]> Git Repo - J-linux.git/blob - arch/x86/kernel/traps.c
Merge tag 'kbuild-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[J-linux.git] / arch / x86 / kernel / traps.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *      Gareth Hughes <[email protected]>, May 2000
7  */
8
9 /*
10  * Handle hardware traps and faults.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/kmsan.h>
19 #include <linux/spinlock.h>
20 #include <linux/kprobes.h>
21 #include <linux/uaccess.h>
22 #include <linux/kdebug.h>
23 #include <linux/kgdb.h>
24 #include <linux/kernel.h>
25 #include <linux/export.h>
26 #include <linux/ptrace.h>
27 #include <linux/uprobes.h>
28 #include <linux/string.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/kexec.h>
32 #include <linux/sched.h>
33 #include <linux/sched/task_stack.h>
34 #include <linux/timer.h>
35 #include <linux/init.h>
36 #include <linux/bug.h>
37 #include <linux/nmi.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/cpu.h>
41 #include <linux/io.h>
42 #include <linux/hardirq.h>
43 #include <linux/atomic.h>
44 #include <linux/iommu.h>
45
46 #include <asm/stacktrace.h>
47 #include <asm/processor.h>
48 #include <asm/debugreg.h>
49 #include <asm/realmode.h>
50 #include <asm/text-patching.h>
51 #include <asm/ftrace.h>
52 #include <asm/traps.h>
53 #include <asm/desc.h>
54 #include <asm/fred.h>
55 #include <asm/fpu/api.h>
56 #include <asm/cpu.h>
57 #include <asm/cpu_entry_area.h>
58 #include <asm/mce.h>
59 #include <asm/fixmap.h>
60 #include <asm/mach_traps.h>
61 #include <asm/alternative.h>
62 #include <asm/fpu/xstate.h>
63 #include <asm/vm86.h>
64 #include <asm/umip.h>
65 #include <asm/insn.h>
66 #include <asm/insn-eval.h>
67 #include <asm/vdso.h>
68 #include <asm/tdx.h>
69 #include <asm/cfi.h>
70
71 #ifdef CONFIG_X86_64
72 #include <asm/x86_init.h>
73 #else
74 #include <asm/processor-flags.h>
75 #include <asm/setup.h>
76 #endif
77
78 #include <asm/proto.h>
79
80 DECLARE_BITMAP(system_vectors, NR_VECTORS);
81
82 __always_inline int is_valid_bugaddr(unsigned long addr)
83 {
84         if (addr < TASK_SIZE_MAX)
85                 return 0;
86
87         /*
88          * We got #UD, if the text isn't readable we'd have gotten
89          * a different exception.
90          */
91         return *(unsigned short *)addr == INSN_UD2;
92 }
93
94 static nokprobe_inline int
95 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
96                   struct pt_regs *regs, long error_code)
97 {
98         if (v8086_mode(regs)) {
99                 /*
100                  * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
101                  * On nmi (interrupt 2), do_trap should not be called.
102                  */
103                 if (trapnr < X86_TRAP_UD) {
104                         if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
105                                                 error_code, trapnr))
106                                 return 0;
107                 }
108         } else if (!user_mode(regs)) {
109                 if (fixup_exception(regs, trapnr, error_code, 0))
110                         return 0;
111
112                 tsk->thread.error_code = error_code;
113                 tsk->thread.trap_nr = trapnr;
114                 die(str, regs, error_code);
115         } else {
116                 if (fixup_vdso_exception(regs, trapnr, error_code, 0))
117                         return 0;
118         }
119
120         /*
121          * We want error_code and trap_nr set for userspace faults and
122          * kernelspace faults which result in die(), but not
123          * kernelspace faults which are fixed up.  die() gives the
124          * process no chance to handle the signal and notice the
125          * kernel fault information, so that won't result in polluting
126          * the information about previously queued, but not yet
127          * delivered, faults.  See also exc_general_protection below.
128          */
129         tsk->thread.error_code = error_code;
130         tsk->thread.trap_nr = trapnr;
131
132         return -1;
133 }
134
135 static void show_signal(struct task_struct *tsk, int signr,
136                         const char *type, const char *desc,
137                         struct pt_regs *regs, long error_code)
138 {
139         if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
140             printk_ratelimit()) {
141                 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
142                         tsk->comm, task_pid_nr(tsk), type, desc,
143                         regs->ip, regs->sp, error_code);
144                 print_vma_addr(KERN_CONT " in ", regs->ip);
145                 pr_cont("\n");
146         }
147 }
148
149 static void
150 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
151         long error_code, int sicode, void __user *addr)
152 {
153         struct task_struct *tsk = current;
154
155         if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
156                 return;
157
158         show_signal(tsk, signr, "trap ", str, regs, error_code);
159
160         if (!sicode)
161                 force_sig(signr);
162         else
163                 force_sig_fault(signr, sicode, addr);
164 }
165 NOKPROBE_SYMBOL(do_trap);
166
167 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
168         unsigned long trapnr, int signr, int sicode, void __user *addr)
169 {
170         RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
171
172         if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
173                         NOTIFY_STOP) {
174                 cond_local_irq_enable(regs);
175                 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
176                 cond_local_irq_disable(regs);
177         }
178 }
179
180 /*
181  * Posix requires to provide the address of the faulting instruction for
182  * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
183  *
184  * This address is usually regs->ip, but when an uprobe moved the code out
185  * of line then regs->ip points to the XOL code which would confuse
186  * anything which analyzes the fault address vs. the unmodified binary. If
187  * a trap happened in XOL code then uprobe maps regs->ip back to the
188  * original instruction address.
