2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2020, Intel Corporation. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem_odp.h>
48 MAX_PENDING_REG_MR = 8,
51 #define MLX5_UMR_ALIGN 2048
54 create_mkey_callback(int status, struct mlx5_async_work *context);
55 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
56 u64 iova, int access_flags,
57 unsigned int page_size, bool populate);
59 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
62 struct mlx5_ib_dev *dev = to_mdev(pd->device);
64 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
65 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
66 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
67 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
68 MLX5_SET(mkc, mkc, lr, 1);
70 if (acc & IB_ACCESS_RELAXED_ORDERING) {
71 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
72 MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
74 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
75 (MLX5_CAP_GEN(dev->mdev,
76 relaxed_ordering_read_pci_enabled) &&
77 pcie_relaxed_ordering_enabled(dev->mdev->pdev)))
78 MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
81 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
82 MLX5_SET(mkc, mkc, qpn, 0xffffff);
83 MLX5_SET64(mkc, mkc, start_addr, start_addr);
86 static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in)
88 u8 key = atomic_inc_return(&dev->mkey_var);
91 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
92 MLX5_SET(mkc, mkc, mkey_7_0, key);
96 static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
97 struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
101 assign_mkey_variant(dev, &mkey->key, in);
102 ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
104 init_waitqueue_head(&mkey->wait);
109 static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create)
111 struct mlx5_ib_dev *dev = async_create->ent->dev;
112 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
113 size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out);
115 MLX5_SET(create_mkey_in, async_create->in, opcode,
116 MLX5_CMD_OP_CREATE_MKEY);
117 assign_mkey_variant(dev, &async_create->mkey, async_create->in);
118 return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen,
119 async_create->out, outlen, create_mkey_callback,
120 &async_create->cb_work);
123 static int mkey_cache_max_order(struct mlx5_ib_dev *dev);
124 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
126 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
128 WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
130 return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
133 static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
135 if (status == -ENXIO) /* core driver is not available */
138 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
139 if (status != -EREMOTEIO) /* driver specific failure */
142 /* Failed in FW, print cmd out failure details */
143 mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
146 static int push_mkey_locked(struct mlx5_cache_ent *ent, u32 mkey)
148 unsigned long tmp = ent->mkeys_queue.ci % NUM_MKEYS_PER_PAGE;
149 struct mlx5_mkeys_page *page;
151 lockdep_assert_held(&ent->mkeys_queue.lock);
152 if (ent->mkeys_queue.ci >=
153 ent->mkeys_queue.num_pages * NUM_MKEYS_PER_PAGE) {
154 page = kzalloc(sizeof(*page), GFP_ATOMIC);
157 ent->mkeys_queue.num_pages++;
158 list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
160 page = list_last_entry(&ent->mkeys_queue.pages_list,
161 struct mlx5_mkeys_page, list);
164 page->mkeys[tmp] = mkey;
165 ent->mkeys_queue.ci++;
169 static int pop_mkey_locked(struct mlx5_cache_ent *ent)
171 unsigned long tmp = (ent->mkeys_queue.ci - 1) % NUM_MKEYS_PER_PAGE;
172 struct mlx5_mkeys_page *last_page;
175 lockdep_assert_held(&ent->mkeys_queue.lock);
176 last_page = list_last_entry(&ent->mkeys_queue.pages_list,
177 struct mlx5_mkeys_page, list);
178 mkey = last_page->mkeys[tmp];
179 last_page->mkeys[tmp] = 0;
180 ent->mkeys_queue.ci--;
181 if (ent->mkeys_queue.num_pages > 1 && !tmp) {
182 list_del(&last_page->list);
183 ent->mkeys_queue.num_pages--;
189 static void create_mkey_callback(int status, struct mlx5_async_work *context)
191 struct mlx5r_async_create_mkey *mkey_out =
192 container_of(context, struct mlx5r_async_create_mkey, cb_work);
193 struct mlx5_cache_ent *ent = mkey_out->ent;
194 struct mlx5_ib_dev *dev = ent->dev;
198 create_mkey_warn(dev, status, mkey_out->out);
200 spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
202 WRITE_ONCE(dev->fill_delay, 1);
203 spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
204 mod_timer(&dev->delay_timer, jiffies + HZ);
208 mkey_out->mkey |= mlx5_idx_to_mkey(
209 MLX5_GET(create_mkey_out, mkey_out->out, mkey_index));
210 WRITE_ONCE(dev->cache.last_add, jiffies);
212 spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
213 push_mkey_locked(ent, mkey_out->mkey);
214 /* If we are doing fill_to_high_water then keep going. */
215 queue_adjust_cache_locked(ent);
217 spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
221 static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
225 switch (access_mode) {
226 case MLX5_MKC_ACCESS_MODE_MTT:
227 ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
228 sizeof(struct mlx5_mtt));
230 case MLX5_MKC_ACCESS_MODE_KSM:
231 ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
232 sizeof(struct mlx5_klm));
240 static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc)
242 set_mkc_access_pd_addr_fields(mkc, ent->rb_key.access_flags, 0,
244 MLX5_SET(mkc, mkc, free, 1);
245 MLX5_SET(mkc, mkc, umr_en, 1);
246 MLX5_SET(mkc, mkc, access_mode_1_0, ent->rb_key.access_mode & 0x3);
247 MLX5_SET(mkc, mkc, access_mode_4_2,
248 (ent->rb_key.access_mode >> 2) & 0x7);
250 MLX5_SET(mkc, mkc, translations_octword_size,
251 get_mkc_octo_size(ent->rb_key.access_mode,
252 ent->rb_key.ndescs));
253 MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT);
256 /* Asynchronously schedule new MRs to be populated in the cache. */
257 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
259 struct mlx5r_async_create_mkey *async_create;
264 for (i = 0; i < num; i++) {
265 async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey),
269 mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in,
270 memory_key_mkey_entry);
271 set_cache_mkc(ent, mkc);
272 async_create->ent = ent;
274 spin_lock_irq(&ent->mkeys_queue.lock);
275 if (ent->pending >= MAX_PENDING_REG_MR) {
277 goto free_async_create;
280 spin_unlock_irq(&ent->mkeys_queue.lock);
282 err = mlx5_ib_create_mkey_cb(async_create);
284 mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
285 goto err_create_mkey;
292 spin_lock_irq(&ent->mkeys_queue.lock);
295 spin_unlock_irq(&ent->mkeys_queue.lock);
300 /* Synchronously create a MR in the cache */
301 static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey)
303 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
308 in = kzalloc(inlen, GFP_KERNEL);
311 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
312 set_cache_mkc(ent, mkc);
314 err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen);
318 WRITE_ONCE(ent->dev->cache.last_add, jiffies);
324 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
328 lockdep_assert_held(&ent->mkeys_queue.lock);
