]> Git Repo - J-linux.git/blob - drivers/gpu/drm/i915/gt/uc/intel_guc_submission.c
Merge tag 'kbuild-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[J-linux.git] / drivers / gpu / drm / i915 / gt / uc / intel_guc_submission.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5
6 #include <linux/circ_buf.h>
7
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_print.h"
31 #include "intel_guc_submission.h"
32
33 #include "i915_drv.h"
34 #include "i915_reg.h"
35 #include "i915_irq.h"
36 #include "i915_trace.h"
37
38 /**
39  * DOC: GuC-based command submission
40  *
41  * The Scratch registers:
42  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
43  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
44  * triggers an interrupt on the GuC via another register write (0xC4C8).
45  * Firmware writes a success/fail code back to the action register after
46  * processes the request. The kernel driver polls waiting for this update and
47  * then proceeds.
48  *
49  * Command Transport buffers (CTBs):
50  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
51  * - G2H) are a message interface between the i915 and GuC.
52  *
53  * Context registration:
54  * Before a context can be submitted it must be registered with the GuC via a
55  * H2G. A unique guc_id is associated with each context. The context is either
56  * registered at request creation time (normal operation) or at submission time
57  * (abnormal operation, e.g. after a reset).
58  *
59  * Context submission:
60  * The i915 updates the LRC tail value in memory. The i915 must enable the
61  * scheduling of the context within the GuC for the GuC to actually consider it.
62  * Therefore, the first time a disabled context is submitted we use a schedule
63  * enable H2G, while follow up submissions are done via the context submit H2G,
64  * which informs the GuC that a previously enabled context has new work
65  * available.
66  *
67  * Context unpin:
68  * To unpin a context a H2G is used to disable scheduling. When the
69  * corresponding G2H returns indicating the scheduling disable operation has
70  * completed it is safe to unpin the context. While a disable is in flight it
71  * isn't safe to resubmit the context so a fence is used to stall all future
72  * requests of that context until the G2H is returned. Because this interaction
73  * with the GuC takes a non-zero amount of time we delay the disabling of
74  * scheduling after the pin count goes to zero by a configurable period of time
75  * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
76  * time to resubmit something on the context before doing this costly operation.
77  * This delay is only done if the context isn't closed and the guc_id usage is
78  * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
79  *
80  * Context deregistration:
81  * Before a context can be destroyed or if we steal its guc_id we must
82  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
83  * safe to submit anything to this guc_id until the deregister completes so a
84  * fence is used to stall all requests associated with this guc_id until the
85  * corresponding G2H returns indicating the guc_id has been deregistered.
86  *
87  * submission_state.guc_ids:
88  * Unique number associated with private GuC context data passed in during
89  * context registration / submission / deregistration. 64k available. Simple ida
90  * is used for allocation.
91  *
92  * Stealing guc_ids:
93  * If no guc_ids are available they can be stolen from another context at
94  * request creation time if that context is unpinned. If a guc_id can't be found
95  * we punt this problem to the user as we believe this is near impossible to hit
96  * during normal use cases.
97  *
98  * Locking:
99  * In the GuC submission code we have 3 basic spin locks which protect
100  * everything. Details about each below.
101  *
102  * sched_engine->lock
103  * This is the submission lock for all contexts that share an i915 schedule
104  * engine (sched_engine), thus only one of the contexts which share a
105  * sched_engine can be submitting at a time. Currently only one sched_engine is
106  * used for all of GuC submission but that could change in the future.
107  *
108  * guc->submission_state.lock
109  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
110  * list.
111  *
112  * ce->guc_state.lock
113  * Protects everything under ce->guc_state. Ensures that a context is in the
114  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
115  * on a disabled context (bad idea), we don't issue a schedule enable when a
116  * schedule disable is in flight, etc... Also protects list of inflight requests
117  * on the context and the priority management state. Lock is individual to each
118  * context.
119  *
120  * Lock ordering rules:
121  * sched_engine->lock -> ce->guc_state.lock
122  * guc->submission_state.lock -> ce->guc_state.lock
123  *
124  * Reset races:
125  * When a full GT reset is triggered it is assumed that some G2H responses to
126  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
127  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
128  * contexts, release guc_ids, etc...). When this occurs we can scrub the
129  * context state and cleanup appropriately, however this is quite racey.
130  * To avoid races, the reset code must disable submission before scrubbing for
131  * the missing G2H, while the submission code must check for submission being
132  * disabled and skip sending H2Gs and updating context states when it is. Both
133  * sides must also make sure to hold the relevant locks.
134  */
135
136 /* GuC Virtual Engine */
137 struct guc_virtual_engine {
138         struct intel_engine_cs base;
139         struct intel_context context;
140 };
141
142 static struct intel_context *
143 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
144                    unsigned long flags);
145
146 static struct intel_context *
147 guc_create_parallel(struct intel_engine_cs **engines,
148                     unsigned int num_siblings,
149                     unsigned int width);
150
151 #define GUC_REQUEST_SIZE 64 /* bytes */
152
153 /*
154  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
155  * per the GuC submission interface. A different allocation algorithm is used
156  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
157  * partition the guc_id space. We believe the number of multi-lrc contexts in
158  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
159  * multi-lrc.
160  */
161 #define NUMBER_MULTI_LRC_GUC_ID(guc)    \
162         ((guc)->submission_state.num_guc_ids / 16)
163
164 /*
165  * Below is a set of functions which control the GuC scheduling state which
166  * require a lock.
167  */
168 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER     BIT(0)
169 #define SCHED_STATE_DESTROYED                           BIT(1)
170 #define SCHED_STATE_PENDING_DISABLE                     BIT(2)
171 #define SCHED_STATE_BANNED                              BIT(3)
172 #define SCHED_STATE_ENABLED                             BIT(4)
173 #define SCHED_STATE_PENDING_ENABLE                      BIT(5)
174 #define SCHED_STATE_REGISTERED                          BIT(6)
175 #define SCHED_STATE_POLICY_REQUIRED                     BIT(7)
176 #define SCHED_STATE_CLOSED                              BIT(8)
177 #define SCHED_STATE_BLOCKED_SHIFT                       9
178 #define SCHED_STATE_BLOCKED             BIT(SCHED_STATE_BLOCKED_SHIFT)
179 #define SCHED_STATE_BLOCKED_MASK        (0xfff << SCHED_STATE_BLOCKED_SHIFT)
180
181 static inline void init_sched_state(struct intel_context *ce)
182 {
183         lockdep_assert_held(&ce->guc_state.lock);
184         ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
185 }
186
187 /*
188  * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
189  * A context close can race with the submission path, so SCHED_STATE_CLOSED
190  * can be set immediately before we try to register.
191  */
192 #define SCHED_STATE_VALID_INIT \
193         (SCHED_STATE_BLOCKED_MASK | \
194          SCHED_STATE_CLOSED | \
195          SCHED_STATE_REGISTERED)
196
197 __maybe_unused
198 static bool sched_state_is_init(struct intel_context *ce)
199 {
200         return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
201 }
202
203 static inline bool
204 context_wait_for_deregister_to_register(struct intel_context *ce)
205 {
206         return ce->guc_state.sched_state &
207                 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
208 }
209
210 static inline void
211 set_context_wait_for_deregister_to_register(struct intel_context *ce)
212 {
213         lockdep_assert_held(&ce->guc_state.lock);
214         ce->guc_state.sched_state |=
215                 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
216 }
217
218 static inline void
219 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
220 {
221         lockdep_assert_held(&ce->guc_state.lock);
222         ce->guc_state.sched_state &=
223                 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
224 }
225
226 static inline bool
227 context_destroyed(struct intel_context *ce)
228 {
229         return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
230 }
231
232 static inline void
233 set_context_destroyed(struct intel_context *ce)
234 {
235         lockdep_assert_held(&ce->guc_state.lock);
236         ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
237 }
238
239 static inline void
240 clr_context_destroyed(struct intel_context *ce)
241 {
242         lockdep_assert_held(&ce->guc_state.lock);
243         ce->guc_state.sched_state &= ~SCHED_STATE_DESTROYED;
244 }
245
246 static inline bool context_pending_disable(struct intel_context *ce)
247 {
248         return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
249 }
250
251 static inline void set_context_pending_disable(struct intel_context *ce)
252 {
253         lockdep_assert_held(&ce->guc_state.lock);
254         ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
255 }
256
257 static inline void clr_context_pending_disable(struct intel_context *ce)
258 {
259         lockdep_assert_held(&ce->guc_state.lock);
260         ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
261 }
262
263 static inline bool context_banned(struct intel_context *ce)
264 {
265         return ce->guc_state.sched_state & SCHED_STATE_BANNED;
266 }
267
268 static inline void set_context_banned(struct intel_context *ce)
269 {
270         lockdep_assert_held(&ce->guc_state.lock);
271         ce->guc_state.sched_state |= SCHED_STATE_BANNED;
272 }
273
274 static inline void clr_context_banned(struct intel_context *ce)
275 {
276         lockdep_assert_held(&ce->guc_state.lock);
277         ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
278 }
279
280 static inline bool context_enabled(struct intel_context *ce)
281 {
282         return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
283 }
284
285 static inline void set_context_enabled(struct intel_context *ce)
286 {
287         lockdep_assert_held(&ce->guc_state.lock);
288         ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
289 }
290
291 static inline void clr_context_enabled(struct intel_context *ce)
292 {
293         lockdep_assert_held(&ce->guc_state.lock);
294         ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
295 }
296
297 static inline bool context_pending_enable(struct intel_context *ce)
298 {
299         return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
300 }
301
302 static inline void set_context_pending_enable(struct intel_context *ce)
303 {
304         lockdep_assert_held(&ce->guc_state.lock);
305         ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
306 }
307
308 static inline void clr_context_pending_enable(struct intel_context *ce)
309 {
310         lockdep_assert_held(&ce->guc_state.lock);
311         ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
312 }
313
314 static inline bool context_registered(struct intel_context *ce)
315 {
316         return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
317 }
318
319 static inline void set_context_registered(struct intel_context *ce)
320 {
321         lockdep_assert_held(&ce->guc_state.lock);
322         ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
323 }
324
325 static inline void clr_context_registered(struct intel_context *ce)
326 {
327         lockdep_assert_held(&ce->guc_state.lock);
328         ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
329 }
330
331 static inline bool context_policy_required(struct intel_context *ce)
332 {
333         return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
334 }
335
336 static inline void set_context_policy_required(struct intel_context *ce)
337 {
338         lockdep_assert_held(&ce->guc_state.lock);
339         ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
340 }
341
342 static inline void clr_context_policy_required(struct intel_context *ce)
343 {
344         lockdep_assert_held(&ce->guc_state.lock);
345         ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
346 }
347
348 static inline bool context_close_done(struct intel_context *ce)
349 {
350         return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
351 }
352
353 static inline void set_context_close_done(struct intel_context *ce)
354 {
355         lockdep_assert_held(&ce->guc_state.lock);
356         ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
357 }
358
359 static inline u32 context_blocked(struct intel_context *ce)
360 {
361         return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
362                 SCHED_STATE_BLOCKED_SHIFT;
363 }
364
365 static inline void incr_context_blocked(struct intel_context *ce)
366 {
367         lockdep_assert_held(&ce->guc_state.lock);
368
369         ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
370
371         GEM_BUG_ON(!context_blocked(ce));       /* Overflow check */
372 }
373
374 static inline void decr_context_blocked(struct intel_context *ce)
375 {
376         lockdep_assert_held(&ce->guc_state.lock);
377
378         GEM_BUG_ON(!context_blocked(ce));       /* Underflow check */
379
380         ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
381 }
382
383 static struct intel_context *
384 request_to_scheduling_context(struct i915_request *rq)
385 {
386         return intel_context_to_parent(rq->context);
387 }
388
389 static inline bool context_guc_id_invalid(struct intel_context *ce)
390 {
391         return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
392 }
393
394 static inline void set_context_guc_id_invalid(struct intel_context *ce)
395 {
396         ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
397 }
398
399 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
400 {
401         return &ce->engine->gt->uc.guc;
402 }
403
404 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
405 {
406         return rb_entry(rb, struct i915_priolist, node);
407 }
408
409 /*
410  * When using multi-lrc submission a scratch memory area is reserved in the
411  * parent's context state for the process descriptor, work queue, and handshake
412  * between the parent + children contexts to insert safe preemption points
413  * between each of the BBs. Currently the scratch area is sized to a page.
414  *
415  * The layout of this scratch area is below:
416  * 0                                            guc_process_desc
417  * + sizeof(struct guc_process_desc)            child go
418  * + CACHELINE_BYTES                            child join[0]
419  * ...
420  * + CACHELINE_BYTES                            child join[n - 1]
421  * ...                                          unused
422  * PARENT_SCRATCH_SIZE / 2                      work queue start
423  * ...                                          work queue
424  * PARENT_SCRATCH_SIZE - 1                      work queue end
425  */
426 #define WQ_SIZE                 (PARENT_SCRATCH_SIZE / 2)
427 #define WQ_OFFSET               (PARENT_SCRATCH_SIZE - WQ_SIZE)
428
429 struct sync_semaphore {
430         u32 semaphore;
431         u8 unused[CACHELINE_BYTES - sizeof(u32)];
432 };
433
434 struct parent_scratch {
435         union guc_descs {
436                 struct guc_sched_wq_desc wq_desc;
437                 struct guc_process_desc_v69 pdesc;
438         } descs;
439
440         struct sync_semaphore go;
441         struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
442
443         u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
444                 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
445
446         u32 wq[WQ_SIZE / sizeof(u32)];
447 };
448
449 static u32 __get_parent_scratch_offset(struct intel_context *ce)
450 {
451         GEM_BUG_ON(!ce->parallel.guc.parent_page);
452
453         return ce->parallel.guc.parent_page * PAGE_SIZE;
454 }
455
456 static u32 __get_wq_offset(struct intel_context *ce)
457 {
458         BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
459
460         return __get_parent_scratch_offset(ce) + WQ_OFFSET;
461 }
462
463 static struct parent_scratch *
464 __get_parent_scratch(struct intel_context *ce)
465 {
466         BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
467         BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
468
469         /*
470          * Need to subtract LRC_STATE_OFFSET here as the
471          * parallel.guc.parent_page is the offset into ce->state while
472          * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
473          */
474         return (struct parent_scratch *)
475                 (ce->lrc_reg_state +
476                  ((__get_parent_scratch_offset(ce) -
477                    LRC_STATE_OFFSET) / sizeof(u32)));
478 }
479
480 static struct guc_process_desc_v69 *
481 __get_process_desc_v69(struct intel_context *ce)
482 {
483         struct parent_scratch *ps = __get_parent_scratch(ce);
484
485         return &ps->descs.pdesc;
486 }
487
488 static struct guc_sched_wq_desc *
489 __get_wq_desc_v70(struct intel_context *ce)
490 {
491         struct parent_scratch *ps = __get_parent_scratch(ce);
492
493         return &ps->descs.wq_desc;
494 }
495
496 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
497 {
498         /*
499          * Check for space in work queue. Caching a value of head pointer in
500          * intel_context structure in order reduce the number accesses to shared
501          * GPU memory which may be across a PCIe bus.
502          */
503 #define AVAILABLE_SPACE \
504         CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
505         if (wqi_size > AVAILABLE_SPACE) {
506                 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
507
508                 if (wqi_size > AVAILABLE_SPACE)
509                         return NULL;
510         }
511 #undef AVAILABLE_SPACE
512
513         return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
514 }
515
516 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
517 {
518         struct intel_context *ce = xa_load(&guc->context_lookup, id);
519
520         GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
521
522         return ce;
523 }
524
525 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
526 {
527         struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
528
529         if (!base)
530                 return NULL;
531
532         GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
533
534         return &base[index];
535 }
536
537 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
538 {
539         u32 size;
540         int ret;
541
542         size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
543                           GUC_MAX_CONTEXT_ID);
544         ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
545                                              (void **)&guc->lrc_desc_pool_vaddr_v69);
546         if (ret)
547                 return ret;
548
549         return 0;
550 }
551
552 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
553 {
554         if (!guc->lrc_desc_pool_vaddr_v69)
555                 return;
556
557         guc->lrc_desc_pool_vaddr_v69 = NULL;
558         i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
559 }
560
561 static inline bool guc_submission_initialized(struct intel_guc *guc)
562 {
563         return guc->submission_initialized;
564 }
565
566 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
567 {
568         struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
569
570         if (desc)
571                 memset(desc, 0, sizeof(*desc));
572 }
573
574 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
575 {
576         return __get_context(guc, id);
577 }
578
579 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
580                                       struct intel_context *ce)
581 {
582         unsigned long flags;
583
584         /*
585          * xarray API doesn't have xa_save_irqsave wrapper, so calling the
586          * lower level functions directly.
587          */
588         xa_lock_irqsave(&guc->context_lookup, flags);
589         __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
590         xa_unlock_irqrestore(&guc->context_lookup, flags);
591 }
592
593 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
594 {
595         unsigned long flags;
596
597         if (unlikely(!guc_submission_initialized(guc)))
598                 return;
599
600         _reset_lrc_desc_v69(guc, id);
601
602         /*
603          * xarray API doesn't have xa_erase_irqsave wrapper, so calling
604          * the lower level functions directly.
605          */
606         xa_lock_irqsave(&guc->context_lookup, flags);
607         __xa_erase(&guc->context_lookup, id);
608         xa_unlock_irqrestore(&guc->context_lookup, flags);
609 }
610
611 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
612 {
613         if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
614                 wake_up_all(&guc->ct.wq);
615 }
616
617 static int guc_submission_send_busy_loop(struct intel_guc *guc,
618                                          const u32 *action,
619                                          u32 len,
620                                          u32 g2h_len_dw,
621                                          bool loop)
622 {
623         int ret;
624
625         /*
626          * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
627          * so we don't handle the case where we don't get a reply because we
628          * aborted the send due to the channel being busy.
629          */
630         GEM_BUG_ON(g2h_len_dw && !loop);
631
632         if (g2h_len_dw)
633                 atomic_inc(&guc->outstanding_submission_g2h);
634
635         ret = intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
636         if (ret)
637                 atomic_dec(&guc->outstanding_submission_g2h);
638
639         return ret;
640 }
641
642 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
643                                    atomic_t *wait_var,
644                                    bool interruptible,
645                                    long timeout)
646 {
647         const int state = interruptible ?
648                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
649         DEFINE_WAIT(wait);
650
651         might_sleep();
652         GEM_BUG_ON(timeout < 0);
653
654         if (!atomic_read(wait_var))
655                 return 0;
656
657         if (!timeout)
658                 return -ETIME;
659
660         for (;;) {
661                 prepare_to_wait(&guc->ct.wq, &wait, state);
662
663                 if (!atomic_read(wait_var))
664                         break;
665
666                 if (signal_pending_state(state, current)) {
667                         timeout = -EINTR;
668                         break;
669                 }
670
671                 if (!timeout) {
672                         timeout = -ETIME;
673                         break;
674                 }
675
676                 timeout = io_schedule_timeout(timeout);
677         }
678         finish_wait(&guc->ct.wq, &wait);
679
680         return (timeout < 0) ? timeout : 0;
681 }
682
683 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
684 {
685         if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
686                 return 0;
687
688         return intel_guc_wait_for_pending_msg(guc,
689                                               &guc->outstanding_submission_g2h,
690                                               true, timeout);
691 }
692
693 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
694 static int try_context_registration(struct intel_context *ce, bool loop);
695
696 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
697 {
698         int err = 0;
699         struct intel_context *ce = request_to_scheduling_context(rq);
700         u32 action[3];
701         int len = 0;
702         u32 g2h_len_dw = 0;
703         bool enabled;
704
705         lockdep_assert_held(&rq->engine->sched_engine->lock);
706
707         /*
708          * Corner case where requests were sitting in the priority list or a
709          * request resubmitted after the context was banned.
710          */
711         if (unlikely(!intel_context_is_schedulable(ce))) {
712                 i915_request_put(i915_request_mark_eio(rq));
713                 intel_engine_signal_breadcrumbs(ce->engine);
714                 return 0;
715         }
716
717         GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
718         GEM_BUG_ON(context_guc_id_invalid(ce));
719
720         if (context_policy_required(ce)) {
721                 err = guc_context_policy_init_v70(ce, false);
722                 if (err)
723                         return err;
724         }
725
726         spin_lock(&ce->guc_state.lock);
727
728         /*
729          * The request / context will be run on the hardware when scheduling
730          * gets enabled in the unblock. For multi-lrc we still submit the
731          * context to move the LRC tails.
732          */
733         if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
734                 goto out;
735
736         enabled = context_enabled(ce) || context_blocked(ce);
737
738         if (!enabled) {
739                 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
740                 action[len++] = ce->guc_id.id;
741                 action[len++] = GUC_CONTEXT_ENABLE;
742                 set_context_pending_enable(ce);
743                 intel_context_get(ce);
744                 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
745         } else {
746                 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
747                 action[len++] = ce->guc_id.id;
748         }
749
750         err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
751         if (!enabled && !err) {
752                 trace_intel_context_sched_enable(ce);
753                 atomic_inc(&guc->outstanding_submission_g2h);
754                 set_context_enabled(ce);
755
756                 /*
757                  * Without multi-lrc KMD does the submission step (moving the
758                  * lrc tail) so enabling scheduling is sufficient to submit the
759                  * context. This isn't the case in multi-lrc submission as the
760                  * GuC needs to move the tails, hence the need for another H2G
761                  * to submit a multi-lrc context after enabling scheduling.
762                  */
763                 if (intel_context_is_parent(ce)) {
764                         action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
765                         err = intel_guc_send_nb(guc, action, len - 1, 0);
766                 }
767         } else if (!enabled) {
768                 clr_context_pending_enable(ce);
769                 intel_context_put(ce);
770         }
771         if (likely(!err))
772                 trace_i915_request_guc_submit(rq);
773
774 out:
775         spin_unlock(&ce->guc_state.lock);
776         return err;
777 }
778
779 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
780 {
781         int ret = __guc_add_request(guc, rq);
782
783         if (unlikely(ret == -EBUSY)) {
784                 guc->stalled_request = rq;
785                 guc->submission_stall_reason = STALL_ADD_REQUEST;
786         }
787
788         return ret;
789 }
790
791 static inline void guc_set_lrc_tail(struct i915_request *rq)
792 {
793         rq->context->lrc_reg_state[CTX_RING_TAIL] =
794                 intel_ring_set_tail(rq->ring, rq->tail);
795 }
796
797 static inline int rq_prio(const struct i915_request *rq)
798 {
799         return rq->sched.attr.priority;
800 }
801
802 static bool is_multi_lrc_rq(struct i915_request *rq)
803 {
804         return intel_context_is_parallel(rq->context);
805 }
806
807 static bool can_merge_rq(struct i915_request *rq,
808                          struct i915_request *last)
809 {
810         return request_to_scheduling_context(rq) ==
811                 request_to_scheduling_context(last);
812 }
813
814 static u32 wq_space_until_wrap(struct intel_context *ce)
815 {
816         return (WQ_SIZE - ce->parallel.guc.wqi_tail);
817 }
818
819 static void write_wqi(struct intel_context *ce, u32 wqi_size)
820 {
821         BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
822
823         /*
824          * Ensure WQI are visible before updating tail
825          */
826         intel_guc_write_barrier(ce_to_guc(ce));
827
828         ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
829                 (WQ_SIZE - 1);
830         WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
831 }
832
833 static int guc_wq_noop_append(struct intel_context *ce)
834 {
835         u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
836         u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
837
838         if (!wqi)
839                 return -EBUSY;
840
841         GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
842
843         *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
844                 FIELD_PREP(WQ_LEN_MASK, len_dw);
845         ce->parallel.guc.wqi_tail = 0;
846
847         return 0;
848 }
849
850 static int __guc_wq_item_append(struct i915_request *rq)
851 {
852         struct intel_context *ce = request_to_scheduling_context(rq);
853         struct intel_context *child;
854         unsigned int wqi_size = (ce->parallel.number_children + 4) *
855                 sizeof(u32);
856         u32 *wqi;
857         u32 len_dw = (wqi_size / sizeof(u32)) - 1;
858         int ret;
859
860         /* Ensure context is in correct state updating work queue */
861         GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
862         GEM_BUG_ON(context_guc_id_invalid(ce));
863         GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
864         GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
865
866         /* Insert NOOP if this work queue item will wrap the tail pointer. */
867         if (wqi_size > wq_space_until_wrap(ce)) {
868                 ret = guc_wq_noop_append(ce);
869                 if (ret)
870                         return ret;
871         }
872
873         wqi = get_wq_pointer(ce, wqi_size);
874         if (!wqi)
875                 return -EBUSY;
876
877         GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
878
879         *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
880                 FIELD_PREP(WQ_LEN_MASK, len_dw);
881         *wqi++ = ce->lrc.lrca;
882         *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
883                FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
884         *wqi++ = 0;     /* fence_id */
885         for_each_child(ce, child)
886                 *wqi++ = child->ring->tail / sizeof(u64);
887
888         write_wqi(ce, wqi_size);
889
890         return 0;
891 }
892
893 static int guc_wq_item_append(struct intel_guc *guc,
894                               struct i915_request *rq)
895 {
896         struct intel_context *ce = request_to_scheduling_context(rq);
897         int ret;
898
899         if (unlikely(!intel_context_is_schedulable(ce)))
900                 return 0;
901
902         ret = __guc_wq_item_append(rq);
903         if (unlikely(ret == -EBUSY)) {
904                 guc->stalled_request = rq;
905                 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
906         }
907
908         return ret;
909 }
910
911 static bool multi_lrc_submit(struct i915_request *rq)
912 {
913         struct intel_context *ce = request_to_scheduling_context(rq);
914
915         intel_ring_set_tail(rq->ring, rq->tail);
916
917         /*
918          * We expect the front end (execbuf IOCTL) to set this flag on the last
919          * request generated from a multi-BB submission. This indicates to the
920          * backend (GuC interface) that we should submit this context thus
921          * submitting all the requests generated in parallel.