189  */
190 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
191 {
192         return (void __user *)uprobe_get_trap_addr(regs);
193 }
194
195 DEFINE_IDTENTRY(exc_divide_error)
196 {
197         do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
198                       FPE_INTDIV, error_get_trap_addr(regs));
199 }
200
201 DEFINE_IDTENTRY(exc_overflow)
202 {
203         do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
204 }
205
206 #ifdef CONFIG_X86_F00F_BUG
207 void handle_invalid_op(struct pt_regs *regs)
208 #else
209 static inline void handle_invalid_op(struct pt_regs *regs)
210 #endif
211 {
212         do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
213                       ILL_ILLOPN, error_get_trap_addr(regs));
214 }
215
216 static noinstr bool handle_bug(struct pt_regs *regs)
217 {
218         bool handled = false;
219
220         /*
221          * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
222          * is a rare case that uses @regs without passing them to
223          * irqentry_enter().
224          */
225         kmsan_unpoison_entry_regs(regs);
226         if (!is_valid_bugaddr(regs->ip))
227                 return handled;
228
229         /*
230          * All lies, just get the WARN/BUG out.
231          */
232         instrumentation_begin();
233         /*
234          * Since we're emulating a CALL with exceptions, restore the interrupt
235          * state to what it was at the exception site.
236          */
237         if (regs->flags & X86_EFLAGS_IF)
238                 raw_local_irq_enable();
239         if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
240             handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
241                 regs->ip += LEN_UD2;
242                 handled = true;
243         }
244         if (regs->flags & X86_EFLAGS_IF)
245                 raw_local_irq_disable();
246         instrumentation_end();
247
248         return handled;
249 }
250
251 DEFINE_IDTENTRY_RAW(exc_invalid_op)
252 {
253         irqentry_state_t state;
254
255         /*
256          * We use UD2 as a short encoding for 'CALL __WARN', as such
257          * handle it before exception entry to avoid recursive WARN
258          * in case exception entry is the one triggering WARNs.
259          */
260         if (!user_mode(regs) && handle_bug(regs))
261                 return;
262
263         state = irqentry_enter(regs);
264         instrumentation_begin();
265         handle_invalid_op(regs);
266         instrumentation_end();
267         irqentry_exit(regs, state);
268 }
269
270 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
271 {
272         do_error_trap(regs, 0, "coprocessor segment overrun",
273                       X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
274 }
275
276 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
277 {
278         do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
279                       0, NULL);
280 }
281
282 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
283 {
284         do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
285                       SIGBUS, 0, NULL);
286 }
287
288 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
289 {
290         do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
291                       0, NULL);
292 }
293
294 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
295 {
296         char *str = "alignment check";
297
298         if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
299                 return;
300
301         if (!user_mode(regs))
302                 die("Split lock detected\n", regs, error_code);
303
304         local_irq_enable();
305
306         if (handle_user_split_lock(regs, error_code))
307                 goto out;
308
309         do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
310                 error_code, BUS_ADRALN, NULL);
311
312 out:
313         local_irq_disable();
314 }
315
316 #ifdef CONFIG_VMAP_STACK
317 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
318                                                 unsigned long fault_address,
319                                                 struct stack_info *info)
320 {
321         const char *name = stack_type_name(info->type);
322
323         printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
324                name, (void *)fault_address, info->begin, info->end);
325
326         die("stack guard page", regs, 0);
327
328         /* Be absolutely certain we don't return. */
329         panic("%s stack guard hit", name);
330 }
331 #endif
332
333 /*
334  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
335  *
336  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
337  * SDM's warnings about double faults being unrecoverable, returning works as
338  * expected.  Presumably what the SDM actually means is that the CPU may get
339  * the register state wrong on entry, so returning could be a bad idea.
340  *
341  * Various CPU engineers have promised that double faults due to an IRET fault
342  * while the stack is read-only are, in fact, recoverable.
343  *
344  * On x86_32, this is entered through a task gate, and regs are synthesized
345  * from the TSS.  Returning is, in principle, okay, but changes to regs will
346  * be lost.  If, for some reason, we need to return to a context with modified
347  * regs, the shim code could be adjusted to synchronize the registers.
