1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2008-2013 Solarflare Communications Inc.
7 #include <linux/delay.h>
8 #include <linux/moduleparam.h>
9 #include <linux/atomic.h>
10 #include "net_driver.h"
13 #include "mcdi_pcol.h"
15 /**************************************************************************
17 * Management-Controller-to-Driver Interface
19 **************************************************************************
22 #define MCDI_RPC_TIMEOUT (10 * HZ)
24 /* A reboot/assertion causes the MCDI status word to be set after the
25 * command word is set or a REBOOT event is sent. If we notice a reboot
26 * via these mechanisms then wait 250ms for the status word to be set.
28 #define MCDI_STATUS_DELAY_US 100
29 #define MCDI_STATUS_DELAY_COUNT 2500
30 #define MCDI_STATUS_SLEEP_MS \
31 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
34 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
36 struct efx_mcdi_async_param {
37 struct list_head list;
42 efx_mcdi_async_completer *complete;
44 /* followed by request/response buffer */
47 static void efx_mcdi_timeout_async(struct timer_list *t);
48 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
49 bool *was_attached_out);
50 static bool efx_mcdi_poll_once(struct efx_nic *efx);
51 static void efx_mcdi_abandon(struct efx_nic *efx);
53 #ifdef CONFIG_SFC_MCDI_LOGGING
54 static bool mcdi_logging_default;
55 module_param(mcdi_logging_default, bool, 0644);
56 MODULE_PARM_DESC(mcdi_logging_default,
57 "Enable MCDI logging on newly-probed functions");
60 int efx_mcdi_init(struct efx_nic *efx)
62 struct efx_mcdi_iface *mcdi;
63 bool already_attached;
66 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
72 #ifdef CONFIG_SFC_MCDI_LOGGING
73 /* consuming code assumes buffer is page-sized */
74 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
75 if (!mcdi->logging_buffer)
77 mcdi->logging_enabled = mcdi_logging_default;
79 init_waitqueue_head(&mcdi->wq);
80 init_waitqueue_head(&mcdi->proxy_rx_wq);
81 spin_lock_init(&mcdi->iface_lock);
82 mcdi->state = MCDI_STATE_QUIESCENT;
83 mcdi->mode = MCDI_MODE_POLL;
84 spin_lock_init(&mcdi->async_lock);
85 INIT_LIST_HEAD(&mcdi->async_list);
86 timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0);
88 (void) efx_mcdi_poll_reboot(efx);
89 mcdi->new_epoch = true;
91 /* Recover from a failed assertion before probing */
92 rc = efx_mcdi_handle_assertion(efx);
96 /* Let the MC (and BMC, if this is a LOM) know that the driver
97 * is loaded. We should do this before we reset the NIC.
99 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
101 pci_err(efx->pci_dev, "Unable to register driver with MCPU\n");
104 if (already_attached)
105 /* Not a fatal error */
106 pci_err(efx->pci_dev, "Host already registered with MCPU\n");
108 if (efx->mcdi->fn_flags &
109 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
114 #ifdef CONFIG_SFC_MCDI_LOGGING
115 free_page((unsigned long)mcdi->logging_buffer);
124 void efx_mcdi_detach(struct efx_nic *efx)
129 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
131 /* Relinquish the device (back to the BMC, if this is a LOM) */
132 efx_mcdi_drv_attach(efx, false, NULL);
135 void efx_mcdi_fini(struct efx_nic *efx)
140 #ifdef CONFIG_SFC_MCDI_LOGGING
141 free_page((unsigned long)efx->mcdi->iface.logging_buffer);
147 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
148 const efx_dword_t *inbuf, size_t inlen)
150 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
151 #ifdef CONFIG_SFC_MCDI_LOGGING
152 char *buf = mcdi->logging_buffer; /* page-sized */
158 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
160 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
161 spin_lock_bh(&mcdi->iface_lock);
163 seqno = mcdi->seqno & SEQ_MASK;
164 spin_unlock_bh(&mcdi->iface_lock);
167 if (mcdi->mode == MCDI_MODE_EVENTS)
168 xflags |= MCDI_HEADER_XFLAGS_EVREQ;
170 if (efx->type->mcdi_max_ver == 1) {
172 EFX_POPULATE_DWORD_7(hdr[0],
173 MCDI_HEADER_RESPONSE, 0,
174 MCDI_HEADER_RESYNC, 1,
175 MCDI_HEADER_CODE, cmd,
176 MCDI_HEADER_DATALEN, inlen,
177 MCDI_HEADER_SEQ, seqno,
178 MCDI_HEADER_XFLAGS, xflags,
179 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
183 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
184 EFX_POPULATE_DWORD_7(hdr[0],
185 MCDI_HEADER_RESPONSE, 0,
186 MCDI_HEADER_RESYNC, 1,
187 MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
188 MCDI_HEADER_DATALEN, 0,
189 MCDI_HEADER_SEQ, seqno,
190 MCDI_HEADER_XFLAGS, xflags,
191 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
192 EFX_POPULATE_DWORD_2(hdr[1],
193 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
194 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
198 #ifdef CONFIG_SFC_MCDI_LOGGING
199 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
202 /* Lengths should always be a whole number of dwords, so scream
205 WARN_ON_ONCE(hdr_len % 4);
206 WARN_ON_ONCE(inlen % 4);
208 /* We own the logging buffer, as only one MCDI can be in
209 * progress on a NIC at any one time. So no need for locking.