329 if (!ent->mkeys_queue.ci)
331 mkey = pop_mkey_locked(ent);
332 spin_unlock_irq(&ent->mkeys_queue.lock);
333 mlx5_core_destroy_mkey(ent->dev->mdev, mkey);
334 spin_lock_irq(&ent->mkeys_queue.lock);
337 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
339 __acquires(&ent->mkeys_queue.lock) __releases(&ent->mkeys_queue.lock)
343 lockdep_assert_held(&ent->mkeys_queue.lock);
347 target = ent->limit * 2;
348 if (target == ent->pending + ent->mkeys_queue.ci)
350 if (target > ent->pending + ent->mkeys_queue.ci) {
351 u32 todo = target - (ent->pending + ent->mkeys_queue.ci);
353 spin_unlock_irq(&ent->mkeys_queue.lock);
354 err = add_keys(ent, todo);
356 usleep_range(3000, 5000);
357 spin_lock_irq(&ent->mkeys_queue.lock);
364 remove_cache_mr_locked(ent);
369 static ssize_t size_write(struct file *filp, const char __user *buf,
370 size_t count, loff_t *pos)
372 struct mlx5_cache_ent *ent = filp->private_data;
376 err = kstrtou32_from_user(buf, count, 0, &target);
381 * Target is the new value of total_mrs the user requests, however we
382 * cannot free MRs that are in use. Compute the target value for stored
385 spin_lock_irq(&ent->mkeys_queue.lock);
386 if (target < ent->in_use) {
390 target = target - ent->in_use;
391 if (target < ent->limit || target > ent->limit*2) {
395 err = resize_available_mrs(ent, target, false);
398 spin_unlock_irq(&ent->mkeys_queue.lock);
403 spin_unlock_irq(&ent->mkeys_queue.lock);
407 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
410 struct mlx5_cache_ent *ent = filp->private_data;
414 err = snprintf(lbuf, sizeof(lbuf), "%ld\n",
415 ent->mkeys_queue.ci + ent->in_use);
419 return simple_read_from_buffer(buf, count, pos, lbuf, err);
422 static const struct file_operations size_fops = {
423 .owner = THIS_MODULE,
429 static ssize_t limit_write(struct file *filp, const char __user *buf,
430 size_t count, loff_t *pos)
432 struct mlx5_cache_ent *ent = filp->private_data;
436 err = kstrtou32_from_user(buf, count, 0, &var);
441 * Upon set we immediately fill the cache to high water mark implied by
444 spin_lock_irq(&ent->mkeys_queue.lock);
446 err = resize_available_mrs(ent, 0, true);
447 spin_unlock_irq(&ent->mkeys_queue.lock);
453 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
456 struct mlx5_cache_ent *ent = filp->private_data;
460 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
464 return simple_read_from_buffer(buf, count, pos, lbuf, err);
467 static const struct file_operations limit_fops = {
468 .owner = THIS_MODULE,
470 .write = limit_write,
474 static bool someone_adding(struct mlx5_mkey_cache *cache)
476 struct mlx5_cache_ent *ent;
477 struct rb_node *node;
480 mutex_lock(&cache->rb_lock);
481 for (node = rb_first(&cache->rb_root); node; node = rb_next(node)) {
482 ent = rb_entry(node, struct mlx5_cache_ent, node);
483 spin_lock_irq(&ent->mkeys_queue.lock);
484 ret = ent->mkeys_queue.ci < ent->limit;
485 spin_unlock_irq(&ent->mkeys_queue.lock);
487 mutex_unlock(&cache->rb_lock);
491 mutex_unlock(&cache->rb_lock);
496 * Check if the bucket is outside the high/low water mark and schedule an async
497 * update. The cache refill has hysteresis, once the low water mark is hit it is
498 * refilled up to the high mark.
500 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
502 lockdep_assert_held(&ent->mkeys_queue.lock);
504 if (ent->disabled || READ_ONCE(ent->dev->fill_delay) || ent->is_tmp)
506 if (ent->mkeys_queue.ci < ent->limit) {
507 ent->fill_to_high_water = true;
508 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
509 } else if (ent->fill_to_high_water &&
510 ent->mkeys_queue.ci + ent->pending < 2 * ent->limit) {
512 * Once we start populating due to hitting a low water mark
513 * continue until we pass the high water mark.
515 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
516 } else if (ent->mkeys_queue.ci == 2 * ent->limit) {
517 ent->fill_to_high_water = false;
518 } else if (ent->mkeys_queue.ci > 2 * ent->limit) {
519 /* Queue deletion of excess entries */
520 ent->fill_to_high_water = false;
522 queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
523 msecs_to_jiffies(1000));
525 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
529 static void __cache_work_func(struct mlx5_cache_ent *ent)
531 struct mlx5_ib_dev *dev = ent->dev;
532 struct mlx5_mkey_cache *cache = &dev->cache;
535 spin_lock_irq(&ent->mkeys_queue.lock);
539 if (ent->fill_to_high_water &&
540 ent->mkeys_queue.ci + ent->pending < 2 * ent->limit &&
541 !READ_ONCE(dev->fill_delay)) {
542 spin_unlock_irq(&ent->mkeys_queue.lock);
543 err = add_keys(ent, 1);
544 spin_lock_irq(&ent->mkeys_queue.lock);
549 * EAGAIN only happens if there are pending MRs, so we
550 * will be rescheduled when storing them. The only
551 * failure path here is ENOMEM.
553 if (err != -EAGAIN) {
556 "add keys command failed, err %d\n",
558 queue_delayed_work(cache->wq, &ent->dwork,
559 msecs_to_jiffies(1000));
562 } else if (ent->mkeys_queue.ci > 2 * ent->limit) {
566 * The remove_cache_mr() logic is performed as garbage
567 * collection task. Such task is intended to be run when no
568 * other active processes are running.
570 * The need_resched() will return TRUE if there are user tasks
571 * to be activated in near future.
573 * In such case, we don't execute remove_cache_mr() and postpone
574 * the garbage collection work to try to run in next cycle, in
575 * order to free CPU resources to other tasks.
577 spin_unlock_irq(&ent->mkeys_queue.lock);
578 need_delay = need_resched() || someone_adding(cache) ||
580 READ_ONCE(cache->last_add) + 300 * HZ);
581 spin_lock_irq(&ent->mkeys_queue.lock);
585 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
588 remove_cache_mr_locked(ent);
589 queue_adjust_cache_locked(ent);
592 spin_unlock_irq(&ent->mkeys_queue.lock);
595 static void delayed_cache_work_func(struct work_struct *work)
597 struct mlx5_cache_ent *ent;
599 ent = container_of(work, struct mlx5_cache_ent, dwork.work);
600 __cache_work_func(ent);
603 static int cache_ent_key_cmp(struct mlx5r_cache_rb_key key1,
604 struct mlx5r_cache_rb_key key2)
608 res = key1.ats - key2.ats;
612 res = key1.access_mode - key2.access_mode;
616 res = key1.access_flags - key2.access_flags;
621 * keep ndescs the last in the compare table since the find function
622 * searches for an exact match on all properties and only closest
625 return key1.ndescs - key2.ndescs;
628 static int mlx5_cache_ent_insert(struct mlx5_mkey_cache *cache,
629 struct mlx5_cache_ent *ent)
631 struct rb_node **new = &cache->rb_root.rb_node, *parent = NULL;
632 struct mlx5_cache_ent *cur;
635 /* Figure out where to put new node */
637 cur = rb_entry(*new, struct mlx5_cache_ent, node);
639 cmp = cache_ent_key_cmp(cur->rb_key, ent->rb_key);
641 new = &((*new)->rb_left);
643 new = &((*new)->rb_right);
645 mutex_unlock(&cache->rb_lock);
650 /* Add new node and rebalance tree. */
651 rb_link_node(&ent->node, parent, new);
652 rb_insert_color(&ent->node, &cache->rb_root);
657 static struct mlx5_cache_ent *
658 mkey_cache_ent_from_rb_key(struct mlx5_ib_dev *dev,
659 struct mlx5r_cache_rb_key rb_key)
661 struct rb_node *node = dev->cache.rb_root.rb_node;
662 struct mlx5_cache_ent *cur, *smallest = NULL;
666 * Find the smallest ent with order >= requested_order.