348  *
349  * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
350  * to be read before doing anything else.
351  */
352 DEFINE_IDTENTRY_DF(exc_double_fault)
353 {
354         static const char str[] = "double fault";
355         struct task_struct *tsk = current;
356
357 #ifdef CONFIG_VMAP_STACK
358         unsigned long address = read_cr2();
359         struct stack_info info;
360 #endif
361
362 #ifdef CONFIG_X86_ESPFIX64
363         extern unsigned char native_irq_return_iret[];
364
365         /*
366          * If IRET takes a non-IST fault on the espfix64 stack, then we
367          * end up promoting it to a doublefault.  In that case, take
368          * advantage of the fact that we're not using the normal (TSS.sp0)
369          * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
370          * and then modify our own IRET frame so that, when we return,
371          * we land directly at the #GP(0) vector with the stack already
372          * set up according to its expectations.
373          *
374          * The net result is that our #GP handler will think that we
375          * entered from usermode with the bad user context.
376          *
377          * No need for nmi_enter() here because we don't use RCU.
378          */
379         if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
380                 regs->cs == __KERNEL_CS &&
381                 regs->ip == (unsigned long)native_irq_return_iret)
382         {
383                 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
384                 unsigned long *p = (unsigned long *)regs->sp;
385
386                 /*
387                  * regs->sp points to the failing IRET frame on the
388                  * ESPFIX64 stack.  Copy it to the entry stack.  This fills
389                  * in gpregs->ss through gpregs->ip.
390                  *
391                  */
392                 gpregs->ip      = p[0];
393                 gpregs->cs      = p[1];
394                 gpregs->flags   = p[2];
395                 gpregs->sp      = p[3];
396                 gpregs->ss      = p[4];
397                 gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
398
399                 /*
400                  * Adjust our frame so that we return straight to the #GP
401                  * vector with the expected RSP value.  This is safe because
402                  * we won't enable interrupts or schedule before we invoke
403                  * general_protection, so nothing will clobber the stack
404                  * frame we just set up.
405                  *
406                  * We will enter general_protection with kernel GSBASE,
407                  * which is what the stub expects, given that the faulting
408                  * RIP will be the IRET instruction.
409                  */
410                 regs->ip = (unsigned long)asm_exc_general_protection;
411                 regs->sp = (unsigned long)&gpregs->orig_ax;
412
413                 return;
414         }
415 #endif
416
417         irqentry_nmi_enter(regs);
418         instrumentation_begin();
419         notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
420
421         tsk->thread.error_code = error_code;
422         tsk->thread.trap_nr = X86_TRAP_DF;
423
424 #ifdef CONFIG_VMAP_STACK
425         /*
426          * If we overflow the stack into a guard page, the CPU will fail
427          * to deliver #PF and will send #DF instead.  Similarly, if we
428          * take any non-IST exception while too close to the bottom of
429          * the stack, the processor will get a page fault while
430          * delivering the exception and will generate a double fault.
431          *
432          * According to the SDM (footnote in 6.15 under "Interrupt 14 -
433          * Page-Fault Exception (#PF):
434          *
435          *   Processors update CR2 whenever a page fault is detected. If a
436          *   second page fault occurs while an earlier page fault is being
437          *   delivered, the faulting linear address of the second fault will
438          *   overwrite the contents of CR2 (replacing the previous
439          *   address). These updates to CR2 occur even if the page fault
440          *   results in a double fault or occurs during the delivery of a
441          *   double fault.
442          *
443          * The logic below has a small possibility of incorrectly diagnosing
444          * some errors as stack overflows.  For example, if the IDT or GDT
445          * gets corrupted such that #GP delivery fails due to a bad descriptor
446          * causing #GP and we hit this condition while CR2 coincidentally
447          * points to the stack guard page, we'll think we overflowed the
448          * stack.  Given that we're going to panic one way or another
449          * if this happens, this isn't necessarily worth fixing.
450          *
451          * If necessary, we could improve the test by only diagnosing
452          * a stack overflow if the saved RSP points within 47 bytes of
453          * the bottom of the stack: if RSP == tsk_stack + 48 and we
454          * take an exception, the stack is already aligned and there
455          * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
456          * possible error code, so a stack overflow would *not* double
457          * fault.  With any less space left, exception delivery could
458          * fail, and, as a practical matter, we've overflowed the
459          * stack even if the actual trigger for the double fault was
460          * something else.
