]> Git Repo - J-linux.git/blob - drivers/gpu/drm/i915/gt/intel_engine_cs.c
Merge tag 'kbuild-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[J-linux.git] / drivers / gpu / drm / i915 / gt / intel_engine_cs.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/drm_print.h>
9
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_print.h"
13 #include "gt/intel_gt_regs.h"
14
15 #include "i915_cmd_parser.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18 #include "i915_reg.h"
19 #include "intel_breadcrumbs.h"
20 #include "intel_context.h"
21 #include "intel_engine.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_engine_user.h"
25 #include "intel_execlists_submission.h"
26 #include "intel_gt.h"
27 #include "intel_gt_mcr.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_lrc.h"
31 #include "intel_lrc_reg.h"
32 #include "intel_reset.h"
33 #include "intel_ring.h"
34 #include "uc/intel_guc_submission.h"
35
36 /* Haswell does have the CXT_SIZE register however it does not appear to be
37  * valid. Now, docs explain in dwords what is in the context object. The full
38  * size is 70720 bytes, however, the power context and execlist context will
39  * never be saved (power context is stored elsewhere, and execlists don't work
40  * on HSW) - so the final size, including the extra state required for the
41  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
42  */
43 #define HSW_CXT_TOTAL_SIZE              (17 * PAGE_SIZE)
44
45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE  (22 * PAGE_SIZE)
46 #define GEN8_LR_CONTEXT_RENDER_SIZE     (20 * PAGE_SIZE)
47 #define GEN9_LR_CONTEXT_RENDER_SIZE     (22 * PAGE_SIZE)
48 #define GEN11_LR_CONTEXT_RENDER_SIZE    (14 * PAGE_SIZE)
49
50 #define GEN8_LR_CONTEXT_OTHER_SIZE      (2 * PAGE_SIZE)
51
52 #define MAX_MMIO_BASES 3
53 struct engine_info {
54         u8 class;
55         u8 instance;
56         /* mmio bases table *must* be sorted in reverse graphics_ver order */
57         struct engine_mmio_base {
58                 u32 graphics_ver : 8;
59                 u32 base : 24;
60         } mmio_bases[MAX_MMIO_BASES];
61 };
62
63 static const struct engine_info intel_engines[] = {
64         [RCS0] = {
65                 .class = RENDER_CLASS,
66                 .instance = 0,
67                 .mmio_bases = {
68                         { .graphics_ver = 1, .base = RENDER_RING_BASE }
69                 },
70         },
71         [BCS0] = {
72                 .class = COPY_ENGINE_CLASS,
73                 .instance = 0,
74                 .mmio_bases = {
75                         { .graphics_ver = 6, .base = BLT_RING_BASE }
76                 },
77         },
78         [BCS1] = {
79                 .class = COPY_ENGINE_CLASS,
80                 .instance = 1,
81                 .mmio_bases = {
82                         { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
83                 },
84         },
85         [BCS2] = {
86                 .class = COPY_ENGINE_CLASS,
87                 .instance = 2,
88                 .mmio_bases = {
89                         { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
90                 },
91         },
92         [BCS3] = {
93                 .class = COPY_ENGINE_CLASS,
94                 .instance = 3,
95                 .mmio_bases = {
96                         { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
97                 },
98         },
99         [BCS4] = {
100                 .class = COPY_ENGINE_CLASS,
101                 .instance = 4,
102                 .mmio_bases = {
103                         { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
104                 },
105         },
106         [BCS5] = {
107                 .class = COPY_ENGINE_CLASS,
108                 .instance = 5,
109                 .mmio_bases = {
110                         { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
111                 },
112         },
113         [BCS6] = {
114                 .class = COPY_ENGINE_CLASS,
115                 .instance = 6,
116                 .mmio_bases = {
117                         { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
118                 },
119         },
120         [BCS7] = {
121                 .class = COPY_ENGINE_CLASS,
122                 .instance = 7,
123                 .mmio_bases = {
124                         { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
125                 },
126         },
127         [BCS8] = {
128                 .class = COPY_ENGINE_CLASS,
129                 .instance = 8,
130                 .mmio_bases = {
131                         { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
132                 },
133         },
134         [VCS0] = {
135                 .class = VIDEO_DECODE_CLASS,
136                 .instance = 0,
137                 .mmio_bases = {
138                         { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139                         { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140                         { .graphics_ver = 4, .base = BSD_RING_BASE }
141                 },
142         },
143         [VCS1] = {
144                 .class = VIDEO_DECODE_CLASS,
145                 .instance = 1,
146                 .mmio_bases = {
147                         { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148                         { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
149                 },
150         },
151         [VCS2] = {
152                 .class = VIDEO_DECODE_CLASS,
153                 .instance = 2,
154                 .mmio_bases = {
155                         { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
156                 },
157         },
158         [VCS3] = {
159                 .class = VIDEO_DECODE_CLASS,
160                 .instance = 3,
161                 .mmio_bases = {
162                         { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
163                 },
164         },
165         [VCS4] = {
166                 .class = VIDEO_DECODE_CLASS,
167                 .instance = 4,
168                 .mmio_bases = {
169                         { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
170                 },
171         },
172         [VCS5] = {
173                 .class = VIDEO_DECODE_CLASS,
174                 .instance = 5,
175                 .mmio_bases = {
176                         { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
177                 },
178         },
179         [VCS6] = {
180                 .class = VIDEO_DECODE_CLASS,
181                 .instance = 6,
182                 .mmio_bases = {
183                         { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
184                 },
185         },
186         [VCS7] = {
187                 .class = VIDEO_DECODE_CLASS,
188                 .instance = 7,
189                 .mmio_bases = {
190                         { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
191                 },
192         },
193         [VECS0] = {
194                 .class = VIDEO_ENHANCEMENT_CLASS,
195                 .instance = 0,
196                 .mmio_bases = {
197                         { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198                         { .graphics_ver = 7, .base = VEBOX_RING_BASE }
199                 },
200         },
201         [VECS1] = {
202                 .class = VIDEO_ENHANCEMENT_CLASS,
203                 .instance = 1,
204                 .mmio_bases = {
205                         { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
206                 },
207         },
208         [VECS2] = {
209                 .class = VIDEO_ENHANCEMENT_CLASS,
210                 .instance = 2,
211                 .mmio_bases = {
212                         { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
213                 },
214         },
215         [VECS3] = {
216                 .class = VIDEO_ENHANCEMENT_CLASS,
217                 .instance = 3,
218                 .mmio_bases = {
219                         { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
220                 },
221         },
222         [CCS0] = {
223                 .class = COMPUTE_CLASS,
224                 .instance = 0,
225                 .mmio_bases = {
226                         { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
227                 }
228         },
229         [CCS1] = {
230                 .class = COMPUTE_CLASS,
231                 .instance = 1,
232                 .mmio_bases = {
233                         { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
234                 }
235         },
236         [CCS2] = {
237                 .class = COMPUTE_CLASS,
238                 .instance = 2,
239                 .mmio_bases = {
240                         { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
241                 }
242         },
243         [CCS3] = {
244                 .class = COMPUTE_CLASS,
245                 .instance = 3,
246                 .mmio_bases = {
247                         { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
248                 }
249         },
250         [GSC0] = {
251                 .class = OTHER_CLASS,
252                 .instance = OTHER_GSC_INSTANCE,
253                 .mmio_bases = {
254                         { .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
255                 }
256         },
257 };
258
259 /**
260  * intel_engine_context_size() - return the size of the context for an engine
261  * @gt: the gt
262  * @class: engine class
263  *
264  * Each engine class may require a different amount of space for a context
265  * image.
266  *
267  * Return: size (in bytes) of an engine class specific context image
268  *
269  * Note: this size includes the HWSP, which is part of the context image
270  * in LRC mode, but does not include the "shared data page" used with
271  * GuC submission. The caller should account for this if using the GuC.
272  */
273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
274 {
275         struct intel_uncore *uncore = gt->uncore;
276         u32 cxt_size;
277
278         BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
279
280         switch (class) {
281         case COMPUTE_CLASS:
282                 fallthrough;
283         case RENDER_CLASS:
284                 switch (GRAPHICS_VER(gt->i915)) {
285                 default:
286                         MISSING_CASE(GRAPHICS_VER(gt->i915));
287                         return DEFAULT_LR_CONTEXT_RENDER_SIZE;
288                 case 12:
289                 case 11:
290                         return GEN11_LR_CONTEXT_RENDER_SIZE;
291                 case 9:
292                         return GEN9_LR_CONTEXT_RENDER_SIZE;
293                 case 8:
294                         return GEN8_LR_CONTEXT_RENDER_SIZE;
295                 case 7:
296                         if (IS_HASWELL(gt->i915))
297                                 return HSW_CXT_TOTAL_SIZE;
298
299                         cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300                         return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
301                                         PAGE_SIZE);
302                 case 6:
303                         cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304                         return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
305                                         PAGE_SIZE);
306                 case 5:
307                 case 4:
308                         /*
309                          * There is a discrepancy here between the size reported
310                          * by the register and the size of the context layout
311                          * in the docs. Both are described as authorative!
312                          *
313                          * The discrepancy is on the order of a few cachelines,
314                          * but the total is under one page (4k), which is our
315                          * minimum allocation anyway so it should all come
316                          * out in the wash.
317                          */
318                         cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319                         gt_dbg(gt, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
320                                GRAPHICS_VER(gt->i915), cxt_size * 64,
321                                cxt_size - 1);
322                         return round_up(cxt_size * 64, PAGE_SIZE);
323                 case 3:
324                 case 2:
325                 /* For the special day when i810 gets merged. */
326                 case 1:
327                         return 0;
328                 }
329                 break;
330         default:
331                 MISSING_CASE(class);
332                 fallthrough;
333         case VIDEO_DECODE_CLASS:
334         case VIDEO_ENHANCEMENT_CLASS:
335         case COPY_ENGINE_CLASS:
336         case OTHER_CLASS:
337                 if (GRAPHICS_VER(gt->i915) < 8)
338                         return 0;
339                 return GEN8_LR_CONTEXT_OTHER_SIZE;
340         }
341 }
342
343 static u32 __engine_mmio_base(struct drm_i915_private *i915,
344                               const struct engine_mmio_base *bases)
345 {
346         int i;
347
348         for (i = 0; i < MAX_MMIO_BASES; i++)
349                 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
350                         break;
351
352         GEM_BUG_ON(i == MAX_MMIO_BASES);
353         GEM_BUG_ON(!bases[i].base);
354
355         return bases[i].base;
356 }
357
358 static void __sprint_engine_name(struct intel_engine_cs *engine)
359 {
360         /*
361          * Before we know what the uABI name for this engine will be,
362          * we still would like to keep track of this engine in the debug logs.