669 cur = rb_entry(node, struct mlx5_cache_ent, node);
670 cmp = cache_ent_key_cmp(cur->rb_key, rb_key);
673 node = node->rb_left;
676 node = node->rb_right;
682 smallest->rb_key.access_mode == rb_key.access_mode &&
683 smallest->rb_key.access_flags == rb_key.access_flags &&
684 smallest->rb_key.ats == rb_key.ats) ?
689 static struct mlx5_ib_mr *_mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
690 struct mlx5_cache_ent *ent,
693 struct mlx5_ib_mr *mr;
696 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
698 return ERR_PTR(-ENOMEM);
700 spin_lock_irq(&ent->mkeys_queue.lock);
703 if (!ent->mkeys_queue.ci) {
704 queue_adjust_cache_locked(ent);
706 spin_unlock_irq(&ent->mkeys_queue.lock);
707 err = create_cache_mkey(ent, &mr->mmkey.key);
709 spin_lock_irq(&ent->mkeys_queue.lock);
711 spin_unlock_irq(&ent->mkeys_queue.lock);
716 mr->mmkey.key = pop_mkey_locked(ent);
717 queue_adjust_cache_locked(ent);
718 spin_unlock_irq(&ent->mkeys_queue.lock);
720 mr->mmkey.cache_ent = ent;
721 mr->mmkey.type = MLX5_MKEY_MR;
722 init_waitqueue_head(&mr->mmkey.wait);
726 static int get_unchangeable_access_flags(struct mlx5_ib_dev *dev,
731 if ((access_flags & IB_ACCESS_REMOTE_ATOMIC) &&
732 MLX5_CAP_GEN(dev->mdev, atomic) &&
733 MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled))
734 ret |= IB_ACCESS_REMOTE_ATOMIC;
736 if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
737 MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write) &&
738 !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write_umr))
739 ret |= IB_ACCESS_RELAXED_ORDERING;
741 if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
742 (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
743 MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_pci_enabled)) &&
744 !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_umr))
745 ret |= IB_ACCESS_RELAXED_ORDERING;
750 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
751 int access_flags, int access_mode,
754 struct mlx5r_cache_rb_key rb_key = {
756 .access_mode = access_mode,
757 .access_flags = get_unchangeable_access_flags(dev, access_flags)
759 struct mlx5_cache_ent *ent = mkey_cache_ent_from_rb_key(dev, rb_key);
762 return ERR_PTR(-EOPNOTSUPP);
764 return _mlx5_mr_cache_alloc(dev, ent, access_flags);
767 static void clean_keys(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent)
771 cancel_delayed_work(&ent->dwork);
772 spin_lock_irq(&ent->mkeys_queue.lock);
773 while (ent->mkeys_queue.ci) {
774 mkey = pop_mkey_locked(ent);
775 spin_unlock_irq(&ent->mkeys_queue.lock);
776 mlx5_core_destroy_mkey(dev->mdev, mkey);
777 spin_lock_irq(&ent->mkeys_queue.lock);
779 spin_unlock_irq(&ent->mkeys_queue.lock);
782 static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
784 if (!mlx5_debugfs_root || dev->is_rep)
787 debugfs_remove_recursive(dev->cache.fs_root);
788 dev->cache.fs_root = NULL;
791 static void mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev *dev,
792 struct mlx5_cache_ent *ent)
794 int order = order_base_2(ent->rb_key.ndescs);
797 if (!mlx5_debugfs_root || dev->is_rep)
800 if (ent->rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
801 order = MLX5_IMR_KSM_CACHE_ENTRY + 2;
803 sprintf(ent->name, "%d", order);
804 dir = debugfs_create_dir(ent->name, dev->cache.fs_root);
805 debugfs_create_file("size", 0600, dir, ent, &size_fops);
806 debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
807 debugfs_create_ulong("cur", 0400, dir, &ent->mkeys_queue.ci);
808 debugfs_create_u32("miss", 0600, dir, &ent->miss);
811 static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev)
813 struct dentry *dbg_root = mlx5_debugfs_get_dev_root(dev->mdev);
814 struct mlx5_mkey_cache *cache = &dev->cache;
816 if (!mlx5_debugfs_root || dev->is_rep)
819 cache->fs_root = debugfs_create_dir("mr_cache", dbg_root);
822 static void delay_time_func(struct timer_list *t)
824 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
826 WRITE_ONCE(dev->fill_delay, 0);
829 static int mlx5r_mkeys_init(struct mlx5_cache_ent *ent)
831 struct mlx5_mkeys_page *page;
833 page = kzalloc(sizeof(*page), GFP_KERNEL);
836 INIT_LIST_HEAD(&ent->mkeys_queue.pages_list);
837 spin_lock_init(&ent->mkeys_queue.lock);
838 list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
839 ent->mkeys_queue.num_pages++;
843 static void mlx5r_mkeys_uninit(struct mlx5_cache_ent *ent)
845 struct mlx5_mkeys_page *page;
847 WARN_ON(ent->mkeys_queue.ci || ent->mkeys_queue.num_pages > 1);
848 page = list_last_entry(&ent->mkeys_queue.pages_list,
849 struct mlx5_mkeys_page, list);
850 list_del(&page->list);
854 struct mlx5_cache_ent *
855 mlx5r_cache_create_ent_locked(struct mlx5_ib_dev *dev,
856 struct mlx5r_cache_rb_key rb_key,
857 bool persistent_entry)
859 struct mlx5_cache_ent *ent;
863 ent = kzalloc(sizeof(*ent), GFP_KERNEL);
865 return ERR_PTR(-ENOMEM);
867 ret = mlx5r_mkeys_init(ent);
870 ent->rb_key = rb_key;
872 ent->is_tmp = !persistent_entry;
874 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
876 ret = mlx5_cache_ent_insert(&dev->cache, ent);
880 if (persistent_entry) {
881 if (rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
882 order = MLX5_IMR_KSM_CACHE_ENTRY;
884 order = order_base_2(rb_key.ndescs) - 2;
886 if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
887 !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
888 mlx5r_umr_can_load_pas(dev, 0))
889 ent->limit = dev->mdev->profile.mr_cache[order].limit;
893 mlx5_mkey_cache_debugfs_add_ent(dev, ent);
895 mod_delayed_work(ent->dev->cache.wq,
896 &ent->dev->cache.remove_ent_dwork,
897 msecs_to_jiffies(30 * 1000));
902 mlx5r_mkeys_uninit(ent);
908 static void remove_ent_work_func(struct work_struct *work)
910 struct mlx5_mkey_cache *cache;
911 struct mlx5_cache_ent *ent;
914 cache = container_of(work, struct mlx5_mkey_cache,
915 remove_ent_dwork.work);
916 mutex_lock(&cache->rb_lock);
917 cur = rb_last(&cache->rb_root);