922          */
923         return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
924                !intel_context_is_schedulable(ce);
925 }
926
927 static int guc_dequeue_one_context(struct intel_guc *guc)
928 {
929         struct i915_sched_engine * const sched_engine = guc->sched_engine;
930         struct i915_request *last = NULL;
931         bool submit = false;
932         struct rb_node *rb;
933         int ret;
934
935         lockdep_assert_held(&sched_engine->lock);
936
937         if (guc->stalled_request) {
938                 submit = true;
939                 last = guc->stalled_request;
940
941                 switch (guc->submission_stall_reason) {
942                 case STALL_REGISTER_CONTEXT:
943                         goto register_context;
944                 case STALL_MOVE_LRC_TAIL:
945                         goto move_lrc_tail;
946                 case STALL_ADD_REQUEST:
947                         goto add_request;
948                 default:
949                         MISSING_CASE(guc->submission_stall_reason);
950                 }
951         }
952
953         while ((rb = rb_first_cached(&sched_engine->queue))) {
954                 struct i915_priolist *p = to_priolist(rb);
955                 struct i915_request *rq, *rn;
956
957                 priolist_for_each_request_consume(rq, rn, p) {
958                         if (last && !can_merge_rq(rq, last))
959                                 goto register_context;
960
961                         list_del_init(&rq->sched.link);
962
963                         __i915_request_submit(rq);
964
965                         trace_i915_request_in(rq, 0);
966                         last = rq;
967
968                         if (is_multi_lrc_rq(rq)) {
969                                 /*
970                                  * We need to coalesce all multi-lrc requests in
971                                  * a relationship into a single H2G. We are
972                                  * guaranteed that all of these requests will be
973                                  * submitted sequentially.
974                                  */
975                                 if (multi_lrc_submit(rq)) {
976                                         submit = true;
977                                         goto register_context;
978                                 }
979                         } else {
980                                 submit = true;
981                         }
982                 }
983
984                 rb_erase_cached(&p->node, &sched_engine->queue);
985                 i915_priolist_free(p);
986         }
987
988 register_context:
989         if (submit) {
990                 struct intel_context *ce = request_to_scheduling_context(last);
991
992                 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
993                              intel_context_is_schedulable(ce))) {
994                         ret = try_context_registration(ce, false);
995                         if (unlikely(ret == -EPIPE)) {
996                                 goto deadlk;
997                         } else if (ret == -EBUSY) {
998                                 guc->stalled_request = last;
999                                 guc->submission_stall_reason =
1000                                         STALL_REGISTER_CONTEXT;
1001                                 goto schedule_tasklet;
1002                         } else if (ret != 0) {
1003                                 GEM_WARN_ON(ret);       /* Unexpected */
1004                                 goto deadlk;
1005                         }
1006                 }
1007
1008 move_lrc_tail:
1009                 if (is_multi_lrc_rq(last)) {
1010                         ret = guc_wq_item_append(guc, last);
1011                         if (ret == -EBUSY) {
1012                                 goto schedule_tasklet;
1013                         } else if (ret != 0) {
1014                                 GEM_WARN_ON(ret);       /* Unexpected */
1015                                 goto deadlk;
1016                         }
1017                 } else {
1018                         guc_set_lrc_tail(last);
1019                 }
1020
1021 add_request:
1022                 ret = guc_add_request(guc, last);
1023                 if (unlikely(ret == -EPIPE)) {
1024                         goto deadlk;
1025                 } else if (ret == -EBUSY) {
1026                         goto schedule_tasklet;
1027                 } else if (ret != 0) {
1028                         GEM_WARN_ON(ret);       /* Unexpected */
1029                         goto deadlk;
1030                 }
1031         }
1032
1033         guc->stalled_request = NULL;
1034         guc->submission_stall_reason = STALL_NONE;
1035         return submit;
1036
1037 deadlk:
1038         sched_engine->tasklet.callback = NULL;
1039         tasklet_disable_nosync(&sched_engine->tasklet);
1040         return false;
1041
1042 schedule_tasklet:
1043         tasklet_schedule(&sched_engine->tasklet);
1044         return false;
1045 }
1046
1047 static void guc_submission_tasklet(struct tasklet_struct *t)
1048 {
1049         struct i915_sched_engine *sched_engine =
1050                 from_tasklet(sched_engine, t, tasklet);
1051         unsigned long flags;
1052         bool loop;
1053
1054         spin_lock_irqsave(&sched_engine->lock, flags);
1055
1056         do {
1057                 loop = guc_dequeue_one_context(sched_engine->private_data);
1058         } while (loop);
1059
1060         i915_sched_engine_reset_on_empty(sched_engine);
1061
1062         spin_unlock_irqrestore(&sched_engine->lock, flags);
1063 }
1064
1065 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1066 {
1067         if (iir & GT_RENDER_USER_INTERRUPT)
1068                 intel_engine_signal_breadcrumbs(engine);
1069 }
1070
1071 static void __guc_context_destroy(struct intel_context *ce);
1072 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1073 static void guc_signal_context_fence(struct intel_context *ce);
1074 static void guc_cancel_context_requests(struct intel_context *ce);
1075 static void guc_blocked_fence_complete(struct intel_context *ce);
1076
1077 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1078 {
1079         struct intel_context *ce;
1080         unsigned long index, flags;
1081         bool pending_disable, pending_enable, deregister, destroyed, banned;
1082
1083         xa_lock_irqsave(&guc->context_lookup, flags);
1084         xa_for_each(&guc->context_lookup, index, ce) {
1085                 /*
1086                  * Corner case where the ref count on the object is zero but and
1087                  * deregister G2H was lost. In this case we don't touch the ref
1088                  * count and finish the destroy of the context.
1089                  */
1090                 bool do_put = kref_get_unless_zero(&ce->ref);
1091
1092                 xa_unlock(&guc->context_lookup);
1093
1094                 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1095                     (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1096                         /* successful cancel so jump straight to close it */
1097                         intel_context_sched_disable_unpin(ce);
1098                 }
1099
1100                 spin_lock(&ce->guc_state.lock);
1101
1102                 /*
1103                  * Once we are at this point submission_disabled() is guaranteed
1104                  * to be visible to all callers who set the below flags (see above
1105                  * flush and flushes in reset_prepare). If submission_disabled()
1106                  * is set, the caller shouldn't set these flags.
1107                  */
1108
1109                 destroyed = context_destroyed(ce);
1110                 pending_enable = context_pending_enable(ce);
1111                 pending_disable = context_pending_disable(ce);
1112                 deregister = context_wait_for_deregister_to_register(ce);
1113                 banned = context_banned(ce);
1114                 init_sched_state(ce);
1115
1116                 spin_unlock(&ce->guc_state.lock);
1117
1118                 if (pending_enable || destroyed || deregister) {
1119                         decr_outstanding_submission_g2h(guc);
1120                         if (deregister)
1121                                 guc_signal_context_fence(ce);
1122                         if (destroyed) {
1123                                 intel_gt_pm_put_async_untracked(guc_to_gt(guc));
1124                                 release_guc_id(guc, ce);
1125                                 __guc_context_destroy(ce);
1126                         }
1127                         if (pending_enable || deregister)
1128                                 intel_context_put(ce);
1129                 }
1130
1131                 /* Not mutualy exclusive with above if statement. */
1132                 if (pending_disable) {
1133                         guc_signal_context_fence(ce);
1134                         if (banned) {
1135                                 guc_cancel_context_requests(ce);
1136                                 intel_engine_signal_breadcrumbs(ce->engine);
1137                         }
1138                         intel_context_sched_disable_unpin(ce);
1139                         decr_outstanding_submission_g2h(guc);
1140
1141                         spin_lock(&ce->guc_state.lock);
1142                         guc_blocked_fence_complete(ce);
1143                         spin_unlock(&ce->guc_state.lock);
1144
1145                         intel_context_put(ce);
1146                 }
1147
1148                 if (do_put)
1149                         intel_context_put(ce);
1150                 xa_lock(&guc->context_lookup);
1151         }
1152         xa_unlock_irqrestore(&guc->context_lookup, flags);
1153 }
1154
1155 /*
1156  * GuC stores busyness stats for each engine at context in/out boundaries. A
1157  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1158  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1159  * GuC.
1160  *
1161  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1162  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1163  * active. For an active engine total busyness = total + (now - start), where
1164  * 'now' is the time at which the busyness is sampled. For inactive engine,
1165  * total busyness = total.
1166  *
1167  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1168  *
1169  * The start and total values provided by GuC are 32 bits and wrap around in a
1170  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1171  * increasing ns values, there is a need for this implementation to account for
1172  * overflows and extend the GuC provided values to 64 bits before returning
1173  * busyness to the user. In order to do that, a worker runs periodically at
1174  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1175  * 27 seconds for a gt clock frequency of 19.2 MHz).
1176  */
1177
1178 #define WRAP_TIME_CLKS U32_MAX
1179 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1180
1181 static void
1182 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1183 {
1184         u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1185         u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1186
1187         if (new_start == lower_32_bits(*prev_start))
1188                 return;
1189
1190         /*
1191          * When gt is unparked, we update the gt timestamp and start the ping
1192          * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1193          * is unparked, all switched in contexts will have a start time that is
1194          * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1195          *
1196          * If neither gt_stamp nor new_start has rolled over, then the
1197          * gt_stamp_hi does not need to be adjusted, however if one of them has
1198          * rolled over, we need to adjust gt_stamp_hi accordingly.
1199          *
1200          * The below conditions address the cases of new_start rollover and
1201          * gt_stamp_last rollover respectively.
1202          */
1203         if (new_start < gt_stamp_last &&
1204             (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1205                 gt_stamp_hi++;
1206
1207         if (new_start > gt_stamp_last &&
1208             (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1209                 gt_stamp_hi--;
1210
1211         *prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1212 }
1213
1214 #define record_read(map_, field_) \
1215         iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1216
1217 /*
1218  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1219  * we run into a race where the value read is inconsistent. Sometimes the
1220  * inconsistency is in reading the upper MSB bytes of the last_in value when
1221  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1222  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1223  * determine validity of these values. Instead we read the values multiple times
1224  * until they are consistent. In test runs, 3 attempts results in consistent
1225  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1226  * any new occurences.
1227  */
1228 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1229                                       u32 *last_in, u32 *id, u32 *total)
1230 {
1231         struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1232         int i = 0;
1233
1234         do {
1235                 *last_in = record_read(&rec_map, last_switch_in_stamp);
1236                 *id = record_read(&rec_map, current_context_index);
1237                 *total = record_read(&rec_map, total_runtime);
1238
1239                 if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1240                     record_read(&rec_map, current_context_index) == *id &&
1241                     record_read(&rec_map, total_runtime) == *total)
1242                         break;
1243         } while (++i < 6);
1244 }
1245
1246 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1247 {
1248         struct intel_engine_guc_stats *stats = &engine->stats.guc;
1249         struct intel_guc *guc = &engine->gt->uc.guc;
1250         u32 last_switch, ctx_id, total;
1251
1252         lockdep_assert_held(&guc->timestamp.lock);
1253
1254         __get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1255
1256         stats->running = ctx_id != ~0U && last_switch;
1257         if (stats->running)
1258                 __extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1259
1260         /*
1261          * Instead of adjusting the total for overflow, just add the
1262          * difference from previous sample stats->total_gt_clks
1263          */
1264         if (total && total != ~0U) {
1265                 stats->total_gt_clks += (u32)(total - stats->prev_total);
1266                 stats->prev_total = total;
1267         }
1268 }
1269
1270 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1271 {
1272         intel_wakeref_t wakeref;
1273         u32 reg, shift;
1274
1275         with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1276                 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1277
1278         shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1279                 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1280
1281         return 3 - shift;
1282 }
1283
1284 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1285 {
1286         struct intel_gt *gt = guc_to_gt(guc);
1287         u32 gt_stamp_lo, gt_stamp_hi;
1288         u64 gpm_ts;
1289
1290         lockdep_assert_held(&guc->timestamp.lock);
1291
1292         gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1293         gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1294                                           MISC_STATUS1) >> guc->timestamp.shift;
1295         gt_stamp_lo = lower_32_bits(gpm_ts);
1296         *now = ktime_get();
1297
1298         if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1299                 gt_stamp_hi++;
1300
1301         guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1302 }
1303
1304 /*
1305  * Unlike the execlist mode of submission total and active times are in terms of
1306  * gt clocks. The *now parameter is retained to return the cpu time at which the
1307  * busyness was sampled.
1308  */
1309 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1310 {
1311         struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1312         struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1313         struct intel_gt *gt = engine->gt;
1314         struct intel_guc *guc = &gt->uc.guc;
1315         u64 total, gt_stamp_saved;
1316         unsigned long flags;
1317         u32 reset_count;
1318         bool in_reset;
1319         intel_wakeref_t wakeref;
1320
1321         spin_lock_irqsave(&guc->timestamp.lock, flags);
1322
1323         /*
1324          * If a reset happened, we risk reading partially updated engine
1325          * busyness from GuC, so we just use the driver stored copy of busyness.
1326          * Synchronize with gt reset using reset_count and the
1327          * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1328          * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1329          * usable by checking the flag afterwards.
1330          */
1331         reset_count = i915_reset_count(gpu_error);
1332         in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1333
1334         *now = ktime_get();
1335
1336         /*
1337          * The active busyness depends on start_gt_clk and gt_stamp.
1338          * gt_stamp is updated by i915 only when gt is awake and the
1339          * start_gt_clk is derived from GuC state. To get a consistent
1340          * view of activity, we query the GuC state only if gt is awake.
1341          */
1342         wakeref = in_reset ? 0 : intel_gt_pm_get_if_awake(gt);
1343         if (wakeref) {
1344                 stats_saved = *stats;
1345                 gt_stamp_saved = guc->timestamp.gt_stamp;
1346                 /*
1347                  * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1348                  * start_gt_clk' calculation below for active engines.
1349                  */
1350                 guc_update_engine_gt_clks(engine);
1351                 guc_update_pm_timestamp(guc, now);
1352                 intel_gt_pm_put_async(gt, wakeref);
1353                 if (i915_reset_count(gpu_error) != reset_count) {
1354                         *stats = stats_saved;
1355                         guc->timestamp.gt_stamp = gt_stamp_saved;
1356                 }
1357         }
1358
1359         total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1360         if (stats->running) {
1361                 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1362
1363                 total += intel_gt_clock_interval_to_ns(gt, clk);
1364         }
1365
1366         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1367
1368         return ns_to_ktime(total);
1369 }
1370
1371 static void guc_enable_busyness_worker(struct intel_guc *guc)
1372 {
1373         mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay);
1374 }
1375
1376 static void guc_cancel_busyness_worker(struct intel_guc *guc)
1377 {
1378         /*
1379          * There are many different call stacks that can get here. Some of them
1380          * hold the reset mutex. The busyness worker also attempts to acquire the
1381          * reset mutex. Synchronously flushing a worker thread requires acquiring
1382          * the worker mutex. Lockdep sees this as a conflict. It thinks that the
1383          * flush can deadlock because it holds the worker mutex while waiting for
1384          * the reset mutex, but another thread is holding the reset mutex and might
1385          * attempt to use other worker functions.
1386          *
1387          * In practice, this scenario does not exist because the busyness worker
1388          * does not block waiting for the reset mutex. It does a try-lock on it and
1389          * immediately exits if the lock is already held. Unfortunately, the mutex
1390          * in question (I915_RESET_BACKOFF) is an i915 implementation which has lockdep
1391          * annotation but not to the extent of explaining the 'might lock' is also a
1392          * 'does not need to lock'. So one option would be to add more complex lockdep
1393          * annotations to ignore the issue (if at all possible). A simpler option is to
1394          * just not flush synchronously when a rest in progress. Given that the worker
1395          * will just early exit and re-schedule itself anyway, there is no advantage
1396          * to running it immediately.
1397          *
1398          * If a reset is not in progress, then the synchronous flush may be required.
1399          * As noted many call stacks lead here, some during suspend and driver unload
1400          * which do require a synchronous flush to make sure the worker is stopped
1401          * before memory is freed.
1402          *
1403          * Trying to pass a 'need_sync' or 'in_reset' flag all the way down through
1404          * every possible call stack is unfeasible. It would be too intrusive to many
1405          * areas that really don't care about the GuC backend. However, there is the
1406          * 'reset_in_progress' flag available, so just use that.
1407          *
1408          * And note that in the case of a reset occurring during driver unload
1409          * (wedge_on_fini), skipping the cancel in _prepare (when the reset flag is set
1410          * is fine because there is another cancel in _finish (when the reset flag is
1411          * not).
1412          */
1413         if (guc_to_gt(guc)->uc.reset_in_progress)
1414                 cancel_delayed_work(&guc->timestamp.work);
1415         else
1416                 cancel_delayed_work_sync(&guc->timestamp.work);
1417 }
1418
1419 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1420 {
1421         struct intel_gt *gt = guc_to_gt(guc);
1422         struct intel_engine_cs *engine;
1423         enum intel_engine_id id;
1424         unsigned long flags;
1425         ktime_t unused;
1426
1427         guc_cancel_busyness_worker(guc);
1428
1429         spin_lock_irqsave(&guc->timestamp.lock, flags);
1430
1431         guc_update_pm_timestamp(guc, &unused);
1432         for_each_engine(engine, gt, id) {
1433                 guc_update_engine_gt_clks(engine);
1434                 engine->stats.guc.prev_total = 0;
1435         }
1436
1437         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1438 }
1439
1440 static void __update_guc_busyness_stats(struct intel_guc *guc)
1441 {
1442         struct intel_gt *gt = guc_to_gt(guc);
1443         struct intel_engine_cs *engine;
1444         enum intel_engine_id id;
1445         unsigned long flags;
1446         ktime_t unused;
1447
1448         guc->timestamp.last_stat_jiffies = jiffies;
1449
1450         spin_lock_irqsave(&guc->timestamp.lock, flags);
1451
1452         guc_update_pm_timestamp(guc, &unused);
1453         for_each_engine(engine, gt, id)
1454                 guc_update_engine_gt_clks(engine);
1455
1456         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1457 }
1458
1459 static void __guc_context_update_stats(struct intel_context *ce)
1460 {
1461         struct intel_guc *guc = ce_to_guc(ce);
1462         unsigned long flags;
1463
1464         spin_lock_irqsave(&guc->timestamp.lock, flags);
1465         lrc_update_runtime(ce);
1466         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1467 }
1468
1469 static void guc_context_update_stats(struct intel_context *ce)
1470 {
1471         if (!intel_context_pin_if_active(ce))
1472                 return;
1473
1474         __guc_context_update_stats(ce);
1475         intel_context_unpin(ce);
1476 }
1477
1478 static void guc_timestamp_ping(struct work_struct *wrk)
1479 {
1480         struct intel_guc *guc = container_of(wrk, typeof(*guc),
1481                                              timestamp.work.work);
1482         struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1483         struct intel_gt *gt = guc_to_gt(guc);
1484         struct intel_context *ce;
1485         intel_wakeref_t wakeref;
1486         unsigned long index;
1487         int srcu, ret;
1488
1489         /*
1490          * Ideally the busyness worker should take a gt pm wakeref because the
1491          * worker only needs to be active while gt is awake. However, the
1492          * gt_park path cancels the worker synchronously and this complicates
1493          * the flow if the worker is also running at the same time. The cancel
1494          * waits for the worker and when the worker releases the wakeref, that
1495          * would call gt_park and would lead to a deadlock.
1496          *
1497          * The resolution is to take the global pm wakeref if runtime pm is
1498          * already active. If not, we don't need to update the busyness stats as
1499          * the stats would already be updated when the gt was parked.
1500          *
1501          * Note:
1502          * - We do not requeue the worker if we cannot take a reference to runtime
1503          *   pm since intel_guc_busyness_unpark would requeue the worker in the
1504          *   resume path.
1505          *
1506          * - If the gt was parked longer than time taken for GT timestamp to roll
1507          *   over, we ignore those rollovers since we don't care about tracking
1508          *   the exact GT time. We only care about roll overs when the gt is
1509          *   active and running workloads.
1510          *
1511          * - There is a window of time between gt_park and runtime suspend,
1512          *   where the worker may run. This is acceptable since the worker will
1513          *   not find any new data to update busyness.
1514          */
1515         wakeref = intel_runtime_pm_get_if_active(&gt->i915->runtime_pm);
1516         if (!wakeref)
1517                 return;
1518
1519         /*
1520          * Synchronize with gt reset to make sure the worker does not
1521          * corrupt the engine/guc stats. NB: can't actually block waiting
1522          * for a reset to complete as the reset requires flushing out
1523          * this worker thread if started. So waiting would deadlock.
1524          */
1525         ret = intel_gt_reset_trylock(gt, &srcu);
1526         if (ret)
1527                 goto err_trylock;
1528
1529         __update_guc_busyness_stats(guc);
1530
1531         /* adjust context stats for overflow */
1532         xa_for_each(&guc->context_lookup, index, ce)
1533                 guc_context_update_stats(ce);
1534
1535         intel_gt_reset_unlock(gt, srcu);
1536
1537         guc_enable_busyness_worker(guc);
1538
1539 err_trylock:
1540         intel_runtime_pm_put(&gt->i915->runtime_pm, wakeref);
1541 }
1542
1543 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1544 {
1545         u32 offset = intel_guc_engine_usage_offset(guc);
1546         u32 action[] = {
1547                 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1548                 offset,
1549                 0,
1550         };
1551
1552         return intel_guc_send(guc, action, ARRAY_SIZE(action));
1553 }
1554
1555 static int guc_init_engine_stats(struct intel_guc *guc)
1556 {
1557         struct intel_gt *gt = guc_to_gt(guc);
1558         intel_wakeref_t wakeref;
1559         int ret;
1560
1561         with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1562                 ret = guc_action_enable_usage_stats(guc);
1563
1564         if (ret)
1565                 guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret));
1566         else
1567                 guc_enable_busyness_worker(guc);
1568
1569         return ret;
1570 }
1571
1572 static void guc_fini_engine_stats(struct intel_guc *guc)
1573 {
1574         guc_cancel_busyness_worker(guc);
1575 }
1576
1577 void intel_guc_busyness_park(struct intel_gt *gt)
1578 {
1579         struct intel_guc *guc = &gt->uc.guc;
1580
1581         if (!guc_submission_initialized(guc))
1582                 return;
1583
1584         /*
1585          * There is a race with suspend flow where the worker runs after suspend
1586          * and causes an unclaimed register access warning. Cancel the worker
1587          * synchronously here.