211 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
212 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
214 le32_to_cpu(hdr[i].u32[0]));
216 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
217 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
219 le32_to_cpu(inbuf[i].u32[0]));
221 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
225 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
227 mcdi->new_epoch = false;
230 static int efx_mcdi_errno(unsigned int mcdi_err)
235 #define TRANSLATE_ERROR(name) \
236 case MC_CMD_ERR_ ## name: \
238 TRANSLATE_ERROR(EPERM);
239 TRANSLATE_ERROR(ENOENT);
240 TRANSLATE_ERROR(EINTR);
241 TRANSLATE_ERROR(EAGAIN);
242 TRANSLATE_ERROR(EACCES);
243 TRANSLATE_ERROR(EBUSY);
244 TRANSLATE_ERROR(EINVAL);
245 TRANSLATE_ERROR(EDEADLK);
246 TRANSLATE_ERROR(ENOSYS);
247 TRANSLATE_ERROR(ETIME);
248 TRANSLATE_ERROR(EALREADY);
249 TRANSLATE_ERROR(ENOSPC);
250 #undef TRANSLATE_ERROR
251 case MC_CMD_ERR_ENOTSUP:
253 case MC_CMD_ERR_ALLOC_FAIL:
255 case MC_CMD_ERR_MAC_EXIST:
262 static void efx_mcdi_read_response_header(struct efx_nic *efx)
264 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
265 unsigned int respseq, respcmd, error;
266 #ifdef CONFIG_SFC_MCDI_LOGGING
267 char *buf = mcdi->logging_buffer; /* page-sized */
271 efx->type->mcdi_read_response(efx, &hdr, 0, 4);
272 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
273 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
274 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
276 if (respcmd != MC_CMD_V2_EXTN) {
277 mcdi->resp_hdr_len = 4;
278 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
280 efx->type->mcdi_read_response(efx, &hdr, 4, 4);
281 mcdi->resp_hdr_len = 8;
282 mcdi->resp_data_len =
283 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
286 #ifdef CONFIG_SFC_MCDI_LOGGING
287 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
288 size_t hdr_len, data_len;
292 WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
293 hdr_len = mcdi->resp_hdr_len / 4;
294 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
295 * to dword size, and the MCDI buffer is always dword size
297 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
299 /* We own the logging buffer, as only one MCDI can be in
300 * progress on a NIC at any one time. So no need for locking.
302 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
303 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
304 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
305 " %08x", le32_to_cpu(hdr.u32[0]));
308 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
309 efx->type->mcdi_read_response(efx, &hdr,
310 mcdi->resp_hdr_len + (i * 4), 4);
311 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
312 " %08x", le32_to_cpu(hdr.u32[0]));
315 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
319 mcdi->resprc_raw = 0;
320 if (error && mcdi->resp_data_len == 0) {
321 netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
323 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
324 netif_err(efx, hw, efx->net_dev,
325 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
326 respseq, mcdi->seqno);
329 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
330 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
331 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
337 static bool efx_mcdi_poll_once(struct efx_nic *efx)
339 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
342 if (!efx->type->mcdi_poll_response(efx))
345 spin_lock_bh(&mcdi->iface_lock);
346 efx_mcdi_read_response_header(efx);
347 spin_unlock_bh(&mcdi->iface_lock);
352 static int efx_mcdi_poll(struct efx_nic *efx)
354 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
355 unsigned long time, finish;
359 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
360 rc = efx_mcdi_poll_reboot(efx);
362 spin_lock_bh(&mcdi->iface_lock);
364 mcdi->resp_hdr_len = 0;
365 mcdi->resp_data_len = 0;
366 spin_unlock_bh(&mcdi->iface_lock);
370 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
371 * because generally mcdi responses are fast. After that, back off
372 * and poll once a jiffy (approximately)
374 spins = USER_TICK_USEC;
375 finish = jiffies + MCDI_RPC_TIMEOUT;
382 schedule_timeout_uninterruptible(1);
387 if (efx_mcdi_poll_once(efx))
390 if (time_after(time, finish))
394 /* Return rc=0 like wait_event_timeout() */
398 /* Test and clear MC-rebooted flag for this port/function; reset
399 * software state as necessary.
401 int efx_mcdi_poll_reboot(struct efx_nic *efx)
406 return efx->type->mcdi_poll_reboot(efx);
409 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
411 return cmpxchg(&mcdi->state,
412 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
413 MCDI_STATE_QUIESCENT;
416 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
418 /* Wait until the interface becomes QUIESCENT and we win the race
419 * to mark it RUNNING_SYNC.
422 cmpxchg(&mcdi->state,
423 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
424 MCDI_STATE_QUIESCENT);
427 static int efx_mcdi_await_completion(struct efx_nic *efx)
429 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
431 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
432 MCDI_RPC_TIMEOUT) == 0)
435 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
436 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
437 * completed the request first, then we'll just end up completing the
438 * request again, which is safe.
440 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
441 * wait_event_timeout() implicitly provides.
443 if (mcdi->mode == MCDI_MODE_POLL)
444 return efx_mcdi_poll(efx);
449 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
450 * requester. Return whether this was done. Does not take any locks.
452 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
454 if (cmpxchg(&mcdi->state,
455 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
456 MCDI_STATE_RUNNING_SYNC) {
464 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
466 if (mcdi->mode == MCDI_MODE_EVENTS) {
467 struct efx_mcdi_async_param *async;
468 struct efx_nic *efx = mcdi->efx;
470 /* Process the asynchronous request queue */
471 spin_lock_bh(&mcdi->async_lock);
472 async = list_first_entry_or_null(
473 &mcdi->async_list, struct efx_mcdi_async_param, list);
475 mcdi->state = MCDI_STATE_RUNNING_ASYNC;
476 efx_mcdi_send_request(efx, async->cmd,
477 (const efx_dword_t *)(async + 1),
479 mod_timer(&mcdi->async_timer,
480 jiffies + MCDI_RPC_TIMEOUT);
482 spin_unlock_bh(&mcdi->async_lock);
488 mcdi->state = MCDI_STATE_QUIESCENT;
492 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
493 * asynchronous completion function, and release the interface.
494 * Return whether this was done. Must be called in bh-disabled
495 * context. Will take iface_lock and async_lock.
497 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
499 struct efx_nic *efx = mcdi->efx;
500 struct efx_mcdi_async_param *async;
501 size_t hdr_len, data_len, err_len;
503 MCDI_DECLARE_BUF_ERR(errbuf);
506 if (cmpxchg(&mcdi->state,
507 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
508 MCDI_STATE_RUNNING_ASYNC)
511 spin_lock(&mcdi->iface_lock);
513 /* Ensure that if the completion event arrives later,
514 * the seqno check in efx_mcdi_ev_cpl() will fail
523 hdr_len = mcdi->resp_hdr_len;
524 data_len = mcdi->resp_data_len;
526 spin_unlock(&mcdi->iface_lock);
528 /* Stop the timer. In case the timer function is running, we
529 * must wait for it to return so that there is no possibility
530 * of it aborting the next request.