919 ent = rb_entry(cur, struct mlx5_cache_ent, node);
921 mutex_unlock(&cache->rb_lock);
923 spin_lock_irq(&ent->mkeys_queue.lock);
925 spin_unlock_irq(&ent->mkeys_queue.lock);
926 mutex_lock(&cache->rb_lock);
929 spin_unlock_irq(&ent->mkeys_queue.lock);
931 clean_keys(ent->dev, ent);
932 mutex_lock(&cache->rb_lock);
934 mutex_unlock(&cache->rb_lock);
937 int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev)
939 struct mlx5_mkey_cache *cache = &dev->cache;
940 struct rb_root *root = &dev->cache.rb_root;
941 struct mlx5r_cache_rb_key rb_key = {
942 .access_mode = MLX5_MKC_ACCESS_MODE_MTT,
944 struct mlx5_cache_ent *ent;
945 struct rb_node *node;
949 mutex_init(&dev->slow_path_mutex);
950 mutex_init(&dev->cache.rb_lock);
951 dev->cache.rb_root = RB_ROOT;
952 INIT_DELAYED_WORK(&dev->cache.remove_ent_dwork, remove_ent_work_func);
953 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
955 mlx5_ib_warn(dev, "failed to create work queue\n");
959 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
960 timer_setup(&dev->delay_timer, delay_time_func, 0);
961 mlx5_mkey_cache_debugfs_init(dev);
962 mutex_lock(&cache->rb_lock);
963 for (i = 0; i <= mkey_cache_max_order(dev); i++) {
964 rb_key.ndescs = 1 << (i + 2);
965 ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
972 ret = mlx5_odp_init_mkey_cache(dev);
976 mutex_unlock(&cache->rb_lock);
977 for (node = rb_first(root); node; node = rb_next(node)) {
978 ent = rb_entry(node, struct mlx5_cache_ent, node);
979 spin_lock_irq(&ent->mkeys_queue.lock);
980 queue_adjust_cache_locked(ent);
981 spin_unlock_irq(&ent->mkeys_queue.lock);
987 mutex_unlock(&cache->rb_lock);
988 mlx5_mkey_cache_debugfs_cleanup(dev);
989 mlx5_ib_warn(dev, "failed to create mkey cache entry\n");
993 void mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev)
995 struct rb_root *root = &dev->cache.rb_root;
996 struct mlx5_cache_ent *ent;
997 struct rb_node *node;
1002 mutex_lock(&dev->cache.rb_lock);
1003 cancel_delayed_work(&dev->cache.remove_ent_dwork);
1004 for (node = rb_first(root); node; node = rb_next(node)) {
1005 ent = rb_entry(node, struct mlx5_cache_ent, node);
1006 spin_lock_irq(&ent->mkeys_queue.lock);
1007 ent->disabled = true;
1008 spin_unlock_irq(&ent->mkeys_queue.lock);
1009 cancel_delayed_work(&ent->dwork);
1011 mutex_unlock(&dev->cache.rb_lock);
1014 * After all entries are disabled and will not reschedule on WQ,
1015 * flush it and all async commands.
1017 flush_workqueue(dev->cache.wq);
1019 mlx5_mkey_cache_debugfs_cleanup(dev);
1020 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
1022 /* At this point all entries are disabled and have no concurrent work. */
1023 mutex_lock(&dev->cache.rb_lock);
1024 node = rb_first(root);
1026 ent = rb_entry(node, struct mlx5_cache_ent, node);
1027 node = rb_next(node);
1028 clean_keys(dev, ent);
1029 rb_erase(&ent->node, root);
1030 mlx5r_mkeys_uninit(ent);
1033 mutex_unlock(&dev->cache.rb_lock);
1035 destroy_workqueue(dev->cache.wq);
1036 del_timer_sync(&dev->delay_timer);
1039 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
1041 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1042 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1043 struct mlx5_ib_mr *mr;
1048 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1050 return ERR_PTR(-ENOMEM);
1052 in = kzalloc(inlen, GFP_KERNEL);
1058 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1060 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
1061 MLX5_SET(mkc, mkc, length64, 1);
1062 set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
1065 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1070 mr->mmkey.type = MLX5_MKEY_MR;
1071 mr->ibmr.lkey = mr->mmkey.key;
1072 mr->ibmr.rkey = mr->mmkey.key;
1083 return ERR_PTR(err);
1086 static int get_octo_len(u64 addr, u64 len, int page_shift)
1088 u64 page_size = 1ULL << page_shift;
1092 offset = addr & (page_size - 1);
1093 npages = ALIGN(len + offset, page_size) >> page_shift;
1094 return (npages + 1) / 2;
1097 static int mkey_cache_max_order(struct mlx5_ib_dev *dev)
1099 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
1100 return MKEY_CACHE_LAST_STD_ENTRY;
1101 return MLX5_MAX_UMR_SHIFT;
1104 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1105 u64 length, int access_flags, u64 iova)
1107 mr->ibmr.lkey = mr->mmkey.key;
1108 mr->ibmr.rkey = mr->mmkey.key;
1109 mr->ibmr.length = length;
1110 mr->ibmr.device = &dev->ib_dev;
1111 mr->ibmr.iova = iova;
1112 mr->access_flags = access_flags;
1115 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
1119 * The alignment of iova has already been checked upon entering
1120 * UVERBS_METHOD_REG_DMABUF_MR
1126 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
1127 struct ib_umem *umem, u64 iova,
1130 struct mlx5r_cache_rb_key rb_key = {
1131 .access_mode = MLX5_MKC_ACCESS_MODE_MTT,
1133 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1134 struct mlx5_cache_ent *ent;
1135 struct mlx5_ib_mr *mr;
1136 unsigned int page_size;
1138 if (umem->is_dmabuf)
1139 page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
1141 page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
1143 if (WARN_ON(!page_size))
1144 return ERR_PTR(-EINVAL);
1146 rb_key.ndescs = ib_umem_num_dma_blocks(umem, page_size);
1147 rb_key.ats = mlx5_umem_needs_ats(dev, umem, access_flags);
1148 rb_key.access_flags = get_unchangeable_access_flags(dev, access_flags);
1149 ent = mkey_cache_ent_from_rb_key(dev, rb_key);
1151 * If the MR can't come from the cache then synchronously create an uncached
1155 mutex_lock(&dev->slow_path_mutex);
1156 mr = reg_create(pd, umem, iova, access_flags, page_size, false);
1157 mutex_unlock(&dev->slow_path_mutex);
1160 mr->mmkey.rb_key = rb_key;
1164 mr = _mlx5_mr_cache_alloc(dev, ent, access_flags);
1170 mr->page_shift = order_base_2(page_size);
1171 set_mr_fields(dev, mr, umem->length, access_flags, iova);
1177 * If ibmr is NULL it will be allocated by reg_create.