1588          */
1589         guc_cancel_busyness_worker(guc);
1590
1591         /*
1592          * Before parking, we should sample engine busyness stats if we need to.
1593          * We can skip it if we are less than half a ping from the last time we
1594          * sampled the busyness stats.
1595          */
1596         if (guc->timestamp.last_stat_jiffies &&
1597             !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1598                         (guc->timestamp.ping_delay / 2)))
1599                 return;
1600
1601         __update_guc_busyness_stats(guc);
1602 }
1603
1604 void intel_guc_busyness_unpark(struct intel_gt *gt)
1605 {
1606         struct intel_guc *guc = &gt->uc.guc;
1607         unsigned long flags;
1608         ktime_t unused;
1609
1610         if (!guc_submission_initialized(guc))
1611                 return;
1612
1613         spin_lock_irqsave(&guc->timestamp.lock, flags);
1614         guc_update_pm_timestamp(guc, &unused);
1615         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1616         guc_enable_busyness_worker(guc);
1617 }
1618
1619 static inline bool
1620 submission_disabled(struct intel_guc *guc)
1621 {
1622         struct i915_sched_engine * const sched_engine = guc->sched_engine;
1623
1624         return unlikely(!sched_engine ||
1625                         !__tasklet_is_enabled(&sched_engine->tasklet) ||
1626                         intel_gt_is_wedged(guc_to_gt(guc)));
1627 }
1628
1629 static void disable_submission(struct intel_guc *guc)
1630 {
1631         struct i915_sched_engine * const sched_engine = guc->sched_engine;
1632
1633         if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1634                 GEM_BUG_ON(!guc->ct.enabled);
1635                 __tasklet_disable_sync_once(&sched_engine->tasklet);
1636                 sched_engine->tasklet.callback = NULL;
1637         }
1638 }
1639
1640 static void enable_submission(struct intel_guc *guc)
1641 {
1642         struct i915_sched_engine * const sched_engine = guc->sched_engine;
1643         unsigned long flags;
1644
1645         spin_lock_irqsave(&guc->sched_engine->lock, flags);
1646         sched_engine->tasklet.callback = guc_submission_tasklet;
1647         wmb();  /* Make sure callback visible */
1648         if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1649             __tasklet_enable(&sched_engine->tasklet)) {
1650                 GEM_BUG_ON(!guc->ct.enabled);
1651
1652                 /* And kick in case we missed a new request submission. */
1653                 tasklet_hi_schedule(&sched_engine->tasklet);
1654         }
1655         spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1656 }
1657
1658 static void guc_flush_submissions(struct intel_guc *guc)
1659 {
1660         struct i915_sched_engine * const sched_engine = guc->sched_engine;
1661         unsigned long flags;
1662
1663         spin_lock_irqsave(&sched_engine->lock, flags);
1664         spin_unlock_irqrestore(&sched_engine->lock, flags);
1665 }
1666
1667 void intel_guc_submission_flush_work(struct intel_guc *guc)
1668 {
1669         flush_work(&guc->submission_state.destroyed_worker);
1670 }
1671
1672 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1673
1674 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1675 {
1676         if (unlikely(!guc_submission_initialized(guc))) {
1677                 /* Reset called during driver load? GuC not yet initialised! */
1678                 return;
1679         }
1680
1681         intel_gt_park_heartbeats(guc_to_gt(guc));
1682         disable_submission(guc);
1683         guc->interrupts.disable(guc);
1684         __reset_guc_busyness_stats(guc);
1685
1686         /* Flush IRQ handler */
1687         spin_lock_irq(guc_to_gt(guc)->irq_lock);
1688         spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1689
1690         guc_flush_submissions(guc);
1691         guc_flush_destroyed_contexts(guc);
1692         flush_work(&guc->ct.requests.worker);
1693
1694         scrub_guc_desc_for_outstanding_g2h(guc);
1695 }
1696
1697 static struct intel_engine_cs *
1698 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1699 {
1700         struct intel_engine_cs *engine;
1701         intel_engine_mask_t tmp, mask = ve->mask;
1702         unsigned int num_siblings = 0;
1703
1704         for_each_engine_masked(engine, ve->gt, mask, tmp)
1705                 if (num_siblings++ == sibling)
1706                         return engine;
1707
1708         return NULL;
1709 }
1710
1711 static inline struct intel_engine_cs *
1712 __context_to_physical_engine(struct intel_context *ce)
1713 {
1714         struct intel_engine_cs *engine = ce->engine;
1715
1716         if (intel_engine_is_virtual(engine))
1717                 engine = guc_virtual_get_sibling(engine, 0);
1718
1719         return engine;
1720 }
1721
1722 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1723 {
1724         struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1725
1726         if (!intel_context_is_schedulable(ce))
1727                 return;
1728
1729         GEM_BUG_ON(!intel_context_is_pinned(ce));
1730
1731         /*
1732          * We want a simple context + ring to execute the breadcrumb update.
1733          * We cannot rely on the context being intact across the GPU hang,
1734          * so clear it and rebuild just what we need for the breadcrumb.
1735          * All pending requests for this context will be zapped, and any
1736          * future request will be after userspace has had the opportunity
1737          * to recreate its own state.
1738          */
1739         if (scrub)
1740                 lrc_init_regs(ce, engine, true);
1741
1742         /* Rerun the request; its payload has been neutered (if guilty). */
1743         lrc_update_regs(ce, engine, head);
1744 }
1745
1746 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1747 {
1748         /*
1749          * Wa_22011802037: In addition to stopping the cs, we need
1750          * to wait for any pending mi force wakeups
1751          */
1752         if (intel_engine_reset_needs_wa_22011802037(engine->gt)) {
1753                 intel_engine_stop_cs(engine);
1754                 intel_engine_wait_for_pending_mi_fw(engine);
1755         }
1756 }
1757
1758 static void guc_reset_nop(struct intel_engine_cs *engine)
1759 {
1760 }
1761
1762 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1763 {
1764 }
1765
1766 static void
1767 __unwind_incomplete_requests(struct intel_context *ce)
1768 {
1769         struct i915_request *rq, *rn;
1770         struct list_head *pl;
1771         int prio = I915_PRIORITY_INVALID;
1772         struct i915_sched_engine * const sched_engine =
1773                 ce->engine->sched_engine;
1774         unsigned long flags;
1775
1776         spin_lock_irqsave(&sched_engine->lock, flags);
1777         spin_lock(&ce->guc_state.lock);
1778         list_for_each_entry_safe_reverse(rq, rn,
1779                                          &ce->guc_state.requests,
1780                                          sched.link) {
1781                 if (i915_request_completed(rq))
1782                         continue;
1783
1784                 list_del_init(&rq->sched.link);
1785                 __i915_request_unsubmit(rq);
1786
1787                 /* Push the request back into the queue for later resubmission. */
1788                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1789                 if (rq_prio(rq) != prio) {
1790                         prio = rq_prio(rq);
1791                         pl = i915_sched_lookup_priolist(sched_engine, prio);
1792                 }
1793                 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1794
1795                 list_add(&rq->sched.link, pl);
1796                 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1797         }
1798         spin_unlock(&ce->guc_state.lock);
1799         spin_unlock_irqrestore(&sched_engine->lock, flags);
1800 }
1801
1802 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1803 {
1804         bool guilty;
1805         struct i915_request *rq;
1806         unsigned long flags;
1807         u32 head;
1808         int i, number_children = ce->parallel.number_children;
1809         struct intel_context *parent = ce;
1810
1811         GEM_BUG_ON(intel_context_is_child(ce));
1812
1813         intel_context_get(ce);
1814
1815         /*
1816          * GuC will implicitly mark the context as non-schedulable when it sends
1817          * the reset notification. Make sure our state reflects this change. The
1818          * context will be marked enabled on resubmission.
1819          */
1820         spin_lock_irqsave(&ce->guc_state.lock, flags);
1821         clr_context_enabled(ce);
1822         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1823
1824         /*
1825          * For each context in the relationship find the hanging request
1826          * resetting each context / request as needed
1827          */
1828         for (i = 0; i < number_children + 1; ++i) {
1829                 if (!intel_context_is_pinned(ce))
1830                         goto next_context;
1831
1832                 guilty = false;
1833                 rq = intel_context_get_active_request(ce);
1834                 if (!rq) {
1835                         head = ce->ring->tail;
1836                         goto out_replay;
1837                 }
1838
1839                 if (i915_request_started(rq))
1840                         guilty = stalled & ce->engine->mask;
1841
1842                 GEM_BUG_ON(i915_active_is_idle(&ce->active));
1843                 head = intel_ring_wrap(ce->ring, rq->head);
1844
1845                 __i915_request_reset(rq, guilty);
1846                 i915_request_put(rq);
1847 out_replay:
1848                 guc_reset_state(ce, head, guilty);
1849 next_context:
1850                 if (i != number_children)
1851                         ce = list_next_entry(ce, parallel.child_link);
1852         }
1853
1854         __unwind_incomplete_requests(parent);
1855         intel_context_put(parent);
1856 }
1857
1858 void wake_up_all_tlb_invalidate(struct intel_guc *guc)
1859 {
1860         struct intel_guc_tlb_wait *wait;
1861         unsigned long i;
1862
1863         if (!intel_guc_tlb_invalidation_is_available(guc))
1864                 return;
1865
1866         xa_lock_irq(&guc->tlb_lookup);
1867         xa_for_each(&guc->tlb_lookup, i, wait)
1868                 wake_up(&wait->wq);
1869         xa_unlock_irq(&guc->tlb_lookup);
1870 }
1871
1872 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1873 {
1874         struct intel_context *ce;
1875         unsigned long index;
1876         unsigned long flags;
1877
1878         if (unlikely(!guc_submission_initialized(guc))) {
1879                 /* Reset called during driver load? GuC not yet initialised! */
1880                 return;
1881         }
1882
1883         xa_lock_irqsave(&guc->context_lookup, flags);
1884         xa_for_each(&guc->context_lookup, index, ce) {
1885                 if (!kref_get_unless_zero(&ce->ref))
1886                         continue;
1887
1888                 xa_unlock(&guc->context_lookup);
1889
1890                 if (intel_context_is_pinned(ce) &&
1891                     !intel_context_is_child(ce))
1892                         __guc_reset_context(ce, stalled);
1893
1894                 intel_context_put(ce);
1895
1896                 xa_lock(&guc->context_lookup);
1897         }
1898         xa_unlock_irqrestore(&guc->context_lookup, flags);
1899
1900         /* GuC is blown away, drop all references to contexts */
1901         xa_destroy(&guc->context_lookup);
1902 }
1903
1904 static void guc_cancel_context_requests(struct intel_context *ce)
1905 {
1906         struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1907         struct i915_request *rq;
1908         unsigned long flags;
1909
1910         /* Mark all executing requests as skipped. */
1911         spin_lock_irqsave(&sched_engine->lock, flags);
1912         spin_lock(&ce->guc_state.lock);
1913         list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1914                 i915_request_put(i915_request_mark_eio(rq));
1915         spin_unlock(&ce->guc_state.lock);
1916         spin_unlock_irqrestore(&sched_engine->lock, flags);
1917 }
1918
1919 static void
1920 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1921 {
1922         struct i915_request *rq, *rn;
1923         struct rb_node *rb;
1924         unsigned long flags;
1925
1926         /* Can be called during boot if GuC fails to load */
1927         if (!sched_engine)
1928                 return;
1929
1930         /*
1931          * Before we call engine->cancel_requests(), we should have exclusive
1932          * access to the submission state. This is arranged for us by the
1933          * caller disabling the interrupt generation, the tasklet and other
1934          * threads that may then access the same state, giving us a free hand
1935          * to reset state. However, we still need to let lockdep be aware that
1936          * we know this state may be accessed in hardirq context, so we
1937          * disable the irq around this manipulation and we want to keep
1938          * the spinlock focused on its duties and not accidentally conflate
1939          * coverage to the submission's irq state. (Similarly, although we
1940          * shouldn't need to disable irq around the manipulation of the
1941          * submission's irq state, we also wish to remind ourselves that
1942          * it is irq state.)
1943          */
1944         spin_lock_irqsave(&sched_engine->lock, flags);
1945
1946         /* Flush the queued requests to the timeline list (for retiring). */
1947         while ((rb = rb_first_cached(&sched_engine->queue))) {
1948                 struct i915_priolist *p = to_priolist(rb);
1949
1950                 priolist_for_each_request_consume(rq, rn, p) {
1951                         list_del_init(&rq->sched.link);
1952
1953                         __i915_request_submit(rq);
1954
1955                         i915_request_put(i915_request_mark_eio(rq));
1956                 }
1957
1958                 rb_erase_cached(&p->node, &sched_engine->queue);
1959                 i915_priolist_free(p);
1960         }
1961
1962         /* Remaining _unready_ requests will be nop'ed when submitted */
1963
1964         sched_engine->queue_priority_hint = INT_MIN;
1965         sched_engine->queue = RB_ROOT_CACHED;
1966
1967         spin_unlock_irqrestore(&sched_engine->lock, flags);
1968 }
1969
1970 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1971 {
1972         struct intel_context *ce;
1973         unsigned long index;
1974         unsigned long flags;
1975
1976         xa_lock_irqsave(&guc->context_lookup, flags);
1977         xa_for_each(&guc->context_lookup, index, ce) {
1978                 if (!kref_get_unless_zero(&ce->ref))
1979                         continue;
1980
1981                 xa_unlock(&guc->context_lookup);
1982
1983                 if (intel_context_is_pinned(ce) &&
1984                     !intel_context_is_child(ce))
1985                         guc_cancel_context_requests(ce);
1986
1987                 intel_context_put(ce);
1988
1989                 xa_lock(&guc->context_lookup);
1990         }
1991         xa_unlock_irqrestore(&guc->context_lookup, flags);
1992
1993         guc_cancel_sched_engine_requests(guc->sched_engine);
1994
1995         /* GuC is blown away, drop all references to contexts */
1996         xa_destroy(&guc->context_lookup);
1997
1998         /*
1999          * Wedged GT won't respond to any TLB invalidation request. Simply
2000          * release all the blocked waiters.
2001          */
2002         wake_up_all_tlb_invalidate(guc);
2003 }
2004
2005 void intel_guc_submission_reset_finish(struct intel_guc *guc)
2006 {
2007         /*
2008          * Ensure the busyness worker gets cancelled even on a fatal wedge.
2009          * Note that reset_prepare is not allowed to because it confuses lockdep.
2010          */
2011         if (guc_submission_initialized(guc))
2012                 guc_cancel_busyness_worker(guc);
2013
2014         /* Reset called during driver load or during wedge? */
2015         if (unlikely(!guc_submission_initialized(guc) ||
2016                      !intel_guc_is_fw_running(guc) ||
2017                      intel_gt_is_wedged(guc_to_gt(guc)))) {
2018                 return;
2019         }
2020
2021         /*
2022          * Technically possible for either of these values to be non-zero here,
2023          * but very unlikely + harmless. Regardless let's add a warn so we can
2024          * see in CI if this happens frequently / a precursor to taking down the
2025          * machine.
2026          */
2027         GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
2028         atomic_set(&guc->outstanding_submission_g2h, 0);
2029
2030         intel_guc_global_policies_update(guc);
2031         enable_submission(guc);
2032         intel_gt_unpark_heartbeats(guc_to_gt(guc));
2033
2034         /*
2035          * The full GT reset will have cleared the TLB caches and flushed the
2036          * G2H message queue; we can release all the blocked waiters.
2037          */
2038         wake_up_all_tlb_invalidate(guc);
2039 }
2040
2041 static void destroyed_worker_func(struct work_struct *w);
2042 static void reset_fail_worker_func(struct work_struct *w);
2043
2044 bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc)
2045 {
2046         return HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915) &&
2047                 intel_guc_is_ready(guc);
2048 }
2049
2050 static int init_tlb_lookup(struct intel_guc *guc)
2051 {
2052         struct intel_guc_tlb_wait *wait;
2053         int err;
2054
2055         if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2056                 return 0;
2057
2058         xa_init_flags(&guc->tlb_lookup, XA_FLAGS_ALLOC);
2059
2060         wait = kzalloc(sizeof(*wait), GFP_KERNEL);
2061         if (!wait)
2062                 return -ENOMEM;
2063
2064         init_waitqueue_head(&wait->wq);
2065
2066         /* Preallocate a shared id for use under memory pressure. */
2067         err = xa_alloc_cyclic_irq(&guc->tlb_lookup, &guc->serial_slot, wait,
2068                                   xa_limit_32b, &guc->next_seqno, GFP_KERNEL);
2069         if (err < 0) {
2070                 kfree(wait);
2071                 return err;
2072         }
2073
2074         return 0;
2075 }
2076
2077 static void fini_tlb_lookup(struct intel_guc *guc)
2078 {
2079         struct intel_guc_tlb_wait *wait;
2080
2081         if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2082                 return;
2083
2084         wait = xa_load(&guc->tlb_lookup, guc->serial_slot);
2085         if (wait && wait->busy)
2086                 guc_err(guc, "Unexpected busy item in tlb_lookup on fini\n");
2087         kfree(wait);
2088
2089         xa_destroy(&guc->tlb_lookup);
2090 }
2091
2092 /*
2093  * Set up the memory resources to be shared with the GuC (via the GGTT)
2094  * at firmware loading time.
2095  */
2096 int intel_guc_submission_init(struct intel_guc *guc)
2097 {
2098         struct intel_gt *gt = guc_to_gt(guc);
2099         int ret;
2100
2101         if (guc->submission_initialized)
2102                 return 0;
2103
2104         if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) {
2105                 ret = guc_lrc_desc_pool_create_v69(guc);
2106                 if (ret)
2107                         return ret;
2108         }
2109
2110         ret = init_tlb_lookup(guc);
2111         if (ret)
2112                 goto destroy_pool;
2113
2114         guc->submission_state.guc_ids_bitmap =
2115                 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
2116         if (!guc->submission_state.guc_ids_bitmap) {
2117                 ret = -ENOMEM;
2118                 goto destroy_tlb;
2119         }
2120
2121         guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
2122         guc->timestamp.shift = gpm_timestamp_shift(gt);
2123         guc->submission_initialized = true;
2124
2125         return 0;
2126
2127 destroy_tlb:
2128         fini_tlb_lookup(guc);
2129 destroy_pool:
2130         guc_lrc_desc_pool_destroy_v69(guc);
2131         return ret;
2132 }
2133
2134 void intel_guc_submission_fini(struct intel_guc *guc)
2135 {
2136         if (!guc->submission_initialized)
2137                 return;
2138
2139         guc_flush_destroyed_contexts(guc);
2140         guc_lrc_desc_pool_destroy_v69(guc);
2141         i915_sched_engine_put(guc->sched_engine);
2142         bitmap_free(guc->submission_state.guc_ids_bitmap);
2143         fini_tlb_lookup(guc);
2144         guc->submission_initialized = false;
2145 }
2146
2147 static inline void queue_request(struct i915_sched_engine *sched_engine,
2148                                  struct i915_request *rq,
2149                                  int prio)
2150 {
2151         GEM_BUG_ON(!list_empty(&rq->sched.link));
2152         list_add_tail(&rq->sched.link,
2153                       i915_sched_lookup_priolist(sched_engine, prio));
2154         set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2155         tasklet_hi_schedule(&sched_engine->tasklet);
2156 }
2157
2158 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
2159                                      struct i915_request *rq)
2160 {
2161         int ret = 0;
2162
2163         __i915_request_submit(rq);
2164
2165         trace_i915_request_in(rq, 0);
2166
2167         if (is_multi_lrc_rq(rq)) {
2168                 if (multi_lrc_submit(rq)) {
2169                         ret = guc_wq_item_append(guc, rq);
2170                         if (!ret)
2171                                 ret = guc_add_request(guc, rq);
2172                 }
2173         } else {
2174                 guc_set_lrc_tail(rq);
2175                 ret = guc_add_request(guc, rq);
2176         }
2177
2178         if (unlikely(ret == -EPIPE))
2179                 disable_submission(guc);
2180
2181         return ret;
2182 }
2183
2184 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
2185 {
2186         struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2187         struct intel_context *ce = request_to_scheduling_context(rq);
2188
2189         return submission_disabled(guc) || guc->stalled_request ||
2190                 !i915_sched_engine_is_empty(sched_engine) ||
2191                 !ctx_id_mapped(guc, ce->guc_id.id);
2192 }
2193
2194 static void guc_submit_request(struct i915_request *rq)
2195 {
2196         struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2197         struct intel_guc *guc = &rq->engine->gt->uc.guc;
2198         unsigned long flags;
2199
2200         /* Will be called from irq-context when using foreign fences. */
2201         spin_lock_irqsave(&sched_engine->lock, flags);
2202
2203         if (need_tasklet(guc, rq))
2204                 queue_request(sched_engine, rq, rq_prio(rq));
2205         else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
2206                 tasklet_hi_schedule(&sched_engine->tasklet);
2207
2208         spin_unlock_irqrestore(&sched_engine->lock, flags);
2209 }
2210
2211 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
2212 {
2213         int ret;
2214
2215         GEM_BUG_ON(intel_context_is_child(ce));
2216
2217         if (intel_context_is_parent(ce))
2218                 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2219                                               NUMBER_MULTI_LRC_GUC_ID(guc),
2220                                               order_base_2(ce->parallel.number_children
2221                                                            + 1));
2222         else
2223                 ret = ida_simple_get(&guc->submission_state.guc_ids,
2224                                      NUMBER_MULTI_LRC_GUC_ID(guc),
2225                                      guc->submission_state.num_guc_ids,
2226                                      GFP_KERNEL | __GFP_RETRY_MAYFAIL |
2227                                      __GFP_NOWARN);
2228         if (unlikely(ret < 0))
2229                 return ret;
2230
2231         if (!intel_context_is_parent(ce))
2232                 ++guc->submission_state.guc_ids_in_use;
2233
2234         ce->guc_id.id = ret;
2235         return 0;
2236 }
2237
2238 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2239 {
2240         GEM_BUG_ON(intel_context_is_child(ce));
2241
2242         if (!context_guc_id_invalid(ce)) {
2243                 if (intel_context_is_parent(ce)) {
2244                         bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2245                                               ce->guc_id.id,
2246                                               order_base_2(ce->parallel.number_children
2247                                                            + 1));
2248                 } else {
2249                         --guc->submission_state.guc_ids_in_use;
2250                         ida_simple_remove(&guc->submission_state.guc_ids,
2251                                           ce->guc_id.id);
2252                 }
2253                 clr_ctx_id_mapping(guc, ce->guc_id.id);
2254                 set_context_guc_id_invalid(ce);
2255         }
2256         if (!list_empty(&ce->guc_id.link))
2257                 list_del_init(&ce->guc_id.link);
2258 }
2259
2260 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2261 {
2262         unsigned long flags;
2263
2264         spin_lock_irqsave(&guc->submission_state.lock, flags);
2265         __release_guc_id(guc, ce);
2266         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2267 }
2268
2269 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2270 {
2271         struct intel_context *cn;
2272
2273         lockdep_assert_held(&guc->submission_state.lock);
2274         GEM_BUG_ON(intel_context_is_child(ce));
2275         GEM_BUG_ON(intel_context_is_parent(ce));
2276
2277         if (!list_empty(&guc->submission_state.guc_id_list)) {
2278                 cn = list_first_entry(&guc->submission_state.guc_id_list,
2279                                       struct intel_context,
2280                                       guc_id.link);
2281
2282                 GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2283                 GEM_BUG_ON(context_guc_id_invalid(cn));
2284                 GEM_BUG_ON(intel_context_is_child(cn));
2285                 GEM_BUG_ON(intel_context_is_parent(cn));
2286
2287                 list_del_init(&cn->guc_id.link);
2288                 ce->guc_id.id = cn->guc_id.id;
2289
2290                 spin_lock(&cn->guc_state.lock);
2291                 clr_context_registered(cn);
2292                 spin_unlock(&cn->guc_state.lock);
2293
2294                 set_context_guc_id_invalid(cn);
2295
2296 #ifdef CONFIG_DRM_I915_SELFTEST
2297                 guc->number_guc_id_stolen++;
2298 #endif
2299
2300                 return 0;
2301         } else {
2302                 return -EAGAIN;
2303         }
2304 }
2305
2306 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2307 {
2308         int ret;
2309
2310         lockdep_assert_held(&guc->submission_state.lock);
2311         GEM_BUG_ON(intel_context_is_child(ce));
2312
2313         ret = new_guc_id(guc, ce);
2314         if (unlikely(ret < 0)) {
2315                 if (intel_context_is_parent(ce))
2316                         return -ENOSPC;
2317
2318                 ret = steal_guc_id(guc, ce);
2319                 if (ret < 0)
2320                         return ret;
2321         }
2322
2323         if (intel_context_is_parent(ce)) {
2324                 struct intel_context *child;
2325                 int i = 1;
2326
2327                 for_each_child(ce, child)
2328                         child->guc_id.id = ce->guc_id.id + i++;
2329         }
2330
2331         return 0;
2332 }
2333
2334 #define PIN_GUC_ID_TRIES        4
2335 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2336 {
2337         int ret = 0;
2338         unsigned long flags, tries = PIN_GUC_ID_TRIES;
2339
2340         GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2341
2342 try_again:
2343         spin_lock_irqsave(&guc->submission_state.lock, flags);
2344
2345         might_lock(&ce->guc_state.lock);
2346
2347         if (context_guc_id_invalid(ce)) {
2348                 ret = assign_guc_id(guc, ce);
2349                 if (ret)
2350                         goto out_unlock;
2351                 ret = 1;        /* Indidcates newly assigned guc_id */
2352         }
2353         if (!list_empty(&ce->guc_id.link))
2354                 list_del_init(&ce->guc_id.link);
2355         atomic_inc(&ce->guc_id.ref);
2356
2357 out_unlock:
2358         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2359
2360         /*
2361          * -EAGAIN indicates no guc_id are available, let's retire any
2362          * outstanding requests to see if that frees up a guc_id. If the first
2363          * retire didn't help, insert a sleep with the timeslice duration before
2364          * attempting to retire more requests. Double the sleep period each
2365          * subsequent pass before finally giving up. The sleep period has max of
2366          * 100ms and minimum of 1ms.