363          * We throw in a ' here as a reminder that this isn't its final name.
364          */
365         GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
366                              intel_engine_class_repr(engine->class),
367                              engine->instance) >= sizeof(engine->name));
368 }
369
370 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
371 {
372         /*
373          * Though they added more rings on g4x/ilk, they did not add
374          * per-engine HWSTAM until gen6.
375          */
376         if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
377                 return;
378
379         if (GRAPHICS_VER(engine->i915) >= 3)
380                 ENGINE_WRITE(engine, RING_HWSTAM, mask);
381         else
382                 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
383 }
384
385 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
386 {
387         /* Mask off all writes into the unknown HWSP */
388         intel_engine_set_hwsp_writemask(engine, ~0u);
389 }
390
391 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
392 {
393         GEM_DEBUG_WARN_ON(iir);
394 }
395
396 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
397 {
398         u32 reset_domain;
399
400         if (ver >= 11) {
401                 static const u32 engine_reset_domains[] = {
402                         [RCS0]  = GEN11_GRDOM_RENDER,
403                         [BCS0]  = GEN11_GRDOM_BLT,
404                         [BCS1]  = XEHPC_GRDOM_BLT1,
405                         [BCS2]  = XEHPC_GRDOM_BLT2,
406                         [BCS3]  = XEHPC_GRDOM_BLT3,
407                         [BCS4]  = XEHPC_GRDOM_BLT4,
408                         [BCS5]  = XEHPC_GRDOM_BLT5,
409                         [BCS6]  = XEHPC_GRDOM_BLT6,
410                         [BCS7]  = XEHPC_GRDOM_BLT7,
411                         [BCS8]  = XEHPC_GRDOM_BLT8,
412                         [VCS0]  = GEN11_GRDOM_MEDIA,
413                         [VCS1]  = GEN11_GRDOM_MEDIA2,
414                         [VCS2]  = GEN11_GRDOM_MEDIA3,
415                         [VCS3]  = GEN11_GRDOM_MEDIA4,
416                         [VCS4]  = GEN11_GRDOM_MEDIA5,
417                         [VCS5]  = GEN11_GRDOM_MEDIA6,
418                         [VCS6]  = GEN11_GRDOM_MEDIA7,
419                         [VCS7]  = GEN11_GRDOM_MEDIA8,
420                         [VECS0] = GEN11_GRDOM_VECS,
421                         [VECS1] = GEN11_GRDOM_VECS2,
422                         [VECS2] = GEN11_GRDOM_VECS3,
423                         [VECS3] = GEN11_GRDOM_VECS4,
424                         [CCS0]  = GEN11_GRDOM_RENDER,
425                         [CCS1]  = GEN11_GRDOM_RENDER,
426                         [CCS2]  = GEN11_GRDOM_RENDER,
427                         [CCS3]  = GEN11_GRDOM_RENDER,
428                         [GSC0]  = GEN12_GRDOM_GSC,
429                 };
430                 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431                            !engine_reset_domains[id]);
432                 reset_domain = engine_reset_domains[id];
433         } else {
434                 static const u32 engine_reset_domains[] = {
435                         [RCS0]  = GEN6_GRDOM_RENDER,
436                         [BCS0]  = GEN6_GRDOM_BLT,
437                         [VCS0]  = GEN6_GRDOM_MEDIA,
438                         [VCS1]  = GEN8_GRDOM_MEDIA2,
439                         [VECS0] = GEN6_GRDOM_VECS,
440                 };
441                 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
442                            !engine_reset_domains[id]);
443                 reset_domain = engine_reset_domains[id];
444         }
445
446         return reset_domain;
447 }
448
449 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
450                               u8 logical_instance)
451 {
452         const struct engine_info *info = &intel_engines[id];
453         struct drm_i915_private *i915 = gt->i915;
454         struct intel_engine_cs *engine;
455         u8 guc_class;
456
457         BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
458         BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
459         BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
460         BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
461
462         if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
463                 return -EINVAL;
464
465         if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
466                 return -EINVAL;
467
468         if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
469                 return -EINVAL;
470
471         if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
472                 return -EINVAL;
473
474         engine = kzalloc(sizeof(*engine), GFP_KERNEL);
475         if (!engine)
476                 return -ENOMEM;
477
478         BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
479
480         INIT_LIST_HEAD(&engine->pinned_contexts_list);
481         engine->id = id;
482         engine->legacy_idx = INVALID_ENGINE;
483         engine->mask = BIT(id);
484         engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
485                                                 id);
486         engine->i915 = i915;
487         engine->gt = gt;
488         engine->uncore = gt->uncore;
489         guc_class = engine_class_to_guc_class(info->class);
490         engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
491         engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
492
493         engine->irq_handler = nop_irq_handler;
494
495         engine->class = info->class;
496         engine->instance = info->instance;
497         engine->logical_mask = BIT(logical_instance);
498         __sprint_engine_name(engine);
499
500         if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
501              __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
502              engine->class == RENDER_CLASS)
503                 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
504
505         /* features common between engines sharing EUs */
506         if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
507                 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
508                 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
509         }
510
511         engine->props.heartbeat_interval_ms =
512                 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
513         engine->props.max_busywait_duration_ns =
514                 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
515         engine->props.preempt_timeout_ms =
516                 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
517         engine->props.stop_timeout_ms =
518                 CONFIG_DRM_I915_STOP_TIMEOUT;
519         engine->props.timeslice_duration_ms =
520                 CONFIG_DRM_I915_TIMESLICE_DURATION;
521
522         /*
523          * Mid-thread pre-emption is not available in Gen12. Unfortunately,
524          * some compute workloads run quite long threads. That means they get
525          * reset due to not pre-empting in a timely manner. So, bump the
526          * pre-emption timeout value to be much higher for compute engines.
527          */
528         if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
529                 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
530
531         /* Cap properties according to any system limits */
532 #define CLAMP_PROP(field) \
533         do { \
534                 u64 clamp = intel_clamp_##field(engine, engine->props.field); \
535                 if (clamp != engine->props.field) { \
536                         drm_notice(&engine->i915->drm, \
537                                    "Warning, clamping %s to %lld to prevent overflow\n", \
538                                    #field, clamp); \
539                         engine->props.field = clamp; \
540                 } \
541         } while (0)
542
543         CLAMP_PROP(heartbeat_interval_ms);
544         CLAMP_PROP(max_busywait_duration_ns);
545         CLAMP_PROP(preempt_timeout_ms);
546         CLAMP_PROP(stop_timeout_ms);
547         CLAMP_PROP(timeslice_duration_ms);
548
549 #undef CLAMP_PROP
550
551         engine->defaults = engine->props; /* never to change again */
552
553         engine->context_size = intel_engine_context_size(gt, engine->class);
554         if (WARN_ON(engine->context_size > BIT(20)))
555                 engine->context_size = 0;
556         if (engine->context_size)
557                 DRIVER_CAPS(i915)->has_logical_contexts = true;
558
559         ewma__engine_latency_init(&engine->latency);
560
561         ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
562
563         /* Scrub mmio state on takeover */
564         intel_engine_sanitize_mmio(engine);
565
566         gt->engine_class[info->class][info->instance] = engine;
567         gt->engine[id] = engine;
568
569         return 0;
570 }
571
572 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
573 {
574         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
575
576         return value;
577 }
578
579 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
580 {
581         value = min(value, jiffies_to_nsecs(2));
582
583         return value;
584 }
585
586 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
587 {
588         /*
589          * NB: The GuC API only supports 32bit values. However, the limit is further
590          * reduced due to internal calculations which would otherwise overflow.
591          */
592         if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
593                 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
594
595         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
596
597         return value;
598 }
599
600 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
601 {
602         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
603
604         return value;
605 }
606
607 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
608 {
609         /*
610          * NB: The GuC API only supports 32bit values. However, the limit is further
611          * reduced due to internal calculations which would otherwise overflow.
612          */
613         if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
614                 value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
615
616         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
617
618         return value;
619 }
620
621 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
622 {
623         struct drm_i915_private *i915 = engine->i915;
624
625         if (engine->class == VIDEO_DECODE_CLASS) {
626                 /*
627                  * HEVC support is present on first engine instance
628                  * before Gen11 and on all instances afterwards.
629                  */
630                 if (GRAPHICS_VER(i915) >= 11 ||
631                     (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
632                         engine->uabi_capabilities |=
633                                 I915_VIDEO_CLASS_CAPABILITY_HEVC;
634
635                 /*
636                  * SFC block is present only on even logical engine
637                  * instances.
638                  */
639                 if ((GRAPHICS_VER(i915) >= 11 &&
640                      (engine->gt->info.vdbox_sfc_access &
641                       BIT(engine->instance))) ||
642                     (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
643                         engine->uabi_capabilities |=
644                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
645         } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
646                 if (GRAPHICS_VER(i915) >= 9 &&
647                     engine->gt->info.sfc_mask & BIT(engine->instance))
648                         engine->uabi_capabilities |=
649                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
650         }
651 }
652
653 static void intel_setup_engine_capabilities(struct intel_gt *gt)
654 {
655         struct intel_engine_cs *engine;
656         enum intel_engine_id id;
657
658         for_each_engine(engine, gt, id)
659                 __setup_engine_capabilities(engine);
660 }
661
662 /**
663  * intel_engines_release() - free the resources allocated for Command Streamers
664  * @gt: pointer to struct intel_gt
665  */
666 void intel_engines_release(struct intel_gt *gt)
667 {
668         struct intel_engine_cs *engine;
669         enum intel_engine_id id;
670
671         /*
672          * Before we release the resources held by engine, we must be certain
673          * that the HW is no longer accessing them -- having the GPU scribble
674          * to or read from a page being used for something else causes no end
675          * of fun.