1178 * Else, the given ibmr will be used.
1180 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1181 u64 iova, int access_flags,
1182 unsigned int page_size, bool populate)
1184 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1185 struct mlx5_ib_mr *mr;
1191 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1194 return ERR_PTR(-EINVAL);
1195 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1197 return ERR_PTR(-ENOMEM);
1200 mr->access_flags = access_flags;
1201 mr->page_shift = order_base_2(page_size);
1203 inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1205 inlen += sizeof(*pas) *
1206 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1207 in = kvzalloc(inlen, GFP_KERNEL);
1212 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1214 if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1218 mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1219 pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1222 /* The pg_access bit allows setting the access flags
1223 * in the page list submitted with the command.
1225 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1227 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1228 set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1229 populate ? pd : dev->umrc.pd);
1230 MLX5_SET(mkc, mkc, free, !populate);
1231 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1232 MLX5_SET(mkc, mkc, umr_en, 1);
1234 MLX5_SET64(mkc, mkc, len, umem->length);
1235 MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1236 MLX5_SET(mkc, mkc, translations_octword_size,
1237 get_octo_len(iova, umem->length, mr->page_shift));
1238 MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1239 if (mlx5_umem_needs_ats(dev, umem, access_flags))
1240 MLX5_SET(mkc, mkc, ma_translation_mode, 1);
1242 MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1243 get_octo_len(iova, umem->length, mr->page_shift));
1246 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1248 mlx5_ib_warn(dev, "create mkey failed\n");
1251 mr->mmkey.type = MLX5_MKEY_MR;
1252 mr->mmkey.ndescs = get_octo_len(iova, umem->length, mr->page_shift);
1254 set_mr_fields(dev, mr, umem->length, access_flags, iova);
1257 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1265 return ERR_PTR(err);
1268 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1269 u64 length, int acc, int mode)
1271 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1272 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1273 struct mlx5_ib_mr *mr;
1278 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1280 return ERR_PTR(-ENOMEM);
1282 in = kzalloc(inlen, GFP_KERNEL);
1288 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1290 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1291 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1292 MLX5_SET64(mkc, mkc, len, length);
1293 set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1295 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1301 set_mr_fields(dev, mr, length, acc, start_addr);
1311 return ERR_PTR(err);
1314 int mlx5_ib_advise_mr(struct ib_pd *pd,
1315 enum ib_uverbs_advise_mr_advice advice,
1317 struct ib_sge *sg_list,
1319 struct uverbs_attr_bundle *attrs)
1321 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1322 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1323 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1326 return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1330 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1331 struct ib_dm_mr_attr *attr,
1332 struct uverbs_attr_bundle *attrs)
1334 struct mlx5_ib_dm *mdm = to_mdm(dm);
1335 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1336 u64 start_addr = mdm->dev_addr + attr->offset;
1339 switch (mdm->type) {
1340 case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1341 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1342 return ERR_PTR(-EINVAL);
1344 mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1345 start_addr -= pci_resource_start(dev->pdev, 0);
1347 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1348 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1349 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
1350 case MLX5_IB_UAPI_DM_TYPE_ENCAP_SW_ICM:
1351 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1352 return ERR_PTR(-EINVAL);
1354 mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1357 return ERR_PTR(-EINVAL);
1360 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1361 attr->access_flags, mode);
1364 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1365 u64 iova, int access_flags)
1367 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1368 struct mlx5_ib_mr *mr = NULL;
1372 xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
1374 mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1376 unsigned int page_size = mlx5_umem_find_best_pgsz(
1377 umem, mkc, log_page_size, 0, iova);
1379 mutex_lock(&dev->slow_path_mutex);
1380 mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1381 mutex_unlock(&dev->slow_path_mutex);
1384 ib_umem_release(umem);
1385 return ERR_CAST(mr);
1388 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1390 atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1394 * If the MR was created with reg_create then it will be
1395 * configured properly but left disabled. It is safe to go ahead
1396 * and configure it again via UMR while enabling it.
1398 err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1400 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1401 return ERR_PTR(err);
1407 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1408 u64 iova, int access_flags,
1409 struct ib_udata *udata)
1411 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1412 struct ib_umem_odp *odp;
1413 struct mlx5_ib_mr *mr;
1416 if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1417 return ERR_PTR(-EOPNOTSUPP);
1419 err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1421 return ERR_PTR(err);
1422 if (!start && length == U64_MAX) {
1424 return ERR_PTR(-EINVAL);
1425 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1426 return ERR_PTR(-EINVAL);
1428 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1430 return ERR_CAST(mr);
1434 /* ODP requires xlt update via umr to work. */
1435 if (!mlx5r_umr_can_load_pas(dev, length))
1436 return ERR_PTR(-EINVAL);
1438 odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1441 return ERR_CAST(odp);
1443 mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1445 ib_umem_release(&odp->umem);
1446 return ERR_CAST(mr);
1448 xa_init(&mr->implicit_children);
1451 err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1455 err = mlx5_ib_init_odp_mr(mr);
1461 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1462 return ERR_PTR(err);
1465 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1466 u64 iova, int access_flags,
1467 struct ib_udata *udata)
1469 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1470 struct ib_umem *umem;
1472 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1473 return ERR_PTR(-EOPNOTSUPP);
1475 mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1476 start, iova, length, access_flags);
1478 if (access_flags & IB_ACCESS_ON_DEMAND)
1479 return create_user_odp_mr(pd, start, length, iova, access_flags,
1481 umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1483 return ERR_CAST(umem);
1484 return create_real_mr(pd, umem, iova, access_flags);
1487 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1489 struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1490 struct mlx5_ib_mr *mr = umem_dmabuf->private;
1492 dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1494 if (!umem_dmabuf->sgt)
1497 mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1498 ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1501 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1502 .allow_peer2peer = 1,
1503 .move_notify = mlx5_ib_dmabuf_invalidate_cb,
1506 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1507 u64 length, u64 virt_addr,
1508 int fd, int access_flags,
1509 struct ib_udata *udata)
1511 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1512 struct mlx5_ib_mr *mr = NULL;
1513 struct ib_umem_dmabuf *umem_dmabuf;
1516 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1517 !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1518 return ERR_PTR(-EOPNOTSUPP);
1521 "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1522 offset, virt_addr, length, fd, access_flags);
1524 /* dmabuf requires xlt update via umr to work. */
1525 if (!mlx5r_umr_can_load_pas(dev, length))
1526 return ERR_PTR(-EINVAL);
1528 umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1530 &mlx5_ib_dmabuf_attach_ops);
1531 if (IS_ERR(umem_dmabuf)) {
1532 mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1533 PTR_ERR(umem_dmabuf));
1534 return ERR_CAST(umem_dmabuf);
1537 mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1540 ib_umem_release(&umem_dmabuf->umem);
1541 return ERR_CAST(mr);
1544 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1546 atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1547 umem_dmabuf->private = mr;
1548 err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1552 err = mlx5_ib_init_dmabuf_mr(mr);
1558 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1559 return ERR_PTR(err);
1563 * True if the change in access flags can be done via UMR, only some access
1564 * flags can be updated.