2367          */
2368         if (ret == -EAGAIN && --tries) {
2369                 if (PIN_GUC_ID_TRIES - tries > 1) {
2370                         unsigned int timeslice_shifted =
2371                                 ce->engine->props.timeslice_duration_ms <<
2372                                 (PIN_GUC_ID_TRIES - tries - 2);
2373                         unsigned int max = min_t(unsigned int, 100,
2374                                                  timeslice_shifted);
2375
2376                         msleep(max_t(unsigned int, max, 1));
2377                 }
2378                 intel_gt_retire_requests(guc_to_gt(guc));
2379                 goto try_again;
2380         }
2381
2382         return ret;
2383 }
2384
2385 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2386 {
2387         unsigned long flags;
2388
2389         GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2390         GEM_BUG_ON(intel_context_is_child(ce));
2391
2392         if (unlikely(context_guc_id_invalid(ce) ||
2393                      intel_context_is_parent(ce)))
2394                 return;
2395
2396         spin_lock_irqsave(&guc->submission_state.lock, flags);
2397         if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2398             !atomic_read(&ce->guc_id.ref))
2399                 list_add_tail(&ce->guc_id.link,
2400                               &guc->submission_state.guc_id_list);
2401         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2402 }
2403
2404 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2405                                                struct intel_context *ce,
2406                                                u32 guc_id,
2407                                                u32 offset,
2408                                                bool loop)
2409 {
2410         struct intel_context *child;
2411         u32 action[4 + MAX_ENGINE_INSTANCE];
2412         int len = 0;
2413
2414         GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2415
2416         action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2417         action[len++] = guc_id;
2418         action[len++] = ce->parallel.number_children + 1;
2419         action[len++] = offset;
2420         for_each_child(ce, child) {
2421                 offset += sizeof(struct guc_lrc_desc_v69);
2422                 action[len++] = offset;
2423         }
2424
2425         return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2426 }
2427
2428 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2429                                                struct intel_context *ce,
2430                                                struct guc_ctxt_registration_info *info,
2431                                                bool loop)
2432 {
2433         struct intel_context *child;
2434         u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2435         int len = 0;
2436         u32 next_id;
2437
2438         GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2439
2440         action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2441         action[len++] = info->flags;
2442         action[len++] = info->context_idx;
2443         action[len++] = info->engine_class;
2444         action[len++] = info->engine_submit_mask;
2445         action[len++] = info->wq_desc_lo;
2446         action[len++] = info->wq_desc_hi;
2447         action[len++] = info->wq_base_lo;
2448         action[len++] = info->wq_base_hi;
2449         action[len++] = info->wq_size;
2450         action[len++] = ce->parallel.number_children + 1;
2451         action[len++] = info->hwlrca_lo;
2452         action[len++] = info->hwlrca_hi;
2453
2454         next_id = info->context_idx + 1;
2455         for_each_child(ce, child) {
2456                 GEM_BUG_ON(next_id++ != child->guc_id.id);
2457
2458                 /*
2459                  * NB: GuC interface supports 64 bit LRCA even though i915/HW
2460                  * only supports 32 bit currently.
2461                  */
2462                 action[len++] = lower_32_bits(child->lrc.lrca);
2463                 action[len++] = upper_32_bits(child->lrc.lrca);
2464         }
2465
2466         GEM_BUG_ON(len > ARRAY_SIZE(action));
2467
2468         return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2469 }
2470
2471 static int __guc_action_register_context_v69(struct intel_guc *guc,
2472                                              u32 guc_id,
2473                                              u32 offset,
2474                                              bool loop)
2475 {
2476         u32 action[] = {
2477                 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2478                 guc_id,
2479                 offset,
2480         };
2481
2482         return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2483                                              0, loop);
2484 }
2485
2486 static int __guc_action_register_context_v70(struct intel_guc *guc,
2487                                              struct guc_ctxt_registration_info *info,
2488                                              bool loop)
2489 {
2490         u32 action[] = {
2491                 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2492                 info->flags,
2493                 info->context_idx,
2494                 info->engine_class,
2495                 info->engine_submit_mask,
2496                 info->wq_desc_lo,
2497                 info->wq_desc_hi,
2498                 info->wq_base_lo,
2499                 info->wq_base_hi,
2500                 info->wq_size,
2501                 info->hwlrca_lo,
2502                 info->hwlrca_hi,
2503         };
2504
2505         return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2506                                              0, loop);
2507 }
2508
2509 static void prepare_context_registration_info_v69(struct intel_context *ce);
2510 static void prepare_context_registration_info_v70(struct intel_context *ce,
2511                                                   struct guc_ctxt_registration_info *info);
2512
2513 static int
2514 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2515 {
2516         u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2517                 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2518
2519         prepare_context_registration_info_v69(ce);
2520
2521         if (intel_context_is_parent(ce))
2522                 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2523                                                            offset, loop);
2524         else
2525                 return __guc_action_register_context_v69(guc, ce->guc_id.id,
2526                                                          offset, loop);
2527 }
2528
2529 static int
2530 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2531 {
2532         struct guc_ctxt_registration_info info;
2533
2534         prepare_context_registration_info_v70(ce, &info);
2535
2536         if (intel_context_is_parent(ce))
2537                 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2538         else
2539                 return __guc_action_register_context_v70(guc, &info, loop);
2540 }
2541
2542 static int register_context(struct intel_context *ce, bool loop)
2543 {
2544         struct intel_guc *guc = ce_to_guc(ce);
2545         int ret;
2546
2547         GEM_BUG_ON(intel_context_is_child(ce));
2548         trace_intel_context_register(ce);
2549
2550         if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2551                 ret = register_context_v70(guc, ce, loop);
2552         else
2553                 ret = register_context_v69(guc, ce, loop);
2554
2555         if (likely(!ret)) {
2556                 unsigned long flags;
2557
2558                 spin_lock_irqsave(&ce->guc_state.lock, flags);
2559                 set_context_registered(ce);
2560                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2561
2562                 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2563                         guc_context_policy_init_v70(ce, loop);
2564         }
2565
2566         return ret;
2567 }
2568
2569 static int __guc_action_deregister_context(struct intel_guc *guc,
2570                                            u32 guc_id)
2571 {
2572         u32 action[] = {
2573                 INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2574                 guc_id,
2575         };
2576
2577         return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2578                                              G2H_LEN_DW_DEREGISTER_CONTEXT,
2579                                              true);
2580 }
2581
2582 static int deregister_context(struct intel_context *ce, u32 guc_id)
2583 {
2584         struct intel_guc *guc = ce_to_guc(ce);
2585
2586         GEM_BUG_ON(intel_context_is_child(ce));
2587         trace_intel_context_deregister(ce);
2588
2589         return __guc_action_deregister_context(guc, guc_id);
2590 }
2591
2592 static inline void clear_children_join_go_memory(struct intel_context *ce)
2593 {
2594         struct parent_scratch *ps = __get_parent_scratch(ce);
2595         int i;
2596
2597         ps->go.semaphore = 0;
2598         for (i = 0; i < ce->parallel.number_children + 1; ++i)
2599                 ps->join[i].semaphore = 0;
2600 }
2601
2602 static inline u32 get_children_go_value(struct intel_context *ce)
2603 {
2604         return __get_parent_scratch(ce)->go.semaphore;
2605 }
2606
2607 static inline u32 get_children_join_value(struct intel_context *ce,
2608                                           u8 child_index)
2609 {
2610         return __get_parent_scratch(ce)->join[child_index].semaphore;
2611 }
2612
2613 struct context_policy {
2614         u32 count;
2615         struct guc_update_context_policy h2g;
2616 };
2617
2618 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2619 {
2620         size_t bytes = sizeof(policy->h2g.header) +
2621                        (sizeof(policy->h2g.klv[0]) * policy->count);
2622
2623         return bytes / sizeof(u32);
2624 }
2625
2626 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2627 {
2628         policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2629         policy->h2g.header.ctx_id = guc_id;
2630         policy->count = 0;
2631 }
2632
2633 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2634 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2635 { \
2636         GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2637         policy->h2g.klv[policy->count].kl = \
2638                 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2639                 FIELD_PREP(GUC_KLV_0_LEN, 1); \
2640         policy->h2g.klv[policy->count].value = data; \
2641         policy->count++; \
2642 }
2643
2644 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2645 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2646 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2647 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2648
2649 #undef MAKE_CONTEXT_POLICY_ADD
2650
2651 static int __guc_context_set_context_policies(struct intel_guc *guc,
2652                                               struct context_policy *policy,
2653                                               bool loop)
2654 {
2655         return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2656                                         __guc_context_policy_action_size(policy),
2657                                         0, loop);
2658 }
2659
2660 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2661 {
2662         struct intel_engine_cs *engine = ce->engine;
2663         struct intel_guc *guc = &engine->gt->uc.guc;
2664         struct context_policy policy;
2665         u32 execution_quantum;
2666         u32 preemption_timeout;
2667         unsigned long flags;
2668         int ret;
2669
2670         /* NB: For both of these, zero means disabled. */
2671         GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2672                                   execution_quantum));
2673         GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2674                                   preemption_timeout));
2675         execution_quantum = engine->props.timeslice_duration_ms * 1000;
2676         preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2677
2678         __guc_context_policy_start_klv(&policy, ce->guc_id.id);
2679
2680         __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2681         __guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2682         __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2683
2684         if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2685                 __guc_context_policy_add_preempt_to_idle(&policy, 1);
2686
2687         ret = __guc_context_set_context_policies(guc, &policy, loop);
2688
2689         spin_lock_irqsave(&ce->guc_state.lock, flags);
2690         if (ret != 0)
2691                 set_context_policy_required(ce);
2692         else
2693                 clr_context_policy_required(ce);
2694         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2695
2696         return ret;
2697 }
2698
2699 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2700                                         struct guc_lrc_desc_v69 *desc)
2701 {
2702         desc->policy_flags = 0;
2703
2704         if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2705                 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2706
2707         /* NB: For both of these, zero means disabled. */
2708         GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2709                                   desc->execution_quantum));
2710         GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2711                                   desc->preemption_timeout));
2712         desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2713         desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2714 }
2715
2716 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2717 {
2718         /*
2719          * this matches the mapping we do in map_i915_prio_to_guc_prio()
2720          * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2721          */
2722         switch (prio) {
2723         default:
2724                 MISSING_CASE(prio);
2725                 fallthrough;
2726         case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2727                 return GEN12_CTX_PRIORITY_NORMAL;
2728         case GUC_CLIENT_PRIORITY_NORMAL:
2729                 return GEN12_CTX_PRIORITY_LOW;
2730         case GUC_CLIENT_PRIORITY_HIGH:
2731         case GUC_CLIENT_PRIORITY_KMD_HIGH:
2732                 return GEN12_CTX_PRIORITY_HIGH;
2733         }
2734 }
2735
2736 static void prepare_context_registration_info_v69(struct intel_context *ce)
2737 {
2738         struct intel_engine_cs *engine = ce->engine;
2739         struct intel_guc *guc = &engine->gt->uc.guc;
2740         u32 ctx_id = ce->guc_id.id;
2741         struct guc_lrc_desc_v69 *desc;
2742         struct intel_context *child;
2743
2744         GEM_BUG_ON(!engine->mask);
2745
2746         /*
2747          * Ensure LRC + CT vmas are is same region as write barrier is done
2748          * based on CT vma region.
2749          */
2750         GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2751                    i915_gem_object_is_lmem(ce->ring->vma->obj));
2752
2753         desc = __get_lrc_desc_v69(guc, ctx_id);
2754         GEM_BUG_ON(!desc);
2755         desc->engine_class = engine_class_to_guc_class(engine->class);
2756         desc->engine_submit_mask = engine->logical_mask;
2757         desc->hw_context_desc = ce->lrc.lrca;
2758         desc->priority = ce->guc_state.prio;
2759         desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2760         guc_context_policy_init_v69(engine, desc);
2761
2762         /*
2763          * If context is a parent, we need to register a process descriptor
2764          * describing a work queue and register all child contexts.
2765          */
2766         if (intel_context_is_parent(ce)) {
2767                 struct guc_process_desc_v69 *pdesc;
2768
2769                 ce->parallel.guc.wqi_tail = 0;
2770                 ce->parallel.guc.wqi_head = 0;
2771
2772                 desc->process_desc = i915_ggtt_offset(ce->state) +
2773                         __get_parent_scratch_offset(ce);
2774                 desc->wq_addr = i915_ggtt_offset(ce->state) +
2775                         __get_wq_offset(ce);
2776                 desc->wq_size = WQ_SIZE;
2777
2778                 pdesc = __get_process_desc_v69(ce);
2779                 memset(pdesc, 0, sizeof(*(pdesc)));
2780                 pdesc->stage_id = ce->guc_id.id;
2781                 pdesc->wq_base_addr = desc->wq_addr;
2782                 pdesc->wq_size_bytes = desc->wq_size;
2783                 pdesc->wq_status = WQ_STATUS_ACTIVE;
2784
2785                 ce->parallel.guc.wq_head = &pdesc->head;
2786                 ce->parallel.guc.wq_tail = &pdesc->tail;
2787                 ce->parallel.guc.wq_status = &pdesc->wq_status;
2788
2789                 for_each_child(ce, child) {
2790                         desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2791
2792                         desc->engine_class =
2793                                 engine_class_to_guc_class(engine->class);
2794                         desc->hw_context_desc = child->lrc.lrca;
2795                         desc->priority = ce->guc_state.prio;
2796                         desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2797                         guc_context_policy_init_v69(engine, desc);
2798                 }
2799
2800                 clear_children_join_go_memory(ce);
2801         }
2802 }
2803
2804 static void prepare_context_registration_info_v70(struct intel_context *ce,
2805                                                   struct guc_ctxt_registration_info *info)
2806 {
2807         struct intel_engine_cs *engine = ce->engine;
2808         struct intel_guc *guc = &engine->gt->uc.guc;
2809         u32 ctx_id = ce->guc_id.id;
2810
2811         GEM_BUG_ON(!engine->mask);
2812
2813         /*
2814          * Ensure LRC + CT vmas are is same region as write barrier is done
2815          * based on CT vma region.
2816          */
2817         GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2818                    i915_gem_object_is_lmem(ce->ring->vma->obj));
2819
2820         memset(info, 0, sizeof(*info));
2821         info->context_idx = ctx_id;
2822         info->engine_class = engine_class_to_guc_class(engine->class);
2823         info->engine_submit_mask = engine->logical_mask;
2824         /*
2825          * NB: GuC interface supports 64 bit LRCA even though i915/HW
2826          * only supports 32 bit currently.
2827          */
2828         info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2829         info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2830         if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2831                 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2832         info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2833
2834         /*
2835          * If context is a parent, we need to register a process descriptor
2836          * describing a work queue and register all child contexts.
2837          */
2838         if (intel_context_is_parent(ce)) {
2839                 struct guc_sched_wq_desc *wq_desc;
2840                 u64 wq_desc_offset, wq_base_offset;
2841
2842                 ce->parallel.guc.wqi_tail = 0;
2843                 ce->parallel.guc.wqi_head = 0;
2844
2845                 wq_desc_offset = i915_ggtt_offset(ce->state) +
2846                                  __get_parent_scratch_offset(ce);
2847                 wq_base_offset = i915_ggtt_offset(ce->state) +
2848                                  __get_wq_offset(ce);
2849                 info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2850                 info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2851                 info->wq_base_lo = lower_32_bits(wq_base_offset);
2852                 info->wq_base_hi = upper_32_bits(wq_base_offset);
2853                 info->wq_size = WQ_SIZE;
2854
2855                 wq_desc = __get_wq_desc_v70(ce);
2856                 memset(wq_desc, 0, sizeof(*wq_desc));
2857                 wq_desc->wq_status = WQ_STATUS_ACTIVE;
2858
2859                 ce->parallel.guc.wq_head = &wq_desc->head;
2860                 ce->parallel.guc.wq_tail = &wq_desc->tail;
2861                 ce->parallel.guc.wq_status = &wq_desc->wq_status;
2862
2863                 clear_children_join_go_memory(ce);
2864         }
2865 }
2866
2867 static int try_context_registration(struct intel_context *ce, bool loop)
2868 {
2869         struct intel_engine_cs *engine = ce->engine;
2870         struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2871         struct intel_guc *guc = &engine->gt->uc.guc;
2872         intel_wakeref_t wakeref;
2873         u32 ctx_id = ce->guc_id.id;
2874         bool context_registered;
2875         int ret = 0;
2876
2877         GEM_BUG_ON(!sched_state_is_init(ce));
2878
2879         context_registered = ctx_id_mapped(guc, ctx_id);
2880
2881         clr_ctx_id_mapping(guc, ctx_id);
2882         set_ctx_id_mapping(guc, ctx_id, ce);
2883
2884         /*
2885          * The context_lookup xarray is used to determine if the hardware
2886          * context is currently registered. There are two cases in which it
2887          * could be registered either the guc_id has been stolen from another
2888          * context or the lrc descriptor address of this context has changed. In
2889          * either case the context needs to be deregistered with the GuC before
2890          * registering this context.
2891          */
2892         if (context_registered) {
2893                 bool disabled;
2894                 unsigned long flags;
2895
2896                 trace_intel_context_steal_guc_id(ce);
2897                 GEM_BUG_ON(!loop);
2898
2899                 /* Seal race with Reset */
2900                 spin_lock_irqsave(&ce->guc_state.lock, flags);
2901                 disabled = submission_disabled(guc);
2902                 if (likely(!disabled)) {
2903                         set_context_wait_for_deregister_to_register(ce);
2904                         intel_context_get(ce);
2905                 }
2906                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2907                 if (unlikely(disabled)) {
2908                         clr_ctx_id_mapping(guc, ctx_id);
2909                         return 0;       /* Will get registered later */
2910                 }
2911
2912                 /*
2913                  * If stealing the guc_id, this ce has the same guc_id as the
2914                  * context whose guc_id was stolen.
2915                  */
2916                 with_intel_runtime_pm(runtime_pm, wakeref)
2917                         ret = deregister_context(ce, ce->guc_id.id);
2918                 if (unlikely(ret == -ENODEV))
2919                         ret = 0;        /* Will get registered later */
2920         } else {
2921                 with_intel_runtime_pm(runtime_pm, wakeref)
2922                         ret = register_context(ce, loop);
2923                 if (unlikely(ret == -EBUSY)) {
2924                         clr_ctx_id_mapping(guc, ctx_id);
2925                 } else if (unlikely(ret == -ENODEV)) {
2926                         clr_ctx_id_mapping(guc, ctx_id);
2927                         ret = 0;        /* Will get registered later */
2928                 }
2929         }
2930
2931         return ret;
2932 }
2933
2934 static int __guc_context_pre_pin(struct intel_context *ce,
2935                                  struct intel_engine_cs *engine,
2936                                  struct i915_gem_ww_ctx *ww,
2937                                  void **vaddr)
2938 {
2939         return lrc_pre_pin(ce, engine, ww, vaddr);
2940 }
2941
2942 static int __guc_context_pin(struct intel_context *ce,
2943                              struct intel_engine_cs *engine,
2944                              void *vaddr)
2945 {
2946         if (i915_ggtt_offset(ce->state) !=
2947             (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2948                 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2949
2950         /*
2951          * GuC context gets pinned in guc_request_alloc. See that function for
2952          * explaination of why.
2953          */
2954
2955         return lrc_pin(ce, engine, vaddr);
2956 }
2957
2958 static int guc_context_pre_pin(struct intel_context *ce,
2959                                struct i915_gem_ww_ctx *ww,
2960                                void **vaddr)
2961 {
2962         return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
2963 }
2964
2965 static int guc_context_pin(struct intel_context *ce, void *vaddr)
2966 {
2967         int ret = __guc_context_pin(ce, ce->engine, vaddr);
2968
2969         if (likely(!ret && !intel_context_is_barrier(ce)))
2970                 intel_engine_pm_get(ce->engine);
2971
2972         return ret;
2973 }
2974
2975 static void guc_context_unpin(struct intel_context *ce)
2976 {
2977         struct intel_guc *guc = ce_to_guc(ce);
2978
2979         __guc_context_update_stats(ce);
2980         unpin_guc_id(guc, ce);
2981         lrc_unpin(ce);
2982
2983         if (likely(!intel_context_is_barrier(ce)))
2984                 intel_engine_pm_put_async(ce->engine);
2985 }
2986
2987 static void guc_context_post_unpin(struct intel_context *ce)
2988 {
2989         lrc_post_unpin(ce);
2990 }
2991
2992 static void __guc_context_sched_enable(struct intel_guc *guc,
2993                                        struct intel_context *ce)
2994 {
2995         u32 action[] = {
2996                 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2997                 ce->guc_id.id,
2998                 GUC_CONTEXT_ENABLE
2999         };
3000
3001         trace_intel_context_sched_enable(ce);
3002
3003         guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3004                                       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3005 }
3006
3007 static void __guc_context_sched_disable(struct intel_guc *guc,
3008                                         struct intel_context *ce,
3009                                         u16 guc_id)
3010 {
3011         u32 action[] = {
3012                 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
3013                 guc_id, /* ce->guc_id.id not stable */
3014                 GUC_CONTEXT_DISABLE
3015         };
3016
3017         GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
3018
3019         GEM_BUG_ON(intel_context_is_child(ce));
3020         trace_intel_context_sched_disable(ce);
3021
3022         guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3023                                       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3024 }
3025
3026 static void guc_blocked_fence_complete(struct intel_context *ce)
3027 {
3028         lockdep_assert_held(&ce->guc_state.lock);
3029
3030         if (!i915_sw_fence_done(&ce->guc_state.blocked))
3031                 i915_sw_fence_complete(&ce->guc_state.blocked);
3032 }
3033
3034 static void guc_blocked_fence_reinit(struct intel_context *ce)
3035 {
3036         lockdep_assert_held(&ce->guc_state.lock);
3037         GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
3038
3039         /*
3040          * This fence is always complete unless a pending schedule disable is
3041          * outstanding. We arm the fence here and complete it when we receive
3042          * the pending schedule disable complete message.