533 del_timer_sync(&mcdi->async_timer);
535 spin_lock(&mcdi->async_lock);
536 async = list_first_entry(&mcdi->async_list,
537 struct efx_mcdi_async_param, list);
538 list_del(&async->list);
539 spin_unlock(&mcdi->async_lock);
541 outbuf = (efx_dword_t *)(async + 1);
542 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
543 min(async->outlen, data_len));
544 if (!timeout && rc && !async->quiet) {
545 err_len = min(sizeof(errbuf), data_len);
546 efx->type->mcdi_read_response(efx, errbuf, hdr_len,
548 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
553 async->complete(efx, async->cookie, rc, outbuf,
554 min(async->outlen, data_len));
557 efx_mcdi_release(mcdi);
562 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
563 unsigned int datalen, unsigned int mcdi_err)
565 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
568 spin_lock(&mcdi->iface_lock);
570 if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
572 /* The request has been cancelled */
575 netif_err(efx, hw, efx->net_dev,
576 "MC response mismatch tx seq 0x%x rx "
577 "seq 0x%x\n", seqno, mcdi->seqno);
579 if (efx->type->mcdi_max_ver >= 2) {
580 /* MCDI v2 responses don't fit in an event */
581 efx_mcdi_read_response_header(efx);
583 mcdi->resprc = efx_mcdi_errno(mcdi_err);
584 mcdi->resp_hdr_len = 4;
585 mcdi->resp_data_len = datalen;
591 spin_unlock(&mcdi->iface_lock);
594 if (!efx_mcdi_complete_async(mcdi, false))
595 (void) efx_mcdi_complete_sync(mcdi);
597 /* If the interface isn't RUNNING_ASYNC or
598 * RUNNING_SYNC then we've received a duplicate
599 * completion after we've already transitioned back to
600 * QUIESCENT. [A subsequent invocation would increment
601 * seqno, so would have failed the seqno check].
606 static void efx_mcdi_timeout_async(struct timer_list *t)
608 struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer);
610 efx_mcdi_complete_async(mcdi, true);
614 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
616 if (efx->type->mcdi_max_ver < 0 ||
617 (efx->type->mcdi_max_ver < 2 &&
618 cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
621 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
622 (efx->type->mcdi_max_ver < 2 &&
623 inlen > MCDI_CTL_SDU_LEN_MAX_V1))
629 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
630 size_t hdr_len, size_t data_len,
633 MCDI_DECLARE_BUF_ERR(testbuf);
634 const size_t buflen = sizeof(testbuf);
636 if (!proxy_handle || data_len < buflen)
639 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
640 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
641 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
648 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
650 efx_dword_t *outbuf, size_t outlen,
651 size_t *outlen_actual, bool quiet,
652 u32 *proxy_handle, int *raw_rc)
654 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
655 MCDI_DECLARE_BUF_ERR(errbuf);
658 if (mcdi->mode == MCDI_MODE_POLL)
659 rc = efx_mcdi_poll(efx);
661 rc = efx_mcdi_await_completion(efx);
664 netif_err(efx, hw, efx->net_dev,
665 "MC command 0x%x inlen %d mode %d timed out\n",
666 cmd, (int)inlen, mcdi->mode);
668 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
669 netif_err(efx, hw, efx->net_dev,
670 "MCDI request was completed without an event\n");
674 efx_mcdi_abandon(efx);
676 /* Close the race with efx_mcdi_ev_cpl() executing just too late
677 * and completing a request we've just cancelled, by ensuring
678 * that the seqno check therein fails.
680 spin_lock_bh(&mcdi->iface_lock);
683 spin_unlock_bh(&mcdi->iface_lock);
693 size_t hdr_len, data_len, err_len;
695 /* At the very least we need a memory barrier here to ensure
696 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
697 * a spurious efx_mcdi_ev_cpl() running concurrently by
698 * acquiring the iface_lock. */
699 spin_lock_bh(&mcdi->iface_lock);
702 *raw_rc = mcdi->resprc_raw;
703 hdr_len = mcdi->resp_hdr_len;
704 data_len = mcdi->resp_data_len;
705 err_len = min(sizeof(errbuf), data_len);
706 spin_unlock_bh(&mcdi->iface_lock);
710 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
711 min(outlen, data_len));
713 *outlen_actual = data_len;
715 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
717 if (cmd == MC_CMD_REBOOT && rc == -EIO) {
718 /* Don't reset if MC_CMD_REBOOT returns EIO */
719 } else if (rc == -EIO || rc == -EINTR) {
720 netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
721 netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
723 if (efx->type->mcdi_reboot_detected)
724 efx->type->mcdi_reboot_detected(efx);
725 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
726 } else if (proxy_handle && (rc == -EPROTO) &&
727 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
729 mcdi->proxy_rx_status = 0;
730 mcdi->proxy_rx_handle = 0;
731 mcdi->state = MCDI_STATE_PROXY_WAIT;
732 } else if (rc && !quiet) {
733 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
737 if (rc == -EIO || rc == -EINTR) {
738 msleep(MCDI_STATUS_SLEEP_MS);
739 efx_mcdi_poll_reboot(efx);
740 mcdi->new_epoch = true;
744 if (!proxy_handle || !*proxy_handle)
745 efx_mcdi_release(mcdi);
749 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
751 if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
752 /* Interrupt the proxy wait. */
753 mcdi->proxy_rx_status = -EINTR;
754 wake_up(&mcdi->proxy_rx_wq);
758 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
759 u32 handle, int status)
761 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
763 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
765 mcdi->proxy_rx_status = efx_mcdi_errno(status);
766 /* Ensure the status is written before we update the handle, since the
767 * latter is used to check if we've finished.
770 mcdi->proxy_rx_handle = handle;
771 wake_up(&mcdi->proxy_rx_wq);
774 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
776 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
779 /* Wait for a proxy event, or timeout. */
780 rc = wait_event_timeout(mcdi->proxy_rx_wq,
781 mcdi->proxy_rx_handle != 0 ||
782 mcdi->proxy_rx_status == -EINTR,
786 netif_dbg(efx, hw, efx->net_dev,
787 "MCDI proxy timeout %d\n", handle);
789 } else if (mcdi->proxy_rx_handle != handle) {
790 netif_warn(efx, hw, efx->net_dev,
791 "MCDI proxy unexpected handle %d (expected %d)\n",
792 mcdi->proxy_rx_handle, handle);
796 return mcdi->proxy_rx_status;
799 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
800 const efx_dword_t *inbuf, size_t inlen,
801 efx_dword_t *outbuf, size_t outlen,
802 size_t *outlen_actual, bool quiet, int *raw_rc)
804 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
807 if (inbuf && inlen && (inbuf == outbuf)) {
808 /* The input buffer can't be aliased with the output. */
813 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
817 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
818 outlen_actual, quiet, &proxy_handle, raw_rc);
821 /* Handle proxy authorisation. This allows approval of MCDI
822 * operations to be delegated to the admin function, allowing
823 * fine control over (eg) multicast subscriptions.