1566 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1567 unsigned int current_access_flags,
1568 unsigned int target_access_flags)
1570 unsigned int diffs = current_access_flags ^ target_access_flags;
1572 if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1573 IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING))
1575 return mlx5r_umr_can_reconfig(dev, current_access_flags,
1576 target_access_flags);
1579 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1580 struct ib_umem *new_umem,
1581 int new_access_flags, u64 iova,
1582 unsigned long *page_size)
1584 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1586 /* We only track the allocated sizes of MRs from the cache */
1587 if (!mr->mmkey.cache_ent)
1589 if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
1593 mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1594 if (WARN_ON(!*page_size))
1596 return (mr->mmkey.cache_ent->rb_key.ndescs) >=
1597 ib_umem_num_dma_blocks(new_umem, *page_size);
1600 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1601 int access_flags, int flags, struct ib_umem *new_umem,
1602 u64 iova, unsigned long page_size)
1604 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1605 int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1606 struct ib_umem *old_umem = mr->umem;
1610 * To keep everything simple the MR is revoked before we start to mess
1611 * with it. This ensure the change is atomic relative to any use of the
1614 err = mlx5r_umr_revoke_mr(mr);
1618 if (flags & IB_MR_REREG_PD) {
1620 upd_flags |= MLX5_IB_UPD_XLT_PD;
1622 if (flags & IB_MR_REREG_ACCESS) {
1623 mr->access_flags = access_flags;
1624 upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1627 mr->ibmr.iova = iova;
1628 mr->ibmr.length = new_umem->length;
1629 mr->page_shift = order_base_2(page_size);
1630 mr->umem = new_umem;
1631 err = mlx5r_umr_update_mr_pas(mr, upd_flags);
1634 * The MR is revoked at this point so there is no issue to free
1637 mr->umem = old_umem;
1641 atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1642 ib_umem_release(old_umem);
1643 atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1647 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1648 u64 length, u64 iova, int new_access_flags,
1649 struct ib_pd *new_pd,
1650 struct ib_udata *udata)
1652 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1653 struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1656 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1657 return ERR_PTR(-EOPNOTSUPP);
1661 "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1662 start, iova, length, new_access_flags);
1664 if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1665 return ERR_PTR(-EOPNOTSUPP);
1667 if (!(flags & IB_MR_REREG_ACCESS))
1668 new_access_flags = mr->access_flags;
1669 if (!(flags & IB_MR_REREG_PD))
1672 if (!(flags & IB_MR_REREG_TRANS)) {
1673 struct ib_umem *umem;
1675 /* Fast path for PD/access change */
1676 if (can_use_umr_rereg_access(dev, mr->access_flags,
1677 new_access_flags)) {
1678 err = mlx5r_umr_rereg_pd_access(mr, new_pd,
1681 return ERR_PTR(err);
1684 /* DM or ODP MR's don't have a normal umem so we can't re-use it */
1685 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1689 * Only one active MR can refer to a umem at one time, revoke
1690 * the old MR before assigning the umem to the new one.
1692 err = mlx5r_umr_revoke_mr(mr);
1694 return ERR_PTR(err);
1697 atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1699 return create_real_mr(new_pd, umem, mr->ibmr.iova,
1704 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1705 * but the logic around releasing the umem is different
1707 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1710 if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1711 can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1712 struct ib_umem *new_umem;
1713 unsigned long page_size;
1715 new_umem = ib_umem_get(&dev->ib_dev, start, length,
1717 if (IS_ERR(new_umem))
1718 return ERR_CAST(new_umem);
1720 /* Fast path for PAS change */
1721 if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1723 err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1724 new_umem, iova, page_size);
1726 ib_umem_release(new_umem);
1727 return ERR_PTR(err);
1731 return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1735 * Everything else has no state we can preserve, just create a new MR
1739 return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1740 new_access_flags, udata);
1744 mlx5_alloc_priv_descs(struct ib_device *device,
1745 struct mlx5_ib_mr *mr,
1749 struct mlx5_ib_dev *dev = to_mdev(device);
1750 struct device *ddev = &dev->mdev->pdev->dev;
1751 int size = ndescs * desc_size;
1755 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1756 if (is_power_of_2(MLX5_UMR_ALIGN) && add_size) {
1757 int end = max_t(int, MLX5_UMR_ALIGN, roundup_pow_of_two(size));
1759 add_size = min_t(int, end - size, add_size);
1762 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1763 if (!mr->descs_alloc)
1766 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1768 mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1769 if (dma_mapping_error(ddev, mr->desc_map)) {
1776 kfree(mr->descs_alloc);
1782 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1784 if (!mr->umem && mr->descs) {
1785 struct ib_device *device = mr->ibmr.device;
1786 int size = mr->max_descs * mr->desc_size;
1787 struct mlx5_ib_dev *dev = to_mdev(device);
1789 dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1791 kfree(mr->descs_alloc);
1796 static int cache_ent_find_and_store(struct mlx5_ib_dev *dev,
1797 struct mlx5_ib_mr *mr)
1799 struct mlx5_mkey_cache *cache = &dev->cache;
1800 struct mlx5_cache_ent *ent;
1803 if (mr->mmkey.cache_ent) {
1804 spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1805 mr->mmkey.cache_ent->in_use--;
1809 mutex_lock(&cache->rb_lock);
1810 ent = mkey_cache_ent_from_rb_key(dev, mr->mmkey.rb_key);
1812 if (ent->rb_key.ndescs == mr->mmkey.rb_key.ndescs) {
1813 if (ent->disabled) {
1814 mutex_unlock(&cache->rb_lock);
1817 mr->mmkey.cache_ent = ent;
1818 spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1819 mutex_unlock(&cache->rb_lock);
1824 ent = mlx5r_cache_create_ent_locked(dev, mr->mmkey.rb_key, false);
1825 mutex_unlock(&cache->rb_lock);
1827 return PTR_ERR(ent);
1829 mr->mmkey.cache_ent = ent;
1830 spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1833 ret = push_mkey_locked(mr->mmkey.cache_ent, mr->mmkey.key);
1834 spin_unlock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1838 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1840 struct mlx5_ib_mr *mr = to_mmr(ibmr);
1841 struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1845 * Any async use of the mr must hold the refcount, once the refcount
1846 * goes to zero no other thread, such as ODP page faults, prefetch, any
1847 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1849 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1850 refcount_read(&mr->mmkey.usecount) != 0 &&
1851 xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1852 mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1854 if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1855 xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1856 mr->sig, NULL, GFP_KERNEL);
1859 rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1865 rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1871 if (mlx5_core_destroy_psv(dev->mdev,
1872 mr->sig->psv_memory.psv_idx))
1873 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1874 mr->sig->psv_memory.psv_idx);
1875 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1876 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1877 mr->sig->psv_wire.psv_idx);