3043          */
3044         i915_sw_fence_fini(&ce->guc_state.blocked);
3045         i915_sw_fence_reinit(&ce->guc_state.blocked);
3046         i915_sw_fence_await(&ce->guc_state.blocked);
3047         i915_sw_fence_commit(&ce->guc_state.blocked);
3048 }
3049
3050 static u16 prep_context_pending_disable(struct intel_context *ce)
3051 {
3052         lockdep_assert_held(&ce->guc_state.lock);
3053
3054         set_context_pending_disable(ce);
3055         clr_context_enabled(ce);
3056         guc_blocked_fence_reinit(ce);
3057         intel_context_get(ce);
3058
3059         return ce->guc_id.id;
3060 }
3061
3062 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
3063 {
3064         struct intel_guc *guc = ce_to_guc(ce);
3065         unsigned long flags;
3066         struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3067         intel_wakeref_t wakeref;
3068         u16 guc_id;
3069         bool enabled;
3070
3071         GEM_BUG_ON(intel_context_is_child(ce));
3072
3073         spin_lock_irqsave(&ce->guc_state.lock, flags);
3074
3075         incr_context_blocked(ce);
3076
3077         enabled = context_enabled(ce);
3078         if (unlikely(!enabled || submission_disabled(guc))) {
3079                 if (enabled)
3080                         clr_context_enabled(ce);
3081                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3082                 return &ce->guc_state.blocked;
3083         }
3084
3085         /*
3086          * We add +2 here as the schedule disable complete CTB handler calls
3087          * intel_context_sched_disable_unpin (-2 to pin_count).
3088          */
3089         atomic_add(2, &ce->pin_count);
3090
3091         guc_id = prep_context_pending_disable(ce);
3092
3093         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3094
3095         with_intel_runtime_pm(runtime_pm, wakeref)
3096                 __guc_context_sched_disable(guc, ce, guc_id);
3097
3098         return &ce->guc_state.blocked;
3099 }
3100
3101 #define SCHED_STATE_MULTI_BLOCKED_MASK \
3102         (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
3103 #define SCHED_STATE_NO_UNBLOCK \
3104         (SCHED_STATE_MULTI_BLOCKED_MASK | \
3105          SCHED_STATE_PENDING_DISABLE | \
3106          SCHED_STATE_BANNED)
3107
3108 static bool context_cant_unblock(struct intel_context *ce)
3109 {
3110         lockdep_assert_held(&ce->guc_state.lock);
3111
3112         return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
3113                 context_guc_id_invalid(ce) ||
3114                 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
3115                 !intel_context_is_pinned(ce);
3116 }
3117
3118 static void guc_context_unblock(struct intel_context *ce)
3119 {
3120         struct intel_guc *guc = ce_to_guc(ce);
3121         unsigned long flags;
3122         struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3123         intel_wakeref_t wakeref;
3124         bool enable;
3125
3126         GEM_BUG_ON(context_enabled(ce));
3127         GEM_BUG_ON(intel_context_is_child(ce));
3128
3129         spin_lock_irqsave(&ce->guc_state.lock, flags);
3130
3131         if (unlikely(submission_disabled(guc) ||
3132                      context_cant_unblock(ce))) {
3133                 enable = false;
3134         } else {
3135                 enable = true;
3136                 set_context_pending_enable(ce);
3137                 set_context_enabled(ce);
3138                 intel_context_get(ce);
3139         }
3140
3141         decr_context_blocked(ce);
3142
3143         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3144
3145         if (enable) {
3146                 with_intel_runtime_pm(runtime_pm, wakeref)
3147                         __guc_context_sched_enable(guc, ce);
3148         }
3149 }
3150
3151 static void guc_context_cancel_request(struct intel_context *ce,
3152                                        struct i915_request *rq)
3153 {
3154         struct intel_context *block_context =
3155                 request_to_scheduling_context(rq);
3156
3157         if (i915_sw_fence_signaled(&rq->submit)) {
3158                 struct i915_sw_fence *fence;
3159
3160                 intel_context_get(ce);
3161                 fence = guc_context_block(block_context);
3162                 i915_sw_fence_wait(fence);
3163                 if (!i915_request_completed(rq)) {
3164                         __i915_request_skip(rq);
3165                         guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
3166                                         true);
3167                 }
3168
3169                 guc_context_unblock(block_context);
3170                 intel_context_put(ce);
3171         }
3172 }
3173
3174 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
3175                                                  u16 guc_id,
3176                                                  u32 preemption_timeout)
3177 {
3178         if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3179                 struct context_policy policy;
3180
3181                 __guc_context_policy_start_klv(&policy, guc_id);
3182                 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
3183                 __guc_context_set_context_policies(guc, &policy, true);
3184         } else {
3185                 u32 action[] = {
3186                         INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
3187                         guc_id,
3188                         preemption_timeout
3189                 };
3190
3191                 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3192         }
3193 }
3194
3195 static void
3196 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
3197                    unsigned int preempt_timeout_ms)
3198 {
3199         struct intel_guc *guc = ce_to_guc(ce);
3200         struct intel_runtime_pm *runtime_pm =
3201                 &ce->engine->gt->i915->runtime_pm;
3202         intel_wakeref_t wakeref;
3203         unsigned long flags;
3204
3205         GEM_BUG_ON(intel_context_is_child(ce));
3206
3207         guc_flush_submissions(guc);
3208
3209         spin_lock_irqsave(&ce->guc_state.lock, flags);
3210         set_context_banned(ce);
3211
3212         if (submission_disabled(guc) ||
3213             (!context_enabled(ce) && !context_pending_disable(ce))) {
3214                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3215
3216                 guc_cancel_context_requests(ce);
3217                 intel_engine_signal_breadcrumbs(ce->engine);
3218         } else if (!context_pending_disable(ce)) {
3219                 u16 guc_id;
3220
3221                 /*
3222                  * We add +2 here as the schedule disable complete CTB handler
3223                  * calls intel_context_sched_disable_unpin (-2 to pin_count).
3224                  */
3225                 atomic_add(2, &ce->pin_count);
3226
3227                 guc_id = prep_context_pending_disable(ce);
3228                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3229
3230                 /*
3231                  * In addition to disabling scheduling, set the preemption
3232                  * timeout to the minimum value (1 us) so the banned context
3233                  * gets kicked off the HW ASAP.
3234                  */
3235                 with_intel_runtime_pm(runtime_pm, wakeref) {
3236                         __guc_context_set_preemption_timeout(guc, guc_id,
3237                                                              preempt_timeout_ms);
3238                         __guc_context_sched_disable(guc, ce, guc_id);
3239                 }
3240         } else {
3241                 if (!context_guc_id_invalid(ce))
3242                         with_intel_runtime_pm(runtime_pm, wakeref)
3243                                 __guc_context_set_preemption_timeout(guc,
3244                                                                      ce->guc_id.id,
3245                                                                      preempt_timeout_ms);
3246                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3247         }
3248 }
3249
3250 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3251                              unsigned long flags)
3252         __releases(ce->guc_state.lock)
3253 {
3254         struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3255         intel_wakeref_t wakeref;
3256         u16 guc_id;
3257
3258         lockdep_assert_held(&ce->guc_state.lock);
3259         guc_id = prep_context_pending_disable(ce);
3260
3261         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3262
3263         with_intel_runtime_pm(runtime_pm, wakeref)
3264                 __guc_context_sched_disable(guc, ce, guc_id);
3265 }
3266
3267 static bool bypass_sched_disable(struct intel_guc *guc,
3268                                  struct intel_context *ce)
3269 {
3270         lockdep_assert_held(&ce->guc_state.lock);
3271         GEM_BUG_ON(intel_context_is_child(ce));
3272
3273         if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3274             !ctx_id_mapped(guc, ce->guc_id.id)) {
3275                 clr_context_enabled(ce);
3276                 return true;
3277         }
3278
3279         return !context_enabled(ce);
3280 }
3281
3282 static void __delay_sched_disable(struct work_struct *wrk)
3283 {
3284         struct intel_context *ce =
3285                 container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3286         struct intel_guc *guc = ce_to_guc(ce);
3287         unsigned long flags;
3288
3289         spin_lock_irqsave(&ce->guc_state.lock, flags);
3290
3291         if (bypass_sched_disable(guc, ce)) {
3292                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3293                 intel_context_sched_disable_unpin(ce);
3294         } else {
3295                 do_sched_disable(guc, ce, flags);
3296         }
3297 }
3298
3299 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3300 {
3301         /*
3302          * parent contexts are perma-pinned, if we are unpinning do schedule
3303          * disable immediately.
3304          */
3305         if (intel_context_is_parent(ce))
3306                 return true;
3307
3308         /*
3309          * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3310          */
3311         return guc->submission_state.guc_ids_in_use >
3312                 guc->submission_state.sched_disable_gucid_threshold;
3313 }
3314
3315 static void guc_context_sched_disable(struct intel_context *ce)
3316 {
3317         struct intel_guc *guc = ce_to_guc(ce);
3318         u64 delay = guc->submission_state.sched_disable_delay_ms;
3319         unsigned long flags;
3320
3321         spin_lock_irqsave(&ce->guc_state.lock, flags);
3322
3323         if (bypass_sched_disable(guc, ce)) {
3324                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3325                 intel_context_sched_disable_unpin(ce);
3326         } else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3327                    delay) {
3328                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3329                 mod_delayed_work(system_unbound_wq,
3330                                  &ce->guc_state.sched_disable_delay_work,
3331                                  msecs_to_jiffies(delay));
3332         } else {
3333                 do_sched_disable(guc, ce, flags);
3334         }
3335 }
3336
3337 static void guc_context_close(struct intel_context *ce)
3338 {
3339         unsigned long flags;
3340
3341         if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3342             cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3343                 __delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3344
3345         spin_lock_irqsave(&ce->guc_state.lock, flags);
3346         set_context_close_done(ce);
3347         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3348 }
3349
3350 static inline int guc_lrc_desc_unpin(struct intel_context *ce)
3351 {
3352         struct intel_guc *guc = ce_to_guc(ce);
3353         struct intel_gt *gt = guc_to_gt(guc);
3354         unsigned long flags;
3355         bool disabled;
3356         int ret;
3357
3358         GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3359         GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3360         GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3361         GEM_BUG_ON(context_enabled(ce));
3362
3363         /* Seal race with Reset */
3364         spin_lock_irqsave(&ce->guc_state.lock, flags);
3365         disabled = submission_disabled(guc);
3366         if (likely(!disabled)) {
3367                 /*
3368                  * Take a gt-pm ref and change context state to be destroyed.
3369                  * NOTE: a G2H IRQ that comes after will put this gt-pm ref back
3370                  */
3371                 __intel_gt_pm_get(gt);
3372                 set_context_destroyed(ce);
3373                 clr_context_registered(ce);
3374         }
3375         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3376
3377         if (unlikely(disabled)) {
3378                 release_guc_id(guc, ce);
3379                 __guc_context_destroy(ce);
3380                 return 0;
3381         }
3382
3383         /*
3384          * GuC is active, lets destroy this context, but at this point we can still be racing
3385          * with suspend, so we undo everything if the H2G fails in deregister_context so
3386          * that GuC reset will find this context during clean up.
3387          */
3388         ret = deregister_context(ce, ce->guc_id.id);
3389         if (ret) {
3390                 spin_lock(&ce->guc_state.lock);
3391                 set_context_registered(ce);
3392                 clr_context_destroyed(ce);
3393                 spin_unlock(&ce->guc_state.lock);
3394                 /*
3395                  * As gt-pm is awake at function entry, intel_wakeref_put_async merely decrements
3396                  * the wakeref immediately but per function spec usage call this after unlock.
3397                  */
3398                 intel_wakeref_put_async(&gt->wakeref);
3399         }
3400
3401         return ret;
3402 }
3403
3404 static void __guc_context_destroy(struct intel_context *ce)
3405 {
3406         GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3407                    ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3408                    ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3409                    ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3410
3411         lrc_fini(ce);
3412         intel_context_fini(ce);
3413
3414         if (intel_engine_is_virtual(ce->engine)) {
3415                 struct guc_virtual_engine *ve =
3416                         container_of(ce, typeof(*ve), context);
3417
3418                 if (ve->base.breadcrumbs)
3419                         intel_breadcrumbs_put(ve->base.breadcrumbs);
3420
3421                 kfree(ve);
3422         } else {
3423                 intel_context_free(ce);
3424         }
3425 }
3426
3427 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3428 {
3429         struct intel_context *ce;
3430         unsigned long flags;
3431
3432         GEM_BUG_ON(!submission_disabled(guc) &&
3433                    guc_submission_initialized(guc));
3434
3435         while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3436                 spin_lock_irqsave(&guc->submission_state.lock, flags);
3437                 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3438                                               struct intel_context,
3439                                               destroyed_link);
3440                 if (ce)
3441                         list_del_init(&ce->destroyed_link);
3442                 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3443
3444                 if (!ce)
3445                         break;
3446
3447                 release_guc_id(guc, ce);
3448                 __guc_context_destroy(ce);
3449         }
3450 }
3451
3452 static void deregister_destroyed_contexts(struct intel_guc *guc)
3453 {
3454         struct intel_context *ce;
3455         unsigned long flags;
3456
3457         while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3458                 spin_lock_irqsave(&guc->submission_state.lock, flags);
3459                 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3460                                               struct intel_context,
3461                                               destroyed_link);
3462                 if (ce)
3463                         list_del_init(&ce->destroyed_link);
3464                 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3465
3466                 if (!ce)
3467                         break;
3468
3469                 if (guc_lrc_desc_unpin(ce)) {
3470                         /*
3471                          * This means GuC's CT link severed mid-way which could happen
3472                          * in suspend-resume corner cases. In this case, put the
3473                          * context back into the destroyed_contexts list which will
3474                          * get picked up on the next context deregistration event or
3475                          * purged in a GuC sanitization event (reset/unload/wedged/...).
3476                          */
3477                         spin_lock_irqsave(&guc->submission_state.lock, flags);
3478                         list_add_tail(&ce->destroyed_link,
3479                                       &guc->submission_state.destroyed_contexts);
3480                         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3481                         /* Bail now since the list might never be emptied if h2gs fail */
3482                         break;
3483                 }
3484
3485         }
3486 }
3487
3488 static void destroyed_worker_func(struct work_struct *w)
3489 {
3490         struct intel_guc *guc = container_of(w, struct intel_guc,
3491                                              submission_state.destroyed_worker);
3492         struct intel_gt *gt = guc_to_gt(guc);
3493         intel_wakeref_t wakeref;
3494
3495         /*
3496          * In rare cases we can get here via async context-free fence-signals that
3497          * come very late in suspend flow or very early in resume flows. In these
3498          * cases, GuC won't be ready but just skipping it here is fine as these
3499          * pending-destroy-contexts get destroyed totally at GuC reset time at the
3500          * end of suspend.. OR.. this worker can be picked up later on the next
3501          * context destruction trigger after resume-completes
3502          */
3503         if (!intel_guc_is_ready(guc))
3504                 return;
3505
3506         with_intel_gt_pm(gt, wakeref)
3507                 deregister_destroyed_contexts(guc);
3508 }
3509
3510 static void guc_context_destroy(struct kref *kref)
3511 {
3512         struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3513         struct intel_guc *guc = ce_to_guc(ce);
3514         unsigned long flags;
3515         bool destroy;
3516
3517         /*
3518          * If the guc_id is invalid this context has been stolen and we can free
3519          * it immediately. Also can be freed immediately if the context is not
3520          * registered with the GuC or the GuC is in the middle of a reset.
3521          */
3522         spin_lock_irqsave(&guc->submission_state.lock, flags);
3523         destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3524                 !ctx_id_mapped(guc, ce->guc_id.id);
3525         if (likely(!destroy)) {
3526                 if (!list_empty(&ce->guc_id.link))
3527                         list_del_init(&ce->guc_id.link);
3528                 list_add_tail(&ce->destroyed_link,
3529                               &guc->submission_state.destroyed_contexts);
3530         } else {
3531                 __release_guc_id(guc, ce);
3532         }
3533         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3534         if (unlikely(destroy)) {
3535                 __guc_context_destroy(ce);
3536                 return;
3537         }
3538
3539         /*
3540          * We use a worker to issue the H2G to deregister the context as we can
3541          * take the GT PM for the first time which isn't allowed from an atomic
3542          * context.
3543          */
3544         queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3545 }
3546
3547 static int guc_context_alloc(struct intel_context *ce)
3548 {
3549         return lrc_alloc(ce, ce->engine);
3550 }
3551
3552 static void __guc_context_set_prio(struct intel_guc *guc,
3553                                    struct intel_context *ce)
3554 {
3555         if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3556                 struct context_policy policy;
3557
3558                 __guc_context_policy_start_klv(&policy, ce->guc_id.id);
3559                 __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3560                 __guc_context_set_context_policies(guc, &policy, true);
3561         } else {
3562                 u32 action[] = {
3563                         INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3564                         ce->guc_id.id,
3565                         ce->guc_state.prio,
3566                 };
3567
3568                 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3569         }
3570 }
3571
3572 static void guc_context_set_prio(struct intel_guc *guc,
3573                                  struct intel_context *ce,
3574                                  u8 prio)
3575 {
3576         GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3577                    prio > GUC_CLIENT_PRIORITY_NORMAL);
3578         lockdep_assert_held(&ce->guc_state.lock);
3579
3580         if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3581             !context_registered(ce)) {
3582                 ce->guc_state.prio = prio;
3583                 return;
3584         }
3585
3586         ce->guc_state.prio = prio;
3587         __guc_context_set_prio(guc, ce);
3588
3589         trace_intel_context_set_prio(ce);
3590 }
3591
3592 static inline u8 map_i915_prio_to_guc_prio(int prio)
3593 {
3594         if (prio == I915_PRIORITY_NORMAL)
3595                 return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3596         else if (prio < I915_PRIORITY_NORMAL)
3597                 return GUC_CLIENT_PRIORITY_NORMAL;
3598         else if (prio < I915_PRIORITY_DISPLAY)
3599                 return GUC_CLIENT_PRIORITY_HIGH;
3600         else
3601                 return GUC_CLIENT_PRIORITY_KMD_HIGH;
3602 }
3603
3604 static inline void add_context_inflight_prio(struct intel_context *ce,
3605                                              u8 guc_prio)
3606 {
3607         lockdep_assert_held(&ce->guc_state.lock);
3608         GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3609
3610         ++ce->guc_state.prio_count[guc_prio];
3611
3612         /* Overflow protection */
3613         GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3614 }
3615
3616 static inline void sub_context_inflight_prio(struct intel_context *ce,
3617                                              u8 guc_prio)
3618 {
3619         lockdep_assert_held(&ce->guc_state.lock);
3620         GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3621
3622         /* Underflow protection */
3623         GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3624
3625         --ce->guc_state.prio_count[guc_prio];
3626 }
3627
3628 static inline void update_context_prio(struct intel_context *ce)
3629 {
3630         struct intel_guc *guc = &ce->engine->gt->uc.guc;
3631         int i;
3632
3633         BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3634         BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3635
3636         lockdep_assert_held(&ce->guc_state.lock);
3637
3638         for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3639                 if (ce->guc_state.prio_count[i]) {
3640                         guc_context_set_prio(guc, ce, i);
3641                         break;
3642                 }
3643         }
3644 }
3645
3646 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3647 {
3648         /* Lower value is higher priority */
3649         return new_guc_prio < old_guc_prio;
3650 }
3651
3652 static void add_to_context(struct i915_request *rq)
3653 {
3654         struct intel_context *ce = request_to_scheduling_context(rq);
3655         u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3656
3657         GEM_BUG_ON(intel_context_is_child(ce));
3658         GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3659
3660         spin_lock(&ce->guc_state.lock);
3661         list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3662
3663         if (rq->guc_prio == GUC_PRIO_INIT) {
3664                 rq->guc_prio = new_guc_prio;
3665                 add_context_inflight_prio(ce, rq->guc_prio);
3666         } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3667                 sub_context_inflight_prio(ce, rq->guc_prio);
3668                 rq->guc_prio = new_guc_prio;
3669                 add_context_inflight_prio(ce, rq->guc_prio);
3670         }
3671         update_context_prio(ce);
3672
3673         spin_unlock(&ce->guc_state.lock);
3674 }
3675
3676 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3677 {
3678         lockdep_assert_held(&ce->guc_state.lock);
3679
3680         if (rq->guc_prio != GUC_PRIO_INIT &&
3681             rq->guc_prio != GUC_PRIO_FINI) {
3682                 sub_context_inflight_prio(ce, rq->guc_prio);
3683                 update_context_prio(ce);
3684         }
3685         rq->guc_prio = GUC_PRIO_FINI;
3686 }
3687
3688 static void remove_from_context(struct i915_request *rq)
3689 {
3690         struct intel_context *ce = request_to_scheduling_context(rq);
3691
3692         GEM_BUG_ON(intel_context_is_child(ce));
3693
3694         spin_lock_irq(&ce->guc_state.lock);
3695
3696         list_del_init(&rq->sched.link);
3697         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3698
3699         /* Prevent further __await_execution() registering a cb, then flush */
3700         set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3701
3702         guc_prio_fini(rq, ce);
3703
3704         spin_unlock_irq(&ce->guc_state.lock);
3705
3706         atomic_dec(&ce->guc_id.ref);
3707         i915_request_notify_execute_cb_imm(rq);
3708 }
3709
3710 static const struct intel_context_ops guc_context_ops = {
3711         .flags = COPS_RUNTIME_CYCLES,
3712         .alloc = guc_context_alloc,
3713
3714         .close = guc_context_close,
3715
3716         .pre_pin = guc_context_pre_pin,
3717         .pin = guc_context_pin,
3718         .unpin = guc_context_unpin,
3719         .post_unpin = guc_context_post_unpin,
3720
3721         .revoke = guc_context_revoke,
3722
3723         .cancel_request = guc_context_cancel_request,
3724
3725         .enter = intel_context_enter_engine,
3726         .exit = intel_context_exit_engine,
3727
3728         .sched_disable = guc_context_sched_disable,
3729
3730         .update_stats = guc_context_update_stats,
3731
3732         .reset = lrc_reset,
3733         .destroy = guc_context_destroy,
3734
3735         .create_virtual = guc_create_virtual,
3736         .create_parallel = guc_create_parallel,
3737 };
3738
3739 static void submit_work_cb(struct irq_work *wrk)
3740 {
3741         struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3742
3743         might_lock(&rq->engine->sched_engine->lock);
3744         i915_sw_fence_complete(&rq->submit);
3745 }
3746
3747 static void __guc_signal_context_fence(struct intel_context *ce)
3748 {
3749         struct i915_request *rq, *rn;
3750
3751         lockdep_assert_held(&ce->guc_state.lock);
3752
3753         if (!list_empty(&ce->guc_state.fences))
3754                 trace_intel_context_fence_release(ce);
3755
3756         /*
3757          * Use an IRQ to ensure locking order of sched_engine->lock ->
3758          * ce->guc_state.lock is preserved.
