]> Git Repo - J-linux.git/blob - drivers/gpu/drm/i915/gt/intel_ggtt.c
Merge tag 'kbuild-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[J-linux.git] / drivers / gpu / drm / i915 / gt / intel_ggtt.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5
6 #include <asm/set_memory.h>
7 #include <asm/smp.h>
8 #include <linux/types.h>
9 #include <linux/stop_machine.h>
10
11 #include <drm/drm_managed.h>
12 #include <drm/i915_drm.h>
13 #include <drm/intel-gtt.h>
14
15 #include "display/intel_display.h"
16 #include "gem/i915_gem_lmem.h"
17
18 #include "intel_context.h"
19 #include "intel_ggtt_gmch.h"
20 #include "intel_gpu_commands.h"
21 #include "intel_gt.h"
22 #include "intel_gt_regs.h"
23 #include "intel_pci_config.h"
24 #include "intel_ring.h"
25 #include "i915_drv.h"
26 #include "i915_pci.h"
27 #include "i915_reg.h"
28 #include "i915_request.h"
29 #include "i915_scatterlist.h"
30 #include "i915_utils.h"
31 #include "i915_vgpu.h"
32
33 #include "intel_gtt.h"
34 #include "gen8_ppgtt.h"
35 #include "intel_engine_pm.h"
36
37 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
38                                    unsigned long color,
39                                    u64 *start,
40                                    u64 *end)
41 {
42         if (i915_node_color_differs(node, color))
43                 *start += I915_GTT_PAGE_SIZE;
44
45         /*
46          * Also leave a space between the unallocated reserved node after the
47          * GTT and any objects within the GTT, i.e. we use the color adjustment
48          * to insert a guard page to prevent prefetches crossing over the
49          * GTT boundary.
50          */
51         node = list_next_entry(node, node_list);
52         if (node->color != color)
53                 *end -= I915_GTT_PAGE_SIZE;
54 }
55
56 static int ggtt_init_hw(struct i915_ggtt *ggtt)
57 {
58         struct drm_i915_private *i915 = ggtt->vm.i915;
59
60         i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
61
62         ggtt->vm.is_ggtt = true;
63
64         /* Only VLV supports read-only GGTT mappings */
65         ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
66
67         if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
68                 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
69
70         if (ggtt->mappable_end) {
71                 if (!io_mapping_init_wc(&ggtt->iomap,
72                                         ggtt->gmadr.start,
73                                         ggtt->mappable_end)) {
74                         ggtt->vm.cleanup(&ggtt->vm);
75                         return -EIO;
76                 }
77
78                 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
79                                               ggtt->mappable_end);
80         }
81
82         intel_ggtt_init_fences(ggtt);
83
84         return 0;
85 }
86
87 /**
88  * i915_ggtt_init_hw - Initialize GGTT hardware
89  * @i915: i915 device
90  */
91 int i915_ggtt_init_hw(struct drm_i915_private *i915)
92 {
93         int ret;
94
95         /*
96          * Note that we use page colouring to enforce a guard page at the
97          * end of the address space. This is required as the CS may prefetch
98          * beyond the end of the batch buffer, across the page boundary,
99          * and beyond the end of the GTT if we do not provide a guard.
100          */
101         ret = ggtt_init_hw(to_gt(i915)->ggtt);
102         if (ret)
103                 return ret;
104
105         return 0;
106 }
107
108 /**
109  * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM
110  * @vm: The VM to suspend the mappings for
111  *
112  * Suspend the memory mappings for all objects mapped to HW via the GGTT or a
113  * DPT page table.
114  */
115 void i915_ggtt_suspend_vm(struct i915_address_space *vm)
116 {
117         struct i915_vma *vma, *vn;
118         int save_skip_rewrite;
119
120         drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
121
122 retry:
123         i915_gem_drain_freed_objects(vm->i915);
124
125         mutex_lock(&vm->mutex);
126
127         /*
128          * Skip rewriting PTE on VMA unbind.
129          * FIXME: Use an argument to i915_vma_unbind() instead?
130          */
131         save_skip_rewrite = vm->skip_pte_rewrite;
132         vm->skip_pte_rewrite = true;
133
134         list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
135                 struct drm_i915_gem_object *obj = vma->obj;
136
137                 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
138
139                 if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
140                         continue;
141
142                 /* unlikely to race when GPU is idle, so no worry about slowpath.. */
143                 if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) {
144                         /*
145                          * No dead objects should appear here, GPU should be
146                          * completely idle, and userspace suspended
147                          */
148                         i915_gem_object_get(obj);
149
150                         mutex_unlock(&vm->mutex);
151
152                         i915_gem_object_lock(obj, NULL);
153                         GEM_WARN_ON(i915_vma_unbind(vma));
154                         i915_gem_object_unlock(obj);
155                         i915_gem_object_put(obj);
156
157                         vm->skip_pte_rewrite = save_skip_rewrite;
158                         goto retry;
159                 }
160
161                 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
162                         i915_vma_wait_for_bind(vma);
163
164                         __i915_vma_evict(vma, false);
165                         drm_mm_remove_node(&vma->node);
166                 }
167
168                 i915_gem_object_unlock(obj);
169         }
170
171         vm->clear_range(vm, 0, vm->total);
172
173         vm->skip_pte_rewrite = save_skip_rewrite;
174
175         mutex_unlock(&vm->mutex);
176 }
177
178 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
179 {
180         struct intel_gt *gt;
181
182         i915_ggtt_suspend_vm(&ggtt->vm);
183         ggtt->invalidate(ggtt);
184
185         list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
186                 intel_gt_check_and_clear_faults(gt);
187 }
188
189 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
190 {
191         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
192
193         spin_lock_irq(&uncore->lock);
194         intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
195         intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
196         spin_unlock_irq(&uncore->lock);
197 }
198
199 static bool needs_wc_ggtt_mapping(struct drm_i915_private *i915)
200 {
201         /*
202          * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range
203          * will be dropped. For WC mappings in general we have 64 byte burst
204          * writes when the WC buffer is flushed, so we can't use it, but have to
205          * resort to an uncached mapping. The WC issue is easily caught by the
206          * readback check when writing GTT PTE entries.