1883 if (mr->umem && mlx5r_umr_can_load_pas(dev, mr->umem->length))
1884 if (mlx5r_umr_revoke_mr(mr) ||
1885 cache_ent_find_and_store(dev, mr))
1886 mr->mmkey.cache_ent = NULL;
1888 if (!mr->mmkey.cache_ent) {
1889 rc = destroy_mkey(to_mdev(mr->ibmr.device), mr);
1895 bool is_odp = is_odp_mr(mr);
1898 atomic_sub(ib_umem_num_pages(mr->umem),
1899 &dev->mdev->priv.reg_pages);
1900 ib_umem_release(mr->umem);
1902 mlx5_ib_free_odp_mr(mr);
1905 if (!mr->mmkey.cache_ent)
1906 mlx5_free_priv_descs(mr);
1912 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1913 int access_mode, int page_shift)
1917 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1919 /* This is only used from the kernel, so setting the PD is OK. */
1920 set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
1921 MLX5_SET(mkc, mkc, free, 1);
1922 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1923 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1924 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1925 MLX5_SET(mkc, mkc, umr_en, 1);
1926 MLX5_SET(mkc, mkc, log_page_size, page_shift);
1929 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1930 int ndescs, int desc_size, int page_shift,
1931 int access_mode, u32 *in, int inlen)
1933 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1936 mr->access_mode = access_mode;
1937 mr->desc_size = desc_size;
1938 mr->max_descs = ndescs;
1940 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1944 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1946 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1948 goto err_free_descs;
1950 mr->mmkey.type = MLX5_MKEY_MR;
1951 mr->ibmr.lkey = mr->mmkey.key;
1952 mr->ibmr.rkey = mr->mmkey.key;
1957 mlx5_free_priv_descs(mr);
1961 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1962 u32 max_num_sg, u32 max_num_meta_sg,
1963 int desc_size, int access_mode)
1965 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1966 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1968 struct mlx5_ib_mr *mr;
1972 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1974 return ERR_PTR(-ENOMEM);
1977 mr->ibmr.device = pd->device;
1979 in = kzalloc(inlen, GFP_KERNEL);
1985 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1986 page_shift = PAGE_SHIFT;
1988 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1989 access_mode, in, inlen);
2002 return ERR_PTR(err);
2005 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2006 int ndescs, u32 *in, int inlen)
2008 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2009 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2013 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2014 int ndescs, u32 *in, int inlen)
2016 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2017 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2020 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2021 int max_num_sg, int max_num_meta_sg,
2024 struct mlx5_ib_dev *dev = to_mdev(pd->device);
2029 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2033 /* create mem & wire PSVs */
2034 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2038 mr->sig->psv_memory.psv_idx = psv_index[0];
2039 mr->sig->psv_wire.psv_idx = psv_index[1];
2041 mr->sig->sig_status_checked = true;
2042 mr->sig->sig_err_exists = false;
2043 /* Next UMR, Arm SIGERR */
2044 ++mr->sig->sigerr_count;
2045 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2046 sizeof(struct mlx5_klm),
2047 MLX5_MKC_ACCESS_MODE_KLMS);
2048 if (IS_ERR(mr->klm_mr)) {
2049 err = PTR_ERR(mr->klm_mr);
2050 goto err_destroy_psv;
2052 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2053 sizeof(struct mlx5_mtt),
2054 MLX5_MKC_ACCESS_MODE_MTT);
2055 if (IS_ERR(mr->mtt_mr)) {
2056 err = PTR_ERR(mr->mtt_mr);
2057 goto err_free_klm_mr;
2060 /* Set bsf descriptors for mkey */
2061 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2062 MLX5_SET(mkc, mkc, bsf_en, 1);
2063 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2065 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2066 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2068 goto err_free_mtt_mr;
2070 err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2071 mr->sig, GFP_KERNEL));
2073 goto err_free_descs;
2077 destroy_mkey(dev, mr);
2078 mlx5_free_priv_descs(mr);
2080 mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2083 mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2086 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2087 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2088 mr->sig->psv_memory.psv_idx);
2089 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2090 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2091 mr->sig->psv_wire.psv_idx);
2098 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2099 enum ib_mr_type mr_type, u32 max_num_sg,
2100 u32 max_num_meta_sg)
2102 struct mlx5_ib_dev *dev = to_mdev(pd->device);
2103 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2104 int ndescs = ALIGN(max_num_sg, 4);
2105 struct mlx5_ib_mr *mr;
2109 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2111 return ERR_PTR(-ENOMEM);
2113 in = kzalloc(inlen, GFP_KERNEL);
2119 mr->ibmr.device = pd->device;
2123 case IB_MR_TYPE_MEM_REG:
2124 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2126 case IB_MR_TYPE_SG_GAPS:
2127 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2129 case IB_MR_TYPE_INTEGRITY:
2130 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2131 max_num_meta_sg, in, inlen);
2134 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2149 return ERR_PTR(err);
2152 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2155 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2158 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2159 u32 max_num_sg, u32 max_num_meta_sg)
2161 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2165 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2167 struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2168 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2169 struct mlx5_ib_mw *mw = to_mmw(ibmw);
2170 unsigned int ndescs;
2174 struct mlx5_ib_alloc_mw req = {};
2177 __u32 response_length;
2180 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2184 if (req.comp_mask || req.reserved1 || req.reserved2)
2187 if (udata->inlen > sizeof(req) &&
2188 !ib_is_udata_cleared(udata, sizeof(req),
2189 udata->inlen - sizeof(req)))
2192 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2194 in = kzalloc(inlen, GFP_KERNEL);
2198 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2200 MLX5_SET(mkc, mkc, free, 1);
2201 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2202 MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2203 MLX5_SET(mkc, mkc, umr_en, 1);
2204 MLX5_SET(mkc, mkc, lr, 1);
2205 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2206 MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2207 MLX5_SET(mkc, mkc, qpn, 0xffffff);
2209 err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2213 mw->mmkey.type = MLX5_MKEY_MW;
2214 ibmw->rkey = mw->mmkey.key;
2215 mw->mmkey.ndescs = ndescs;
2217 resp.response_length =
2218 min(offsetofend(typeof(resp), response_length), udata->outlen);
2219 if (resp.response_length) {
2220 err = ib_copy_to_udata(udata, &resp, resp.response_length);
2225 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2226 err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2235 mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
2241 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2243 struct mlx5_ib_dev *dev = to_mdev(mw->device);
2244 struct mlx5_ib_mw *mmw = to_mmw(mw);
2246 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2247 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2249 * pagefault_single_data_segment() may be accessing mmw
2250 * if the user bound an ODP MR to this MW.