3759          */
3760         list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3761                                  guc_fence_link) {
3762                 list_del(&rq->guc_fence_link);
3763                 irq_work_queue(&rq->submit_work);
3764         }
3765
3766         INIT_LIST_HEAD(&ce->guc_state.fences);
3767 }
3768
3769 static void guc_signal_context_fence(struct intel_context *ce)
3770 {
3771         unsigned long flags;
3772
3773         GEM_BUG_ON(intel_context_is_child(ce));
3774
3775         spin_lock_irqsave(&ce->guc_state.lock, flags);
3776         clr_context_wait_for_deregister_to_register(ce);
3777         __guc_signal_context_fence(ce);
3778         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3779 }
3780
3781 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3782 {
3783         return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3784                 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3785                 !submission_disabled(ce_to_guc(ce));
3786 }
3787
3788 static void guc_context_init(struct intel_context *ce)
3789 {
3790         const struct i915_gem_context *ctx;
3791         int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3792
3793         rcu_read_lock();
3794         ctx = rcu_dereference(ce->gem_context);
3795         if (ctx)
3796                 prio = ctx->sched.priority;
3797         rcu_read_unlock();
3798
3799         ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3800
3801         INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3802                           __delay_sched_disable);
3803
3804         set_bit(CONTEXT_GUC_INIT, &ce->flags);
3805 }
3806
3807 static int guc_request_alloc(struct i915_request *rq)
3808 {
3809         struct intel_context *ce = request_to_scheduling_context(rq);
3810         struct intel_guc *guc = ce_to_guc(ce);
3811         unsigned long flags;
3812         int ret;
3813
3814         GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3815
3816         /*
3817          * Flush enough space to reduce the likelihood of waiting after
3818          * we start building the request - in which case we will just
3819          * have to repeat work.
3820          */
3821         rq->reserved_space += GUC_REQUEST_SIZE;
3822
3823         /*
3824          * Note that after this point, we have committed to using
3825          * this request as it is being used to both track the
3826          * state of engine initialisation and liveness of the
3827          * golden renderstate above. Think twice before you try
3828          * to cancel/unwind this request now.
3829          */
3830
3831         /* Unconditionally invalidate GPU caches and TLBs. */
3832         ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3833         if (ret)
3834                 return ret;
3835
3836         rq->reserved_space -= GUC_REQUEST_SIZE;
3837
3838         if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3839                 guc_context_init(ce);
3840
3841         /*
3842          * If the context gets closed while the execbuf is ongoing, the context
3843          * close code will race with the below code to cancel the delayed work.
3844          * If the context close wins the race and cancels the work, it will
3845          * immediately call the sched disable (see guc_context_close), so there
3846          * is a chance we can get past this check while the sched_disable code
3847          * is being executed. To make sure that code completes before we check
3848          * the status further down, we wait for the close process to complete.
3849          * Else, this code path could send a request down thinking that the
3850          * context is still in a schedule-enable mode while the GuC ends up
3851          * dropping the request completely because the disable did go from the
3852          * context_close path right to GuC just prior. In the event the CT is
3853          * full, we could potentially need to wait up to 1.5 seconds.
3854          */
3855         if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3856                 intel_context_sched_disable_unpin(ce);
3857         else if (intel_context_is_closed(ce))
3858                 if (wait_for(context_close_done(ce), 1500))
3859                         guc_warn(guc, "timed out waiting on context sched close before realloc\n");
3860         /*
3861          * Call pin_guc_id here rather than in the pinning step as with
3862          * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3863          * guc_id and creating horrible race conditions. This is especially bad
3864          * when guc_id are being stolen due to over subscription. By the time
3865          * this function is reached, it is guaranteed that the guc_id will be
3866          * persistent until the generated request is retired. Thus, sealing these
3867          * race conditions. It is still safe to fail here if guc_id are
3868          * exhausted and return -EAGAIN to the user indicating that they can try
3869          * again in the future.
3870          *
3871          * There is no need for a lock here as the timeline mutex ensures at
3872          * most one context can be executing this code path at once. The
3873          * guc_id_ref is incremented once for every request in flight and
3874          * decremented on each retire. When it is zero, a lock around the
3875          * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3876          */
3877         if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3878                 goto out;
3879
3880         ret = pin_guc_id(guc, ce);      /* returns 1 if new guc_id assigned */
3881         if (unlikely(ret < 0))
3882                 return ret;
3883         if (context_needs_register(ce, !!ret)) {
3884                 ret = try_context_registration(ce, true);
3885                 if (unlikely(ret)) {    /* unwind */
3886                         if (ret == -EPIPE) {
3887                                 disable_submission(guc);
3888                                 goto out;       /* GPU will be reset */
3889                         }
3890                         atomic_dec(&ce->guc_id.ref);
3891                         unpin_guc_id(guc, ce);
3892                         return ret;
3893                 }
3894         }
3895
3896         clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3897
3898 out:
3899         /*
3900          * We block all requests on this context if a G2H is pending for a
3901          * schedule disable or context deregistration as the GuC will fail a
3902          * schedule enable or context registration if either G2H is pending
3903          * respectfully. Once a G2H returns, the fence is released that is
3904          * blocking these requests (see guc_signal_context_fence).
3905          */
3906         spin_lock_irqsave(&ce->guc_state.lock, flags);
3907         if (context_wait_for_deregister_to_register(ce) ||
3908             context_pending_disable(ce)) {
3909                 init_irq_work(&rq->submit_work, submit_work_cb);
3910                 i915_sw_fence_await(&rq->submit);
3911
3912                 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3913         }
3914         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3915
3916         return 0;
3917 }
3918
3919 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3920                                        struct i915_gem_ww_ctx *ww,
3921                                        void **vaddr)
3922 {
3923         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3924
3925         return __guc_context_pre_pin(ce, engine, ww, vaddr);
3926 }
3927
3928 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3929 {
3930         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3931         int ret = __guc_context_pin(ce, engine, vaddr);
3932         intel_engine_mask_t tmp, mask = ce->engine->mask;
3933
3934         if (likely(!ret))
3935                 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3936                         intel_engine_pm_get(engine);
3937
3938         return ret;
3939 }
3940
3941 static void guc_virtual_context_unpin(struct intel_context *ce)
3942 {
3943         intel_engine_mask_t tmp, mask = ce->engine->mask;
3944         struct intel_engine_cs *engine;
3945         struct intel_guc *guc = ce_to_guc(ce);
3946
3947         GEM_BUG_ON(context_enabled(ce));
3948         GEM_BUG_ON(intel_context_is_barrier(ce));
3949
3950         unpin_guc_id(guc, ce);
3951         lrc_unpin(ce);
3952
3953         for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3954                 intel_engine_pm_put_async(engine);
3955 }
3956
3957 static void guc_virtual_context_enter(struct intel_context *ce)
3958 {
3959         intel_engine_mask_t tmp, mask = ce->engine->mask;
3960         struct intel_engine_cs *engine;
3961
3962         for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3963                 intel_engine_pm_get(engine);
3964
3965         intel_timeline_enter(ce->timeline);
3966 }
3967
3968 static void guc_virtual_context_exit(struct intel_context *ce)
3969 {
3970         intel_engine_mask_t tmp, mask = ce->engine->mask;
3971         struct intel_engine_cs *engine;
3972
3973         for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3974                 intel_engine_pm_put(engine);
3975
3976         intel_timeline_exit(ce->timeline);
3977 }
3978
3979 static int guc_virtual_context_alloc(struct intel_context *ce)
3980 {
3981         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3982
3983         return lrc_alloc(ce, engine);
3984 }
3985
3986 static const struct intel_context_ops virtual_guc_context_ops = {
3987         .flags = COPS_RUNTIME_CYCLES,
3988         .alloc = guc_virtual_context_alloc,
3989
3990         .close = guc_context_close,
3991
3992         .pre_pin = guc_virtual_context_pre_pin,
3993         .pin = guc_virtual_context_pin,
3994         .unpin = guc_virtual_context_unpin,
3995         .post_unpin = guc_context_post_unpin,
3996
3997         .revoke = guc_context_revoke,
3998
3999         .cancel_request = guc_context_cancel_request,
4000
4001         .enter = guc_virtual_context_enter,
4002         .exit = guc_virtual_context_exit,
4003
4004         .sched_disable = guc_context_sched_disable,
4005         .update_stats = guc_context_update_stats,
4006
4007         .destroy = guc_context_destroy,
4008
4009         .get_sibling = guc_virtual_get_sibling,
4010 };
4011
4012 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
4013 {
4014         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4015         struct intel_guc *guc = ce_to_guc(ce);
4016         int ret;
4017
4018         GEM_BUG_ON(!intel_context_is_parent(ce));
4019         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4020
4021         ret = pin_guc_id(guc, ce);
4022         if (unlikely(ret < 0))
4023                 return ret;
4024
4025         return __guc_context_pin(ce, engine, vaddr);
4026 }
4027
4028 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
4029 {
4030         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4031
4032         GEM_BUG_ON(!intel_context_is_child(ce));
4033         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4034
4035         __intel_context_pin(ce->parallel.parent);
4036         return __guc_context_pin(ce, engine, vaddr);
4037 }
4038
4039 static void guc_parent_context_unpin(struct intel_context *ce)
4040 {
4041         struct intel_guc *guc = ce_to_guc(ce);
4042
4043         GEM_BUG_ON(context_enabled(ce));
4044         GEM_BUG_ON(intel_context_is_barrier(ce));
4045         GEM_BUG_ON(!intel_context_is_parent(ce));
4046         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4047
4048         unpin_guc_id(guc, ce);
4049         lrc_unpin(ce);
4050 }
4051
4052 static void guc_child_context_unpin(struct intel_context *ce)
4053 {
4054         GEM_BUG_ON(context_enabled(ce));
4055         GEM_BUG_ON(intel_context_is_barrier(ce));
4056         GEM_BUG_ON(!intel_context_is_child(ce));
4057         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4058
4059         lrc_unpin(ce);
4060 }
4061
4062 static void guc_child_context_post_unpin(struct intel_context *ce)
4063 {
4064         GEM_BUG_ON(!intel_context_is_child(ce));
4065         GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
4066         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4067
4068         lrc_post_unpin(ce);
4069         intel_context_unpin(ce->parallel.parent);
4070 }
4071
4072 static void guc_child_context_destroy(struct kref *kref)
4073 {
4074         struct intel_context *ce = container_of(kref, typeof(*ce), ref);
4075
4076         __guc_context_destroy(ce);
4077 }
4078
4079 static const struct intel_context_ops virtual_parent_context_ops = {
4080         .alloc = guc_virtual_context_alloc,
4081
4082         .close = guc_context_close,
4083
4084         .pre_pin = guc_context_pre_pin,
4085         .pin = guc_parent_context_pin,
4086         .unpin = guc_parent_context_unpin,
4087         .post_unpin = guc_context_post_unpin,
4088
4089         .revoke = guc_context_revoke,
4090
4091         .cancel_request = guc_context_cancel_request,
4092
4093         .enter = guc_virtual_context_enter,
4094         .exit = guc_virtual_context_exit,
4095
4096         .sched_disable = guc_context_sched_disable,
4097
4098         .destroy = guc_context_destroy,
4099
4100         .get_sibling = guc_virtual_get_sibling,
4101 };
4102
4103 static const struct intel_context_ops virtual_child_context_ops = {
4104         .alloc = guc_virtual_context_alloc,
4105
4106         .pre_pin = guc_context_pre_pin,
4107         .pin = guc_child_context_pin,
4108         .unpin = guc_child_context_unpin,
4109         .post_unpin = guc_child_context_post_unpin,
4110
4111         .cancel_request = guc_context_cancel_request,
4112
4113         .enter = guc_virtual_context_enter,
4114         .exit = guc_virtual_context_exit,
4115
4116         .destroy = guc_child_context_destroy,
4117
4118         .get_sibling = guc_virtual_get_sibling,
4119 };
4120
4121 /*
4122  * The below override of the breadcrumbs is enabled when the user configures a
4123  * context for parallel submission (multi-lrc, parent-child).
4124  *
4125  * The overridden breadcrumbs implements an algorithm which allows the GuC to
4126  * safely preempt all the hw contexts configured for parallel submission
4127  * between each BB. The contract between the i915 and GuC is if the parent
4128  * context can be preempted, all the children can be preempted, and the GuC will
4129  * always try to preempt the parent before the children. A handshake between the
4130  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
4131  * creating a window to preempt between each set of BBs.
4132  */
4133 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4134                                                      u64 offset, u32 len,
4135                                                      const unsigned int flags);
4136 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4137                                                     u64 offset, u32 len,
4138                                                     const unsigned int flags);
4139 static u32 *
4140 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4141                                                  u32 *cs);
4142 static u32 *
4143 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4144                                                 u32 *cs);
4145
4146 static struct intel_context *
4147 guc_create_parallel(struct intel_engine_cs **engines,
4148                     unsigned int num_siblings,
4149                     unsigned int width)
4150 {
4151         struct intel_engine_cs **siblings = NULL;
4152         struct intel_context *parent = NULL, *ce, *err;
4153         int i, j;
4154
4155         siblings = kmalloc_array(num_siblings,
4156                                  sizeof(*siblings),
4157                                  GFP_KERNEL);
4158         if (!siblings)
4159                 return ERR_PTR(-ENOMEM);
4160
4161         for (i = 0; i < width; ++i) {
4162                 for (j = 0; j < num_siblings; ++j)
4163                         siblings[j] = engines[i * num_siblings + j];
4164
4165                 ce = intel_engine_create_virtual(siblings, num_siblings,
4166                                                  FORCE_VIRTUAL);
4167                 if (IS_ERR(ce)) {
4168                         err = ERR_CAST(ce);
4169                         goto unwind;
4170                 }
4171
4172                 if (i == 0) {
4173                         parent = ce;
4174                         parent->ops = &virtual_parent_context_ops;
4175                 } else {
4176                         ce->ops = &virtual_child_context_ops;
4177                         intel_context_bind_parent_child(parent, ce);
4178                 }
4179         }
4180
4181         parent->parallel.fence_context = dma_fence_context_alloc(1);
4182
4183         parent->engine->emit_bb_start =
4184                 emit_bb_start_parent_no_preempt_mid_batch;
4185         parent->engine->emit_fini_breadcrumb =
4186                 emit_fini_breadcrumb_parent_no_preempt_mid_batch;
4187         parent->engine->emit_fini_breadcrumb_dw =
4188                 12 + 4 * parent->parallel.number_children;
4189         for_each_child(parent, ce) {
4190                 ce->engine->emit_bb_start =
4191                         emit_bb_start_child_no_preempt_mid_batch;
4192                 ce->engine->emit_fini_breadcrumb =
4193                         emit_fini_breadcrumb_child_no_preempt_mid_batch;
4194                 ce->engine->emit_fini_breadcrumb_dw = 16;
4195         }
4196
4197         kfree(siblings);
4198         return parent;
4199
4200 unwind:
4201         if (parent)
4202                 intel_context_put(parent);
4203         kfree(siblings);
4204         return err;
4205 }
4206
4207 static bool
4208 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
4209 {
4210         struct intel_engine_cs *sibling;
4211         intel_engine_mask_t tmp, mask = b->engine_mask;
4212         bool result = false;
4213
4214         for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4215                 result |= intel_engine_irq_enable(sibling);
4216
4217         return result;
4218 }
4219
4220 static void
4221 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
4222 {
4223         struct intel_engine_cs *sibling;
4224         intel_engine_mask_t tmp, mask = b->engine_mask;
4225
4226         for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4227                 intel_engine_irq_disable(sibling);
4228 }
4229
4230 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
4231 {
4232         int i;
4233
4234         /*
4235          * In GuC submission mode we do not know which physical engine a request
4236          * will be scheduled on, this creates a problem because the breadcrumb
4237          * interrupt is per physical engine. To work around this we attach
4238          * requests and direct all breadcrumb interrupts to the first instance
4239          * of an engine per class. In addition all breadcrumb interrupts are
4240          * enabled / disabled across an engine class in unison.
4241          */
4242         for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
4243                 struct intel_engine_cs *sibling =
4244                         engine->gt->engine_class[engine->class][i];
4245
4246                 if (sibling) {
4247                         if (engine->breadcrumbs != sibling->breadcrumbs) {
4248                                 intel_breadcrumbs_put(engine->breadcrumbs);
4249                                 engine->breadcrumbs =
4250                                         intel_breadcrumbs_get(sibling->breadcrumbs);
4251                         }
4252                         break;
4253                 }
4254         }
4255
4256         if (engine->breadcrumbs) {
4257                 engine->breadcrumbs->engine_mask |= engine->mask;
4258                 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
4259                 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
4260         }
4261 }
4262
4263 static void guc_bump_inflight_request_prio(struct i915_request *rq,
4264                                            int prio)
4265 {
4266         struct intel_context *ce = request_to_scheduling_context(rq);
4267         u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
4268
4269         /* Short circuit function */
4270         if (prio < I915_PRIORITY_NORMAL ||
4271             rq->guc_prio == GUC_PRIO_FINI ||
4272             (rq->guc_prio != GUC_PRIO_INIT &&
4273              !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
4274                 return;
4275
4276         spin_lock(&ce->guc_state.lock);
4277         if (rq->guc_prio != GUC_PRIO_FINI) {
4278                 if (rq->guc_prio != GUC_PRIO_INIT)
4279                         sub_context_inflight_prio(ce, rq->guc_prio);
4280                 rq->guc_prio = new_guc_prio;
4281                 add_context_inflight_prio(ce, rq->guc_prio);
4282                 update_context_prio(ce);
4283         }
4284         spin_unlock(&ce->guc_state.lock);
4285 }
4286
4287 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4288 {
4289         struct intel_context *ce = request_to_scheduling_context(rq);
4290
4291         spin_lock(&ce->guc_state.lock);
4292         guc_prio_fini(rq, ce);
4293         spin_unlock(&ce->guc_state.lock);
4294 }
4295
4296 static void sanitize_hwsp(struct intel_engine_cs *engine)
4297 {
4298         struct intel_timeline *tl;
4299
4300         list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4301                 intel_timeline_reset_seqno(tl);
4302 }
4303
4304 static void guc_sanitize(struct intel_engine_cs *engine)
4305 {
4306         /*
4307          * Poison residual state on resume, in case the suspend didn't!
4308          *
4309          * We have to assume that across suspend/resume (or other loss
4310          * of control) that the contents of our pinned buffers has been
4311          * lost, replaced by garbage. Since this doesn't always happen,
4312          * let's poison such state so that we more quickly spot when
4313          * we falsely assume it has been preserved.
4314          */
4315         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4316                 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4317
4318         /*
4319          * The kernel_context HWSP is stored in the status_page. As above,
4320          * that may be lost on resume/initialisation, and so we need to
4321          * reset the value in the HWSP.
4322          */
4323         sanitize_hwsp(engine);
4324
4325         /* And scrub the dirty cachelines for the HWSP */
4326         drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4327
4328         intel_engine_reset_pinned_contexts(engine);
4329 }
4330
4331 static void setup_hwsp(struct intel_engine_cs *engine)
4332 {
4333         intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4334
4335         ENGINE_WRITE_FW(engine,
4336                         RING_HWS_PGA,
4337                         i915_ggtt_offset(engine->status_page.vma));
4338 }
4339
4340 static void start_engine(struct intel_engine_cs *engine)
4341 {
4342         ENGINE_WRITE_FW(engine,
4343                         RING_MODE_GEN7,
4344                         _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4345
4346         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4347         ENGINE_POSTING_READ(engine, RING_MI_MODE);
4348 }
4349
4350 static int guc_resume(struct intel_engine_cs *engine)
4351 {
4352         assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4353
4354         intel_mocs_init_engine(engine);
4355
4356         intel_breadcrumbs_reset(engine->breadcrumbs);
4357
4358         setup_hwsp(engine);
4359         start_engine(engine);
4360
4361         if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4362                 xehp_enable_ccs_engines(engine);
4363
4364         return 0;
4365 }
4366
4367 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4368 {
4369         return !sched_engine->tasklet.callback;
4370 }
4371
4372 static void guc_set_default_submission(struct intel_engine_cs *engine)
4373 {
4374         engine->submit_request = guc_submit_request;
4375 }
4376
4377 static inline int guc_kernel_context_pin(struct intel_guc *guc,
4378                                          struct intel_context *ce)
4379 {
4380         int ret;
4381
4382         /*
4383          * Note: we purposefully do not check the returns below because
4384          * the registration can only fail if a reset is just starting.
4385          * This is called at the end of reset so presumably another reset
4386          * isn't happening and even it did this code would be run again.
4387          */
4388
4389         if (context_guc_id_invalid(ce)) {
4390                 ret = pin_guc_id(guc, ce);
4391
4392                 if (ret < 0)
4393                         return ret;
4394         }
4395
4396         if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4397                 guc_context_init(ce);
4398
4399         ret = try_context_registration(ce, true);
4400         if (ret)
4401                 unpin_guc_id(guc, ce);
4402
4403         return ret;
4404 }
4405
4406 static inline int guc_init_submission(struct intel_guc *guc)
4407 {
4408         struct intel_gt *gt = guc_to_gt(guc);
4409         struct intel_engine_cs *engine;
4410         enum intel_engine_id id;
4411
4412         /* make sure all descriptors are clean... */
4413         xa_destroy(&guc->context_lookup);
4414
4415         /*
4416          * A reset might have occurred while we had a pending stalled request,
4417          * so make sure we clean that up.
4418          */
4419         guc->stalled_request = NULL;
4420         guc->submission_stall_reason = STALL_NONE;
4421
4422         /*
4423          * Some contexts might have been pinned before we enabled GuC
4424          * submission, so we need to add them to the GuC bookeeping.
4425          * Also, after a reset the of the GuC we want to make sure that the
4426          * information shared with GuC is properly reset. The kernel LRCs are
4427          * not attached to the gem_context, so they need to be added separately.
4428          */
4429         for_each_engine(engine, gt, id) {
4430                 struct intel_context *ce;
4431
4432                 list_for_each_entry(ce, &engine->pinned_contexts_list,
4433                                     pinned_contexts_link) {
4434                         int ret = guc_kernel_context_pin(guc, ce);
4435
4436                         if (ret) {
4437                                 /* No point in trying to clean up as i915 will wedge on failure */
4438                                 return ret;
4439                         }
4440                 }
4441         }
4442
4443         return 0;
4444 }
4445
4446 static void guc_release(struct intel_engine_cs *engine)
4447 {
4448         engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4449
4450         intel_engine_cleanup_common(engine);
4451         lrc_fini_wa_ctx(engine);
4452 }
4453
4454 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4455 {
4456         struct intel_engine_cs *e;
4457         intel_engine_mask_t tmp, mask = engine->mask;
4458
4459         for_each_engine_masked(e, engine->gt, mask, tmp)
4460                 e->serial++;
4461 }
4462
4463 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4464 {
4465         /* Default vfuncs which can be overridden by each engine. */
4466
4467         engine->resume = guc_resume;
4468
4469         engine->cops = &guc_context_ops;
4470         engine->request_alloc = guc_request_alloc;
4471         engine->add_active_request = add_to_context;
4472         engine->remove_active_request = remove_from_context;
4473
4474         engine->sched_engine->schedule = i915_schedule;
4475
4476         engine->reset.prepare = guc_engine_reset_prepare;
4477         engine->reset.rewind = guc_rewind_nop;
4478         engine->reset.cancel = guc_reset_nop;
4479         engine->reset.finish = guc_reset_nop;
4480
4481         engine->emit_flush = gen8_emit_flush_xcs;
4482         engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4483         engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4484         if (GRAPHICS_VER(engine->i915) >= 12) {
4485                 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4486                 engine->emit_flush = gen12_emit_flush_xcs;
4487         }
4488         engine->set_default_submission = guc_set_default_submission;
4489         engine->busyness = guc_engine_busyness;
4490
4491         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4492         engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4493         engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4494
4495         /* Wa_14014475959:dg2 */
4496         if (engine->class == COMPUTE_CLASS)
4497                 if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
4498                     IS_DG2(engine->i915))
4499                         engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT;
4500
4501         /*
4502          * TODO: GuC supports timeslicing and semaphores as well, but they're
4503          * handled by the firmware so some minor tweaks are required before
4504          * enabling.