207          */
208         if (!IS_GEN9_LP(i915) && GRAPHICS_VER(i915) < 11)
209                 return true;
210
211         return false;
212 }
213
214 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
215 {
216         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
217
218         /*
219          * Note that as an uncached mmio write, this will flush the
220          * WCB of the writes into the GGTT before it triggers the invalidate.
221          *
222          * Only perform this when GGTT is mapped as WC, see ggtt_probe_common().
223          */
224         if (needs_wc_ggtt_mapping(ggtt->vm.i915))
225                 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6,
226                                       GFX_FLSH_CNTL_EN);
227 }
228
229 static void guc_ggtt_ct_invalidate(struct intel_gt *gt)
230 {
231         struct intel_uncore *uncore = gt->uncore;
232         intel_wakeref_t wakeref;
233
234         with_intel_runtime_pm_if_active(uncore->rpm, wakeref) {
235                 struct intel_guc *guc = &gt->uc.guc;
236
237                 intel_guc_invalidate_tlb_guc(guc);
238         }
239 }
240
241 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
242 {
243         struct drm_i915_private *i915 = ggtt->vm.i915;
244         struct intel_gt *gt;
245
246         gen8_ggtt_invalidate(ggtt);
247
248         list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) {
249                 if (intel_guc_tlb_invalidation_is_available(&gt->uc.guc))
250                         guc_ggtt_ct_invalidate(gt);
251                 else if (GRAPHICS_VER(i915) >= 12)
252                         intel_uncore_write_fw(gt->uncore,
253                                               GEN12_GUC_TLB_INV_CR,
254                                               GEN12_GUC_TLB_INV_CR_INVALIDATE);
255                 else
256                         intel_uncore_write_fw(gt->uncore,
257                                               GEN8_GTCR, GEN8_GTCR_INVALIDATE);
258         }
259 }
260
261 static u64 mtl_ggtt_pte_encode(dma_addr_t addr,
262                                unsigned int pat_index,
263                                u32 flags)
264 {
265         gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
266
267         WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK);
268
269         if (flags & PTE_LM)
270                 pte |= GEN12_GGTT_PTE_LM;
271
272         if (pat_index & BIT(0))
273                 pte |= MTL_GGTT_PTE_PAT0;
274
275         if (pat_index & BIT(1))
276                 pte |= MTL_GGTT_PTE_PAT1;
277
278         return pte;
279 }
280
281 u64 gen8_ggtt_pte_encode(dma_addr_t addr,
282                          unsigned int pat_index,
283                          u32 flags)
284 {
285         gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
286
287         if (flags & PTE_LM)
288                 pte |= GEN12_GGTT_PTE_LM;
289
290         return pte;
291 }
292
293 static bool should_update_ggtt_with_bind(struct i915_ggtt *ggtt)
294 {
295         struct intel_gt *gt = ggtt->vm.gt;
296
297         return intel_gt_is_bind_context_ready(gt);
298 }
299
300 static struct intel_context *gen8_ggtt_bind_get_ce(struct i915_ggtt *ggtt, intel_wakeref_t *wakeref)
301 {
302         struct intel_context *ce;
303         struct intel_gt *gt = ggtt->vm.gt;
304
305         if (intel_gt_is_wedged(gt))
306                 return NULL;
307
308         ce = gt->engine[BCS0]->bind_context;
309         GEM_BUG_ON(!ce);
310
311         /*
312          * If the GT is not awake already at this stage then fallback
313          * to pci based GGTT update otherwise __intel_wakeref_get_first()
314          * would conflict with fs_reclaim trying to allocate memory while
315          * doing rpm_resume().
316          */
317         *wakeref = intel_gt_pm_get_if_awake(gt);
318         if (!*wakeref)
319                 return NULL;
320
321         intel_engine_pm_get(ce->engine);
322
323         return ce;
324 }
325
326 static void gen8_ggtt_bind_put_ce(struct intel_context *ce, intel_wakeref_t wakeref)
327 {
328         intel_engine_pm_put(ce->engine);
329         intel_gt_pm_put(ce->engine->gt, wakeref);
330 }
331
332 static bool gen8_ggtt_bind_ptes(struct i915_ggtt *ggtt, u32 offset,
333                                 struct sg_table *pages, u32 num_entries,
334                                 const gen8_pte_t pte)
335 {
336         struct i915_sched_attr attr = {};
337         struct intel_gt *gt = ggtt->vm.gt;
338         const gen8_pte_t scratch_pte = ggtt->vm.scratch[0]->encode;
339         struct sgt_iter iter;
340         struct i915_request *rq;
341         struct intel_context *ce;
342         intel_wakeref_t wakeref;
343         u32 *cs;
344
345         if (!num_entries)
346                 return true;
347
348         ce = gen8_ggtt_bind_get_ce(ggtt, &wakeref);
349         if (!ce)
350                 return false;
351
352         if (pages)
353                 iter = __sgt_iter(pages->sgl, true);
354
355         while (num_entries) {
356                 int count = 0;
357                 dma_addr_t addr;
358                 /*
359                  * MI_UPDATE_GTT can update 512 entries in a single command but
360                  * that end up with engine reset, 511 works.