676          *
677          * The GPU should be reset by this point, but assume the worst just
678          * in case we aborted before completely initialising the engines.
679          */
680         GEM_BUG_ON(intel_gt_pm_is_awake(gt));
681         if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
682                 __intel_gt_reset(gt, ALL_ENGINES);
683
684         /* Decouple the backend; but keep the layout for late GPU resets */
685         for_each_engine(engine, gt, id) {
686                 if (!engine->release)
687                         continue;
688
689                 intel_wakeref_wait_for_idle(&engine->wakeref);
690                 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
691
692                 engine->release(engine);
693                 engine->release = NULL;
694
695                 memset(&engine->reset, 0, sizeof(engine->reset));
696         }
697 }
698
699 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
700 {
701         if (!engine->request_pool)
702                 return;
703
704         kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
705 }
706
707 void intel_engines_free(struct intel_gt *gt)
708 {
709         struct intel_engine_cs *engine;
710         enum intel_engine_id id;
711
712         /* Free the requests! dma-resv keeps fences around for an eternity */
713         rcu_barrier();
714
715         for_each_engine(engine, gt, id) {
716                 intel_engine_free_request_pool(engine);
717                 kfree(engine);
718                 gt->engine[id] = NULL;
719         }
720 }
721
722 static
723 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
724                          unsigned int physical_vdbox,
725                          unsigned int logical_vdbox, u16 vdbox_mask)
726 {
727         struct drm_i915_private *i915 = gt->i915;
728
729         /*
730          * In Gen11, only even numbered logical VDBOXes are hooked
731          * up to an SFC (Scaler & Format Converter) unit.
732          * In Gen12, Even numbered physical instance always are connected
733          * to an SFC. Odd numbered physical instances have SFC only if
734          * previous even instance is fused off.
735          *
736          * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
737          * in the fuse register that tells us whether a specific SFC is present.
738          */
739         if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
740                 return false;
741         else if (MEDIA_VER(i915) >= 12)
742                 return (physical_vdbox % 2 == 0) ||
743                         !(BIT(physical_vdbox - 1) & vdbox_mask);
744         else if (MEDIA_VER(i915) == 11)
745                 return logical_vdbox % 2 == 0;
746
747         return false;
748 }
749
750 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
751 {
752         struct drm_i915_private *i915 = gt->i915;
753         unsigned int logical_vdbox = 0;
754         unsigned int i;
755         u32 media_fuse, fuse1;
756         u16 vdbox_mask;
757         u16 vebox_mask;
758
759         if (MEDIA_VER(gt->i915) < 11)
760                 return;
761
762         /*
763          * On newer platforms the fusing register is called 'enable' and has
764          * enable semantics, while on older platforms it is called 'disable'
765          * and bits have disable semantices.
766          */
767         media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
768         if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
769                 media_fuse = ~media_fuse;
770
771         vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
772         vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
773                       GEN11_GT_VEBOX_DISABLE_SHIFT;
774
775         if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
776                 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
777                 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
778         } else {
779                 gt->info.sfc_mask = ~0;
780         }
781
782         for (i = 0; i < I915_MAX_VCS; i++) {
783                 if (!HAS_ENGINE(gt, _VCS(i))) {
784                         vdbox_mask &= ~BIT(i);
785                         continue;
786                 }
787
788                 if (!(BIT(i) & vdbox_mask)) {
789                         gt->info.engine_mask &= ~BIT(_VCS(i));
790                         gt_dbg(gt, "vcs%u fused off\n", i);
791                         continue;
792                 }
793
794                 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
795                         gt->info.vdbox_sfc_access |= BIT(i);
796                 logical_vdbox++;
797         }
798         gt_dbg(gt, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt));
799         GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
800
801         for (i = 0; i < I915_MAX_VECS; i++) {
802                 if (!HAS_ENGINE(gt, _VECS(i))) {
803                         vebox_mask &= ~BIT(i);
804                         continue;
805                 }
806
807                 if (!(BIT(i) & vebox_mask)) {
808                         gt->info.engine_mask &= ~BIT(_VECS(i));
809                         gt_dbg(gt, "vecs%u fused off\n", i);
810                 }
811         }
812         gt_dbg(gt, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt));
813         GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
814 }
815
816 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
817 {
818         struct drm_i915_private *i915 = gt->i915;
819         struct intel_gt_info *info = &gt->info;
820         int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
821         unsigned long ccs_mask;
822         unsigned int i;
823
824         if (GRAPHICS_VER(i915) < 11)
825                 return;
826
827         if (hweight32(CCS_MASK(gt)) <= 1)
828                 return;
829
830         ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
831                                                      ss_per_ccs);
832         /*
833          * If all DSS in a quadrant are fused off, the corresponding CCS
834          * engine is not available for use.
835          */
836         for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
837                 info->engine_mask &= ~BIT(_CCS(i));
838                 gt_dbg(gt, "ccs%u fused off\n", i);
839         }
840 }
841
842 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
843 {
844         struct drm_i915_private *i915 = gt->i915;
845         struct intel_gt_info *info = &gt->info;
846         unsigned long meml3_mask;
847         unsigned long quad;
848
849         if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
850               GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
851                 return;
852
853         meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
854         meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
855
856         /*
857          * Link Copy engines may be fused off according to meml3_mask. Each
858          * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
859          */
860         for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
861                 unsigned int instance = quad * 2 + 1;
862                 intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
863                                                    _BCS(instance));
864
865                 if (mask & info->engine_mask) {
866                         gt_dbg(gt, "bcs%u fused off\n", instance);
867                         gt_dbg(gt, "bcs%u fused off\n", instance + 1);
868
869                         info->engine_mask &= ~mask;
870                 }
871         }
872 }
873
874 /*
875  * Determine which engines are fused off in our particular hardware.
876  * Note that we have a catch-22 situation where we need to be able to access
877  * the blitter forcewake domain to read the engine fuses, but at the same time
878  * we need to know which engines are available on the system to know which
879  * forcewake domains are present. We solve this by intializing the forcewake
880  * domains based on the full engine mask in the platform capabilities before
881  * calling this function and pruning the domains for fused-off engines
882  * afterwards.
883  */
884 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
885 {
886         struct intel_gt_info *info = &gt->info;
887
888         GEM_BUG_ON(!info->engine_mask);
889
890         engine_mask_apply_media_fuses(gt);
891         engine_mask_apply_compute_fuses(gt);
892         engine_mask_apply_copy_fuses(gt);
893
894         /*
895          * The only use of the GSC CS is to load and communicate with the GSC
896          * FW, so we have no use for it if we don't have the FW.
897          *
898          * IMPORTANT: in cases where we don't have the GSC FW, we have a
899          * catch-22 situation that breaks media C6 due to 2 requirements:
900          * 1) once turned on, the GSC power well will not go to sleep unless the
901          *    GSC FW is loaded.
902          * 2) to enable idling (which is required for media C6) we need to
903          *    initialize the IDLE_MSG register for the GSC CS and do at least 1
904          *    submission, which will wake up the GSC power well.
905          */
906         if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(&gt->uc)) {
907                 gt_notice(gt, "No GSC FW selected, disabling GSC CS and media C6\n");
908                 info->engine_mask &= ~BIT(GSC0);
909         }
910
911         return info->engine_mask;
912 }
913
914 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
915                                  u8 class, const u8 *map, u8 num_instances)
916 {
917         int i, j;
918         u8 current_logical_id = 0;
919
920         for (j = 0; j < num_instances; ++j) {
921                 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
922                         if (!HAS_ENGINE(gt, i) ||
923                             intel_engines[i].class != class)
924                                 continue;
925
926                         if (intel_engines[i].instance == map[j]) {
927                                 logical_ids[intel_engines[i].instance] =
928                                         current_logical_id++;
929                                 break;
930                         }
931                 }
932         }
933 }
934
935 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
936 {
937         /*
938          * Logical to physical mapping is needed for proper support
939          * to split-frame feature.
940          */
941         if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
942                 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
943
944                 populate_logical_ids(gt, logical_ids, class,
945                                      map, ARRAY_SIZE(map));
946         } else {
947                 int i;
948                 u8 map[MAX_ENGINE_INSTANCE + 1];
949
950                 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
951                         map[i] = i;
952                 populate_logical_ids(gt, logical_ids, class,
953                                      map, ARRAY_SIZE(map));
954         }
955 }
956
957 /**
958  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
959  * @gt: pointer to struct intel_gt
960  *
961  * Return: non-zero if the initialization failed.
962  */
963 int intel_engines_init_mmio(struct intel_gt *gt)
964 {
965         struct drm_i915_private *i915 = gt->i915;
966         const unsigned int engine_mask = init_engine_mask(gt);
967         unsigned int mask = 0;
968         unsigned int i, class;
969         u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
970         int err;
971
972         drm_WARN_ON(&i915->drm, engine_mask == 0);
973         drm_WARN_ON(&i915->drm, engine_mask &
974                     GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
975
976         if (i915_inject_probe_failure(i915))
977                 return -ENODEV;
978
979         for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
980                 setup_logical_ids(gt, logical_ids, class);
981
982                 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
983                         u8 instance = intel_engines[i].instance;
984
985                         if (intel_engines[i].class != class ||
986                             !HAS_ENGINE(gt, i))
987                                 continue;
988
989                         err = intel_engine_setup(gt, i,
990                                                  logical_ids[instance]);
991                         if (err)
992                                 goto cleanup;
993
994                         mask |= BIT(i);
995                 }
996         }
997
998         /*
999          * Catch failures to update intel_engines table when the new engines
1000          * are added to the driver by a warning and disabling the forgotten
1001          * engines.