461          */
462         if (get_stack_guard_info((void *)address, &info))
463                 handle_stack_overflow(regs, address, &info);
464 #endif
465
466         pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
467         die("double fault", regs, error_code);
468         panic("Machine halted.");
469         instrumentation_end();
470 }
471
472 DEFINE_IDTENTRY(exc_bounds)
473 {
474         if (notify_die(DIE_TRAP, "bounds", regs, 0,
475                         X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
476                 return;
477         cond_local_irq_enable(regs);
478
479         if (!user_mode(regs))
480                 die("bounds", regs, 0);
481
482         do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
483
484         cond_local_irq_disable(regs);
485 }
486
487 enum kernel_gp_hint {
488         GP_NO_HINT,
489         GP_NON_CANONICAL,
490         GP_CANONICAL
491 };
492
493 /*
494  * When an uncaught #GP occurs, try to determine the memory address accessed by
495  * the instruction and return that address to the caller. Also, try to figure
496  * out whether any part of the access to that address was non-canonical.
497  */
498 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
499                                                  unsigned long *addr)
500 {
501         u8 insn_buf[MAX_INSN_SIZE];
502         struct insn insn;
503         int ret;
504
505         if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
506                         MAX_INSN_SIZE))
507                 return GP_NO_HINT;
508
509         ret = insn_decode_kernel(&insn, insn_buf);
510         if (ret < 0)
511                 return GP_NO_HINT;
512
513         *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
514         if (*addr == -1UL)
515                 return GP_NO_HINT;
516
517 #ifdef CONFIG_X86_64
518         /*
519          * Check that:
520          *  - the operand is not in the kernel half
521          *  - the last byte of the operand is not in the user canonical half
522          */
523         if (*addr < ~__VIRTUAL_MASK &&
524             *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
525                 return GP_NON_CANONICAL;
526 #endif
527
528         return GP_CANONICAL;
529 }
530
531 #define GPFSTR "general protection fault"
532
533 static bool fixup_iopl_exception(struct pt_regs *regs)
534 {
535         struct thread_struct *t = &current->thread;
536         unsigned char byte;
537         unsigned long ip;
538
539         if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
540                 return false;
541
542         if (insn_get_effective_ip(regs, &ip))
543                 return false;
544
545         if (get_user(byte, (const char __user *)ip))
546                 return false;
547
548         if (byte != 0xfa && byte != 0xfb)
549                 return false;
550
551         if (!t->iopl_warn && printk_ratelimit()) {
552                 pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
553                        current->comm, task_pid_nr(current), ip);
554                 print_vma_addr(KERN_CONT " in ", ip);
555                 pr_cont("\n");
556                 t->iopl_warn = 1;
557         }
558
559         regs->ip += 1;
560         return true;
561 }
562
563 /*
564  * The unprivileged ENQCMD instruction generates #GPs if the
565  * IA32_PASID MSR has not been populated.  If possible, populate
566  * the MSR from a PASID previously allocated to the mm.
567  */
568 static bool try_fixup_enqcmd_gp(void)
569 {
570 #ifdef CONFIG_ARCH_HAS_CPU_PASID
571         u32 pasid;
572
573         /*
574          * MSR_IA32_PASID is managed using XSAVE.  Directly
575          * writing to the MSR is only possible when fpregs
576          * are valid and the fpstate is not.  This is
577          * guaranteed when handling a userspace exception
578          * in *before* interrupts are re-enabled.
579          */
580         lockdep_assert_irqs_disabled();
581
582         /*
583          * Hardware without ENQCMD will not generate
584          * #GPs that can be fixed up here.
585          */
586         if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
587                 return false;
588
589         /*
590          * If the mm has not been allocated a
591          * PASID, the #GP can not be fixed up.
592          */
593         if (!mm_valid_pasid(current->mm))
594                 return false;
595
596         pasid = mm_get_enqcmd_pasid(current->mm);
597
598         /*
599          * Did this thread already have its PASID activated?
600          * If so, the #GP must be from something else.
601          */
602         if (current->pasid_activated)
603                 return false;
604
605         wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
606         current->pasid_activated = 1;
607
608         return true;
609 #else
610         return false;
611 #endif
612 }
613
614 static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
615                                     unsigned long error_code, const char *str,
616                                     unsigned long address)
617 {
618         if (fixup_exception(regs, trapnr, error_code, address))
619                 return true;
620
621         current->thread.error_code = error_code;
622         current->thread.trap_nr = trapnr;
623
624         /*
625          * To be potentially processing a kprobe fault and to trust the result
626          * from kprobe_running(), we have to be non-preemptible.