2252 mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2254 return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
2257 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2258 struct ib_mr_status *mr_status)
2260 struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2263 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2264 pr_err("Invalid status check mask\n");
2269 mr_status->fail_status = 0;
2270 if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2273 pr_err("signature status check requested on a non-signature enabled MR\n");
2277 mmr->sig->sig_status_checked = true;
2278 if (!mmr->sig->sig_err_exists)
2281 if (ibmr->lkey == mmr->sig->err_item.key)
2282 memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2283 sizeof(mr_status->sig_err));
2285 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2286 mr_status->sig_err.sig_err_offset = 0;
2287 mr_status->sig_err.key = mmr->sig->err_item.key;
2290 mmr->sig->sig_err_exists = false;
2291 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2299 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2300 int data_sg_nents, unsigned int *data_sg_offset,
2301 struct scatterlist *meta_sg, int meta_sg_nents,
2302 unsigned int *meta_sg_offset)
2304 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2305 unsigned int sg_offset = 0;
2308 mr->meta_length = 0;
2309 if (data_sg_nents == 1) {
2311 mr->mmkey.ndescs = 1;
2313 sg_offset = *data_sg_offset;
2314 mr->data_length = sg_dma_len(data_sg) - sg_offset;
2315 mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2316 if (meta_sg_nents == 1) {
2318 mr->meta_ndescs = 1;
2320 sg_offset = *meta_sg_offset;
2323 mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2324 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2326 ibmr->length = mr->data_length + mr->meta_length;
2333 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2334 struct scatterlist *sgl,
2335 unsigned short sg_nents,
2336 unsigned int *sg_offset_p,
2337 struct scatterlist *meta_sgl,
2338 unsigned short meta_sg_nents,
2339 unsigned int *meta_sg_offset_p)
2341 struct scatterlist *sg = sgl;
2342 struct mlx5_klm *klms = mr->descs;
2343 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2344 u32 lkey = mr->ibmr.pd->local_dma_lkey;
2347 mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2348 mr->ibmr.length = 0;
2350 for_each_sg(sgl, sg, sg_nents, i) {
2351 if (unlikely(i >= mr->max_descs))
2353 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2354 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2355 klms[i].key = cpu_to_be32(lkey);
2356 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2362 *sg_offset_p = sg_offset;
2364 mr->mmkey.ndescs = i;
2365 mr->data_length = mr->ibmr.length;
2367 if (meta_sg_nents) {
2369 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2370 for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2371 if (unlikely(i + j >= mr->max_descs))
2373 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2375 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2377 klms[i + j].key = cpu_to_be32(lkey);
2378 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2382 if (meta_sg_offset_p)
2383 *meta_sg_offset_p = sg_offset;
2385 mr->meta_ndescs = j;
2386 mr->meta_length = mr->ibmr.length - mr->data_length;
2392 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2394 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2397 if (unlikely(mr->mmkey.ndescs == mr->max_descs))
2401 descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2406 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2408 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2411 if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
2415 descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
2416 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2422 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2423 int data_sg_nents, unsigned int *data_sg_offset,
2424 struct scatterlist *meta_sg, int meta_sg_nents,
2425 unsigned int *meta_sg_offset)
2427 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2428 struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2431 pi_mr->mmkey.ndescs = 0;
2432 pi_mr->meta_ndescs = 0;
2433 pi_mr->meta_length = 0;
2435 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2436 pi_mr->desc_size * pi_mr->max_descs,
2439 pi_mr->ibmr.page_size = ibmr->page_size;
2440 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2442 if (n != data_sg_nents)
2445 pi_mr->data_iova = pi_mr->ibmr.iova;
2446 pi_mr->data_length = pi_mr->ibmr.length;
2447 pi_mr->ibmr.length = pi_mr->data_length;
2448 ibmr->length = pi_mr->data_length;
2450 if (meta_sg_nents) {
2451 u64 page_mask = ~((u64)ibmr->page_size - 1);
2452 u64 iova = pi_mr->data_iova;
2454 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2455 meta_sg_offset, mlx5_set_page_pi);
2457 pi_mr->meta_length = pi_mr->ibmr.length;
2459 * PI address for the HW is the offset of the metadata address
2460 * relative to the first data page address.
2461 * It equals to first data page address + size of data pages +
2462 * metadata offset at the first metadata page
2464 pi_mr->pi_iova = (iova & page_mask) +
2465 pi_mr->mmkey.ndescs * ibmr->page_size +
2466 (pi_mr->ibmr.iova & ~page_mask);
2468 * In order to use one MTT MR for data and metadata, we register
2469 * also the gaps between the end of the data and the start of
2470 * the metadata (the sig MR will verify that the HW will access
2471 * to right addresses). This mapping is safe because we use
2472 * internal mkey for the registration.
2474 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2475 pi_mr->ibmr.iova = iova;
2476 ibmr->length += pi_mr->meta_length;
2479 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2480 pi_mr->desc_size * pi_mr->max_descs,
2487 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2488 int data_sg_nents, unsigned int *data_sg_offset,
2489 struct scatterlist *meta_sg, int meta_sg_nents,
2490 unsigned int *meta_sg_offset)
2492 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2493 struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2496 pi_mr->mmkey.ndescs = 0;
2497 pi_mr->meta_ndescs = 0;
2498 pi_mr->meta_length = 0;
2500 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2501 pi_mr->desc_size * pi_mr->max_descs,
2504 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2505 meta_sg, meta_sg_nents, meta_sg_offset);
2507 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2508 pi_mr->desc_size * pi_mr->max_descs,
2511 /* This is zero-based memory region */
2512 pi_mr->data_iova = 0;
2513 pi_mr->ibmr.iova = 0;
2514 pi_mr->pi_iova = pi_mr->data_length;
2515 ibmr->length = pi_mr->ibmr.length;
2520 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2521 int data_sg_nents, unsigned int *data_sg_offset,
2522 struct scatterlist *meta_sg, int meta_sg_nents,
2523 unsigned int *meta_sg_offset)
2525 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2526 struct mlx5_ib_mr *pi_mr = NULL;
2529 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2531 mr->mmkey.ndescs = 0;
2532 mr->data_length = 0;
2534 mr->meta_ndescs = 0;
2537 * As a performance optimization, if possible, there is no need to
2538 * perform UMR operation to register the data/metadata buffers.
2539 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2540 * Fallback to UMR only in case of a failure.
2542 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2543 data_sg_offset, meta_sg, meta_sg_nents,
2545 if (n == data_sg_nents + meta_sg_nents)
2548 * As a performance optimization, if possible, there is no need to map
2549 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2550 * descriptors and fallback to KLM only in case of a failure.
2551 * It's more efficient for the HW to work with MTT descriptors
2552 * (especially in high load).
2553 * Use KLM (indirect access) only if it's mandatory.
2556 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2557 data_sg_offset, meta_sg, meta_sg_nents,
2559 if (n == data_sg_nents + meta_sg_nents)
2563 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2564 data_sg_offset, meta_sg, meta_sg_nents,
2566 if (unlikely(n != data_sg_nents + meta_sg_nents))
2570 /* This is zero-based memory region */
2574 ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2576 ibmr->sig_attrs->meta_length = mr->meta_length;
2581 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2582 unsigned int *sg_offset)
2584 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2587 mr->mmkey.ndescs = 0;
2589 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2590 mr->desc_size * mr->max_descs,
2593 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2594 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2597 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2600 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2601 mr->desc_size * mr->max_descs,