1002          */
1003         if (drm_WARN_ON(&i915->drm, mask != engine_mask))
1004                 gt->info.engine_mask = mask;
1005
1006         gt->info.num_engines = hweight32(mask);
1007
1008         intel_gt_check_and_clear_faults(gt);
1009
1010         intel_setup_engine_capabilities(gt);
1011
1012         intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1013
1014         return 0;
1015
1016 cleanup:
1017         intel_engines_free(gt);
1018         return err;
1019 }
1020
1021 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1022 {
1023         struct intel_engine_execlists * const execlists = &engine->execlists;
1024
1025         execlists->port_mask = 1;
1026         GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1027         GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1028
1029         memset(execlists->pending, 0, sizeof(execlists->pending));
1030         execlists->active =
1031                 memset(execlists->inflight, 0, sizeof(execlists->inflight));
1032 }
1033
1034 static void cleanup_status_page(struct intel_engine_cs *engine)
1035 {
1036         struct i915_vma *vma;
1037
1038         /* Prevent writes into HWSP after returning the page to the system */
1039         intel_engine_set_hwsp_writemask(engine, ~0u);
1040
1041         vma = fetch_and_zero(&engine->status_page.vma);
1042         if (!vma)
1043                 return;
1044
1045         if (!HWS_NEEDS_PHYSICAL(engine->i915))
1046                 i915_vma_unpin(vma);
1047
1048         i915_gem_object_unpin_map(vma->obj);
1049         i915_gem_object_put(vma->obj);
1050 }
1051
1052 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1053                                 struct i915_gem_ww_ctx *ww,
1054                                 struct i915_vma *vma)
1055 {
1056         unsigned int flags;
1057
1058         if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1059                 /*
1060                  * On g33, we cannot place HWS above 256MiB, so
1061                  * restrict its pinning to the low mappable arena.
1062                  * Though this restriction is not documented for
1063                  * gen4, gen5, or byt, they also behave similarly
1064                  * and hang if the HWS is placed at the top of the
1065                  * GTT. To generalise, it appears that all !llc
1066                  * platforms have issues with us placing the HWS
1067                  * above the mappable region (even though we never
1068                  * actually map it).
1069                  */
1070                 flags = PIN_MAPPABLE;
1071         else
1072                 flags = PIN_HIGH;
1073
1074         return i915_ggtt_pin(vma, ww, 0, flags);
1075 }
1076
1077 static int init_status_page(struct intel_engine_cs *engine)
1078 {
1079         struct drm_i915_gem_object *obj;
1080         struct i915_gem_ww_ctx ww;
1081         struct i915_vma *vma;
1082         void *vaddr;
1083         int ret;
1084
1085         INIT_LIST_HEAD(&engine->status_page.timelines);
1086
1087         /*
1088          * Though the HWS register does support 36bit addresses, historically
1089          * we have had hangs and corruption reported due to wild writes if
1090          * the HWS is placed above 4G. We only allow objects to be allocated
1091          * in GFP_DMA32 for i965, and no earlier physical address users had
1092          * access to more than 4G.
1093          */
1094         obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1095         if (IS_ERR(obj)) {
1096                 gt_err(engine->gt, "Failed to allocate status page\n");
1097                 return PTR_ERR(obj);
1098         }
1099
1100         i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1101
1102         vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1103         if (IS_ERR(vma)) {
1104                 ret = PTR_ERR(vma);
1105                 goto err_put;
1106         }
1107
1108         i915_gem_ww_ctx_init(&ww, true);
1109 retry:
1110         ret = i915_gem_object_lock(obj, &ww);
1111         if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1112                 ret = pin_ggtt_status_page(engine, &ww, vma);
1113         if (ret)
1114                 goto err;
1115
1116         vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1117         if (IS_ERR(vaddr)) {
1118                 ret = PTR_ERR(vaddr);
1119                 goto err_unpin;
1120         }
1121
1122         engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1123         engine->status_page.vma = vma;
1124
1125 err_unpin:
1126         if (ret)
1127                 i915_vma_unpin(vma);
1128 err:
1129         if (ret == -EDEADLK) {
1130                 ret = i915_gem_ww_ctx_backoff(&ww);
1131                 if (!ret)
1132                         goto retry;
1133         }
1134         i915_gem_ww_ctx_fini(&ww);
1135 err_put:
1136         if (ret)
1137                 i915_gem_object_put(obj);
1138         return ret;
1139 }
1140
1141 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1142 {
1143         static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1144                 [RENDER_CLASS].reg              = GEN8_RTCR,
1145                 [VIDEO_DECODE_CLASS].reg        = GEN8_M1TCR, /* , GEN8_M2TCR */
1146                 [VIDEO_ENHANCEMENT_CLASS].reg   = GEN8_VTCR,
1147                 [COPY_ENGINE_CLASS].reg         = GEN8_BTCR,
1148         };
1149         static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1150                 [RENDER_CLASS].reg              = GEN12_GFX_TLB_INV_CR,
1151                 [VIDEO_DECODE_CLASS].reg        = GEN12_VD_TLB_INV_CR,
1152                 [VIDEO_ENHANCEMENT_CLASS].reg   = GEN12_VE_TLB_INV_CR,
1153                 [COPY_ENGINE_CLASS].reg         = GEN12_BLT_TLB_INV_CR,
1154                 [COMPUTE_CLASS].reg             = GEN12_COMPCTX_TLB_INV_CR,
1155         };
1156         static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1157                 [RENDER_CLASS].mcr_reg            = XEHP_GFX_TLB_INV_CR,
1158                 [VIDEO_DECODE_CLASS].mcr_reg      = XEHP_VD_TLB_INV_CR,
1159                 [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1160                 [COPY_ENGINE_CLASS].mcr_reg       = XEHP_BLT_TLB_INV_CR,
1161                 [COMPUTE_CLASS].mcr_reg           = XEHP_COMPCTX_TLB_INV_CR,
1162         };
1163         static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1164                 [VIDEO_DECODE_CLASS].reg          = GEN12_VD_TLB_INV_CR,
1165                 [VIDEO_ENHANCEMENT_CLASS].reg     = GEN12_VE_TLB_INV_CR,
1166                 [OTHER_CLASS].reg                 = XELPMP_GSC_TLB_INV_CR,
1167         };
1168         struct drm_i915_private *i915 = engine->i915;
1169         const unsigned int instance = engine->instance;
1170         const unsigned int class = engine->class;
1171         const union intel_engine_tlb_inv_reg *regs;
1172         union intel_engine_tlb_inv_reg reg;
1173         unsigned int num = 0;
1174         u32 val;
1175
1176         /*
1177          * New platforms should not be added with catch-all-newer (>=)
1178          * condition so that any later platform added triggers the below warning
1179          * and in turn mandates a human cross-check of whether the invalidation
1180          * flows have compatible semantics.
1181          *
1182          * For instance with the 11.00 -> 12.00 transition three out of five
1183          * respective engine registers were moved to masked type. Then after the
1184          * 12.00 -> 12.50 transition multi cast handling is required too.
1185          */
1186
1187         if (engine->gt->type == GT_MEDIA) {
1188                 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1189                         regs = xelpmp_regs;
1190                         num = ARRAY_SIZE(xelpmp_regs);
1191                 }
1192         } else {
1193                 if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 74) ||
1194                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1195                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1196                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
1197                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1198                         regs = xehp_regs;
1199                         num = ARRAY_SIZE(xehp_regs);
1200                 } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1201                            GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1202                         regs = gen12_regs;
1203                         num = ARRAY_SIZE(gen12_regs);
1204                 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1205                         regs = gen8_regs;
1206                         num = ARRAY_SIZE(gen8_regs);
1207                 } else if (GRAPHICS_VER(i915) < 8) {
1208                         return 0;
1209                 }
1210         }
1211
1212         if (gt_WARN_ONCE(engine->gt, !num,
1213                          "Platform does not implement TLB invalidation!"))
1214                 return -ENODEV;
1215
1216         if (gt_WARN_ON_ONCE(engine->gt,
1217                             class >= num ||
1218                             (!regs[class].reg.reg &&
1219                              !regs[class].mcr_reg.reg)))
1220                 return -ERANGE;
1221
1222         reg = regs[class];
1223
1224         if (regs == xelpmp_regs && class == OTHER_CLASS) {
1225                 /*
1226                  * There's only a single GSC instance, but it uses register bit
1227                  * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1228                  */
1229                 GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1230                 val = 1;
1231         } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1232                 reg.reg = GEN8_M2TCR;
1233                 val = 0;
1234         } else {
1235                 val = instance;
1236         }
1237
1238         val = BIT(val);
1239
1240         engine->tlb_inv.mcr = regs == xehp_regs;
1241         engine->tlb_inv.reg = reg;
1242         engine->tlb_inv.done = val;
1243
1244         if (GRAPHICS_VER(i915) >= 12 &&
1245             (engine->class == VIDEO_DECODE_CLASS ||
1246              engine->class == VIDEO_ENHANCEMENT_CLASS ||
1247              engine->class == COMPUTE_CLASS ||
1248              engine->class == OTHER_CLASS))
1249                 engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1250         else
1251                 engine->tlb_inv.request = val;
1252
1253         return 0;
1254 }
1255
1256 static int engine_setup_common(struct intel_engine_cs *engine)
1257 {
1258         int err;
1259
1260         init_llist_head(&engine->barrier_tasks);
1261
1262         err = intel_engine_init_tlb_invalidation(engine);
1263         if (err)
1264                 return err;
1265
1266         err = init_status_page(engine);
1267         if (err)
1268                 return err;
1269
1270         engine->breadcrumbs = intel_breadcrumbs_create(engine);
1271         if (!engine->breadcrumbs) {
1272                 err = -ENOMEM;
1273                 goto err_status;
1274         }
1275
1276         engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1277         if (!engine->sched_engine) {
1278                 err = -ENOMEM;
1279                 goto err_sched_engine;
1280         }
1281         engine->sched_engine->private_data = engine;
1282
1283         err = intel_engine_init_cmd_parser(engine);
1284         if (err)
1285                 goto err_cmd_parser;
1286
1287         intel_engine_init_execlists(engine);
1288         intel_engine_init__pm(engine);
1289         intel_engine_init_retire(engine);
1290
1291         /* Use the whole device by default */
1292         engine->sseu =
1293                 intel_sseu_from_device_info(&engine->gt->info.sseu);
1294
1295         intel_engine_init_workarounds(engine);
1296         intel_engine_init_whitelist(engine);
1297         intel_engine_init_ctx_wa(engine);
1298
1299         if (GRAPHICS_VER(engine->i915) >= 12)
1300                 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1301
1302         return 0;
1303
1304 err_cmd_parser:
1305         i915_sched_engine_put(engine->sched_engine);
1306 err_sched_engine:
1307         intel_breadcrumbs_put(engine->breadcrumbs);
1308 err_status:
1309         cleanup_status_page(engine);
1310         return err;
1311 }
1312
1313 struct measure_breadcrumb {
1314         struct i915_request rq;
1315         struct intel_ring ring;
1316         u32 cs[2048];
1317 };
1318
1319 static int measure_breadcrumb_dw(struct intel_context *ce)
1320 {
1321         struct intel_engine_cs *engine = ce->engine;
1322         struct measure_breadcrumb *frame;
1323         int dw;
1324
1325         GEM_BUG_ON(!engine->gt->scratch);
1326
1327         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1328         if (!frame)
1329                 return -ENOMEM;
1330
1331         frame->rq.i915 = engine->i915;
1332         frame->rq.engine = engine;
1333         frame->rq.context = ce;
1334         rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1335         frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1336
1337         frame->ring.vaddr = frame->cs;
1338         frame->ring.size = sizeof(frame->cs);
1339         frame->ring.wrap =
1340                 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1341         frame->ring.effective_size = frame->ring.size;
1342         intel_ring_update_space(&frame->ring);
1343         frame->rq.ring = &frame->ring;
1344
1345         mutex_lock(&ce->timeline->mutex);
1346         spin_lock_irq(&engine->sched_engine->lock);
1347
1348         dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1349
1350         spin_unlock_irq(&engine->sched_engine->lock);
1351         mutex_unlock(&ce->timeline->mutex);
1352
1353         GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1354
1355         kfree(frame);
1356         return dw;
1357 }
1358
1359 struct intel_context *
1360 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1361                                    struct i915_address_space *vm,
1362                                    unsigned int ring_size,
1363                                    unsigned int hwsp,
1364                                    struct lock_class_key *key,
1365                                    const char *name)
1366 {
1367         struct intel_context *ce;
1368         int err;
1369
1370         ce = intel_context_create(engine);
1371         if (IS_ERR(ce))
1372                 return ce;
1373
1374         __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1375         ce->timeline = page_pack_bits(NULL, hwsp);
1376         ce->ring = NULL;
1377         ce->ring_size = ring_size;
1378
1379         i915_vm_put(ce->vm);
1380         ce->vm = i915_vm_get(vm);
1381
1382         err = intel_context_pin(ce); /* perma-pin so it is always available */
1383         if (err) {
1384                 intel_context_put(ce);
1385                 return ERR_PTR(err);
1386         }
1387
1388         list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1389
1390         /*
1391          * Give our perma-pinned kernel timelines a separate lockdep class,
1392          * so that we can use them from within the normal user timelines
1393          * should we need to inject GPU operations during their request
1394          * construction.