627          */
628         if (!preemptible() && kprobe_running() &&
629             kprobe_fault_handler(regs, trapnr))
630                 return true;
631
632         return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
633 }
634
635 static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
636                                    unsigned long error_code, const char *str)
637 {
638         current->thread.error_code = error_code;
639         current->thread.trap_nr = trapnr;
640         show_signal(current, SIGSEGV, "", str, regs, error_code);
641         force_sig(SIGSEGV);
642 }
643
644 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
645 {
646         char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
647         enum kernel_gp_hint hint = GP_NO_HINT;
648         unsigned long gp_addr;
649
650         if (user_mode(regs) && try_fixup_enqcmd_gp())
651                 return;
652
653         cond_local_irq_enable(regs);
654
655         if (static_cpu_has(X86_FEATURE_UMIP)) {
656                 if (user_mode(regs) && fixup_umip_exception(regs))
657                         goto exit;
658         }
659
660         if (v8086_mode(regs)) {
661                 local_irq_enable();
662                 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
663                 local_irq_disable();
664                 return;
665         }
666
667         if (user_mode(regs)) {
668                 if (fixup_iopl_exception(regs))
669                         goto exit;
670
671                 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
672                         goto exit;
673
674                 gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
675                 goto exit;
676         }
677
678         if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0))
679                 goto exit;
680
681         if (error_code)
682                 snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
683         else
684                 hint = get_kernel_gp_address(regs, &gp_addr);
685
686         if (hint != GP_NO_HINT)
687                 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
688                          (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
689                                                     : "maybe for address",
690                          gp_addr);
691
692         /*
693          * KASAN is interested only in the non-canonical case, clear it
694          * otherwise.
695          */
696         if (hint != GP_NON_CANONICAL)
697                 gp_addr = 0;
698
699         die_addr(desc, regs, error_code, gp_addr);
700
701 exit:
702         cond_local_irq_disable(regs);
703 }
704
705 static bool do_int3(struct pt_regs *regs)
706 {
707         int res;
708
709 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
710         if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
711                          SIGTRAP) == NOTIFY_STOP)
712                 return true;
713 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
714
715 #ifdef CONFIG_KPROBES
716         if (kprobe_int3_handler(regs))
717                 return true;
718 #endif
719         res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
720
721         return res == NOTIFY_STOP;
722 }
723 NOKPROBE_SYMBOL(do_int3);
724
725 static void do_int3_user(struct pt_regs *regs)
726 {
727         if (do_int3(regs))
728                 return;
729
730         cond_local_irq_enable(regs);
731         do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
732         cond_local_irq_disable(regs);
733 }
734
735 DEFINE_IDTENTRY_RAW(exc_int3)
736 {
737         /*
738          * poke_int3_handler() is completely self contained code; it does (and
739          * must) *NOT* call out to anything, lest it hits upon yet another
740          * INT3.
741          */
742         if (poke_int3_handler(regs))
743                 return;
744
745         /*
746          * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
747          * and therefore can trigger INT3, hence poke_int3_handler() must
748          * be done before. If the entry came from kernel mode, then use
749          * nmi_enter() because the INT3 could have been hit in any context
750          * including NMI.
751          */
752         if (user_mode(regs)) {
753                 irqentry_enter_from_user_mode(regs);
754                 instrumentation_begin();
755                 do_int3_user(regs);
756                 instrumentation_end();
757                 irqentry_exit_to_user_mode(regs);
758         } else {
759                 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
760
761                 instrumentation_begin();
762                 if (!do_int3(regs))
763                         die("int3", regs, 0);
764                 instrumentation_end();
765                 irqentry_nmi_exit(regs, irq_state);
766         }
767 }
768
769 #ifdef CONFIG_X86_64
770 /*
771  * Help handler running on a per-cpu (IST or entry trampoline) stack
772  * to switch to the normal thread stack if the interrupted code was in
773  * user mode. The actual stack switch is done in entry_64.S
774  */
775 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
776 {
777         struct pt_regs *regs = (struct pt_regs *)current_top_of_stack() - 1;
778         if (regs != eregs)
779                 *regs = *eregs;
780         return regs;
781 }
782
783 #ifdef CONFIG_AMD_MEM_ENCRYPT
784 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
785 {
786         unsigned long sp, *stack;
787         struct stack_info info;
788         struct pt_regs *regs_ret;
789
790         /*
791          * In the SYSCALL entry path the RSP value comes from user-space - don't
792          * trust it and switch to the current kernel stack
793          */
794         if (ip_within_syscall_gap(regs)) {
795                 sp = current_top_of_stack();
796                 goto sync;
797         }
798
799         /*
800          * From here on the RSP value is trusted. Now check whether entry
801          * happened from a safe stack. Not safe are the entry or unknown stacks,
802          * use the fall-back stack instead in this case.
803          */
804         sp    = regs->sp;
805         stack = (unsigned long *)sp;
806
807         if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
808             info.type > STACK_TYPE_EXCEPTION_LAST)
809                 sp = __this_cpu_ist_top_va(VC2);
810
811 sync:
812         /*
813          * Found a safe stack - switch to it as if the entry didn't happen via
814          * IST stack. The code below only copies pt_regs, the real switch happens
815          * in assembly code.
816          */
817         sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
818
819         regs_ret = (struct pt_regs *)sp;
820         *regs_ret = *regs;
821
822         return regs_ret;
823 }
824 #endif
825
826 asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
827 {
828         struct pt_regs tmp, *new_stack;
829
830         /*
831          * This is called from entry_64.S early in handling a fault
832          * caused by a bad iret to user mode.  To handle the fault
833          * correctly, we want to move our stack frame to where it would
834          * be had we entered directly on the entry stack (rather than
835          * just below the IRET frame) and we want to pretend that the
836          * exception came from the IRET target.