361                  */
362                 u32 n_ptes = min_t(u32, 511, num_entries);
363
364                 if (mutex_lock_interruptible(&ce->timeline->mutex))
365                         goto put_ce;
366
367                 intel_context_enter(ce);
368                 rq = __i915_request_create(ce, GFP_NOWAIT | GFP_ATOMIC);
369                 intel_context_exit(ce);
370                 if (IS_ERR(rq)) {
371                         GT_TRACE(gt, "Failed to get bind request\n");
372                         mutex_unlock(&ce->timeline->mutex);
373                         goto put_ce;
374                 }
375
376                 cs = intel_ring_begin(rq, 2 * n_ptes + 2);
377                 if (IS_ERR(cs)) {
378                         GT_TRACE(gt, "Failed to ring space for GGTT bind\n");
379                         i915_request_set_error_once(rq, PTR_ERR(cs));
380                         /* once a request is created, it must be queued */
381                         goto queue_err_rq;
382                 }
383
384                 *cs++ = MI_UPDATE_GTT | (2 * n_ptes);
385                 *cs++ = offset << 12;
386
387                 if (pages) {
388                         for_each_sgt_daddr_next(addr, iter) {
389                                 if (count == n_ptes)
390                                         break;
391                                 *cs++ = lower_32_bits(pte | addr);
392                                 *cs++ = upper_32_bits(pte | addr);
393                                 count++;
394                         }
395                         /* fill remaining with scratch pte, if any */
396                         if (count < n_ptes) {
397                                 memset64((u64 *)cs, scratch_pte,
398                                          n_ptes - count);
399                                 cs += (n_ptes - count) * 2;
400                         }
401                 } else {
402                         memset64((u64 *)cs, pte, n_ptes);
403                         cs += n_ptes * 2;
404                 }
405
406                 intel_ring_advance(rq, cs);
407 queue_err_rq:
408                 i915_request_get(rq);
409                 __i915_request_commit(rq);
410                 __i915_request_queue(rq, &attr);
411
412                 mutex_unlock(&ce->timeline->mutex);
413                 /* This will break if the request is complete or after engine reset */
414                 i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
415                 if (rq->fence.error)
416                         goto err_rq;
417
418                 i915_request_put(rq);
419
420                 num_entries -= n_ptes;
421                 offset += n_ptes;
422         }
423
424         gen8_ggtt_bind_put_ce(ce, wakeref);
425         return true;
426
427 err_rq:
428         i915_request_put(rq);
429 put_ce:
430         gen8_ggtt_bind_put_ce(ce, wakeref);
431         return false;
432 }
433
434 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
435 {
436         writeq(pte, addr);
437 }
438
439 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
440                                   dma_addr_t addr,
441                                   u64 offset,
442                                   unsigned int pat_index,
443                                   u32 flags)
444 {
445         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
446         gen8_pte_t __iomem *pte =
447                 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
448
449         gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags));
450
451         ggtt->invalidate(ggtt);
452 }
453
454 static void gen8_ggtt_insert_page_bind(struct i915_address_space *vm,
455                                        dma_addr_t addr, u64 offset,
456                                        unsigned int pat_index, u32 flags)
457 {
458         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
459         gen8_pte_t pte;
460
461         pte = ggtt->vm.pte_encode(addr, pat_index, flags);
462         if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
463             gen8_ggtt_bind_ptes(ggtt, offset, NULL, 1, pte))
464                 return ggtt->invalidate(ggtt);
465
466         gen8_ggtt_insert_page(vm, addr, offset, pat_index, flags);
467 }
468
469 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
470                                      struct i915_vma_resource *vma_res,
471                                      unsigned int pat_index,
472                                      u32 flags)
473 {
474         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
475         const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
476         gen8_pte_t __iomem *gte;
477         gen8_pte_t __iomem *end;
478         struct sgt_iter iter;
479         dma_addr_t addr;
480
481         /*
482          * Note that we ignore PTE_READ_ONLY here. The caller must be careful
483          * not to allow the user to override access to a read only page.
484          */
485
486         gte = (gen8_pte_t __iomem *)ggtt->gsm;
487         gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
488         end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
489         while (gte < end)
490                 gen8_set_pte(gte++, vm->scratch[0]->encode);
491         end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
492
493         for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
494                 gen8_set_pte(gte++, pte_encode | addr);
495         GEM_BUG_ON(gte > end);
496
497         /* Fill the allocated but "unused" space beyond the end of the buffer */
498         while (gte < end)
499                 gen8_set_pte(gte++, vm->scratch[0]->encode);
500
501         /*
502          * We want to flush the TLBs only after we're certain all the PTE
503          * updates have finished.
504          */
505         ggtt->invalidate(ggtt);
506 }
507
508 static bool __gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
509                                             struct i915_vma_resource *vma_res,
510                                             unsigned int pat_index, u32 flags)
511 {
512         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
513         gen8_pte_t scratch_pte = vm->scratch[0]->encode;
514         gen8_pte_t pte_encode;
515         u64 start, end;
516
517         pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
518         start = (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
519         end = start + vma_res->guard / I915_GTT_PAGE_SIZE;
520         if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
521                 goto err;
522
523         start = end;
524         end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
525         if (!gen8_ggtt_bind_ptes(ggtt, start, vma_res->bi.pages,
526               vma_res->node_size / I915_GTT_PAGE_SIZE, pte_encode))
527                 goto err;
528
529         start += vma_res->node_size / I915_GTT_PAGE_SIZE;
530         if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
531                 goto err;
532
533         return true;
534
535 err:
536         return false;
537 }
538
539 static void gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
540                                           struct i915_vma_resource *vma_res,
541                                           unsigned int pat_index, u32 flags)
542 {
543         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
544
545         if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
546             __gen8_ggtt_insert_entries_bind(vm, vma_res, pat_index, flags))
547                 return ggtt->invalidate(ggtt);
548
549         gen8_ggtt_insert_entries(vm, vma_res, pat_index, flags);
550 }
551
552 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
553                                   u64 start, u64 length)
554 {
555         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
556         unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
557         unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
558         const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
559         gen8_pte_t __iomem *gtt_base =
560                 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
561         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
562         int i;
563
564         if (WARN(num_entries > max_entries,
565                  "First entry = %d; Num entries = %d (max=%d)\n",
566                  first_entry, num_entries, max_entries))
567                 num_entries = max_entries;
568
569         for (i = 0; i < num_entries; i++)
570                 gen8_set_pte(&gtt_base[i], scratch_pte);
571 }
572
573 static void gen8_ggtt_scratch_range_bind(struct i915_address_space *vm,
574                                          u64 start, u64 length)
575 {
576         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
577         unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
578         unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
579         const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
580         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
581
582         if (WARN(num_entries > max_entries,
583                  "First entry = %d; Num entries = %d (max=%d)\n",
584                  first_entry, num_entries, max_entries))
585                 num_entries = max_entries;
586
587         if (should_update_ggtt_with_bind(ggtt) && gen8_ggtt_bind_ptes(ggtt, first_entry,
588              NULL, num_entries, scratch_pte))
589                 return ggtt->invalidate(ggtt);
590
591         gen8_ggtt_clear_range(vm, start, length);
592 }
593
594 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
595                                   dma_addr_t addr,
596                                   u64 offset,
597                                   unsigned int pat_index,
598                                   u32 flags)
599 {
600         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
601         gen6_pte_t __iomem *pte =
602                 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
603
604         iowrite32(vm->pte_encode(addr, pat_index, flags), pte);
605
606         ggtt->invalidate(ggtt);
607 }
608
609 /*
610  * Binds an object into the global gtt with the specified cache level.