1395          */
1396         lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1397
1398         return ce;
1399 }
1400
1401 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1402 {
1403         struct intel_engine_cs *engine = ce->engine;
1404         struct i915_vma *hwsp = engine->status_page.vma;
1405
1406         GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1407
1408         mutex_lock(&hwsp->vm->mutex);
1409         list_del(&ce->timeline->engine_link);
1410         mutex_unlock(&hwsp->vm->mutex);
1411
1412         list_del(&ce->pinned_contexts_link);
1413         intel_context_unpin(ce);
1414         intel_context_put(ce);
1415 }
1416
1417 static struct intel_context *
1418 create_ggtt_bind_context(struct intel_engine_cs *engine)
1419 {
1420         static struct lock_class_key kernel;
1421
1422         /*
1423          * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple
1424          * bind requets at a time so get a bigger ring.
1425          */
1426         return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_512K,
1427                                                   I915_GEM_HWS_GGTT_BIND_ADDR,
1428                                                   &kernel, "ggtt_bind_context");
1429 }
1430
1431 static struct intel_context *
1432 create_kernel_context(struct intel_engine_cs *engine)
1433 {
1434         static struct lock_class_key kernel;
1435
1436         return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1437                                                   I915_GEM_HWS_SEQNO_ADDR,
1438                                                   &kernel, "kernel_context");
1439 }
1440
1441 /*
1442  * engine_init_common - initialize engine state which might require hw access
1443  * @engine: Engine to initialize.
1444  *
1445  * Initializes @engine@ structure members shared between legacy and execlists
1446  * submission modes which do require hardware access.
1447  *
1448  * Typcally done at later stages of submission mode specific engine setup.
1449  *
1450  * Returns zero on success or an error code on failure.
1451  */
1452 static int engine_init_common(struct intel_engine_cs *engine)
1453 {
1454         struct intel_context *ce, *bce = NULL;
1455         int ret;
1456
1457         engine->set_default_submission(engine);
1458
1459         /*
1460          * We may need to do things with the shrinker which
1461          * require us to immediately switch back to the default
1462          * context. This can cause a problem as pinning the
1463          * default context also requires GTT space which may not
1464          * be available. To avoid this we always pin the default
1465          * context.
1466          */
1467         ce = create_kernel_context(engine);
1468         if (IS_ERR(ce))
1469                 return PTR_ERR(ce);
1470         /*
1471          * Create a separate pinned context for GGTT update with blitter engine
1472          * if a platform require such service. MI_UPDATE_GTT works on other
1473          * engines as well but BCS should be less busy engine so pick that for
1474          * GGTT updates.
1475          */
1476         if (i915_ggtt_require_binder(engine->i915) && engine->id == BCS0) {
1477                 bce = create_ggtt_bind_context(engine);
1478                 if (IS_ERR(bce)) {
1479                         ret = PTR_ERR(bce);
1480                         goto err_ce_context;
1481                 }
1482         }
1483
1484         ret = measure_breadcrumb_dw(ce);
1485         if (ret < 0)
1486                 goto err_bce_context;
1487
1488         engine->emit_fini_breadcrumb_dw = ret;
1489         engine->kernel_context = ce;
1490         engine->bind_context = bce;
1491
1492         return 0;
1493
1494 err_bce_context:
1495         if (bce)
1496                 intel_engine_destroy_pinned_context(bce);
1497 err_ce_context:
1498         intel_engine_destroy_pinned_context(ce);
1499         return ret;
1500 }
1501
1502 int intel_engines_init(struct intel_gt *gt)
1503 {
1504         int (*setup)(struct intel_engine_cs *engine);
1505         struct intel_engine_cs *engine;
1506         enum intel_engine_id id;
1507         int err;
1508
1509         if (intel_uc_uses_guc_submission(&gt->uc)) {
1510                 gt->submission_method = INTEL_SUBMISSION_GUC;
1511                 setup = intel_guc_submission_setup;
1512         } else if (HAS_EXECLISTS(gt->i915)) {
1513                 gt->submission_method = INTEL_SUBMISSION_ELSP;
1514                 setup = intel_execlists_submission_setup;
1515         } else {
1516                 gt->submission_method = INTEL_SUBMISSION_RING;
1517                 setup = intel_ring_submission_setup;
1518         }
1519
1520         for_each_engine(engine, gt, id) {
1521                 err = engine_setup_common(engine);
1522                 if (err)
1523                         return err;
1524
1525                 err = setup(engine);
1526                 if (err) {
1527                         intel_engine_cleanup_common(engine);
1528                         return err;
1529                 }
1530
1531                 /* The backend should now be responsible for cleanup */
1532                 GEM_BUG_ON(engine->release == NULL);
1533
1534                 err = engine_init_common(engine);
1535                 if (err)
1536                         return err;
1537
1538                 intel_engine_add_user(engine);
1539         }
1540
1541         return 0;
1542 }
1543
1544 /**
1545  * intel_engine_cleanup_common - cleans up the engine state created by
1546  *                                the common initiailizers.
1547  * @engine: Engine to cleanup.
1548  *
1549  * This cleans up everything created by the common helpers.
1550  */
1551 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1552 {
1553         GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1554
1555         i915_sched_engine_put(engine->sched_engine);
1556         intel_breadcrumbs_put(engine->breadcrumbs);
1557
1558         intel_engine_fini_retire(engine);
1559         intel_engine_cleanup_cmd_parser(engine);
1560
1561         if (engine->default_state)
1562                 fput(engine->default_state);
1563
1564         if (engine->kernel_context)
1565                 intel_engine_destroy_pinned_context(engine->kernel_context);
1566
1567         if (engine->bind_context)
1568                 intel_engine_destroy_pinned_context(engine->bind_context);
1569
1570
1571         GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1572         cleanup_status_page(engine);
1573
1574         intel_wa_list_free(&engine->ctx_wa_list);
1575         intel_wa_list_free(&engine->wa_list);
1576         intel_wa_list_free(&engine->whitelist);
1577 }
1578
1579 /**
1580  * intel_engine_resume - re-initializes the HW state of the engine
1581  * @engine: Engine to resume.
1582  *
1583  * Returns zero on success or an error code on failure.
1584  */
1585 int intel_engine_resume(struct intel_engine_cs *engine)
1586 {
1587         intel_engine_apply_workarounds(engine);
1588         intel_engine_apply_whitelist(engine);
1589
1590         return engine->resume(engine);
1591 }
1592
1593 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1594 {
1595         struct drm_i915_private *i915 = engine->i915;
1596
1597         u64 acthd;
1598
1599         if (GRAPHICS_VER(i915) >= 8)
1600                 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1601         else if (GRAPHICS_VER(i915) >= 4)
1602                 acthd = ENGINE_READ(engine, RING_ACTHD);
1603         else
1604                 acthd = ENGINE_READ(engine, ACTHD);
1605
1606         return acthd;
1607 }
1608
1609 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1610 {
1611         u64 bbaddr;
1612
1613         if (GRAPHICS_VER(engine->i915) >= 8)
1614                 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1615         else
1616                 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1617
1618         return bbaddr;
1619 }
1620
1621 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1622 {
1623         if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1624                 return 0;
1625
1626         /*
1627          * If we are doing a normal GPU reset, we can take our time and allow
1628          * the engine to quiesce. We've stopped submission to the engine, and
1629          * if we wait long enough an innocent context should complete and
1630          * leave the engine idle. So they should not be caught unaware by
1631          * the forthcoming GPU reset (which usually follows the stop_cs)!