825 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
827 netif_dbg(efx, hw, efx->net_dev,
828 "MCDI waiting for proxy auth %d\n",
830 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
833 netif_dbg(efx, hw, efx->net_dev,
834 "MCDI proxy retry %d\n", proxy_handle);
836 /* We now retry the original request. */
837 mcdi->state = MCDI_STATE_RUNNING_SYNC;
838 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
840 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
841 outbuf, outlen, outlen_actual,
842 quiet, NULL, raw_rc);
844 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
845 "MC command 0x%x failed after proxy auth rc=%d\n",
848 if (rc == -EINTR || rc == -EIO)
849 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
850 efx_mcdi_release(mcdi);
857 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
858 const efx_dword_t *inbuf, size_t inlen,
859 efx_dword_t *outbuf, size_t outlen,
860 size_t *outlen_actual, bool quiet)
865 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
866 outbuf, outlen, outlen_actual, true, &raw_rc);
868 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
870 /* If the EVB port isn't available within a VF this may
871 * mean the PF is still bringing the switch up. We should
872 * retry our request shortly.
874 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
875 unsigned int delay_us = 10000;
877 netif_dbg(efx, hw, efx->net_dev,
878 "%s: NO_EVB_PORT; will retry request\n",
882 usleep_range(delay_us, delay_us + 10000);
883 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
884 outbuf, outlen, outlen_actual,
886 if (delay_us < 100000)
888 } while ((rc == -EPROTO) &&
889 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
890 time_before(jiffies, abort_time));
893 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
894 efx_mcdi_display_error(efx, cmd, inlen,
901 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
902 * @efx: NIC through which to issue the command
903 * @cmd: Command type number
904 * @inbuf: Command parameters
905 * @inlen: Length of command parameters, in bytes. Must be a multiple
906 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
907 * @outbuf: Response buffer. May be %NULL if @outlen is 0.
908 * @outlen: Length of response buffer, in bytes. If the actual
909 * response is longer than @outlen & ~3, it will be truncated
911 * @outlen_actual: Pointer through which to return the actual response
912 * length. May be %NULL if this is not needed.
914 * This function may sleep and therefore must be called in an appropriate
917 * Return: A negative error code, or zero if successful. The error
918 * code may come from the MCDI response or may indicate a failure
919 * to communicate with the MC. In the former case, the response
920 * will still be copied to @outbuf and *@outlen_actual will be
921 * set accordingly. In the latter case, *@outlen_actual will be
924 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
925 const efx_dword_t *inbuf, size_t inlen,
926 efx_dword_t *outbuf, size_t outlen,
927 size_t *outlen_actual)
929 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
930 outlen_actual, false);
933 /* Normally, on receiving an error code in the MCDI response,
934 * efx_mcdi_rpc will log an error message containing (among other
935 * things) the raw error code, by means of efx_mcdi_display_error.
936 * This _quiet version suppresses that; if the caller wishes to log
937 * the error conditionally on the return code, it should call this
938 * function and is then responsible for calling efx_mcdi_display_error
941 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
942 const efx_dword_t *inbuf, size_t inlen,
943 efx_dword_t *outbuf, size_t outlen,
944 size_t *outlen_actual)
946 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
947 outlen_actual, true);
950 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
951 const efx_dword_t *inbuf, size_t inlen)
953 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
956 rc = efx_mcdi_check_supported(efx, cmd, inlen);
960 if (efx->mc_bist_for_other_fn)
963 if (mcdi->mode == MCDI_MODE_FAIL)
966 efx_mcdi_acquire_sync(mcdi);
967 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
971 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
972 const efx_dword_t *inbuf, size_t inlen,
974 efx_mcdi_async_completer *complete,
975 unsigned long cookie, bool quiet)
977 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
978 struct efx_mcdi_async_param *async;
981 rc = efx_mcdi_check_supported(efx, cmd, inlen);
985 if (efx->mc_bist_for_other_fn)
988 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
994 async->inlen = inlen;
995 async->outlen = outlen;
996 async->quiet = quiet;
997 async->complete = complete;
998 async->cookie = cookie;
999 memcpy(async + 1, inbuf, inlen);
1001 spin_lock_bh(&mcdi->async_lock);
1003 if (mcdi->mode == MCDI_MODE_EVENTS) {
1004 list_add_tail(&async->list, &mcdi->async_list);
1006 /* If this is at the front of the queue, try to start it
1009 if (mcdi->async_list.next == &async->list &&
1010 efx_mcdi_acquire_async(mcdi)) {
1011 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1012 mod_timer(&mcdi->async_timer,
1013 jiffies + MCDI_RPC_TIMEOUT);
1020 spin_unlock_bh(&mcdi->async_lock);
1026 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1027 * @efx: NIC through which to issue the command
1028 * @cmd: Command type number
1029 * @inbuf: Command parameters
1030 * @inlen: Length of command parameters, in bytes
1031 * @outlen: Length to allocate for response buffer, in bytes
1032 * @complete: Function to be called on completion or cancellation.
1033 * @cookie: Arbitrary value to be passed to @complete.
1035 * This function does not sleep and therefore may be called in atomic
1036 * context. It will fail if event queues are disabled or if MCDI
1037 * event completions have been disabled due to an error.