611  * The object will be accessible to the GPU via commands whose operands
612  * reference offsets within the global GTT as well as accessible by the GPU
613  * through the GMADR mapped BAR (i915->mm.gtt->gtt).
614  */
615 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
616                                      struct i915_vma_resource *vma_res,
617                                      unsigned int pat_index,
618                                      u32 flags)
619 {
620         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
621         gen6_pte_t __iomem *gte;
622         gen6_pte_t __iomem *end;
623         struct sgt_iter iter;
624         dma_addr_t addr;
625
626         gte = (gen6_pte_t __iomem *)ggtt->gsm;
627         gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
628
629         end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
630         while (gte < end)
631                 iowrite32(vm->scratch[0]->encode, gte++);
632         end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
633         for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
634                 iowrite32(vm->pte_encode(addr, pat_index, flags), gte++);
635         GEM_BUG_ON(gte > end);
636
637         /* Fill the allocated but "unused" space beyond the end of the buffer */
638         while (gte < end)
639                 iowrite32(vm->scratch[0]->encode, gte++);
640
641         /*
642          * We want to flush the TLBs only after we're certain all the PTE
643          * updates have finished.
644          */
645         ggtt->invalidate(ggtt);
646 }
647
648 static void nop_clear_range(struct i915_address_space *vm,
649                             u64 start, u64 length)
650 {
651 }
652
653 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
654 {
655         /*
656          * Make sure the internal GAM fifo has been cleared of all GTT
657          * writes before exiting stop_machine(). This guarantees that
658          * any aperture accesses waiting to start in another process
659          * cannot back up behind the GTT writes causing a hang.
660          * The register can be any arbitrary GAM register.
661          */
662         intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
663 }
664
665 struct insert_page {
666         struct i915_address_space *vm;
667         dma_addr_t addr;
668         u64 offset;
669         unsigned int pat_index;
670 };
671
672 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
673 {
674         struct insert_page *arg = _arg;
675
676         gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset,
677                               arg->pat_index, 0);
678         bxt_vtd_ggtt_wa(arg->vm);
679
680         return 0;
681 }
682
683 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
684                                           dma_addr_t addr,
685                                           u64 offset,
686                                           unsigned int pat_index,
687                                           u32 unused)
688 {
689         struct insert_page arg = { vm, addr, offset, pat_index };
690
691         stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
692 }
693
694 struct insert_entries {
695         struct i915_address_space *vm;
696         struct i915_vma_resource *vma_res;
697         unsigned int pat_index;
698         u32 flags;
699 };
700
701 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
702 {
703         struct insert_entries *arg = _arg;
704
705         gen8_ggtt_insert_entries(arg->vm, arg->vma_res,
706                                  arg->pat_index, arg->flags);
707         bxt_vtd_ggtt_wa(arg->vm);
708
709         return 0;
710 }
711
712 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
713                                              struct i915_vma_resource *vma_res,
714                                              unsigned int pat_index,
715                                              u32 flags)
716 {
717         struct insert_entries arg = { vm, vma_res, pat_index, flags };
718
719         stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
720 }
721
722 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
723                                   u64 start, u64 length)
724 {
725         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
726         unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
727         unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
728         gen6_pte_t scratch_pte, __iomem *gtt_base =
729                 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
730         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
731         int i;
732
733         if (WARN(num_entries > max_entries,
734                  "First entry = %d; Num entries = %d (max=%d)\n",
735                  first_entry, num_entries, max_entries))
736                 num_entries = max_entries;
737
738         scratch_pte = vm->scratch[0]->encode;
739         for (i = 0; i < num_entries; i++)
740                 iowrite32(scratch_pte, &gtt_base[i]);
741 }
742
743 void intel_ggtt_bind_vma(struct i915_address_space *vm,
744                          struct i915_vm_pt_stash *stash,
745                          struct i915_vma_resource *vma_res,
746                          unsigned int pat_index,
747                          u32 flags)
748 {
749         u32 pte_flags;
750
751         if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK))
752                 return;
753
754         vma_res->bound_flags |= flags;
755
756         /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
757         pte_flags = 0;
758         if (vma_res->bi.readonly)
759                 pte_flags |= PTE_READ_ONLY;
760         if (vma_res->bi.lmem)
761                 pte_flags |= PTE_LM;
762
763         vm->insert_entries(vm, vma_res, pat_index, pte_flags);
764         vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE;
765 }
766
767 void intel_ggtt_unbind_vma(struct i915_address_space *vm,
768                            struct i915_vma_resource *vma_res)
769 {
770         vm->clear_range(vm, vma_res->start, vma_res->vma_size);
771 }
772
773 /*
774  * Reserve the top of the GuC address space for firmware images. Addresses
775  * beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC,
776  * which makes for a suitable range to hold GuC/HuC firmware images if the
777  * size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT
778  * is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk
779  * of the same size anyway, which is far more than needed, to keep the logic
780  * in uc_fw_ggtt_offset() simple.
781  */
782 #define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP)
783
784 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
785 {
786         u64 offset;
787         int ret;
788
789         if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
790                 return 0;
791
792         GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE);
793         offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE;
794
795         ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw,
796                                    GUC_TOP_RESERVE_SIZE, offset,
797                                    I915_COLOR_UNEVICTABLE, PIN_NOEVICT);
798         if (ret)
799                 drm_dbg(&ggtt->vm.i915->drm,
800                         "Failed to reserve top of GGTT for GuC\n");
801
802         return ret;
803 }
804
805 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
806 {
807         if (drm_mm_node_allocated(&ggtt->uc_fw))
808                 drm_mm_remove_node(&ggtt->uc_fw);
809 }
810
811 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
812 {
813         ggtt_release_guc_top(ggtt);
814         if (drm_mm_node_allocated(&ggtt->error_capture))
815                 drm_mm_remove_node(&ggtt->error_capture);
816         mutex_destroy(&ggtt->error_mutex);
817 }
818
819 static int init_ggtt(struct i915_ggtt *ggtt)
820 {
821         /*
822          * Let GEM Manage all of the aperture.
823          *
824          * However, leave one page at the end still bound to the scratch page.