1632          */
1633         return READ_ONCE(engine->props.stop_timeout_ms);
1634 }
1635
1636 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1637                                   int fast_timeout_us,
1638                                   int slow_timeout_ms)
1639 {
1640         struct intel_uncore *uncore = engine->uncore;
1641         const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1642         int err;
1643
1644         intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1645
1646         /*
1647          * Wa_22011802037: Prior to doing a reset, ensure CS is
1648          * stopped, set ring stop bit and prefetch disable bit to halt CS
1649          */
1650         if (intel_engine_reset_needs_wa_22011802037(engine->gt))
1651                 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1652                                       _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1653
1654         err = __intel_wait_for_register_fw(engine->uncore, mode,
1655                                            MODE_IDLE, MODE_IDLE,
1656                                            fast_timeout_us,
1657                                            slow_timeout_ms,
1658                                            NULL);
1659
1660         /* A final mmio read to let GPU writes be hopefully flushed to memory */
1661         intel_uncore_posting_read_fw(uncore, mode);
1662         return err;
1663 }
1664
1665 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1666 {
1667         int err = 0;
1668
1669         if (GRAPHICS_VER(engine->i915) < 3)
1670                 return -ENODEV;
1671
1672         ENGINE_TRACE(engine, "\n");
1673         /*
1674          * TODO: Find out why occasionally stopping the CS times out. Seen
1675          * especially with gem_eio tests.
1676          *
1677          * Occasionally trying to stop the cs times out, but does not adversely
1678          * affect functionality. The timeout is set as a config parameter that
1679          * defaults to 100ms. In most cases the follow up operation is to wait
1680          * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1681          * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1682          * caused, the caller must check and handle the return from this
1683          * function.
1684          */
1685         if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1686                 ENGINE_TRACE(engine,
1687                              "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1688                              ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1689                              ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1690
1691                 /*
1692                  * Sometimes we observe that the idle flag is not
1693                  * set even though the ring is empty. So double
1694                  * check before giving up.
1695                  */
1696                 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1697                     (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1698                         err = -ETIMEDOUT;
1699         }
1700
1701         return err;
1702 }
1703
1704 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1705 {
1706         ENGINE_TRACE(engine, "\n");
1707
1708         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1709 }
1710
1711 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1712 {
1713         static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1714                 [RCS0] = MSG_IDLE_CS,
1715                 [BCS0] = MSG_IDLE_BCS,
1716                 [VCS0] = MSG_IDLE_VCS0,
1717                 [VCS1] = MSG_IDLE_VCS1,
1718                 [VCS2] = MSG_IDLE_VCS2,
1719                 [VCS3] = MSG_IDLE_VCS3,
1720                 [VCS4] = MSG_IDLE_VCS4,
1721                 [VCS5] = MSG_IDLE_VCS5,
1722                 [VCS6] = MSG_IDLE_VCS6,
1723                 [VCS7] = MSG_IDLE_VCS7,
1724                 [VECS0] = MSG_IDLE_VECS0,
1725                 [VECS1] = MSG_IDLE_VECS1,
1726                 [VECS2] = MSG_IDLE_VECS2,
1727                 [VECS3] = MSG_IDLE_VECS3,
1728                 [CCS0] = MSG_IDLE_CS,
1729                 [CCS1] = MSG_IDLE_CS,
1730                 [CCS2] = MSG_IDLE_CS,
1731                 [CCS3] = MSG_IDLE_CS,
1732         };
1733         u32 val;
1734
1735         if (!_reg[engine->id].reg)
1736                 return 0;
1737
1738         val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1739
1740         /* bits[29:25] & bits[13:9] >> shift */
1741         return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1742 }
1743
1744 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1745 {
1746         int ret;
1747
1748         /* Ensure GPM receives fw up/down after CS is stopped */
1749         udelay(1);
1750
1751         /* Wait for forcewake request to complete in GPM */
1752         ret =  __intel_wait_for_register_fw(gt->uncore,
1753                                             GEN9_PWRGT_DOMAIN_STATUS,
1754                                             fw_mask, fw_mask, 5000, 0, NULL);
1755
1756         /* Ensure CS receives fw ack from GPM */
1757         udelay(1);
1758
1759         if (ret)
1760                 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1761 }
1762
1763 /*
1764  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1765  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1766  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1767  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1768  * are concerned only with the gt reset here, we use a logical OR of pending
1769  * forcewakeups from all reset domains and then wait for them to complete by
1770  * querying PWRGT_DOMAIN_STATUS.
1771  */
1772 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1773 {
1774         u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1775
1776         if (fw_pending)
1777                 __gpm_wait_for_fw_complete(engine->gt, fw_pending);
1778 }
1779
1780 /* NB: please notice the memset */
1781 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1782                                struct intel_instdone *instdone)
1783 {
1784         struct drm_i915_private *i915 = engine->i915;
1785         struct intel_uncore *uncore = engine->uncore;
1786         u32 mmio_base = engine->mmio_base;
1787         int slice;
1788         int subslice;
1789         int iter;
1790
1791         memset(instdone, 0, sizeof(*instdone));
1792
1793         if (GRAPHICS_VER(i915) >= 8) {
1794                 instdone->instdone =
1795                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1796
1797                 if (engine->id != RCS0)
1798                         return;
1799
1800                 instdone->slice_common =
1801                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1802                 if (GRAPHICS_VER(i915) >= 12) {
1803                         instdone->slice_common_extra[0] =
1804                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1805                         instdone->slice_common_extra[1] =
1806                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1807                 }
1808
1809                 for_each_ss_steering(iter, engine->gt, slice, subslice) {
1810                         instdone->sampler[slice][subslice] =
1811                                 intel_gt_mcr_read(engine->gt,
1812                                                   GEN8_SAMPLER_INSTDONE,
1813                                                   slice, subslice);
1814                         instdone->row[slice][subslice] =
1815                                 intel_gt_mcr_read(engine->gt,
1816                                                   GEN8_ROW_INSTDONE,
1817                                                   slice, subslice);
1818                 }
1819
1820                 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1821                         for_each_ss_steering(iter, engine->gt, slice, subslice)
1822                                 instdone->geom_svg[slice][subslice] =
1823                                         intel_gt_mcr_read(engine->gt,
1824                                                           XEHPG_INSTDONE_GEOM_SVG,
1825                                                           slice, subslice);
1826                 }
1827         } else if (GRAPHICS_VER(i915) >= 7) {
1828                 instdone->instdone =
1829                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1830
1831                 if (engine->id != RCS0)
1832                         return;
1833
1834                 instdone->slice_common =
1835                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1836                 instdone->sampler[0][0] =
1837                         intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1838                 instdone->row[0][0] =
1839                         intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1840         } else if (GRAPHICS_VER(i915) >= 4) {
1841                 instdone->instdone =
1842                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1843                 if (engine->id == RCS0)
1844                         /* HACK: Using the wrong struct member */
1845                         instdone->slice_common =
1846                                 intel_uncore_read(uncore, GEN4_INSTDONE1);
1847         } else {
1848                 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1849         }
1850 }
1851
1852 static bool ring_is_idle(struct intel_engine_cs *engine)
1853 {
1854         bool idle = true;
1855
1856         if (I915_SELFTEST_ONLY(!engine->mmio_base))
1857                 return true;
1858
1859         if (!intel_engine_pm_get_if_awake(engine))
1860                 return true;
1861
1862         /* First check that no commands are left in the ring */
1863         if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1864             (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1865                 idle = false;
1866
1867         /* No bit for gen2, so assume the CS parser is idle */
1868         if (GRAPHICS_VER(engine->i915) > 2 &&
1869             !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1870                 idle = false;
1871
1872         intel_engine_pm_put(engine);
1873
1874         return idle;
1875 }
1876
1877 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1878 {
1879         struct tasklet_struct *t = &engine->sched_engine->tasklet;
1880
1881         if (!t->callback)
1882                 return;
1883
1884         local_bh_disable();
1885         if (tasklet_trylock(t)) {
1886                 /* Must wait for any GPU reset in progress. */
1887                 if (__tasklet_is_enabled(t))
1888                         t->callback(t);
1889                 tasklet_unlock(t);
1890         }
1891         local_bh_enable();
1892
1893         /* Synchronise and wait for the tasklet on another CPU */
1894         if (sync)
1895                 tasklet_unlock_wait(t);
1896 }
1897
1898 /**
1899  * intel_engine_is_idle() - Report if the engine has finished process all work
1900  * @engine: the intel_engine_cs
1901  *
1902  * Return true if there are no requests pending, nothing left to be submitted
1903  * to hardware, and that the engine is idle.
1904  */
1905 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1906 {
1907         /* More white lies, if wedged, hw state is inconsistent */
1908         if (intel_gt_is_wedged(engine->gt))
1909                 return true;
1910
1911         if (!intel_engine_pm_is_awake(engine))
1912                 return true;
1913
1914         /* Waiting to drain ELSP? */
1915         intel_synchronize_hardirq(engine->i915);
1916         intel_engine_flush_submission(engine);
1917
1918         /* ELSP is empty, but there are ready requests? E.g. after reset */
1919         if (!i915_sched_engine_is_empty(engine->sched_engine))
1920                 return false;
1921
1922         /* Ring stopped? */
1923         return ring_is_idle(engine);
1924 }
1925
1926 bool intel_engines_are_idle(struct intel_gt *gt)
1927 {
1928         struct intel_engine_cs *engine;
1929         enum intel_engine_id id;
1930
1931         /*
1932          * If the driver is wedged, HW state may be very inconsistent and
1933          * report that it is still busy, even though we have stopped using it.