4505          *
4506          * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4507          */
4508
4509         engine->emit_bb_start = gen8_emit_bb_start;
4510         if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
4511                 engine->emit_bb_start = xehp_emit_bb_start;
4512 }
4513
4514 static void rcs_submission_override(struct intel_engine_cs *engine)
4515 {
4516         switch (GRAPHICS_VER(engine->i915)) {
4517         case 12:
4518                 engine->emit_flush = gen12_emit_flush_rcs;
4519                 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4520                 break;
4521         case 11:
4522                 engine->emit_flush = gen11_emit_flush_rcs;
4523                 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4524                 break;
4525         default:
4526                 engine->emit_flush = gen8_emit_flush_rcs;
4527                 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4528                 break;
4529         }
4530 }
4531
4532 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4533 {
4534         engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4535         intel_engine_set_irq_handler(engine, cs_irq_handler);
4536 }
4537
4538 static void guc_sched_engine_destroy(struct kref *kref)
4539 {
4540         struct i915_sched_engine *sched_engine =
4541                 container_of(kref, typeof(*sched_engine), ref);
4542         struct intel_guc *guc = sched_engine->private_data;
4543
4544         guc->sched_engine = NULL;
4545         tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4546         kfree(sched_engine);
4547 }
4548
4549 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4550 {
4551         struct drm_i915_private *i915 = engine->i915;
4552         struct intel_guc *guc = &engine->gt->uc.guc;
4553
4554         /*
4555          * The setup relies on several assumptions (e.g. irqs always enabled)
4556          * that are only valid on gen11+
4557          */
4558         GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4559
4560         if (!guc->sched_engine) {
4561                 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4562                 if (!guc->sched_engine)
4563                         return -ENOMEM;
4564
4565                 guc->sched_engine->schedule = i915_schedule;
4566                 guc->sched_engine->disabled = guc_sched_engine_disabled;
4567                 guc->sched_engine->private_data = guc;
4568                 guc->sched_engine->destroy = guc_sched_engine_destroy;
4569                 guc->sched_engine->bump_inflight_request_prio =
4570                         guc_bump_inflight_request_prio;
4571                 guc->sched_engine->retire_inflight_request_prio =
4572                         guc_retire_inflight_request_prio;
4573                 tasklet_setup(&guc->sched_engine->tasklet,
4574                               guc_submission_tasklet);
4575         }
4576         i915_sched_engine_put(engine->sched_engine);
4577         engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4578
4579         guc_default_vfuncs(engine);
4580         guc_default_irqs(engine);
4581         guc_init_breadcrumbs(engine);
4582
4583         if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4584                 rcs_submission_override(engine);
4585
4586         lrc_init_wa_ctx(engine);
4587
4588         /* Finally, take ownership and responsibility for cleanup! */
4589         engine->sanitize = guc_sanitize;
4590         engine->release = guc_release;
4591
4592         return 0;
4593 }
4594
4595 struct scheduling_policy {
4596         /* internal data */
4597         u32 max_words, num_words;
4598         u32 count;
4599         /* API data */
4600         struct guc_update_scheduling_policy h2g;
4601 };
4602
4603 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4604 {
4605         u32 *start = (void *)&policy->h2g;
4606         u32 *end = policy->h2g.data + policy->num_words;
4607         size_t delta = end - start;
4608
4609         return delta;
4610 }
4611
4612 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4613 {
4614         policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4615         policy->max_words = ARRAY_SIZE(policy->h2g.data);
4616         policy->num_words = 0;
4617         policy->count = 0;
4618
4619         return policy;
4620 }
4621
4622 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4623                                             u32 action, u32 *data, u32 len)
4624 {
4625         u32 *klv_ptr = policy->h2g.data + policy->num_words;
4626
4627         GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4628         *(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4629                        FIELD_PREP(GUC_KLV_0_LEN, len);
4630         memcpy(klv_ptr, data, sizeof(u32) * len);
4631         policy->num_words += 1 + len;
4632         policy->count++;
4633 }
4634
4635 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4636                                                 struct scheduling_policy *policy)
4637 {
4638         int ret;
4639
4640         ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4641                              __guc_scheduling_policy_action_size(policy));
4642         if (ret < 0) {
4643                 guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n",
4644                                 ERR_PTR(ret));
4645                 return ret;
4646         }
4647
4648         if (ret != policy->count) {
4649                 guc_warn(guc, "global scheduler policy processed %d of %d KLVs!",
4650                          ret, policy->count);
4651                 if (ret > policy->count)
4652                         return -EPROTO;
4653         }
4654
4655         return 0;
4656 }
4657
4658 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4659 {
4660         struct scheduling_policy policy;
4661         struct intel_gt *gt = guc_to_gt(guc);
4662         intel_wakeref_t wakeref;
4663         int ret;
4664
4665         if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
4666                 return 0;
4667
4668         __guc_scheduling_policy_start_klv(&policy);
4669
4670         with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
4671                 u32 yield[] = {
4672                         GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4673                         GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4674                 };
4675
4676                 __guc_scheduling_policy_add_klv(&policy,
4677                                                 GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4678                                                 yield, ARRAY_SIZE(yield));
4679
4680                 ret = __guc_action_set_scheduling_policies(guc, &policy);
4681         }
4682
4683         return ret;
4684 }
4685
4686 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc)
4687 {
4688         struct intel_gt *gt = guc_to_gt(guc);
4689         u32 val;
4690
4691         if (GRAPHICS_VER(gt->i915) < 12)
4692                 return;
4693
4694         if (to_guc)
4695                 val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL;
4696         else
4697                 val = 0;
4698
4699         intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val);
4700 }
4701
4702 int intel_guc_submission_enable(struct intel_guc *guc)
4703 {
4704         int ret;
4705
4706         /* Semaphore interrupt enable and route to GuC */
4707         guc_route_semaphores(guc, true);
4708
4709         ret = guc_init_submission(guc);
4710         if (ret)
4711                 goto fail_sem;
4712
4713         ret = guc_init_engine_stats(guc);
4714         if (ret)
4715                 goto fail_sem;
4716
4717         ret = guc_init_global_schedule_policy(guc);
4718         if (ret)
4719                 goto fail_stats;
4720
4721         return 0;
4722
4723 fail_stats:
4724         guc_fini_engine_stats(guc);
4725 fail_sem:
4726         guc_route_semaphores(guc, false);
4727         return ret;
4728 }
4729
4730 /* Note: By the time we're here, GuC may have already been reset */
4731 void intel_guc_submission_disable(struct intel_guc *guc)
4732 {
4733         guc_cancel_busyness_worker(guc);
4734
4735         /* Semaphore interrupt disable and route to host */
4736         guc_route_semaphores(guc, false);
4737 }
4738
4739 static bool __guc_submission_supported(struct intel_guc *guc)
4740 {
4741         /* GuC submission is unavailable for pre-Gen11 */
4742         return intel_guc_is_supported(guc) &&
4743                GRAPHICS_VER(guc_to_i915(guc)) >= 11;
4744 }
4745
4746 static bool __guc_submission_selected(struct intel_guc *guc)
4747 {
4748         struct drm_i915_private *i915 = guc_to_i915(guc);
4749
4750         if (!intel_guc_submission_is_supported(guc))
4751                 return false;
4752
4753         return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4754 }
4755
4756 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4757 {
4758         return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4759 }
4760
4761 /*
4762  * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4763  * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4764  * operation. This matches the 30fps game-render + encode (real world) workload this
4765  * knob was tested against.
4766  */
4767 #define SCHED_DISABLE_DELAY_MS  34
4768
4769 /*
4770  * A threshold of 75% is a reasonable starting point considering that real world apps
4771  * generally don't get anywhere near this.
4772  */
4773 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4774         (((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4775
4776 void intel_guc_submission_init_early(struct intel_guc *guc)
4777 {
4778         xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4779
4780         spin_lock_init(&guc->submission_state.lock);
4781         INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4782         ida_init(&guc->submission_state.guc_ids);
4783         INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4784         INIT_WORK(&guc->submission_state.destroyed_worker,
4785                   destroyed_worker_func);
4786         INIT_WORK(&guc->submission_state.reset_fail_worker,
4787                   reset_fail_worker_func);
4788
4789         spin_lock_init(&guc->timestamp.lock);
4790         INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4791
4792         guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4793         guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4794         guc->submission_state.sched_disable_gucid_threshold =
4795                 NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4796         guc->submission_supported = __guc_submission_supported(guc);
4797         guc->submission_selected = __guc_submission_selected(guc);
4798 }
4799
4800 static inline struct intel_context *
4801 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4802 {
4803         struct intel_context *ce;
4804
4805         if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4806                 guc_err(guc, "Invalid ctx_id %u\n", ctx_id);
4807                 return NULL;
4808         }
4809
4810         ce = __get_context(guc, ctx_id);
4811         if (unlikely(!ce)) {
4812                 guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id);
4813                 return NULL;
4814         }
4815
4816         if (unlikely(intel_context_is_child(ce))) {
4817                 guc_err(guc, "Context is child, ctx_id %u\n", ctx_id);
4818                 return NULL;
4819         }
4820
4821         return ce;
4822 }
4823
4824 static void wait_wake_outstanding_tlb_g2h(struct intel_guc *guc, u32 seqno)
4825 {
4826         struct intel_guc_tlb_wait *wait;
4827         unsigned long flags;
4828
4829         xa_lock_irqsave(&guc->tlb_lookup, flags);
4830         wait = xa_load(&guc->tlb_lookup, seqno);
4831
4832         if (wait)
4833                 wake_up(&wait->wq);
4834         else
4835                 guc_dbg(guc,
4836                         "Stale TLB invalidation response with seqno %d\n", seqno);
4837
4838         xa_unlock_irqrestore(&guc->tlb_lookup, flags);
4839 }
4840
4841 int intel_guc_tlb_invalidation_done(struct intel_guc *guc,
4842                                     const u32 *payload, u32 len)
4843 {
4844         if (len < 1)
4845                 return -EPROTO;
4846
4847         wait_wake_outstanding_tlb_g2h(guc, payload[0]);
4848         return 0;
4849 }
4850
4851 static long must_wait_woken(struct wait_queue_entry *wq_entry, long timeout)
4852 {
4853         /*
4854          * This is equivalent to wait_woken() with the exception that
4855          * we do not wake up early if the kthread task has been completed.
4856          * As we are called from page reclaim in any task context,
4857          * we may be invoked from stopped kthreads, but we *must*
4858          * complete the wait from the HW.
4859          */
4860         do {
4861                 set_current_state(TASK_UNINTERRUPTIBLE);
4862                 if (wq_entry->flags & WQ_FLAG_WOKEN)
4863                         break;
4864
4865                 timeout = schedule_timeout(timeout);
4866         } while (timeout);
4867
4868         /* See wait_woken() and woken_wake_function() */
4869         __set_current_state(TASK_RUNNING);
4870         smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN);
4871
4872         return timeout;
4873 }
4874
4875 static bool intel_gt_is_enabled(const struct intel_gt *gt)
4876 {
4877         /* Check if GT is wedged or suspended */
4878         if (intel_gt_is_wedged(gt) || !intel_irqs_enabled(gt->i915))
4879                 return false;
4880         return true;
4881 }
4882
4883 static int guc_send_invalidate_tlb(struct intel_guc *guc,
4884                                    enum intel_guc_tlb_invalidation_type type)
4885 {
4886         struct intel_guc_tlb_wait _wq, *wq = &_wq;
4887         struct intel_gt *gt = guc_to_gt(guc);
4888         DEFINE_WAIT_FUNC(wait, woken_wake_function);
4889         int err;
4890         u32 seqno;
4891         u32 action[] = {
4892                 INTEL_GUC_ACTION_TLB_INVALIDATION,
4893                 0,
4894                 REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_TYPE_MASK, type) |
4895                         REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_MODE_MASK,
4896                                        INTEL_GUC_TLB_INVAL_MODE_HEAVY) |
4897                         INTEL_GUC_TLB_INVAL_FLUSH_CACHE,
4898         };
4899         u32 size = ARRAY_SIZE(action);
4900
4901         /*
4902          * Early guard against GT enablement.  TLB invalidation should not be
4903          * attempted if the GT is disabled due to suspend/wedge.
4904          */
4905         if (!intel_gt_is_enabled(gt))
4906                 return -EINVAL;
4907
4908         init_waitqueue_head(&_wq.wq);
4909
4910         if (xa_alloc_cyclic_irq(&guc->tlb_lookup, &seqno, wq,
4911                                 xa_limit_32b, &guc->next_seqno,
4912                                 GFP_ATOMIC | __GFP_NOWARN) < 0) {
4913                 /* Under severe memory pressure? Serialise TLB allocations */
4914                 xa_lock_irq(&guc->tlb_lookup);
4915                 wq = xa_load(&guc->tlb_lookup, guc->serial_slot);
4916                 wait_event_lock_irq(wq->wq,
4917                                     !READ_ONCE(wq->busy),
4918                                     guc->tlb_lookup.xa_lock);
4919                 /*
4920                  * Update wq->busy under lock to ensure only one waiter can
4921                  * issue the TLB invalidation command using the serial slot at a
4922                  * time. The condition is set to true before releasing the lock
4923                  * so that other caller continue to wait until woken up again.
4924                  */
4925                 wq->busy = true;
4926                 xa_unlock_irq(&guc->tlb_lookup);
4927
4928                 seqno = guc->serial_slot;
4929         }
4930
4931         action[1] = seqno;
4932
4933         add_wait_queue(&wq->wq, &wait);
4934
4935         /* This is a critical reclaim path and thus we must loop here. */
4936         err = intel_guc_send_busy_loop(guc, action, size, G2H_LEN_DW_INVALIDATE_TLB, true);
4937         if (err)
4938                 goto out;
4939
4940         /*
4941          * Late guard against GT enablement.  It is not an error for the TLB
4942          * invalidation to time out if the GT is disabled during the process
4943          * due to suspend/wedge.  In fact, the TLB invalidation is cancelled
4944          * in this case.
4945          */
4946         if (!must_wait_woken(&wait, intel_guc_ct_max_queue_time_jiffies()) &&
4947             intel_gt_is_enabled(gt)) {
4948                 guc_err(guc,
4949                         "TLB invalidation response timed out for seqno %u\n", seqno);
4950                 err = -ETIME;
4951         }
4952 out:
4953         remove_wait_queue(&wq->wq, &wait);
4954         if (seqno != guc->serial_slot)
4955                 xa_erase_irq(&guc->tlb_lookup, seqno);
4956
4957         return err;
4958 }
4959
4960 /* Send a H2G command to invalidate the TLBs at engine level and beyond. */
4961 int intel_guc_invalidate_tlb_engines(struct intel_guc *guc)
4962 {
4963         return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_ENGINES);
4964 }
4965
4966 /* Send a H2G command to invalidate the GuC's internal TLB. */
4967 int intel_guc_invalidate_tlb_guc(struct intel_guc *guc)
4968 {
4969         return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_GUC);
4970 }
4971
4972 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
4973                                           const u32 *msg,
4974                                           u32 len)
4975 {
4976         struct intel_context *ce;
4977         u32 ctx_id;
4978
4979         if (unlikely(len < 1)) {
4980                 guc_err(guc, "Invalid length %u\n", len);
4981                 return -EPROTO;
4982         }
4983         ctx_id = msg[0];
4984
4985         ce = g2h_context_lookup(guc, ctx_id);
4986         if (unlikely(!ce))
4987                 return -EPROTO;
4988
4989         trace_intel_context_deregister_done(ce);
4990
4991 #ifdef CONFIG_DRM_I915_SELFTEST
4992         if (unlikely(ce->drop_deregister)) {
4993                 ce->drop_deregister = false;
4994                 return 0;
4995         }
4996 #endif
4997
4998         if (context_wait_for_deregister_to_register(ce)) {
4999                 struct intel_runtime_pm *runtime_pm =
5000                         &ce->engine->gt->i915->runtime_pm;
5001                 intel_wakeref_t wakeref;
5002
5003                 /*
5004                  * Previous owner of this guc_id has been deregistered, now safe
5005                  * register this context.
5006                  */
5007                 with_intel_runtime_pm(runtime_pm, wakeref)
5008                         register_context(ce, true);
5009                 guc_signal_context_fence(ce);
5010                 intel_context_put(ce);
5011         } else if (context_destroyed(ce)) {
5012                 /* Context has been destroyed */
5013                 intel_gt_pm_put_async_untracked(guc_to_gt(guc));
5014                 release_guc_id(guc, ce);
5015                 __guc_context_destroy(ce);
5016         }
5017
5018         decr_outstanding_submission_g2h(guc);
5019
5020         return 0;
5021 }
5022
5023 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
5024                                      const u32 *msg,
5025                                      u32 len)
5026 {
5027         struct intel_context *ce;
5028         unsigned long flags;
5029         u32 ctx_id;
5030
5031         if (unlikely(len < 2)) {
5032                 guc_err(guc, "Invalid length %u\n", len);
5033                 return -EPROTO;
5034         }
5035         ctx_id = msg[0];
5036
5037         ce = g2h_context_lookup(guc, ctx_id);
5038         if (unlikely(!ce))
5039                 return -EPROTO;
5040
5041         if (unlikely(context_destroyed(ce) ||
5042                      (!context_pending_enable(ce) &&
5043                      !context_pending_disable(ce)))) {
5044                 guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n",
5045                         ce->guc_state.sched_state, ctx_id);
5046                 return -EPROTO;
5047         }
5048
5049         trace_intel_context_sched_done(ce);
5050
5051         if (context_pending_enable(ce)) {
5052 #ifdef CONFIG_DRM_I915_SELFTEST
5053                 if (unlikely(ce->drop_schedule_enable)) {
5054                         ce->drop_schedule_enable = false;
5055                         return 0;
5056                 }
5057 #endif
5058
5059                 spin_lock_irqsave(&ce->guc_state.lock, flags);
5060                 clr_context_pending_enable(ce);
5061                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5062         } else if (context_pending_disable(ce)) {
5063                 bool banned;
5064
5065 #ifdef CONFIG_DRM_I915_SELFTEST
5066                 if (unlikely(ce->drop_schedule_disable)) {
5067                         ce->drop_schedule_disable = false;
5068                         return 0;
5069                 }
5070 #endif
5071
5072                 /*
5073                  * Unpin must be done before __guc_signal_context_fence,
5074                  * otherwise a race exists between the requests getting
5075                  * submitted + retired before this unpin completes resulting in
5076                  * the pin_count going to zero and the context still being
5077                  * enabled.
5078                  */
5079                 intel_context_sched_disable_unpin(ce);
5080
5081                 spin_lock_irqsave(&ce->guc_state.lock, flags);
5082                 banned = context_banned(ce);
5083                 clr_context_banned(ce);
5084                 clr_context_pending_disable(ce);
5085                 __guc_signal_context_fence(ce);
5086                 guc_blocked_fence_complete(ce);
5087                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5088
5089                 if (banned) {
5090                         guc_cancel_context_requests(ce);
5091                         intel_engine_signal_breadcrumbs(ce->engine);
5092                 }
5093         }
5094
5095         decr_outstanding_submission_g2h(guc);
5096         intel_context_put(ce);
5097
5098         return 0;
5099 }
5100
5101 static void capture_error_state(struct intel_guc *guc,
5102                                 struct intel_context *ce)
5103 {
5104         struct intel_gt *gt = guc_to_gt(guc);
5105         struct drm_i915_private *i915 = gt->i915;
5106         intel_wakeref_t wakeref;
5107         intel_engine_mask_t engine_mask;
5108
5109         if (intel_engine_is_virtual(ce->engine)) {
5110                 struct intel_engine_cs *e;
5111                 intel_engine_mask_t tmp, virtual_mask = ce->engine->mask;
5112
5113                 engine_mask = 0;
5114                 for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) {
5115                         bool match = intel_guc_capture_is_matching_engine(gt, ce, e);
5116
5117                         if (match) {
5118                                 intel_engine_set_hung_context(e, ce);
5119                                 engine_mask |= e->mask;
5120                                 i915_increase_reset_engine_count(&i915->gpu_error,
5121                                                                  e);
5122                         }
5123                 }
5124
5125                 if (!engine_mask) {
5126                         guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s",
5127                                  ce->guc_id.id, ce->engine->name);
5128                         engine_mask = ~0U;
5129                 }
5130         } else {
5131                 intel_engine_set_hung_context(ce->engine, ce);
5132                 engine_mask = ce->engine->mask;
5133                 i915_increase_reset_engine_count(&i915->gpu_error, ce->engine);
5134         }
5135
5136         with_intel_runtime_pm(&i915->runtime_pm, wakeref)
5137                 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
5138 }
5139
5140 static void guc_context_replay(struct intel_context *ce)
5141 {
5142         struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
5143
5144         __guc_reset_context(ce, ce->engine->mask);
5145         tasklet_hi_schedule(&sched_engine->tasklet);
5146 }
5147
5148 static void guc_handle_context_reset(struct intel_guc *guc,
5149                                      struct intel_context *ce)
5150 {
5151         bool capture = intel_context_is_schedulable(ce);
5152
5153         trace_intel_context_reset(ce);
5154
5155         guc_dbg(guc, "%s context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n",
5156                 capture ? "Got" : "Ignoring",
5157                 ce->guc_id.id, ce->engine->name,
5158                 str_yes_no(intel_context_is_exiting(ce)),
5159                 str_yes_no(intel_context_is_banned(ce)));
5160
5161         if (capture) {
5162                 capture_error_state(guc, ce);
5163                 guc_context_replay(ce);
5164         }
5165 }
5166
5167 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
5168                                         const u32 *msg, u32 len)
5169 {
5170         struct intel_context *ce;
5171         unsigned long flags;
5172         int ctx_id;
5173
5174         if (unlikely(len != 1)) {
5175                 guc_err(guc, "Invalid length %u", len);
5176                 return -EPROTO;
5177         }
5178
5179         ctx_id = msg[0];
5180
5181         /*
5182          * The context lookup uses the xarray but lookups only require an RCU lock
5183          * not the full spinlock. So take the lock explicitly and keep it until the
5184          * context has been reference count locked to ensure it can't be destroyed
5185          * asynchronously until the reset is done.
5186          */
5187         xa_lock_irqsave(&guc->context_lookup, flags);
5188         ce = g2h_context_lookup(guc, ctx_id);
5189         if (ce)
5190                 intel_context_get(ce);
5191         xa_unlock_irqrestore(&guc->context_lookup, flags);
5192
5193         if (unlikely(!ce))
5194                 return -EPROTO;
5195
5196         guc_handle_context_reset(guc, ce);
5197         intel_context_put(ce);
5198
5199         return 0;
5200 }
5201
5202 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
5203                                         const u32 *msg, u32 len)
5204 {
5205         u32 status;
5206
5207         if (unlikely(len != 1)) {
5208                 guc_dbg(guc, "Invalid length %u", len);
5209                 return -EPROTO;
5210         }
5211
5212         status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
5213         if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
5214                 guc_warn(guc, "No space for error capture");
5215
5216         intel_guc_capture_process(guc);
5217
5218         return 0;
5219 }
5220
5221 struct intel_engine_cs *
5222 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
5223 {
5224         struct intel_gt *gt = guc_to_gt(guc);
5225         u8 engine_class = guc_class_to_engine_class(guc_class);
5226
5227         /* Class index is checked in class converter */
5228         GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
5229
5230         return gt->engine_class[engine_class][instance];
5231 }
5232
5233 static void reset_fail_worker_func(struct work_struct *w)
5234 {
5235         struct intel_guc *guc = container_of(w, struct intel_guc,
5236                                              submission_state.reset_fail_worker);
5237         struct intel_gt *gt = guc_to_gt(guc);
5238         intel_engine_mask_t reset_fail_mask;
5239         unsigned long flags;
5240
5241         spin_lock_irqsave(&guc->submission_state.lock, flags);
5242         reset_fail_mask = guc->submission_state.reset_fail_mask;
5243         guc->submission_state.reset_fail_mask = 0;
5244         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5245
5246         if (likely(reset_fail_mask)) {
5247                 struct intel_engine_cs *engine;
5248                 enum intel_engine_id id;
5249
5250                 /*
5251                  * GuC is toast at this point - it dead loops after sending the failed
5252                  * reset notification. So need to manually determine the guilty context.