825          * There are a number of places where the hardware apparently prefetches
826          * past the end of the object, and we've seen multiple hangs with the
827          * GPU head pointer stuck in a batchbuffer bound at the last page of the
828          * aperture.  One page should be enough to keep any prefetching inside
829          * of the aperture.
830          */
831         unsigned long hole_start, hole_end;
832         struct drm_mm_node *entry;
833         int ret;
834
835         /*
836          * GuC requires all resources that we're sharing with it to be placed in
837          * non-WOPCM memory. If GuC is not present or not in use we still need a
838          * small bias as ring wraparound at offset 0 sometimes hangs. No idea
839          * why.
840          */
841         ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
842                                intel_wopcm_guc_size(&ggtt->vm.gt->wopcm));
843
844         ret = intel_vgt_balloon(ggtt);
845         if (ret)
846                 return ret;
847
848         mutex_init(&ggtt->error_mutex);
849         if (ggtt->mappable_end) {
850                 /*
851                  * Reserve a mappable slot for our lockless error capture.
852                  *
853                  * We strongly prefer taking address 0x0 in order to protect
854                  * other critical buffers against accidental overwrites,
855                  * as writing to address 0 is a very common mistake.
856                  *
857                  * Since 0 may already be in use by the system (e.g. the BIOS
858                  * framebuffer), we let the reservation fail quietly and hope
859                  * 0 remains reserved always.
860                  *
861                  * If we fail to reserve 0, and then fail to find any space
862                  * for an error-capture, remain silent. We can afford not
863                  * to reserve an error_capture node as we have fallback
864                  * paths, and we trust that 0 will remain reserved. However,
865                  * the only likely reason for failure to insert is a driver
866                  * bug, which we expect to cause other failures...
867                  *
868                  * Since CPU can perform speculative reads on error capture
869                  * (write-combining allows it) add scratch page after error
870                  * capture to avoid DMAR errors.
871                  */
872                 ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE;
873                 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
874                 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
875                         drm_mm_insert_node_in_range(&ggtt->vm.mm,
876                                                     &ggtt->error_capture,
877                                                     ggtt->error_capture.size, 0,
878                                                     ggtt->error_capture.color,
879                                                     0, ggtt->mappable_end,
880                                                     DRM_MM_INSERT_LOW);
881         }
882         if (drm_mm_node_allocated(&ggtt->error_capture)) {
883                 u64 start = ggtt->error_capture.start;
884                 u64 size = ggtt->error_capture.size;
885
886                 ggtt->vm.scratch_range(&ggtt->vm, start, size);
887                 drm_dbg(&ggtt->vm.i915->drm,
888                         "Reserved GGTT:[%llx, %llx] for use by error capture\n",
889                         start, start + size);
890         }
891
892         /*
893          * The upper portion of the GuC address space has a sizeable hole
894          * (several MB) that is inaccessible by GuC. Reserve this range within
895          * GGTT as it can comfortably hold GuC/HuC firmware images.
896          */
897         ret = ggtt_reserve_guc_top(ggtt);
898         if (ret)
899                 goto err;
900
901         /* Clear any non-preallocated blocks */
902         drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
903                 drm_dbg(&ggtt->vm.i915->drm,
904                         "clearing unused GTT space: [%lx, %lx]\n",
905                         hole_start, hole_end);
906                 ggtt->vm.clear_range(&ggtt->vm, hole_start,
907                                      hole_end - hole_start);
908         }
909
910         /* And finally clear the reserved guard page */
911         ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
912
913         return 0;
914
915 err:
916         cleanup_init_ggtt(ggtt);
917         return ret;
918 }
919
920 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
921                                   struct i915_vm_pt_stash *stash,
922                                   struct i915_vma_resource *vma_res,
923                                   unsigned int pat_index,
924                                   u32 flags)
925 {
926         u32 pte_flags;
927
928         /* Currently applicable only to VLV */
929         pte_flags = 0;
930         if (vma_res->bi.readonly)
931                 pte_flags |= PTE_READ_ONLY;
932
933         if (flags & I915_VMA_LOCAL_BIND)
934                 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
935                                stash, vma_res, pat_index, flags);
936
937         if (flags & I915_VMA_GLOBAL_BIND)
938                 vm->insert_entries(vm, vma_res, pat_index, pte_flags);
939
940         vma_res->bound_flags |= flags;
941 }
942
943 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
944                                     struct i915_vma_resource *vma_res)
945 {
946         if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND)
947                 vm->clear_range(vm, vma_res->start, vma_res->vma_size);
948
949         if (vma_res->bound_flags & I915_VMA_LOCAL_BIND)
950                 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res);
951 }
952
953 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
954 {
955         struct i915_vm_pt_stash stash = {};
956         struct i915_ppgtt *ppgtt;
957         int err;
958
959         ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0);
960         if (IS_ERR(ppgtt))
961                 return PTR_ERR(ppgtt);
962
963         if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
964                 err = -ENODEV;
965                 goto err_ppgtt;
966         }
967
968         err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
969         if (err)
970                 goto err_ppgtt;
971
972         i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
973         err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
974         i915_gem_object_unlock(ppgtt->vm.scratch[0]);
975         if (err)
976                 goto err_stash;
977
978         /*
979          * Note we only pre-allocate as far as the end of the global
980          * GTT. On 48b / 4-level page-tables, the difference is very,
981          * very significant! We have to preallocate as GVT/vgpu does
982          * not like the page directory disappearing.