1039 * If it succeeds, the @complete function will be called exactly once
1040 * in atomic context, when one of the following occurs:
1041 * (a) the completion event is received (in NAPI context)
1042 * (b) event queues are disabled (in the process that disables them)
1043 * (c) the request times-out (in timer context)
1046 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1047 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1048 efx_mcdi_async_completer *complete, unsigned long cookie)
1050 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1054 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1055 const efx_dword_t *inbuf, size_t inlen,
1056 size_t outlen, efx_mcdi_async_completer *complete,
1057 unsigned long cookie)
1059 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1063 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1064 efx_dword_t *outbuf, size_t outlen,
1065 size_t *outlen_actual)
1067 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1068 outlen_actual, false, NULL, NULL);
1071 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
1072 efx_dword_t *outbuf, size_t outlen,
1073 size_t *outlen_actual)
1075 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1076 outlen_actual, true, NULL, NULL);
1079 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1080 size_t inlen, efx_dword_t *outbuf,
1081 size_t outlen, int rc)
1083 int code = 0, err_arg = 0;
1085 if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1086 code = MCDI_DWORD(outbuf, ERR_CODE);
1087 if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1088 err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1089 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
1090 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1091 cmd, inlen, rc, code, err_arg);
1094 /* Switch to polled MCDI completions. This can be called in various
1095 * error conditions with various locks held, so it must be lockless.
1096 * Caller is responsible for flushing asynchronous requests later.
1098 void efx_mcdi_mode_poll(struct efx_nic *efx)
1100 struct efx_mcdi_iface *mcdi;
1105 mcdi = efx_mcdi(efx);
1106 /* If already in polling mode, nothing to do.
1107 * If in fail-fast state, don't switch to polled completion.
1108 * FLR recovery will do that later.
1110 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1113 /* We can switch from event completion to polled completion, because
1114 * mcdi requests are always completed in shared memory. We do this by
1115 * switching the mode to POLL'd then completing the request.
1116 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1118 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1119 * which efx_mcdi_complete_sync() provides for us.
1121 mcdi->mode = MCDI_MODE_POLL;
1123 efx_mcdi_complete_sync(mcdi);
1126 /* Flush any running or queued asynchronous requests, after event processing
1129 void efx_mcdi_flush_async(struct efx_nic *efx)
1131 struct efx_mcdi_async_param *async, *next;
1132 struct efx_mcdi_iface *mcdi;
1137 mcdi = efx_mcdi(efx);
1139 /* We must be in poll or fail mode so no more requests can be queued */
1140 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1142 del_timer_sync(&mcdi->async_timer);
1144 /* If a request is still running, make sure we give the MC
1145 * time to complete it so that the response won't overwrite our
1148 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1150 mcdi->state = MCDI_STATE_QUIESCENT;
1153 /* Nothing else will access the async list now, so it is safe
1154 * to walk it without holding async_lock. If we hold it while
1155 * calling a completer then lockdep may warn that we have
1156 * acquired locks in the wrong order.
1158 list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1159 if (async->complete)
1160 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1161 list_del(&async->list);
1166 void efx_mcdi_mode_event(struct efx_nic *efx)
1168 struct efx_mcdi_iface *mcdi;
1173 mcdi = efx_mcdi(efx);
1174 /* If already in event completion mode, nothing to do.
1175 * If in fail-fast state, don't switch to event completion. FLR
1176 * recovery will do that later.
1178 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1181 /* We can't switch from polled to event completion in the middle of a
1182 * request, because the completion method is specified in the request.
1183 * So acquire the interface to serialise the requestors. We don't need
1184 * to acquire the iface_lock to change the mode here, but we do need a
1185 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1186 * efx_mcdi_acquire() provides.
1188 efx_mcdi_acquire_sync(mcdi);
1189 mcdi->mode = MCDI_MODE_EVENTS;
1190 efx_mcdi_release(mcdi);
1193 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1195 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1197 /* If there is an outstanding MCDI request, it has been terminated
1198 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1199 * in polled mode, then do nothing because the MC reboot handler will
1200 * set the header correctly. However, if the mcdi interface is waiting
1201 * for a CMDDONE event it won't receive it [and since all MCDI events
1202 * are sent to the same queue, we can't be racing with
1203 * efx_mcdi_ev_cpl()]
1205 * If there is an outstanding asynchronous request, we can't
1206 * complete it now (efx_mcdi_complete() would deadlock). The
1207 * reset process will take care of this.
1209 * There's a race here with efx_mcdi_send_request(), because
1210 * we might receive a REBOOT event *before* the request has
1211 * been copied out. In polled mode (during startup) this is
1212 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1213 * event mode, this condition is just an edge-case of
1214 * receiving a REBOOT event after posting the MCDI
1215 * request. Did the mc reboot before or after the copyout? The
1216 * best we can do always is just return failure.
1218 * If there is an outstanding proxy response expected it is not going
1219 * to arrive. We should thus abort it.
1221 spin_lock(&mcdi->iface_lock);
1222 efx_mcdi_proxy_abort(mcdi);
1224 if (efx_mcdi_complete_sync(mcdi)) {
1225 if (mcdi->mode == MCDI_MODE_EVENTS) {
1227 mcdi->resp_hdr_len = 0;
1228 mcdi->resp_data_len = 0;
1234 /* Consume the status word since efx_mcdi_rpc_finish() won't */
1235 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1236 rc = efx_mcdi_poll_reboot(efx);
1239 udelay(MCDI_STATUS_DELAY_US);
1242 /* On EF10, a CODE_MC_REBOOT event can be received without the
1243 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1244 * If zero was returned from the final call to
1245 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1246 * MC has definitely rebooted so prepare for the reset.
1248 if (!rc && efx->type->mcdi_reboot_detected)
1249 efx->type->mcdi_reboot_detected(efx);
1251 mcdi->new_epoch = true;
1253 /* Nobody was waiting for an MCDI request, so trigger a reset */
1254 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1257 spin_unlock(&mcdi->iface_lock);
1260 /* The MC is going down in to BIST mode. set the BIST flag to block
1261 * new MCDI, cancel any outstanding MCDI and schedule a BIST-type reset
1262 * (which doesn't actually execute a reset, it waits for the controlling
1263 * function to reset it).
