC and beacon */
1825         if (rx_ring_order == 0)
1826                 rx_ring_order = wil->hw_version < HW_VER_TALYN_MB ?
1827                         WIL_RX_RING_SIZE_ORDER_DEFAULT :
1828                         WIL_RX_RING_SIZE_ORDER_TALYN_DEFAULT;
1829
1830         rc = wil->txrx_ops.rx_init(wil, rx_ring_order);
1831         if (rc)
1832                 return rc;
1833
1834         rc = wil->txrx_ops.tx_init(wil);
1835         if (rc)
1836                 return rc;
1837
1838         switch (wdev->iftype) {
1839         case NL80211_IFTYPE_STATION:
1840                 wil_dbg_misc(wil, "type: STATION\n");
1841                 ndev->type = ARPHRD_ETHER;
1842                 break;
1843         case NL80211_IFTYPE_AP:
1844                 wil_dbg_misc(wil, "type: AP\n");
1845                 ndev->type = ARPHRD_ETHER;
1846                 break;
1847         case NL80211_IFTYPE_P2P_CLIENT:
1848                 wil_dbg_misc(wil, "type: P2P_CLIENT\n");
1849                 ndev->type = ARPHRD_ETHER;
1850                 break;
1851         case NL80211_IFTYPE_P2P_GO:
1852                 wil_dbg_misc(wil, "type: P2P_GO\n");
1853                 ndev->type = ARPHRD_ETHER;
1854                 break;
1855         case NL80211_IFTYPE_MONITOR:
1856                 wil_dbg_misc(wil, "type: Monitor\n");
1857                 ndev->type = ARPHRD_IEEE80211_RADIOTAP;
1858                 /* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */
1859                 break;
1860         default:
1861                 return -EOPNOTSUPP;
1862         }
1863
1864         /* MAC address - pre-requisite for other commands */
1865         wmi_set_mac_address(wil, ndev->dev_addr);
1866
1867         wil_dbg_misc(wil, "NAPI enable\n");
1868         napi_enable(&wil->napi_rx);
1869         napi_enable(&wil->napi_tx);
1870         set_bit(wil_status_napi_en, wil->status);
1871
1872         wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
1873
1874         return 0;
1875 }
1876
1877 int wil_up(struct wil6210_priv *wil)
1878 {
1879         int rc;
1880
1881         wil_dbg_misc(wil, "up\n");
1882
1883         mutex_lock(&wil->mutex);
1884         rc = __wil_up(wil);
1885         mutex_unlock(&wil->mutex);
1886
1887         return rc;
1888 }
1889
1890 int __wil_down(struct wil6210_priv *wil)
1891 {
1892         int rc;
1893         WARN_ON(!mutex_is_locked(&wil->mutex));
1894
1895         set_bit(wil_status_resetting, wil->status);
1896
1897         wil6210_bus_request(wil, 0);
1898
1899         wil_disable_irq(wil);
1900         if (test_and_clear_bit(wil_status_napi_en, wil->status)) {
1901                 napi_disable(&wil->napi_rx);
1902                 napi_disable(&wil->napi_tx);
1903                 wil_dbg_misc(wil, "NAPI disable\n");
1904         }
1905         wil_enable_irq(wil);
1906
1907         mutex_lock(&wil->vif_mutex);
1908         wil_p2p_stop_radio_operations(wil);
1909         wil_abort_scan_all_vifs(wil, false);
1910         mutex_unlock(&wil->vif_mutex);
1911
1912         rc = wil_reset(wil, false);
1913
1914         return rc;
1915 }
1916
1917 int wil_down(struct wil6210_priv *wil)
1918 {
1919         int rc;
1920
1921         wil_dbg_misc(wil, "down\n");
1922
1923         wil_set_recovery_state(wil, fw_recovery_idle);
1924         mutex_lock(&wil->mutex);
1925         rc = __wil_down(wil);
1926         mutex_unlock(&wil->mutex);
1927
1928         return rc;
1929 }
1930
1931 int wil_find_cid(struct wil6210_priv *wil, u8 mid, const u8 *mac)
1932 {
1933         int i;
1934         int rc = -ENOENT;
1935
1936         for (i = 0; i < wil->max_assoc_sta; i++) {
1937                 if (wil->sta[i].mid == mid &&
1938                     wil->sta[i].status != wil_sta_unused &&
1939                     ether_addr_equal(wil->sta[i].addr, mac)) {
1940                         rc = i;
1941                         break;
1942                 }
1943         }
1944
1945         return rc;
1946 }
1947
1948 void wil_halp_vote(struct wil6210_priv *wil)
1949 {
1950         unsigned long rc;
1951         unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS);
1952
1953         if (wil->hw_version >= HW_VER_TALYN_MB)
1954                 return;
1955
1956         mutex_lock(&wil->halp.lock);
1957
1958         wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n",
1959                     wil->halp.ref_cnt);
1960
1961         if (++wil->halp.ref_cnt == 1) {
1962                 reinit_completion(&wil->halp.comp);
1963                 /* mark to IRQ context to handle HALP ICR */
1964                 wil->halp.handle_icr = true;
1965                 wil6210_set_halp(wil);
1966                 rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies);
1967                 if (!rc) {
1968                         wil_err(wil, "HALP vote timed out\n");
1969                         /* Mask HALP as done in case the interrupt is raised */
1970                         wil->halp.handle_icr = false;
1971                         wil6210_mask_halp(wil);
1972                 } else {
1973                         wil_dbg_irq(wil,
1974                                     "halp_vote: HALP vote completed after %d ms\n",
1975                                     jiffies_to_msecs(to_jiffies - rc));
1976                 }
1977         }
1978
1979         wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n",
1980                     wil->halp.ref_cnt);
1981
1982         mutex_unlock(&wil->halp.lock);
1983 }
1984
1985 void wil_halp_unvote(struct wil6210_priv *wil)
1986 {
1987         if (wil->hw_version >= HW_VER_TALYN_MB)
1988                 return;
1989
1990         WARN_ON(wil->halp.ref_cnt == 0);
1991
1992         mutex_lock(&wil->halp.lock);
1993
1994         wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n",
1995                     wil->halp.ref_cnt);
1996
1997         if (--wil->halp.ref_cnt == 0) {
1998                 wil6210_clear_halp(wil);
1999                 wil_dbg_irq(wil, "HALP unvote\n");
2000         }
2001
2002         wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n",
2003                     wil->halp.ref_cnt);
2004
2005         mutex_unlock(&wil->halp.lock);
2006 }
2007
2008 void wil_init_txrx_ops(struct wil6210_priv *wil)
2009 {
2010         if (wil->use_enhanced_dma_hw)
2011                 wil_init_txrx_ops_edma(wil);
2012         else
2013                 wil_init_txrx_ops_legacy_dma(wil);
2014 }
This page took 0.149173 seconds and 4 git commands to generate.