983          */
984         ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
985
986         ggtt->alias = ppgtt;
987         ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
988
989         GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma);
990         ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
991
992         GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma);
993         ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
994
995         i915_vm_free_pt_stash(&ppgtt->vm, &stash);
996         return 0;
997
998 err_stash:
999         i915_vm_free_pt_stash(&ppgtt->vm, &stash);
1000 err_ppgtt:
1001         i915_vm_put(&ppgtt->vm);
1002         return err;
1003 }
1004
1005 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
1006 {
1007         struct i915_ppgtt *ppgtt;
1008
1009         ppgtt = fetch_and_zero(&ggtt->alias);
1010         if (!ppgtt)
1011                 return;
1012
1013         i915_vm_put(&ppgtt->vm);
1014
1015         ggtt->vm.vma_ops.bind_vma   = intel_ggtt_bind_vma;
1016         ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1017 }
1018
1019 int i915_init_ggtt(struct drm_i915_private *i915)
1020 {
1021         int ret;
1022
1023         ret = init_ggtt(to_gt(i915)->ggtt);
1024         if (ret)
1025                 return ret;
1026
1027         if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
1028                 ret = init_aliasing_ppgtt(to_gt(i915)->ggtt);
1029                 if (ret)
1030                         cleanup_init_ggtt(to_gt(i915)->ggtt);
1031         }
1032
1033         return 0;
1034 }
1035
1036 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
1037 {
1038         struct i915_vma *vma, *vn;
1039
1040         flush_workqueue(ggtt->vm.i915->wq);
1041         i915_gem_drain_freed_objects(ggtt->vm.i915);
1042
1043         mutex_lock(&ggtt->vm.mutex);
1044
1045         ggtt->vm.skip_pte_rewrite = true;
1046
1047         list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
1048                 struct drm_i915_gem_object *obj = vma->obj;
1049                 bool trylock;
1050
1051                 trylock = i915_gem_object_trylock(obj, NULL);
1052                 WARN_ON(!trylock);
1053
1054                 WARN_ON(__i915_vma_unbind(vma));
1055                 if (trylock)
1056                         i915_gem_object_unlock(obj);
1057         }
1058
1059         if (drm_mm_node_allocated(&ggtt->error_capture))
1060                 drm_mm_remove_node(&ggtt->error_capture);
1061         mutex_destroy(&ggtt->error_mutex);
1062
1063         ggtt_release_guc_top(ggtt);
1064         intel_vgt_deballoon(ggtt);
1065
1066         ggtt->vm.cleanup(&ggtt->vm);
1067
1068         mutex_unlock(&ggtt->vm.mutex);
1069         i915_address_space_fini(&ggtt->vm);
1070
1071         arch_phys_wc_del(ggtt->mtrr);
1072
1073         if (ggtt->iomap.size)
1074                 io_mapping_fini(&ggtt->iomap);
1075 }
1076
1077 /**
1078  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
1079  * @i915: i915 device
1080  */
1081 void i915_ggtt_driver_release(struct drm_i915_private *i915)
1082 {
1083         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1084
1085         fini_aliasing_ppgtt(ggtt);
1086
1087         intel_ggtt_fini_fences(ggtt);
1088         ggtt_cleanup_hw(ggtt);
1089 }
1090
1091 /**
1092  * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
1093  * all free objects have been drained.
1094  * @i915: i915 device
1095  */
1096 void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
1097 {
1098         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1099
1100         GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
1101         dma_resv_fini(&ggtt->vm._resv);
1102 }
1103
1104 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1105 {
1106         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1107         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1108         return snb_gmch_ctl << 20;
1109 }
1110
1111 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1112 {
1113         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1114         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1115         if (bdw_gmch_ctl)
1116                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1117
1118 #ifdef CONFIG_X86_32
1119         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
1120         if (bdw_gmch_ctl > 4)
1121                 bdw_gmch_ctl = 4;
1122 #endif
1123
1124         return bdw_gmch_ctl << 20;
1125 }
1126
1127 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1128 {
1129         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1130         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1131
1132         if (gmch_ctrl)
1133                 return 1 << (20 + gmch_ctrl);
1134
1135         return 0;
1136 }
1137
1138 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915)
1139 {
1140         /*
1141          * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset
1142          * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset
1143          */
1144         GEM_BUG_ON(GRAPHICS_VER(i915) < 6);
1145         return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M;
1146 }
1147
1148 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915)
1149 {
1150         return gen6_gttmmadr_size(i915) / 2;
1151 }
1152
1153 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
1154 {
1155         struct drm_i915_private *i915 = ggtt->vm.i915;
1156         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
1157         struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1158         phys_addr_t phys_addr;
1159         u32 pte_flags;
1160         int ret;
1161
1162         GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915));
1163
1164         if (i915_direct_stolen_access(i915)) {
1165                 drm_dbg(&i915->drm, "Using direct GSM access\n");
1166                 phys_addr = intel_uncore_read64(uncore, GEN6_GSMBASE) & GEN11_BDSM_MASK;
1167         } else {
1168                 phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915);
1169         }
1170
1171         if (needs_wc_ggtt_mapping(i915))
1172                 ggtt->gsm = ioremap_wc(phys_addr, size);
1173         else
1174                 ggtt->gsm = ioremap(phys_addr, size);
1175
1176         if (!ggtt->gsm) {
1177                 drm_err(&i915->drm, "Failed to map the ggtt page table\n");
1178                 return -ENOMEM;
1179         }
1180
1181         kref_init(&ggtt->vm.resv_ref);
1182         ret = setup_scratch_page(&ggtt->vm);
1183         if (ret) {
1184                 drm_err(&i915->drm, "Scratch setup failed\n");
1185                 /* iounmap will also get called at remove, but meh */
1186                 iounmap(ggtt->gsm);
1187                 return ret;
1188         }
1189
1190         pte_flags = 0;
1191         if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
1192                 pte_flags |= PTE_LM;
1193
1194         ggtt->vm.scratch[0]->encode =
1195                 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
1196                                     i915_gem_get_pat_index(i915,
1197                                                            I915_CACHE_NONE),
1198                                     pte_flags);
1199
1200         return 0;
1201 }
1202
1203 static void gen6_gmch_remove(struct i915_address_space *vm)
1204 {
1205         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1206
1207         iounmap(ggtt->gsm);
1208         free_scratch(vm);
1209 }
1210
1211 static struct resource pci_resource(struct pci_dev *pdev, int bar)
1212 {
1213         return DEFINE_RES_MEM(pci_resource_start(pdev, bar),
1214                               pci_resource_len(pdev, bar));
1215 }
1216
1217 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
1218 {
1219         struct drm_i915_private *i915 = ggtt->vm.i915;
1220         struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1221         unsigned int size;
1222         u16 snb_gmch_ctl;
1223
1224         if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) {
1225                 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1226                         return -ENXIO;
1227
1228                 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1229                 ggtt->mappable_end = resource_size(&ggtt->gmadr);
1230         }
1231
1232         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1233         if (IS_CHERRYVIEW(i915))
1234                 size = chv_get_total_gtt_size(snb_gmch_ctl);
1235         else
1236                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
1237
1238         ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1239         ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1240         ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY;
1241
1242         ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
1243         ggtt->vm.cleanup = gen6_gmch_remove;
1244         ggtt->vm.insert_page = gen8_ggtt_insert_page;
1245         ggtt->vm.clear_range = nop_clear_range;
1246         ggtt->vm.scratch_range = gen8_ggtt_clear_range;
1247
1248         ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
1249
1250         /*
1251          * Serialize GTT updates with aperture access on BXT if VT-d is on,
1252          * and always on CHV.