1934          */
1935         if (intel_gt_is_wedged(gt))
1936                 return true;
1937
1938         /* Already parked (and passed an idleness test); must still be idle */
1939         if (!READ_ONCE(gt->awake))
1940                 return true;
1941
1942         for_each_engine(engine, gt, id) {
1943                 if (!intel_engine_is_idle(engine))
1944                         return false;
1945         }
1946
1947         return true;
1948 }
1949
1950 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1951 {
1952         if (!engine->irq_enable)
1953                 return false;
1954
1955         /* Caller disables interrupts */
1956         spin_lock(engine->gt->irq_lock);
1957         engine->irq_enable(engine);
1958         spin_unlock(engine->gt->irq_lock);
1959
1960         return true;
1961 }
1962
1963 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1964 {
1965         if (!engine->irq_disable)
1966                 return;
1967
1968         /* Caller disables interrupts */
1969         spin_lock(engine->gt->irq_lock);
1970         engine->irq_disable(engine);
1971         spin_unlock(engine->gt->irq_lock);
1972 }
1973
1974 void intel_engines_reset_default_submission(struct intel_gt *gt)
1975 {
1976         struct intel_engine_cs *engine;
1977         enum intel_engine_id id;
1978
1979         for_each_engine(engine, gt, id) {
1980                 if (engine->sanitize)
1981                         engine->sanitize(engine);
1982
1983                 engine->set_default_submission(engine);
1984         }
1985 }
1986
1987 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1988 {
1989         switch (GRAPHICS_VER(engine->i915)) {
1990         case 2:
1991                 return false; /* uses physical not virtual addresses */
1992         case 3:
1993                 /* maybe only uses physical not virtual addresses */
1994                 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1995         case 4:
1996                 return !IS_I965G(engine->i915); /* who knows! */
1997         case 6:
1998                 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1999         default:
2000                 return true;
2001         }
2002 }
2003
2004 static struct intel_timeline *get_timeline(struct i915_request *rq)
2005 {
2006         struct intel_timeline *tl;
2007
2008         /*
2009          * Even though we are holding the engine->sched_engine->lock here, there
2010          * is no control over the submission queue per-se and we are
2011          * inspecting the active state at a random point in time, with an
2012          * unknown queue. Play safe and make sure the timeline remains valid.
2013          * (Only being used for pretty printing, one extra kref shouldn't
2014          * cause a camel stampede!)
2015          */
2016         rcu_read_lock();
2017         tl = rcu_dereference(rq->timeline);
2018         if (!kref_get_unless_zero(&tl->kref))
2019                 tl = NULL;
2020         rcu_read_unlock();
2021
2022         return tl;
2023 }
2024
2025 static int print_ring(char *buf, int sz, struct i915_request *rq)
2026 {
2027         int len = 0;
2028
2029         if (!i915_request_signaled(rq)) {
2030                 struct intel_timeline *tl = get_timeline(rq);
2031
2032                 len = scnprintf(buf, sz,
2033                                 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2034                                 i915_ggtt_offset(rq->ring->vma),
2035                                 tl ? tl->hwsp_offset : 0,
2036                                 hwsp_seqno(rq),
2037                                 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2038                                                       1000 * 1000));
2039
2040                 if (tl)
2041                         intel_timeline_put(tl);
2042         }
2043
2044         return len;
2045 }
2046
2047 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2048 {
2049         const size_t rowsize = 8 * sizeof(u32);
2050         const void *prev = NULL;
2051         bool skip = false;
2052         size_t pos;
2053
2054         for (pos = 0; pos < len; pos += rowsize) {
2055                 char line[128];
2056
2057                 if (prev && !memcmp(prev, buf + pos, rowsize)) {
2058                         if (!skip) {
2059                                 drm_printf(m, "*\n");
2060                                 skip = true;
2061                         }
2062                         continue;
2063                 }
2064
2065                 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2066                                                 rowsize, sizeof(u32),
2067                                                 line, sizeof(line),
2068                                                 false) >= sizeof(line));
2069                 drm_printf(m, "[%04zx] %s\n", pos, line);
2070
2071                 prev = buf + pos;
2072                 skip = false;
2073         }
2074 }
2075
2076 static const char *repr_timer(const struct timer_list *t)
2077 {
2078         if (!READ_ONCE(t->expires))
2079                 return "inactive";
2080
2081         if (timer_pending(t))
2082                 return "active";
2083
2084         return "expired";
2085 }
2086
2087 static void intel_engine_print_registers(struct intel_engine_cs *engine,
2088                                          struct drm_printer *m)
2089 {
2090         struct drm_i915_private *i915 = engine->i915;
2091         struct intel_engine_execlists * const execlists = &engine->execlists;
2092         u64 addr;
2093
2094         if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2095                 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2096         if (HAS_EXECLISTS(i915)) {
2097                 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2098                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2099                 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2100                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2101         }
2102         drm_printf(m, "\tRING_START: 0x%08x\n",
2103                    ENGINE_READ(engine, RING_START));
2104         drm_printf(m, "\tRING_HEAD:  0x%08x\n",
2105                    ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2106         drm_printf(m, "\tRING_TAIL:  0x%08x\n",
2107                    ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2108         drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
2109                    ENGINE_READ(engine, RING_CTL),
2110                    ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2111         if (GRAPHICS_VER(engine->i915) > 2) {
2112                 drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
2113                            ENGINE_READ(engine, RING_MI_MODE),
2114                            ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2115         }
2116
2117         if (GRAPHICS_VER(i915) >= 6) {
2118                 drm_printf(m, "\tRING_IMR:   0x%08x\n",
2119                            ENGINE_READ(engine, RING_IMR));
2120                 drm_printf(m, "\tRING_ESR:   0x%08x\n",
2121                            ENGINE_READ(engine, RING_ESR));
2122                 drm_printf(m, "\tRING_EMR:   0x%08x\n",
2123                            ENGINE_READ(engine, RING_EMR));
2124                 drm_printf(m, "\tRING_EIR:   0x%08x\n",
2125                            ENGINE_READ(engine, RING_EIR));
2126         }
2127
2128         addr = intel_engine_get_active_head(engine);
2129         drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
2130                    upper_32_bits(addr), lower_32_bits(addr));
2131         addr = intel_engine_get_last_batch_head(engine);
2132         drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2133                    upper_32_bits(addr), lower_32_bits(addr));
2134         if (GRAPHICS_VER(i915) >= 8)
2135                 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2136         else if (GRAPHICS_VER(i915) >= 4)
2137                 addr = ENGINE_READ(engine, RING_DMA_FADD);
2138         else
2139                 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2140         drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2141                    upper_32_bits(addr), lower_32_bits(addr));
2142         if (GRAPHICS_VER(i915) >= 4) {
2143                 drm_printf(m, "\tIPEIR: 0x%08x\n",
2144                            ENGINE_READ(engine, RING_IPEIR));
2145                 drm_printf(m, "\tIPEHR: 0x%08x\n",
2146                            ENGINE_READ(engine, RING_IPEHR));
2147         } else {
2148                 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2149                 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2150         }
2151
2152         if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2153                 struct i915_request * const *port, *rq;
2154                 const u32 *hws =
2155                         &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2156                 const u8 num_entries = execlists->csb_size;
2157                 unsigned int idx;
2158                 u8 read, write;
2159
2160                 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2161                            str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2162                            str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2163                            repr_timer(&engine->execlists.preempt),
2164                            repr_timer(&engine->execlists.timer));
2165
2166                 read = execlists->csb_head;
2167                 write = READ_ONCE(*execlists->csb_write);
2168
2169                 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2170                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2171                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2172                            read, write, num_entries);
2173
2174                 if (read >= num_entries)
2175                         read = 0;
2176                 if (write >= num_entries)
2177                         write = 0;
2178                 if (read > write)
2179                         write += num_entries;
2180                 while (read < write) {
2181                         idx = ++read % num_entries;
2182                         drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2183                                    idx, hws[idx * 2], hws[idx * 2 + 1]);
2184                 }
2185
2186                 i915_sched_engine_active_lock_bh(engine->sched_engine);
2187                 rcu_read_lock();
2188                 for (port = execlists->active; (rq = *port); port++) {
2189                         char hdr[160];
2190                         int len;
2191
2192                         len = scnprintf(hdr, sizeof(hdr),
2193                                         "\t\tActive[%d]:  ccid:%08x%s%s, ",
2194                                         (int)(port - execlists->active),
2195                                         rq->context->lrc.ccid,
2196                                         intel_context_is_closed(rq->context) ? "!" : "",
2197                                         intel_context_is_banned(rq->context) ? "*" : "");
2198                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2199                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2200                         i915_request_show(m, rq, hdr, 0);
2201                 }
2202                 for (port = execlists->pending; (rq = *port); port++) {
2203                         char hdr[160];
2204                         int len;
2205
2206                         len = scnprintf(hdr, sizeof(hdr),
2207                                         "\t\tPending[%d]: ccid:%08x%s%s, ",
2208                                         (int)(port - execlists->pending),
2209                                         rq->context->lrc.ccid,
2210                                         intel_context_is_closed(rq->context) ? "!" : "",
2211                                         intel_context_is_banned(rq->context) ? "*" : "");
2212                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2213                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2214                         i915_request_show(m, rq, hdr, 0);
2215                 }
2216                 rcu_read_unlock();
2217                 i915_sched_engine_active_unlock_bh(engine->sched_engine);
2218         } else if (GRAPHICS_VER(i915) > 6) {
2219                 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2220                            ENGINE_READ(engine, RING_PP_DIR_BASE));
2221                 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2222                            ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2223                 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2224                            ENGINE_READ(engine, RING_PP_DIR_DCLV));
2225         }
2226 }
2227
2228 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2229 {
2230         struct i915_vma_resource *vma_res = rq->batch_res;
2231         void *ring;
2232         int size;
2233
2234         drm_printf(m,
2235                    "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2236                    rq->head, rq->postfix, rq->tail,