5253                  * Note that it should be reliable to do this here because the GuC is
5254                  * toast and will not be scheduling behind the KMD's back.
5255                  */
5256                 for_each_engine_masked(engine, gt, reset_fail_mask, id)
5257                         intel_guc_find_hung_context(engine);
5258
5259                 intel_gt_handle_error(gt, reset_fail_mask,
5260                                       I915_ERROR_CAPTURE,
5261                                       "GuC failed to reset engine mask=0x%x",
5262                                       reset_fail_mask);
5263         }
5264 }
5265
5266 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
5267                                          const u32 *msg, u32 len)
5268 {
5269         struct intel_engine_cs *engine;
5270         u8 guc_class, instance;
5271         u32 reason;
5272         unsigned long flags;
5273
5274         if (unlikely(len != 3)) {
5275                 guc_err(guc, "Invalid length %u", len);
5276                 return -EPROTO;
5277         }
5278
5279         guc_class = msg[0];
5280         instance = msg[1];
5281         reason = msg[2];
5282
5283         engine = intel_guc_lookup_engine(guc, guc_class, instance);
5284         if (unlikely(!engine)) {
5285                 guc_err(guc, "Invalid engine %d:%d", guc_class, instance);
5286                 return -EPROTO;
5287         }
5288
5289         /*
5290          * This is an unexpected failure of a hardware feature. So, log a real
5291          * error message not just the informational that comes with the reset.
5292          */
5293         guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X",
5294                 guc_class, instance, engine->name, reason);
5295
5296         spin_lock_irqsave(&guc->submission_state.lock, flags);
5297         guc->submission_state.reset_fail_mask |= engine->mask;
5298         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5299
5300         /*
5301          * A GT reset flushes this worker queue (G2H handler) so we must use
5302          * another worker to trigger a GT reset.
5303          */
5304         queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
5305
5306         return 0;
5307 }
5308
5309 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
5310 {
5311         struct intel_guc *guc = &engine->gt->uc.guc;
5312         struct intel_context *ce;
5313         struct i915_request *rq;
5314         unsigned long index;
5315         unsigned long flags;
5316
5317         /* Reset called during driver load? GuC not yet initialised! */
5318         if (unlikely(!guc_submission_initialized(guc)))
5319                 return;
5320
5321         xa_lock_irqsave(&guc->context_lookup, flags);
5322         xa_for_each(&guc->context_lookup, index, ce) {
5323                 bool found;
5324
5325                 if (!kref_get_unless_zero(&ce->ref))
5326                         continue;
5327
5328                 xa_unlock(&guc->context_lookup);
5329
5330                 if (!intel_context_is_pinned(ce))
5331                         goto next;
5332
5333                 if (intel_engine_is_virtual(ce->engine)) {
5334                         if (!(ce->engine->mask & engine->mask))
5335                                 goto next;
5336                 } else {
5337                         if (ce->engine != engine)
5338                                 goto next;
5339                 }
5340
5341                 found = false;
5342                 spin_lock(&ce->guc_state.lock);
5343                 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
5344                         if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
5345                                 continue;
5346
5347                         found = true;
5348                         break;
5349                 }
5350                 spin_unlock(&ce->guc_state.lock);
5351
5352                 if (found) {
5353                         intel_engine_set_hung_context(engine, ce);
5354
5355                         /* Can only cope with one hang at a time... */
5356                         intel_context_put(ce);
5357                         xa_lock(&guc->context_lookup);
5358                         goto done;
5359                 }
5360
5361 next:
5362                 intel_context_put(ce);
5363                 xa_lock(&guc->context_lookup);
5364         }
5365 done:
5366         xa_unlock_irqrestore(&guc->context_lookup, flags);
5367 }
5368
5369 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
5370                                     struct i915_request *hung_rq,
5371                                     struct drm_printer *m)
5372 {
5373         struct intel_guc *guc = &engine->gt->uc.guc;
5374         struct intel_context *ce;
5375         unsigned long index;
5376         unsigned long flags;
5377
5378         /* Reset called during driver load? GuC not yet initialised! */
5379         if (unlikely(!guc_submission_initialized(guc)))
5380                 return;
5381
5382         xa_lock_irqsave(&guc->context_lookup, flags);
5383         xa_for_each(&guc->context_lookup, index, ce) {
5384                 if (!kref_get_unless_zero(&ce->ref))
5385                         continue;
5386
5387                 xa_unlock(&guc->context_lookup);
5388
5389                 if (!intel_context_is_pinned(ce))
5390                         goto next;
5391
5392                 if (intel_engine_is_virtual(ce->engine)) {
5393                         if (!(ce->engine->mask & engine->mask))
5394                                 goto next;
5395                 } else {
5396                         if (ce->engine != engine)
5397                                 goto next;
5398                 }
5399
5400                 spin_lock(&ce->guc_state.lock);
5401                 intel_engine_dump_active_requests(&ce->guc_state.requests,
5402                                                   hung_rq, m);
5403                 spin_unlock(&ce->guc_state.lock);
5404
5405 next:
5406                 intel_context_put(ce);
5407                 xa_lock(&guc->context_lookup);
5408         }
5409         xa_unlock_irqrestore(&guc->context_lookup, flags);
5410 }
5411
5412 void intel_guc_submission_print_info(struct intel_guc *guc,
5413                                      struct drm_printer *p)
5414 {
5415         struct i915_sched_engine *sched_engine = guc->sched_engine;
5416         struct rb_node *rb;
5417         unsigned long flags;
5418
5419         if (!sched_engine)
5420                 return;
5421
5422         drm_printf(p, "GuC Submission API Version: %d.%d.%d\n",
5423                    guc->submission_version.major, guc->submission_version.minor,
5424                    guc->submission_version.patch);
5425         drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
5426                    atomic_read(&guc->outstanding_submission_g2h));
5427         drm_printf(p, "GuC tasklet count: %u\n",
5428                    atomic_read(&sched_engine->tasklet.count));
5429
5430         spin_lock_irqsave(&sched_engine->lock, flags);
5431         drm_printf(p, "Requests in GuC submit tasklet:\n");
5432         for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
5433                 struct i915_priolist *pl = to_priolist(rb);
5434                 struct i915_request *rq;
5435
5436                 priolist_for_each_request(rq, pl)
5437                         drm_printf(p, "guc_id=%u, seqno=%llu\n",
5438                                    rq->context->guc_id.id,
5439                                    rq->fence.seqno);
5440         }
5441         spin_unlock_irqrestore(&sched_engine->lock, flags);
5442         drm_printf(p, "\n");
5443 }
5444
5445 static inline void guc_log_context_priority(struct drm_printer *p,
5446                                             struct intel_context *ce)
5447 {
5448         int i;
5449
5450         drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
5451         drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
5452         for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
5453              i < GUC_CLIENT_PRIORITY_NUM; ++i) {
5454                 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
5455                            i, ce->guc_state.prio_count[i]);
5456         }
5457         drm_printf(p, "\n");
5458 }
5459
5460 static inline void guc_log_context(struct drm_printer *p,
5461                                    struct intel_context *ce)
5462 {
5463         drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
5464         drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
5465         drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
5466                    ce->ring->head,
5467                    ce->lrc_reg_state[CTX_RING_HEAD]);
5468         drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
5469                    ce->ring->tail,
5470                    ce->lrc_reg_state[CTX_RING_TAIL]);
5471         drm_printf(p, "\t\tContext Pin Count: %u\n",
5472                    atomic_read(&ce->pin_count));
5473         drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
5474                    atomic_read(&ce->guc_id.ref));
5475         drm_printf(p, "\t\tSchedule State: 0x%x\n",
5476                    ce->guc_state.sched_state);
5477 }
5478
5479 void intel_guc_submission_print_context_info(struct intel_guc *guc,
5480                                              struct drm_printer *p)
5481 {
5482         struct intel_context *ce;
5483         unsigned long index;
5484         unsigned long flags;
5485
5486         xa_lock_irqsave(&guc->context_lookup, flags);
5487         xa_for_each(&guc->context_lookup, index, ce) {
5488                 GEM_BUG_ON(intel_context_is_child(ce));
5489
5490                 guc_log_context(p, ce);
5491                 guc_log_context_priority(p, ce);
5492
5493                 if (intel_context_is_parent(ce)) {
5494                         struct intel_context *child;
5495
5496                         drm_printf(p, "\t\tNumber children: %u\n",
5497                                    ce->parallel.number_children);
5498
5499                         if (ce->parallel.guc.wq_status) {
5500                                 drm_printf(p, "\t\tWQI Head: %u\n",
5501                                            READ_ONCE(*ce->parallel.guc.wq_head));
5502                                 drm_printf(p, "\t\tWQI Tail: %u\n",
5503                                            READ_ONCE(*ce->parallel.guc.wq_tail));
5504                                 drm_printf(p, "\t\tWQI Status: %u\n",
5505                                            READ_ONCE(*ce->parallel.guc.wq_status));
5506                         }
5507
5508                         if (ce->engine->emit_bb_start ==
5509                             emit_bb_start_parent_no_preempt_mid_batch) {
5510                                 u8 i;
5511
5512                                 drm_printf(p, "\t\tChildren Go: %u\n",
5513                                            get_children_go_value(ce));
5514                                 for (i = 0; i < ce->parallel.number_children; ++i)
5515                                         drm_printf(p, "\t\tChildren Join: %u\n",
5516                                                    get_children_join_value(ce, i));
5517                         }
5518
5519                         for_each_child(ce, child)
5520                                 guc_log_context(p, child);
5521                 }
5522         }
5523         xa_unlock_irqrestore(&guc->context_lookup, flags);
5524 }
5525
5526 static inline u32 get_children_go_addr(struct intel_context *ce)
5527 {
5528         GEM_BUG_ON(!intel_context_is_parent(ce));
5529
5530         return i915_ggtt_offset(ce->state) +
5531                 __get_parent_scratch_offset(ce) +
5532                 offsetof(struct parent_scratch, go.semaphore);
5533 }
5534
5535 static inline u32 get_children_join_addr(struct intel_context *ce,
5536                                          u8 child_index)
5537 {
5538         GEM_BUG_ON(!intel_context_is_parent(ce));
5539
5540         return i915_ggtt_offset(ce->state) +
5541                 __get_parent_scratch_offset(ce) +
5542                 offsetof(struct parent_scratch, join[child_index].semaphore);
5543 }
5544
5545 #define PARENT_GO_BB                    1
5546 #define PARENT_GO_FINI_BREADCRUMB       0
5547 #define CHILD_GO_BB                     1
5548 #define CHILD_GO_FINI_BREADCRUMB        0
5549 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5550                                                      u64 offset, u32 len,
5551                                                      const unsigned int flags)
5552 {
5553         struct intel_context *ce = rq->context;
5554         u32 *cs;
5555         u8 i;
5556
5557         GEM_BUG_ON(!intel_context_is_parent(ce));
5558
5559         cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5560         if (IS_ERR(cs))
5561                 return PTR_ERR(cs);
5562
5563         /* Wait on children */
5564         for (i = 0; i < ce->parallel.number_children; ++i) {
5565                 *cs++ = (MI_SEMAPHORE_WAIT |
5566                          MI_SEMAPHORE_GLOBAL_GTT |
5567                          MI_SEMAPHORE_POLL |
5568                          MI_SEMAPHORE_SAD_EQ_SDD);
5569                 *cs++ = PARENT_GO_BB;
5570                 *cs++ = get_children_join_addr(ce, i);
5571                 *cs++ = 0;
5572         }
5573
5574         /* Turn off preemption */
5575         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5576         *cs++ = MI_NOOP;
5577
5578         /* Tell children go */
5579         cs = gen8_emit_ggtt_write(cs,
5580                                   CHILD_GO_BB,
5581                                   get_children_go_addr(ce),
5582                                   0);
5583
5584         /* Jump to batch */
5585         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
5586                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5587         *cs++ = lower_32_bits(offset);
5588         *cs++ = upper_32_bits(offset);
5589         *cs++ = MI_NOOP;
5590
5591         intel_ring_advance(rq, cs);
5592
5593         return 0;
5594 }
5595
5596 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5597                                                     u64 offset, u32 len,
5598                                                     const unsigned int flags)
5599 {
5600         struct intel_context *ce = rq->context;
5601         struct intel_context *parent = intel_context_to_parent(ce);
5602         u32 *cs;
5603
5604         GEM_BUG_ON(!intel_context_is_child(ce));
5605
5606         cs = intel_ring_begin(rq, 12);
5607         if (IS_ERR(cs))
5608                 return PTR_ERR(cs);
5609
5610         /* Signal parent */
5611         cs = gen8_emit_ggtt_write(cs,
5612                                   PARENT_GO_BB,
5613                                   get_children_join_addr(parent,
5614                                                          ce->parallel.child_index),
5615                                   0);
5616
5617         /* Wait on parent for go */
5618         *cs++ = (MI_SEMAPHORE_WAIT |
5619                  MI_SEMAPHORE_GLOBAL_GTT |
5620                  MI_SEMAPHORE_POLL |
5621                  MI_SEMAPHORE_SAD_EQ_SDD);
5622         *cs++ = CHILD_GO_BB;
5623         *cs++ = get_children_go_addr(parent);
5624         *cs++ = 0;
5625
5626         /* Turn off preemption */
5627         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5628
5629         /* Jump to batch */
5630         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
5631                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5632         *cs++ = lower_32_bits(offset);
5633         *cs++ = upper_32_bits(offset);
5634
5635         intel_ring_advance(rq, cs);
5636
5637         return 0;
5638 }
5639
5640 static u32 *
5641 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5642                                                    u32 *cs)
5643 {
5644         struct intel_context *ce = rq->context;
5645         u8 i;
5646
5647         GEM_BUG_ON(!intel_context_is_parent(ce));
5648
5649         /* Wait on children */
5650         for (i = 0; i < ce->parallel.number_children; ++i) {
5651                 *cs++ = (MI_SEMAPHORE_WAIT |
5652                          MI_SEMAPHORE_GLOBAL_GTT |
5653                          MI_SEMAPHORE_POLL |
5654                          MI_SEMAPHORE_SAD_EQ_SDD);
5655                 *cs++ = PARENT_GO_FINI_BREADCRUMB;
5656                 *cs++ = get_children_join_addr(ce, i);
5657                 *cs++ = 0;
5658         }
5659
5660         /* Turn on preemption */
5661         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5662         *cs++ = MI_NOOP;
5663
5664         /* Tell children go */
5665         cs = gen8_emit_ggtt_write(cs,
5666                                   CHILD_GO_FINI_BREADCRUMB,
5667                                   get_children_go_addr(ce),
5668                                   0);
5669
5670         return cs;
5671 }
5672
5673 /*
5674  * If this true, a submission of multi-lrc requests had an error and the
5675  * requests need to be skipped. The front end (execuf IOCTL) should've called
5676  * i915_request_skip which squashes the BB but we still need to emit the fini
5677  * breadrcrumbs seqno write. At this point we don't know how many of the
5678  * requests in the multi-lrc submission were generated so we can't do the
5679  * handshake between the parent and children (e.g. if 4 requests should be
5680  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5681  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5682  * has occurred on any of the requests in submission / relationship.
5683  */
5684 static inline bool skip_handshake(struct i915_request *rq)
5685 {
5686         return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5687 }
5688
5689 #define NON_SKIP_LEN    6
5690 static u32 *
5691 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5692                                                  u32 *cs)
5693 {
5694         struct intel_context *ce = rq->context;
5695         __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5696         __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5697
5698         GEM_BUG_ON(!intel_context_is_parent(ce));
5699
5700         if (unlikely(skip_handshake(rq))) {
5701                 /*
5702                  * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5703                  * the NON_SKIP_LEN comes from the length of the emits below.
5704                  */
5705                 memset(cs, 0, sizeof(u32) *
5706                        (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5707                 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5708         } else {
5709                 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5710         }
5711
5712         /* Emit fini breadcrumb */
5713         before_fini_breadcrumb_user_interrupt_cs = cs;
5714         cs = gen8_emit_ggtt_write(cs,
5715                                   rq->fence.seqno,
5716                                   i915_request_active_timeline(rq)->hwsp_offset,
5717                                   0);
5718
5719         /* User interrupt */
5720         *cs++ = MI_USER_INTERRUPT;
5721         *cs++ = MI_NOOP;
5722
5723         /* Ensure our math for skip + emit is correct */
5724         GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5725                    cs);
5726         GEM_BUG_ON(start_fini_breadcrumb_cs +
5727                    ce->engine->emit_fini_breadcrumb_dw != cs);
5728
5729         rq->tail = intel_ring_offset(rq, cs);
5730
5731         return cs;
5732 }
5733
5734 static u32 *
5735 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5736                                                   u32 *cs)
5737 {
5738         struct intel_context *ce = rq->context;
5739         struct intel_context *parent = intel_context_to_parent(ce);
5740
5741         GEM_BUG_ON(!intel_context_is_child(ce));
5742
5743         /* Turn on preemption */
5744         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5745         *cs++ = MI_NOOP;
5746
5747         /* Signal parent */
5748         cs = gen8_emit_ggtt_write(cs,
5749                                   PARENT_GO_FINI_BREADCRUMB,
5750                                   get_children_join_addr(parent,
5751                                                          ce->parallel.child_index),
5752                                   0);
5753
5754         /* Wait parent on for go */
5755         *cs++ = (MI_SEMAPHORE_WAIT |
5756                  MI_SEMAPHORE_GLOBAL_GTT |
5757                  MI_SEMAPHORE_POLL |
5758                  MI_SEMAPHORE_SAD_EQ_SDD);
5759         *cs++ = CHILD_GO_FINI_BREADCRUMB;
5760         *cs++ = get_children_go_addr(parent);
5761         *cs++ = 0;
5762
5763         return cs;
5764 }
5765
5766 static u32 *
5767 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5768                                                 u32 *cs)
5769 {
5770         struct intel_context *ce = rq->context;
5771         __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5772         __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5773
5774         GEM_BUG_ON(!intel_context_is_child(ce));
5775
5776         if (unlikely(skip_handshake(rq))) {
5777                 /*
5778                  * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5779                  * the NON_SKIP_LEN comes from the length of the emits below.
5780                  */
5781                 memset(cs, 0, sizeof(u32) *
5782                        (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5783                 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5784         } else {
5785                 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5786         }
5787
5788         /* Emit fini breadcrumb */
5789         before_fini_breadcrumb_user_interrupt_cs = cs;
5790         cs = gen8_emit_ggtt_write(cs,
5791                                   rq->fence.seqno,
5792                                   i915_request_active_timeline(rq)->hwsp_offset,
5793                                   0);
5794
5795         /* User interrupt */
5796         *cs++ = MI_USER_INTERRUPT;
5797         *cs++ = MI_NOOP;
5798
5799         /* Ensure our math for skip + emit is correct */
5800         GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5801                    cs);
5802         GEM_BUG_ON(start_fini_breadcrumb_cs +
5803                    ce->engine->emit_fini_breadcrumb_dw != cs);
5804
5805         rq->tail = intel_ring_offset(rq, cs);
5806
5807         return cs;
5808 }
5809
5810 #undef NON_SKIP_LEN
5811
5812 static struct intel_context *
5813 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5814                    unsigned long flags)
5815 {
5816         struct guc_virtual_engine *ve;
5817         struct intel_guc *guc;
5818         unsigned int n;
5819         int err;
5820
5821         ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5822         if (!ve)
5823                 return ERR_PTR(-ENOMEM);
5824
5825         guc = &siblings[0]->gt->uc.guc;
5826
5827         ve->base.i915 = siblings[0]->i915;
5828         ve->base.gt = siblings[0]->gt;
5829         ve->base.uncore = siblings[0]->uncore;
5830         ve->base.id = -1;
5831
5832         ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5833         ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5834         ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5835         ve->base.saturated = ALL_ENGINES;
5836
5837         snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5838
5839         ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5840
5841         ve->base.cops = &virtual_guc_context_ops;
5842         ve->base.request_alloc = guc_request_alloc;
5843         ve->base.bump_serial = virtual_guc_bump_serial;
5844
5845         ve->base.submit_request = guc_submit_request;
5846
5847         ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5848
5849         BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES);
5850         ve->base.mask = VIRTUAL_ENGINES;
5851
5852         intel_context_init(&ve->context, &ve->base);
5853
5854         for (n = 0; n < count; n++) {
5855                 struct intel_engine_cs *sibling = siblings[n];
5856
5857                 GEM_BUG_ON(!is_power_of_2(sibling->mask));
5858                 if (sibling->mask & ve->base.mask) {
5859                         guc_dbg(guc, "duplicate %s entry in load balancer\n",
5860                                 sibling->name);
5861                         err = -EINVAL;
5862                         goto err_put;
5863                 }
5864
5865                 ve->base.mask |= sibling->mask;
5866                 ve->base.logical_mask |= sibling->logical_mask;
5867
5868                 if (n != 0 && ve->base.class != sibling->class) {
5869                         guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n",
5870                                 sibling->class, ve->base.class);
5871                         err = -EINVAL;
5872                         goto err_put;
5873                 } else if (n == 0) {
5874                         ve->base.class = sibling->class;
5875                         ve->base.uabi_class = sibling->uabi_class;
5876                         snprintf(ve->base.name, sizeof(ve->base.name),
5877                                  "v%dx%d", ve->base.class, count);
5878                         ve->base.context_size = sibling->context_size;
5879
5880                         ve->base.add_active_request =
5881                                 sibling->add_active_request;
5882                         ve->base.remove_active_request =
5883                                 sibling->remove_active_request;
5884                         ve->base.emit_bb_start = sibling->emit_bb_start;
5885                         ve->base.emit_flush = sibling->emit_flush;
5886                         ve->base.emit_init_breadcrumb =
5887                                 sibling->emit_init_breadcrumb;
5888                         ve->base.emit_fini_breadcrumb =
5889                                 sibling->emit_fini_breadcrumb;
5890                         ve->base.emit_fini_breadcrumb_dw =
5891                                 sibling->emit_fini_breadcrumb_dw;
5892                         ve->base.breadcrumbs =
5893                                 intel_breadcrumbs_get(sibling->breadcrumbs);
5894
5895                         ve->base.flags |= sibling->flags;
5896
5897                         ve->base.props.timeslice_duration_ms =
5898                                 sibling->props.timeslice_duration_ms;
5899                         ve->base.props.preempt_timeout_ms =
5900                                 sibling->props.preempt_timeout_ms;
5901                 }
5902         }
5903
5904         return &ve->context;
5905
5906 err_put:
5907         intel_context_put(&ve->context);
5908         return ERR_PTR(err);
5909 }
5910
5911 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5912 {
5913         struct intel_engine_cs *engine;
5914         intel_engine_mask_t tmp, mask = ve->mask;
5915
5916         for_each_engine_masked(engine, ve->gt, mask, tmp)
5917                 if (READ_ONCE(engine->props.heartbeat_interval_ms))
5918                         return true;
5919
5920         return false;
5921 }
5922
5923 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5924 #include "selftest_guc.c"
5925 #include "selftest_guc_multi_lrc.c"
5926 #include "selftest_guc_hangcheck.c"
5927 #endif
This page took 0.383723 seconds and 4 git commands to generate.