1253          */
1254         if (intel_vm_no_concurrent_access_wa(i915)) {
1255                 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
1256                 ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
1257
1258                 /*
1259                  * Calling stop_machine() version of GGTT update function
1260                  * at error capture/reset path will raise lockdep warning.
1261                  * Allow calling gen8_ggtt_insert_* directly at reset path
1262                  * which is safe from parallel GGTT updates.
1263                  */
1264                 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1265                 ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries;
1266
1267                 ggtt->vm.bind_async_flags =
1268                         I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
1269         }
1270
1271         if (i915_ggtt_require_binder(i915)) {
1272                 ggtt->vm.scratch_range = gen8_ggtt_scratch_range_bind;
1273                 ggtt->vm.insert_page = gen8_ggtt_insert_page_bind;
1274                 ggtt->vm.insert_entries = gen8_ggtt_insert_entries_bind;
1275                 /*
1276                  * On GPU is hung, we might bind VMAs for error capture.
1277                  * Fallback to CPU GGTT updates in that case.
1278                  */
1279                 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1280         }
1281
1282         if (intel_uc_wants_guc_submission(&ggtt->vm.gt->uc))
1283                 ggtt->invalidate = guc_ggtt_invalidate;
1284         else
1285                 ggtt->invalidate = gen8_ggtt_invalidate;
1286
1287         ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
1288         ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
1289
1290         if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1291                 ggtt->vm.pte_encode = mtl_ggtt_pte_encode;
1292         else
1293                 ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
1294
1295         return ggtt_probe_common(ggtt, size);
1296 }
1297
1298 /*
1299  * For pre-gen8 platforms pat_index is the same as enum i915_cache_level,
1300  * so the switch-case statements in these PTE encode functions are still valid.
1301  * See translation table LEGACY_CACHELEVEL.
1302  */
1303 static u64 snb_pte_encode(dma_addr_t addr,
1304                           unsigned int pat_index,
1305                           u32 flags)
1306 {
1307         gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1308
1309         switch (pat_index) {
1310         case I915_CACHE_L3_LLC:
1311         case I915_CACHE_LLC:
1312                 pte |= GEN6_PTE_CACHE_LLC;
1313                 break;
1314         case I915_CACHE_NONE:
1315                 pte |= GEN6_PTE_UNCACHED;
1316                 break;
1317         default:
1318                 MISSING_CASE(pat_index);
1319         }
1320
1321         return pte;
1322 }
1323
1324 static u64 ivb_pte_encode(dma_addr_t addr,
1325                           unsigned int pat_index,
1326                           u32 flags)
1327 {
1328         gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1329
1330         switch (pat_index) {
1331         case I915_CACHE_L3_LLC:
1332                 pte |= GEN7_PTE_CACHE_L3_LLC;
1333                 break;
1334         case I915_CACHE_LLC:
1335                 pte |= GEN6_PTE_CACHE_LLC;
1336                 break;
1337         case I915_CACHE_NONE:
1338                 pte |= GEN6_PTE_UNCACHED;
1339                 break;
1340         default:
1341                 MISSING_CASE(pat_index);
1342         }
1343
1344         return pte;
1345 }
1346
1347 static u64 byt_pte_encode(dma_addr_t addr,
1348                           unsigned int pat_index,
1349                           u32 flags)
1350 {
1351         gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1352
1353         if (!(flags & PTE_READ_ONLY))
1354                 pte |= BYT_PTE_WRITEABLE;
1355
1356         if (pat_index != I915_CACHE_NONE)
1357                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1358
1359         return pte;
1360 }
1361
1362 static u64 hsw_pte_encode(dma_addr_t addr,
1363                           unsigned int pat_index,
1364                           u32 flags)
1365 {
1366         gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1367
1368         if (pat_index != I915_CACHE_NONE)
1369                 pte |= HSW_WB_LLC_AGE3;
1370
1371         return pte;
1372 }
1373
1374 static u64 iris_pte_encode(dma_addr_t addr,
1375                            unsigned int pat_index,
1376                            u32 flags)
1377 {
1378         gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1379
1380         switch (pat_index) {
1381         case I915_CACHE_NONE:
1382                 break;
1383         case I915_CACHE_WT:
1384                 pte |= HSW_WT_ELLC_LLC_AGE3;
1385                 break;
1386         default:
1387                 pte |= HSW_WB_ELLC_LLC_AGE3;
1388                 break;
1389         }
1390
1391         return pte;
1392 }
1393
1394 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1395 {
1396         struct drm_i915_private *i915 = ggtt->vm.i915;
1397         struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1398         unsigned int size;
1399         u16 snb_gmch_ctl;
1400
1401         if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1402                 return -ENXIO;
1403
1404         ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1405         ggtt->mappable_end = resource_size(&ggtt->gmadr);
1406
1407         /*
1408          * 64/512MB is the current min/max we actually know of, but this is
1409          * just a coarse sanity check.