2237                    vma_res ? upper_32_bits(vma_res->start) : ~0u,
2238                    vma_res ? lower_32_bits(vma_res->start) : ~0u);
2239
2240         size = rq->tail - rq->head;
2241         if (rq->tail < rq->head)
2242                 size += rq->ring->size;
2243
2244         ring = kmalloc(size, GFP_ATOMIC);
2245         if (ring) {
2246                 const void *vaddr = rq->ring->vaddr;
2247                 unsigned int head = rq->head;
2248                 unsigned int len = 0;
2249
2250                 if (rq->tail < head) {
2251                         len = rq->ring->size - head;
2252                         memcpy(ring, vaddr + head, len);
2253                         head = 0;
2254                 }
2255                 memcpy(ring + len, vaddr + head, size - len);
2256
2257                 hexdump(m, ring, size);
2258                 kfree(ring);
2259         }
2260 }
2261
2262 static unsigned long read_ul(void *p, size_t x)
2263 {
2264         return *(unsigned long *)(p + x);
2265 }
2266
2267 static void print_properties(struct intel_engine_cs *engine,
2268                              struct drm_printer *m)
2269 {
2270         static const struct pmap {
2271                 size_t offset;
2272                 const char *name;
2273         } props[] = {
2274 #define P(x) { \
2275         .offset = offsetof(typeof(engine->props), x), \
2276         .name = #x \
2277 }
2278                 P(heartbeat_interval_ms),
2279                 P(max_busywait_duration_ns),
2280                 P(preempt_timeout_ms),
2281                 P(stop_timeout_ms),
2282                 P(timeslice_duration_ms),
2283
2284                 {},
2285 #undef P
2286         };
2287         const struct pmap *p;
2288
2289         drm_printf(m, "\tProperties:\n");
2290         for (p = props; p->name; p++)
2291                 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2292                            p->name,
2293                            read_ul(&engine->props, p->offset),
2294                            read_ul(&engine->defaults, p->offset));
2295 }
2296
2297 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2298 {
2299         struct intel_timeline *tl = get_timeline(rq);
2300
2301         i915_request_show(m, rq, msg, 0);
2302
2303         drm_printf(m, "\t\tring->start:  0x%08x\n",
2304                    i915_ggtt_offset(rq->ring->vma));
2305         drm_printf(m, "\t\tring->head:   0x%08x\n",
2306                    rq->ring->head);
2307         drm_printf(m, "\t\tring->tail:   0x%08x\n",
2308                    rq->ring->tail);
2309         drm_printf(m, "\t\tring->emit:   0x%08x\n",
2310                    rq->ring->emit);
2311         drm_printf(m, "\t\tring->space:  0x%08x\n",
2312                    rq->ring->space);
2313
2314         if (tl) {
2315                 drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2316                            tl->hwsp_offset);
2317                 intel_timeline_put(tl);
2318         }
2319
2320         print_request_ring(m, rq);
2321
2322         if (rq->context->lrc_reg_state) {
2323                 drm_printf(m, "Logical Ring Context:\n");
2324                 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2325         }
2326 }
2327
2328 void intel_engine_dump_active_requests(struct list_head *requests,
2329                                        struct i915_request *hung_rq,
2330                                        struct drm_printer *m)
2331 {
2332         struct i915_request *rq;
2333         const char *msg;
2334         enum i915_request_state state;
2335
2336         list_for_each_entry(rq, requests, sched.link) {
2337                 if (rq == hung_rq)
2338                         continue;
2339
2340                 state = i915_test_request_state(rq);
2341                 if (state < I915_REQUEST_QUEUED)
2342                         continue;
2343
2344                 if (state == I915_REQUEST_ACTIVE)
2345                         msg = "\t\tactive on engine";
2346                 else
2347                         msg = "\t\tactive in queue";
2348
2349                 engine_dump_request(rq, m, msg);
2350         }
2351 }
2352
2353 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2354                                         struct drm_printer *m)
2355 {
2356         struct intel_context *hung_ce = NULL;
2357         struct i915_request *hung_rq = NULL;
2358
2359         /*
2360          * No need for an engine->irq_seqno_barrier() before the seqno reads.
2361          * The GPU is still running so requests are still executing and any
2362          * hardware reads will be out of date by the time they are reported.
2363          * But the intention here is just to report an instantaneous snapshot
2364          * so that's fine.
2365          */
2366         intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2367
2368         drm_printf(m, "\tRequests:\n");
2369
2370         if (hung_rq)
2371                 engine_dump_request(hung_rq, m, "\t\thung");
2372         else if (hung_ce)
2373                 drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2374
2375         if (intel_uc_uses_guc_submission(&engine->gt->uc))
2376                 intel_guc_dump_active_requests(engine, hung_rq, m);
2377         else
2378                 intel_execlists_dump_active_requests(engine, hung_rq, m);
2379
2380         if (hung_rq)
2381                 i915_request_put(hung_rq);
2382 }
2383
2384 void intel_engine_dump(struct intel_engine_cs *engine,
2385                        struct drm_printer *m,
2386                        const char *header, ...)
2387 {
2388         struct i915_gpu_error * const error = &engine->i915->gpu_error;
2389         struct i915_request *rq;
2390         intel_wakeref_t wakeref;
2391         ktime_t dummy;
2392
2393         if (header) {
2394                 va_list ap;
2395
2396                 va_start(ap, header);
2397                 drm_vprintf(m, header, &ap);
2398                 va_end(ap);
2399         }
2400
2401         if (intel_gt_is_wedged(engine->gt))
2402                 drm_printf(m, "*** WEDGED ***\n");
2403
2404         drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2405         drm_printf(m, "\tBarriers?: %s\n",
2406                    str_yes_no(!llist_empty(&engine->barrier_tasks)));
2407         drm_printf(m, "\tLatency: %luus\n",
2408                    ewma__engine_latency_read(&engine->latency));
2409         if (intel_engine_supports_stats(engine))
2410                 drm_printf(m, "\tRuntime: %llums\n",
2411                            ktime_to_ms(intel_engine_get_busy_time(engine,
2412                                                                   &dummy)));
2413         drm_printf(m, "\tForcewake: %x domains, %d active\n",
2414                    engine->fw_domain, READ_ONCE(engine->fw_active));
2415
2416         rcu_read_lock();
2417         rq = READ_ONCE(engine->heartbeat.systole);
2418         if (rq)
2419                 drm_printf(m, "\tHeartbeat: %d ms ago\n",
2420                            jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2421         rcu_read_unlock();
2422         drm_printf(m, "\tReset count: %d (global %d)\n",
2423                    i915_reset_engine_count(error, engine),
2424                    i915_reset_count(error));
2425         print_properties(engine, m);
2426
2427         engine_dump_active_requests(engine, m);
2428
2429         drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2430         wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2431         if (wakeref) {
2432                 intel_engine_print_registers(engine, m);
2433                 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2434         } else {
2435                 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2436         }
2437
2438         intel_execlists_show_requests(engine, m, i915_request_show, 8);
2439
2440         drm_printf(m, "HWSP:\n");
2441         hexdump(m, engine->status_page.addr, PAGE_SIZE);
2442
2443         drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2444
2445         intel_engine_print_breadcrumbs(engine, m);
2446 }
2447
2448 /**
2449  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2450  * @engine: engine to report on
2451  * @now: monotonic timestamp of sampling
2452  *
2453  * Returns accumulated time @engine was busy since engine stats were enabled.
2454  */
2455 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2456 {
2457         return engine->busyness(engine, now);
2458 }
2459
2460 struct intel_context *
2461 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2462                             unsigned int count, unsigned long flags)
2463 {
2464         if (count == 0)
2465                 return ERR_PTR(-EINVAL);
2466
2467         if (count == 1 && !(flags & FORCE_VIRTUAL))
2468                 return intel_context_create(siblings[0]);
2469
2470         GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2471         return siblings[0]->cops->create_virtual(siblings, count, flags);
2472 }
2473
2474 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2475 {
2476         struct i915_request *request, *active = NULL;
2477
2478         /*
2479          * This search does not work in GuC submission mode. However, the GuC
2480          * will report the hanging context directly to the driver itself. So
2481          * the driver should never get here when in GuC mode.
2482          */
2483         GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2484
2485         /*
2486          * We are called by the error capture, reset and to dump engine
2487          * state at random points in time. In particular, note that neither is
2488          * crucially ordered with an interrupt. After a hang, the GPU is dead
2489          * and we assume that no more writes can happen (we waited long enough
2490          * for all writes that were in transaction to be flushed) - adding an
2491          * extra delay for a recent interrupt is pointless. Hence, we do
2492          * not need an engine->irq_seqno_barrier() before the seqno reads.
2493          * At all other times, we must assume the GPU is still running, but
2494          * we only care about the snapshot of this moment.
2495          */
2496         lockdep_assert_held(&engine->sched_engine->lock);
2497
2498         rcu_read_lock();
2499         request = execlists_active(&engine->execlists);
2500         if (request) {
2501                 struct intel_timeline *tl = request->context->timeline;
2502
2503                 list_for_each_entry_from_reverse(request, &tl->requests, link) {
2504                         if (__i915_request_is_complete(request))
2505                                 break;
2506
2507                         active = request;
2508                 }
2509         }
2510         rcu_read_unlock();
2511         if (active)
2512                 return active;
2513
2514         list_for_each_entry(request, &engine->sched_engine->requests,
2515                             sched.link) {
2516                 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2517                         continue;
2518
2519                 active = request;
2520                 break;
2521         }
2522
2523         return active;
2524 }
2525
2526 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2527                                   struct intel_context **ce, struct i915_request **rq)
2528 {
2529         unsigned long flags;
2530
2531         *ce = intel_engine_get_hung_context(engine);
2532         if (*ce) {
2533                 intel_engine_clear_hung_context(engine);
2534
2535                 *rq = intel_context_get_active_request(*ce);
2536                 return;
2537         }
2538
2539         /*
2540          * Getting here with GuC enabled means it is a forced error capture
2541          * with no actual hang. So, no need to attempt the execlist search.
2542          */
2543         if (intel_uc_uses_guc_submission(&engine->gt->uc))
2544                 return;
2545
2546         spin_lock_irqsave(&engine->sched_engine->lock, flags);
2547         *rq = engine_execlist_find_hung_request(engine);
2548         if (*rq)
2549                 *rq = i915_request_get_rcu(*rq);
2550         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2551 }
2552
2553 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2554 {
2555         /*
2556          * If there are any non-fused-off CCS engines, we need to enable CCS
2557          * support in the RCU_MODE register.  This only needs to be done once,
2558          * so for simplicity we'll take care of this in the RCS engine's
2559          * resume handler; since the RCS and all CCS engines belong to the
2560          * same reset domain and are reset together, this will also take care
2561          * of re-applying the setting after i915-triggered resets.
2562          */
2563         if (!CCS_MASK(engine->gt))
2564                 return;
2565
2566         intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2567                            _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2568 }
2569
2570 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2571 #include "mock_engine.c"
2572 #include "selftest_engine.c"
2573 #include "selftest_engine_cs.c"
2574 #endif
This page took 0.182717 seconds and 4 git commands to generate.