1265 static void efx_mcdi_ev_bist(struct efx_nic *efx)
1267 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1269 spin_lock(&mcdi->iface_lock);
1270 efx->mc_bist_for_other_fn = true;
1271 efx_mcdi_proxy_abort(mcdi);
1273 if (efx_mcdi_complete_sync(mcdi)) {
1274 if (mcdi->mode == MCDI_MODE_EVENTS) {
1275 mcdi->resprc = -EIO;
1276 mcdi->resp_hdr_len = 0;
1277 mcdi->resp_data_len = 0;
1281 mcdi->new_epoch = true;
1282 efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1283 spin_unlock(&mcdi->iface_lock);
1286 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1289 static void efx_mcdi_abandon(struct efx_nic *efx)
1291 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1293 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1294 return; /* it had already been done */
1295 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1296 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1299 static void efx_handle_drain_event(struct efx_nic *efx)
1301 if (atomic_dec_and_test(&efx->active_queues))
1302 wake_up(&efx->flush_wq);
1304 WARN_ON(atomic_read(&efx->active_queues) < 0);
1307 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
1308 void efx_mcdi_process_event(struct efx_channel *channel,
1311 struct efx_nic *efx = channel->efx;
1312 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1313 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1316 case MCDI_EVENT_CODE_BADSSERT:
1317 netif_err(efx, hw, efx->net_dev,
1318 "MC watchdog or assertion failure at 0x%x\n", data);
1319 efx_mcdi_ev_death(efx, -EINTR);
1322 case MCDI_EVENT_CODE_PMNOTICE:
1323 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1326 case MCDI_EVENT_CODE_CMDDONE:
1327 efx_mcdi_ev_cpl(efx,
1328 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1329 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1330 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1333 case MCDI_EVENT_CODE_LINKCHANGE:
1334 efx_mcdi_process_link_change(efx, event);
1336 case MCDI_EVENT_CODE_SENSOREVT:
1337 efx_sensor_event(efx, event);
1339 case MCDI_EVENT_CODE_SCHEDERR:
1340 netif_dbg(efx, hw, efx->net_dev,
1341 "MC Scheduler alert (0x%x)\n", data);
1343 case MCDI_EVENT_CODE_REBOOT:
1344 case MCDI_EVENT_CODE_MC_REBOOT:
1345 netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1346 efx_mcdi_ev_death(efx, -EIO);
1348 case MCDI_EVENT_CODE_MC_BIST:
1349 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1350 efx_mcdi_ev_bist(efx);
1352 case MCDI_EVENT_CODE_MAC_STATS_DMA:
1353 /* MAC stats are gather lazily. We can ignore this. */
1355 case MCDI_EVENT_CODE_PTP_FAULT:
1356 case MCDI_EVENT_CODE_PTP_PPS:
1357 efx_ptp_event(efx, event);
1359 case MCDI_EVENT_CODE_PTP_TIME:
1360 efx_time_sync_event(channel, event);
1362 case MCDI_EVENT_CODE_TX_FLUSH:
1363 case MCDI_EVENT_CODE_RX_FLUSH:
1364 /* Two flush events will be sent: one to the same event
1365 * queue as completions, and one to event queue 0.
1366 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1367 * flag will be set, and we should ignore the event
1368 * because we want to wait for all completions.
1370 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1371 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1372 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1373 efx_handle_drain_event(efx);
1375 case MCDI_EVENT_CODE_TX_ERR:
1376 case MCDI_EVENT_CODE_RX_ERR:
1377 netif_err(efx, hw, efx->net_dev,
1378 "%s DMA error (event: "EFX_QWORD_FMT")\n",
1379 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1380 EFX_QWORD_VAL(*event));
1381 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1383 case MCDI_EVENT_CODE_PROXY_RESPONSE:
1384 efx_mcdi_ev_proxy_response(efx,
1385 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1386 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1389 netif_err(efx, hw, efx->net_dev,
1390 "Unknown MCDI event " EFX_QWORD_FMT "\n",
1391 EFX_QWORD_VAL(*event));
1395 /**************************************************************************
1397 * Specific request functions
1399 **************************************************************************
1402 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1404 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1406 const __le16 *ver_words;
1410 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1411 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1412 outbuf, sizeof(outbuf), &outlength);
1415 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1420 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1421 offset = scnprintf(buf, len, "%u.%u.%u.%u",
1422 le16_to_cpu(ver_words[0]),
1423 le16_to_cpu(ver_words[1]),
1424 le16_to_cpu(ver_words[2]),
1425 le16_to_cpu(ver_words[3]));
1427 if (efx->type->print_additional_fwver)
1428 offset += efx->type->print_additional_fwver(efx, buf + offset,
1431 /* It's theoretically possible for the string to exceed 31
1432 * characters, though in practice the first three version
1433 * components are short enough that this doesn't happen.
1435 if (WARN_ON(offset >= len))
1441 pci_err(efx->pci_dev, "%s: failed rc=%d\n", __func__, rc);
1445 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1448 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1449 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1453 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1454 driver_operating ? 1 : 0);
1455 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1456 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1458 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1459 outbuf, sizeof(outbuf), &outlen);
1460 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1461 * specified will fail with EPERM, and we have to tell the MC we don't
1462 * care what firmware we get.
1465 pci_dbg(efx->pci_dev,
1466 "%s with fw-variant setting failed EPERM, trying without it\n",
1468 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1469 MC_CMD_FW_DONT_CARE);
1470 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1471 sizeof(inbuf), outbuf, sizeof(outbuf),
1475 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1476 outbuf, outlen, rc);
1479 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1484 if (driver_operating) {
1485 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1486 efx->mcdi->fn_flags =
1488 DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1490 /* Synthesise flags for Siena */
1491 efx->mcdi->fn_flags =
1492 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1493 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1494 (efx_port_num(efx) == 0) <<
1495 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1499 /* We currently assume we have control of the external link
1500 * and are completely trusted by firmware. Abort probing
1501 * if that's not true for this function.