837          */
838         new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
839
840         /* Copy the IRET target to the temporary storage. */
841         __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
842
843         /* Copy the remainder of the stack from the current stack. */
844         __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
845
846         /* Update the entry stack */
847         __memcpy(new_stack, &tmp, sizeof(tmp));
848
849         BUG_ON(!user_mode(new_stack));
850         return new_stack;
851 }
852 #endif
853
854 static bool is_sysenter_singlestep(struct pt_regs *regs)
855 {
856         /*
857          * We don't try for precision here.  If we're anywhere in the region of
858          * code that can be single-stepped in the SYSENTER entry path, then
859          * assume that this is a useless single-step trap due to SYSENTER
860          * being invoked with TF set.  (We don't know in advance exactly
861          * which instructions will be hit because BTF could plausibly
862          * be set.)
863          */
864 #ifdef CONFIG_X86_32
865         return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
866                 (unsigned long)__end_SYSENTER_singlestep_region -
867                 (unsigned long)__begin_SYSENTER_singlestep_region;
868 #elif defined(CONFIG_IA32_EMULATION)
869         return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
870                 (unsigned long)__end_entry_SYSENTER_compat -
871                 (unsigned long)entry_SYSENTER_compat;
872 #else
873         return false;
874 #endif
875 }
876
877 static __always_inline unsigned long debug_read_clear_dr6(void)
878 {
879         unsigned long dr6;
880
881         /*
882          * The Intel SDM says:
883          *
884          *   Certain debug exceptions may clear bits 0-3. The remaining
885          *   contents of the DR6 register are never cleared by the
886          *   processor. To avoid confusion in identifying debug
887          *   exceptions, debug handlers should clear the register before
888          *   returning to the interrupted task.
889          *
890          * Keep it simple: clear DR6 immediately.
891          */
892         get_debugreg(dr6, 6);
893         set_debugreg(DR6_RESERVED, 6);
894         dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
895
896         return dr6;
897 }
898
899 /*
900  * Our handling of the processor debug registers is non-trivial.
901  * We do not clear them on entry and exit from the kernel. Therefore
902  * it is possible to get a watchpoint trap here from inside the kernel.
903  * However, the code in ./ptrace.c has ensured that the user can
904  * only set watchpoints on userspace addresses. Therefore the in-kernel
905  * watchpoint trap can only occur in code which is reading/writing
906  * from user space. Such code must not hold kernel locks (since it
907  * can equally take a page fault), therefore it is safe to call
908  * force_sig_info even though that claims and releases locks.
909  *
910  * Code in ./signal.c ensures that the debug control register
911  * is restored before we deliver any signal, and therefore that
912  * user code runs with the correct debug control register even though
913  * we clear it here.
914  *
915  * Being careful here means that we don't have to be as careful in a
916  * lot of more complicated places (task switching can be a bit lazy
917  * about restoring all the debug state, and ptrace doesn't have to
918  * find every occurrence of the TF bit that could be saved away even
919  * by user code)
920  *
921  * May run on IST stack.
922  */
923
924 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
925 {
926         /*
927          * Notifiers will clear bits in @dr6 to indicate the event has been
928          * consumed - hw_breakpoint_handler(), single_stop_cont().
929          *
930          * Notifiers will set bits in @virtual_dr6 to indicate the desire
931          * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
932          */
933         if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
934                 return true;
935
936         return false;
937 }
938
939 static noinstr void exc_debug_kernel(struct pt_regs *regs, unsigned long dr6)
940 {
941         /*
942          * Disable breakpoints during exception handling; recursive exceptions
943          * are exceedingly 'fun'.
944          *
945          * Since this function is NOKPROBE, and that also applies to
946          * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
947          * HW_BREAKPOINT_W on our stack)
948          *
949          * Entry text is excluded for HW_BP_X and cpu_entry_area, which
950          * includes the entry stack is excluded for everything.
951          *
952          * For FRED, nested #DB should just work fine. But when a watchpoint or
953          * breakpoint is set in the code path which is executed by #DB handler,
954          * it results in an endless recursion and stack overflow. Thus we stay
955          * with the IDT approach, i.e., save DR7 and disable #DB.
956          */
957         unsigned long dr7 = local_db_save();
958         irqentry_state_t irq_state = irqentry_nmi_enter(regs);
959         instrumentation_begin();
960
961         /*
962          * If something gets miswired and we end up here for a user mode
963          * #DB, we will malfunction.
964          */
965         WARN_ON_ONCE(user_mode(regs));
966
967         if (test_thread_flag(TIF_BLOCKSTEP)) {
968                 /*
969                  * The SDM says "The processor clears the BTF flag when it
970                  * generates a debug exception." but PTRACE_BLOCKSTEP requested
971                  * it for userspace, but we just took a kernel #DB, so re-set
972                  * BTF.