1410          */
1411         if (ggtt->mappable_end < (64 << 20) ||
1412             ggtt->mappable_end > (512 << 20)) {
1413                 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1414                         &ggtt->mappable_end);
1415                 return -ENXIO;
1416         }
1417
1418         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1419
1420         size = gen6_get_total_gtt_size(snb_gmch_ctl);
1421         ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1422
1423         ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1424         ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1425
1426         ggtt->vm.clear_range = nop_clear_range;
1427         if (!HAS_FULL_PPGTT(i915))
1428                 ggtt->vm.clear_range = gen6_ggtt_clear_range;
1429         ggtt->vm.scratch_range = gen6_ggtt_clear_range;
1430         ggtt->vm.insert_page = gen6_ggtt_insert_page;
1431         ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1432         ggtt->vm.cleanup = gen6_gmch_remove;
1433
1434         ggtt->invalidate = gen6_ggtt_invalidate;
1435
1436         if (HAS_EDRAM(i915))
1437                 ggtt->vm.pte_encode = iris_pte_encode;
1438         else if (IS_HASWELL(i915))
1439                 ggtt->vm.pte_encode = hsw_pte_encode;
1440         else if (IS_VALLEYVIEW(i915))
1441                 ggtt->vm.pte_encode = byt_pte_encode;
1442         else if (GRAPHICS_VER(i915) >= 7)
1443                 ggtt->vm.pte_encode = ivb_pte_encode;
1444         else
1445                 ggtt->vm.pte_encode = snb_pte_encode;
1446
1447         ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
1448         ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
1449
1450         return ggtt_probe_common(ggtt, size);
1451 }
1452
1453 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1454 {
1455         struct drm_i915_private *i915 = gt->i915;
1456         int ret;
1457
1458         ggtt->vm.gt = gt;
1459         ggtt->vm.i915 = i915;
1460         ggtt->vm.dma = i915->drm.dev;
1461         dma_resv_init(&ggtt->vm._resv);
1462
1463         if (GRAPHICS_VER(i915) >= 8)
1464                 ret = gen8_gmch_probe(ggtt);
1465         else if (GRAPHICS_VER(i915) >= 6)
1466                 ret = gen6_gmch_probe(ggtt);
1467         else
1468                 ret = intel_ggtt_gmch_probe(ggtt);
1469
1470         if (ret) {
1471                 dma_resv_fini(&ggtt->vm._resv);
1472                 return ret;
1473         }
1474
1475         if ((ggtt->vm.total - 1) >> 32) {
1476                 drm_err(&i915->drm,
1477                         "We never expected a Global GTT with more than 32bits"
1478                         " of address space! Found %lldM!\n",
1479                         ggtt->vm.total >> 20);
1480                 ggtt->vm.total = 1ULL << 32;
1481                 ggtt->mappable_end =
1482                         min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1483         }
1484
1485         if (ggtt->mappable_end > ggtt->vm.total) {
1486                 drm_err(&i915->drm,
1487                         "mappable aperture extends past end of GGTT,"
1488                         " aperture=%pa, total=%llx\n",
1489                         &ggtt->mappable_end, ggtt->vm.total);
1490                 ggtt->mappable_end = ggtt->vm.total;
1491         }
1492
1493         /* GMADR is the PCI mmio aperture into the global GTT. */
1494         drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1495         drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1496                 (u64)ggtt->mappable_end >> 20);
1497         drm_dbg(&i915->drm, "DSM size = %lluM\n",
1498                 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
1499
1500         return 0;
1501 }
1502
1503 /**
1504  * i915_ggtt_probe_hw - Probe GGTT hardware location
1505  * @i915: i915 device
1506  */
1507 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1508 {
1509         struct intel_gt *gt;
1510         int ret, i;
1511
1512         for_each_gt(gt, i915, i) {
1513                 ret = intel_gt_assign_ggtt(gt);
1514                 if (ret)
1515                         return ret;
1516         }
1517
1518         ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915));
1519         if (ret)
1520                 return ret;
1521
1522         if (i915_vtd_active(i915))
1523                 drm_info(&i915->drm, "VT-d active for gfx access\n");
1524
1525         return 0;
1526 }
1527
1528 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915)
1529 {
1530         struct i915_ggtt *ggtt;
1531
1532         ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL);
1533         if (!ggtt)
1534                 return ERR_PTR(-ENOMEM);
1535
1536         INIT_LIST_HEAD(&ggtt->gt_list);
1537
1538         return ggtt;
1539 }
1540
1541 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1542 {
1543         if (GRAPHICS_VER(i915) < 6)
1544                 return intel_ggtt_gmch_enable_hw(i915);
1545
1546         return 0;
1547 }
1548
1549 /**
1550  * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM
1551  * @vm: The VM to restore the mappings for
1552  *
1553  * Restore the memory mappings for all objects mapped to HW via the GGTT or a
1554  * DPT page table.
1555  *
1556  * Returns %true if restoring the mapping for any object that was in a write
1557  * domain before suspend.
1558  */
1559 bool i915_ggtt_resume_vm(struct i915_address_space *vm)
1560 {
1561         struct i915_vma *vma;
1562         bool write_domain_objs = false;
1563
1564         drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
1565
1566         /* First fill our portion of the GTT with scratch pages */
1567         vm->clear_range(vm, 0, vm->total);
1568
1569         /* clflush objects bound into the GGTT and rebind them. */
1570         list_for_each_entry(vma, &vm->bound_list, vm_link) {
1571                 struct drm_i915_gem_object *obj = vma->obj;
1572                 unsigned int was_bound =
1573                         atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1574
1575                 GEM_BUG_ON(!was_bound);
1576
1577                 /*
1578                  * Clear the bound flags of the vma resource to allow
1579                  * ptes to be repopulated.
1580                  */
1581                 vma->resource->bound_flags = 0;
1582                 vma->ops->bind_vma(vm, NULL, vma->resource,
1583                                    obj ? obj->pat_index :
1584                                          i915_gem_get_pat_index(vm->i915,
1585                                                                 I915_CACHE_NONE),
1586                                    was_bound);
1587
1588                 if (obj) { /* only used during resume => exclusive access */
1589                         write_domain_objs |= fetch_and_zero(&obj->write_domain);
1590                         obj->read_domains |= I915_GEM_DOMAIN_GTT;
1591                 }
1592         }
1593
1594         return write_domain_objs;
1595 }
1596
1597 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1598 {
1599         struct intel_gt *gt;
1600         bool flush;
1601
1602         list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1603                 intel_gt_check_and_clear_faults(gt);
1604
1605         flush = i915_ggtt_resume_vm(&ggtt->vm);
1606
1607         if (drm_mm_node_allocated(&ggtt->error_capture))
1608                 ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start,
1609                                        ggtt->error_capture.size);
1610
1611         list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1612                 intel_uc_resume_mappings(&gt->uc);
1613
1614         ggtt->invalidate(ggtt);
1615
1616         if (flush)
1617                 wbinvd_on_all_cpus();
1618
1619         intel_ggtt_restore_fences(ggtt);
1620 }
This page took 0.121522 seconds and 4 git commands to generate.