1504 if (was_attached != NULL)
1505 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1509 pci_err(efx->pci_dev, "%s: failed rc=%d\n", __func__, rc);
1513 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1514 u16 *fw_subtype_list, u32 *capabilities)
1516 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1518 int port_num = efx_port_num(efx);
1521 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1522 /* we need __aligned(2) for ether_addr_copy */
1523 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1524 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1526 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1527 outbuf, sizeof(outbuf), &outlen);
1531 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1537 ether_addr_copy(mac_address,
1539 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1540 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1541 if (fw_subtype_list) {
1543 i < MCDI_VAR_ARRAY_LEN(outlen,
1544 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1546 fw_subtype_list[i] = MCDI_ARRAY_WORD(
1547 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1548 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1549 fw_subtype_list[i] = 0;
1553 *capabilities = MCDI_DWORD(outbuf,
1554 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1556 *capabilities = MCDI_DWORD(outbuf,
1557 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1563 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1564 __func__, rc, (int)outlen);
1569 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1571 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1576 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1578 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1580 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1581 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1583 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1585 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1590 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1592 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1596 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1598 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1599 outbuf, sizeof(outbuf), &outlen);
1602 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1607 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1611 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1616 /* This function finds types using the new NVRAM_PARTITIONS mcdi. */
1617 static int efx_new_mcdi_nvram_types(struct efx_nic *efx, u32 *number,
1620 efx_dword_t *outbuf = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2,
1628 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
1630 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
1631 outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2, &outlen);
1635 *number = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
1637 memcpy(nvram_types, MCDI_PTR(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID),
1638 *number * sizeof(u32));
1645 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1646 size_t *size_out, size_t *erase_size_out,
1647 bool *protected_out)
1649 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1650 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1654 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1656 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1657 outbuf, sizeof(outbuf), &outlen);
1660 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1665 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1666 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1667 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1668 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1672 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1676 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1678 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1679 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1682 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1684 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1685 outbuf, sizeof(outbuf), NULL);
1689 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1690 case MC_CMD_NVRAM_TEST_PASS:
1691 case MC_CMD_NVRAM_TEST_NOTSUPP:
1698 /* This function tests nvram partitions using the new mcdi partition lookup scheme */
1699 int efx_new_mcdi_nvram_test_all(struct efx_nic *efx)
1701 u32 *nvram_types = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2,
1703 unsigned int number;
1709 rc = efx_new_mcdi_nvram_types(efx, &number, nvram_types);
1713 /* Require at least one check */
1716 for (i = 0; i < number; i++) {
1717 if (nvram_types[i] == NVRAM_PARTITION_TYPE_PARTITION_MAP ||
1718 nvram_types[i] == NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG)
1721 rc = efx_mcdi_nvram_test(efx, nvram_types[i]);
1731 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1737 rc = efx_mcdi_nvram_types(efx, &nvram_types);
1742 while (nvram_types != 0) {
1743 if (nvram_types & 1) {
1744 rc = efx_mcdi_nvram_test(efx, type);
1755 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1758 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1762 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1763 * negative on error.
1765 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1767 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1768 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1769 unsigned int flags, index;
1775 /* Attempt to read any stored assertion state before we reboot
1776 * the mcfw out of the assertion handler. Retry twice, once
1777 * because a boot-time assertion might cause this command to fail
1778 * with EINTR. And once again because GET_ASSERTS can race with
1779 * MC_CMD_REBOOT running on the other port. */
1782 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1783 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1784 inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1785 outbuf, sizeof(outbuf), &outlen);
1788 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1791 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1792 MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1796 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1799 /* Print out any recorded assertion state */
1800 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1801 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1804 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1805 ? "system-level assertion"
1806 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1807 ? "thread-level assertion"
1808 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1810 : "unknown assertion";
1811 netif_err(efx, hw, efx->net_dev,
1812 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1813 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1814 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1816 /* Print out the registers */
1818 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1820 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1822 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1828 static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1830 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1833 /* If the MC is running debug firmware, it might now be
1834 * waiting for a debugger to attach, but we just want it to
1835 * reboot. We set a flag that makes the command a no-op if it
1836 * has already done so.
1837 * The MCDI will thus return either 0 or -EIO.
1839 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1840 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1841 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1842 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1847 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1852 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1856 rc = efx_mcdi_read_assertion(efx);
1860 return efx_mcdi_exit_assertion(efx);
1863 int efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1865 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1867 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1868 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1869 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1871 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1873 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1875 return efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), NULL, 0, NULL);
1878 static int efx_mcdi_reset_func(struct efx_nic *efx)
1880 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1883 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1884 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1885 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1886 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1891 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1893 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1896 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1897 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1898 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1900 /* White is black, and up is down */
1908 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1910 return RESET_TYPE_RECOVER_OR_ALL;
1913 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1917 /* If MCDI is down, we can't handle_assertion */
1918 if (method == RESET_TYPE_MCDI_TIMEOUT) {
1919 rc = pci_reset_function(efx->pci_dev);
1922 /* Re-enable polled MCDI completion */
1924 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1925 mcdi->mode = MCDI_MODE_POLL;
1930 /* Recover from a failed assertion pre-reset */
1931 rc = efx_mcdi_handle_assertion(efx);
1935 if (method == RESET_TYPE_DATAPATH)
1937 else if (method == RESET_TYPE_WORLD)
1938 return efx_mcdi_reset_mc(efx);
1940 return efx_mcdi_reset_func(efx);
1943 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1944 const u8 *mac, int *id_out)
1946 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1947 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1951 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1952 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1953 MC_CMD_FILTER_MODE_SIMPLE);
1954 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1956 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1957 outbuf, sizeof(outbuf), &outlen);
1961 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1966 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1972 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1979 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
1981 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1985 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1987 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1991 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1992 outbuf, sizeof(outbuf), &outlen);
1996 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
2001 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
2007 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2012 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
2014 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
2017 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
2019 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
2024 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
2026 struct efx_channel *channel;
2027 struct efx_rx_queue *rx_queue;
2028 MCDI_DECLARE_BUF(inbuf,
2029 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
2032 BUILD_BUG_ON(EFX_MAX_CHANNELS >
2033 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
2036 efx_for_each_channel(channel, efx) {
2037 efx_for_each_channel_rx_queue(rx_queue, channel) {
2038 if (rx_queue->flush_pending) {
2039 rx_queue->flush_pending = false;
2040 atomic_dec(&efx->rxq_flush_pending);
2041 MCDI_SET_ARRAY_DWORD(
2042 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
2043 count, efx_rx_queue_index(rx_queue));
2049 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
2050 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
2056 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
2060 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
2064 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
2065 unsigned int *flags)
2067 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
2068 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
2072 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
2073 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
2074 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
2075 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2076 outbuf, sizeof(outbuf), &outlen);
2083 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2084 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2091 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2092 unsigned int *enabled_out)
2094 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2098 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2099 outbuf, sizeof(outbuf), &outlen);
2103 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2109 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2112 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2117 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2118 * terrifying. The call site will have to deal with it though.
2120 netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err,
2121 "%s: failed rc=%d\n", __func__, rc);
2125 /* Failure to read a privilege mask is never fatal, because we can always
2126 * carry on as though we didn't have the privilege we were interested in.