973                  */
974                 unsigned long debugctl;
975
976                 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
977                 debugctl |= DEBUGCTLMSR_BTF;
978                 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
979         }
980
981         /*
982          * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
983          * watchpoint at the same time then that will still be handled.
984          */
985         if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
986             (dr6 & DR_STEP) && is_sysenter_singlestep(regs))
987                 dr6 &= ~DR_STEP;
988
989         /*
990          * The kernel doesn't use INT1
991          */
992         if (!dr6)
993                 goto out;
994
995         if (notify_debug(regs, &dr6))
996                 goto out;
997
998         /*
999          * The kernel doesn't use TF single-step outside of:
1000          *
1001          *  - Kprobes, consumed through kprobe_debug_handler()
1002          *  - KGDB, consumed through notify_debug()
1003          *
1004          * So if we get here with DR_STEP set, something is wonky.
1005          *
1006          * A known way to trigger this is through QEMU's GDB stub,
1007          * which leaks #DB into the guest and causes IST recursion.
1008          */
1009         if (WARN_ON_ONCE(dr6 & DR_STEP))
1010                 regs->flags &= ~X86_EFLAGS_TF;
1011 out:
1012         instrumentation_end();
1013         irqentry_nmi_exit(regs, irq_state);
1014
1015         local_db_restore(dr7);
1016 }
1017
1018 static noinstr void exc_debug_user(struct pt_regs *regs, unsigned long dr6)
1019 {
1020         bool icebp;
1021
1022         /*
1023          * If something gets miswired and we end up here for a kernel mode
1024          * #DB, we will malfunction.
1025          */
1026         WARN_ON_ONCE(!user_mode(regs));
1027
1028         /*
1029          * NB: We can't easily clear DR7 here because
1030          * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1031          * user memory, etc.  This means that a recursive #DB is possible.  If
1032          * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1033          * Since we're not on the IST stack right now, everything will be
1034          * fine.
1035          */
1036
1037         irqentry_enter_from_user_mode(regs);
1038         instrumentation_begin();
1039
1040         /*
1041          * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1042          * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1043          *
1044          * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1045          * even if it is not the result of PTRACE_SINGLESTEP.
1046          */
1047         current->thread.virtual_dr6 = (dr6 & DR_STEP);
1048
1049         /*
1050          * The SDM says "The processor clears the BTF flag when it
1051          * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
1052          * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1053          */
1054         clear_thread_flag(TIF_BLOCKSTEP);
1055
1056         /*
1057          * If dr6 has no reason to give us about the origin of this trap,
1058          * then it's very likely the result of an icebp/int01 trap.
1059          * User wants a sigtrap for that.
1060          */
1061         icebp = !dr6;
1062
1063         if (notify_debug(regs, &dr6))
1064                 goto out;
1065
1066         /* It's safe to allow irq's after DR6 has been saved */
1067         local_irq_enable();
1068
1069         if (v8086_mode(regs)) {
1070                 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1071                 goto out_irq;
1072         }
1073
1074         /* #DB for bus lock can only be triggered from userspace. */
1075         if (dr6 & DR_BUS_LOCK)
1076                 handle_bus_lock(regs);
1077
1078         /* Add the virtual_dr6 bits for signals. */
1079         dr6 |= current->thread.virtual_dr6;
1080         if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1081                 send_sigtrap(regs, 0, get_si_code(dr6));
1082
1083 out_irq:
1084         local_irq_disable();
1085 out:
1086         instrumentation_end();
1087         irqentry_exit_to_user_mode(regs);
1088 }
1089
1090 #ifdef CONFIG_X86_64
1091 /* IST stack entry */
1092 DEFINE_IDTENTRY_DEBUG(exc_debug)
1093 {
1094         exc_debug_kernel(regs, debug_read_clear_dr6());
1095 }
1096
1097 /* User entry, runs on regular task stack */
1098 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1099 {
1100         exc_debug_user(regs, debug_read_clear_dr6());
1101 }
1102
1103 #ifdef CONFIG_X86_FRED
1104 /*
1105  * When occurred on different ring level, i.e., from user or kernel
1106  * context, #DB needs to be handled on different stack: User #DB on
1107  * current task stack, while kernel #DB on a dedicated stack.
1108  *
1109  * This is exactly how FRED event delivery invokes an exception
1110  * handler: ring 3 event on level 0 stack, i.e., current task stack;
1111  * ring 0 event on the #DB dedicated stack specified in the
1112  * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED debug exception
1113  * entry stub doesn't do stack switch.
1114  */
1115 DEFINE_FREDENTRY_DEBUG(exc_debug)
1116 {
1117         /*
1118          * FRED #DB stores DR6 on the stack in the format which
1119          * debug_read_clear_dr6() returns for the IDT entry points.