2127 * So use efx_mcdi_rpc_quiet().
2129 int efx_mcdi_get_privilege_mask(struct efx_nic *efx, u32 *mask)
2131 MCDI_DECLARE_BUF(fi_outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
2132 MCDI_DECLARE_BUF(pm_inbuf, MC_CMD_PRIVILEGE_MASK_IN_LEN);
2133 MCDI_DECLARE_BUF(pm_outbuf, MC_CMD_PRIVILEGE_MASK_OUT_LEN);
2141 /* Get our function number */
2142 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0,
2143 fi_outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN,
2147 if (outlen < MC_CMD_GET_FUNCTION_INFO_OUT_LEN)
2150 pf = MCDI_DWORD(fi_outbuf, GET_FUNCTION_INFO_OUT_PF);
2151 vf = MCDI_DWORD(fi_outbuf, GET_FUNCTION_INFO_OUT_VF);
2153 MCDI_POPULATE_DWORD_2(pm_inbuf, PRIVILEGE_MASK_IN_FUNCTION,
2154 PRIVILEGE_MASK_IN_FUNCTION_PF, pf,
2155 PRIVILEGE_MASK_IN_FUNCTION_VF, vf);
2157 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PRIVILEGE_MASK,
2158 pm_inbuf, sizeof(pm_inbuf),
2159 pm_outbuf, sizeof(pm_outbuf), &outlen);
2163 if (outlen < MC_CMD_PRIVILEGE_MASK_OUT_LEN)
2166 *mask = MCDI_DWORD(pm_outbuf, PRIVILEGE_MASK_OUT_OLD_MASK);
2171 int efx_mcdi_nvram_metadata(struct efx_nic *efx, unsigned int type,
2172 u32 *subtype, u16 version[4], char *desc,
2175 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
2176 efx_dword_t *outbuf;
2181 outbuf = kzalloc(MC_CMD_NVRAM_METADATA_OUT_LENMAX_MCDI2, GFP_KERNEL);
2185 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
2187 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_NVRAM_METADATA, inbuf,
2188 sizeof(inbuf), outbuf,
2189 MC_CMD_NVRAM_METADATA_OUT_LENMAX_MCDI2,
2193 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN) {
2198 flags = MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS);
2200 if (desc && descsize > 0) {
2201 if (flags & BIT(MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_VALID_LBN)) {
2203 MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_NUM(outlen)) {
2209 MCDI_PTR(outbuf, NVRAM_METADATA_OUT_DESCRIPTION),
2210 MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_NUM(outlen));
2217 if (flags & BIT(MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
2218 *subtype = MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_SUBTYPE);
2224 if (flags & BIT(MC_CMD_NVRAM_METADATA_OUT_VERSION_VALID_LBN)) {
2225 version[0] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_W);
2226 version[1] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_X);
2227 version[2] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_Y);
2228 version[3] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_Z);
2242 #ifdef CONFIG_SFC_MTD
2244 #define EFX_MCDI_NVRAM_LEN_MAX 128
2246 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2248 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN);
2251 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2252 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS,
2253 NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2256 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2258 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2264 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2265 loff_t offset, u8 *buffer, size_t length)
2267 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN);
2268 MCDI_DECLARE_BUF(outbuf,
2269 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2273 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2274 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2275 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2276 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE,
2277 MC_CMD_NVRAM_READ_IN_V2_DEFAULT);
2279 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2280 outbuf, sizeof(outbuf), &outlen);
2284 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2288 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2289 loff_t offset, const u8 *buffer, size_t length)
2291 MCDI_DECLARE_BUF(inbuf,
2292 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2295 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2296 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2297 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2298 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2300 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2302 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2303 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2308 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2309 loff_t offset, size_t length)
2311 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2314 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2315 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2316 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2318 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2320 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2325 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2327 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN);
2328 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN);
2332 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2333 /* Always set this flag. Old firmware ignores it */
2334 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS,
2335 NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2338 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2339 outbuf, sizeof(outbuf), &outlen);
2340 if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) {
2341 rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE);
2342 if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS)
2343 netif_err(efx, drv, efx->net_dev,
2344 "NVRAM update failed verification with code 0x%x\n",
2347 case MC_CMD_NVRAM_VERIFY_RC_SUCCESS:
2349 case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED:
2350 case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED:
2351 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED:
2352 case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED:
2353 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED:
2356 case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT:
2357 case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST:
2360 case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES:
2361 case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS:
2362 case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH:
2366 netif_err(efx, drv, efx->net_dev,
2367 "Unknown response to NVRAM_UPDATE_FINISH\n");
2375 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2376 size_t len, size_t *retlen, u8 *buffer)
2378 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2379 struct efx_nic *efx = mtd->priv;
2380 loff_t offset = start;
2381 loff_t end = min_t(loff_t, start + len, mtd->size);
2385 while (offset < end) {
2386 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2387 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2395 *retlen = offset - start;
2399 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2401 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2402 struct efx_nic *efx = mtd->priv;
2403 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2404 loff_t end = min_t(loff_t, start + len, mtd->size);
2405 size_t chunk = part->common.mtd.erasesize;
2408 if (!part->updating) {
2409 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2412 part->updating = true;
2415 /* The MCDI interface can in fact do multiple erase blocks at once;
2416 * but erasing may be slow, so we make multiple calls here to avoid
2417 * tripping the MCDI RPC timeout. */
2418 while (offset < end) {
2419 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2429 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2430 size_t len, size_t *retlen, const u8 *buffer)
2432 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2433 struct efx_nic *efx = mtd->priv;
2434 loff_t offset = start;
2435 loff_t end = min_t(loff_t, start + len, mtd->size);
2439 if (!part->updating) {
2440 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2443 part->updating = true;
2446 while (offset < end) {
2447 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2448 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2456 *retlen = offset - start;
2460 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2462 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2463 struct efx_nic *efx = mtd->priv;
2466 if (part->updating) {
2467 part->updating = false;
2468 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2474 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2476 struct efx_mcdi_mtd_partition *mcdi_part =
2477 container_of(part, struct efx_mcdi_mtd_partition, common);
2478 struct efx_nic *efx = part->mtd.priv;
2480 snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2481 efx->name, part->type_name, mcdi_part->fw_subtype);
2484 #endif /* CONFIG_SFC_MTD */