1120          */
1121         unsigned long dr6 = fred_event_data(regs);
1122
1123         if (user_mode(regs))
1124                 exc_debug_user(regs, dr6);
1125         else
1126                 exc_debug_kernel(regs, dr6);
1127 }
1128 #endif /* CONFIG_X86_FRED */
1129
1130 #else
1131 /* 32 bit does not have separate entry points. */
1132 DEFINE_IDTENTRY_RAW(exc_debug)
1133 {
1134         unsigned long dr6 = debug_read_clear_dr6();
1135
1136         if (user_mode(regs))
1137                 exc_debug_user(regs, dr6);
1138         else
1139                 exc_debug_kernel(regs, dr6);
1140 }
1141 #endif
1142
1143 /*
1144  * Note that we play around with the 'TS' bit in an attempt to get
1145  * the correct behaviour even in the presence of the asynchronous
1146  * IRQ13 behaviour
1147  */
1148 static void math_error(struct pt_regs *regs, int trapnr)
1149 {
1150         struct task_struct *task = current;
1151         struct fpu *fpu = &task->thread.fpu;
1152         int si_code;
1153         char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1154                                                 "simd exception";
1155
1156         cond_local_irq_enable(regs);
1157
1158         if (!user_mode(regs)) {
1159                 if (fixup_exception(regs, trapnr, 0, 0))
1160                         goto exit;
1161
1162                 task->thread.error_code = 0;
1163                 task->thread.trap_nr = trapnr;
1164
1165                 if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1166                                SIGFPE) != NOTIFY_STOP)
1167                         die(str, regs, 0);
1168                 goto exit;
1169         }
1170
1171         /*
1172          * Synchronize the FPU register state to the memory register state
1173          * if necessary. This allows the exception handler to inspect it.
1174          */
1175         fpu_sync_fpstate(fpu);
1176
1177         task->thread.trap_nr    = trapnr;
1178         task->thread.error_code = 0;
1179
1180         si_code = fpu__exception_code(fpu, trapnr);
1181         /* Retry when we get spurious exceptions: */
1182         if (!si_code)
1183                 goto exit;
1184
1185         if (fixup_vdso_exception(regs, trapnr, 0, 0))
1186                 goto exit;
1187
1188         force_sig_fault(SIGFPE, si_code,
1189                         (void __user *)uprobe_get_trap_addr(regs));
1190 exit:
1191         cond_local_irq_disable(regs);
1192 }
1193
1194 DEFINE_IDTENTRY(exc_coprocessor_error)
1195 {
1196         math_error(regs, X86_TRAP_MF);
1197 }
1198
1199 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1200 {
1201         if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1202                 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1203                 if (!static_cpu_has(X86_FEATURE_XMM)) {
1204                         __exc_general_protection(regs, 0);
1205                         return;
1206                 }
1207         }
1208         math_error(regs, X86_TRAP_XF);
1209 }
1210
1211 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1212 {
1213         /*
1214          * This addresses a Pentium Pro Erratum:
1215          *
1216          * PROBLEM: If the APIC subsystem is configured in mixed mode with
1217          * Virtual Wire mode implemented through the local APIC, an
1218          * interrupt vector of 0Fh (Intel reserved encoding) may be
1219          * generated by the local APIC (Int 15).  This vector may be
1220          * generated upon receipt of a spurious interrupt (an interrupt
1221          * which is removed before the system receives the INTA sequence)
1222          * instead of the programmed 8259 spurious interrupt vector.
1223          *
1224          * IMPLICATION: The spurious interrupt vector programmed in the
1225          * 8259 is normally handled by an operating system's spurious
1226          * interrupt handler. However, a vector of 0Fh is unknown to some
1227          * operating systems, which would crash if this erratum occurred.
1228          *
1229          * In theory this could be limited to 32bit, but the handler is not
1230          * hurting and who knows which other CPUs suffer from this.
1231          */
1232 }
1233
1234 static bool handle_xfd_event(struct pt_regs *regs)
1235 {
1236         u64 xfd_err;
1237         int err;
1238
1239         if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1240                 return false;
1241
1242         rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1243         if (!xfd_err)
1244                 return false;
1245
1246         wrmsrl(MSR_IA32_XFD_ERR, 0);
1247
1248         /* Die if that happens in kernel space */
1249         if (WARN_ON(!user_mode(regs)))
1250                 return false;
1251
1252         local_irq_enable();
1253
1254         err = xfd_enable_feature(xfd_err);
1255
1256         switch (err) {
1257         case -EPERM:
1258                 force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1259                 break;
1260         case -EFAULT:
1261                 force_sig(SIGSEGV);
1262                 break;
1263         }
1264
1265         local_irq_disable();
1266         return true;
1267 }
1268
1269 DEFINE_IDTENTRY(exc_device_not_available)
1270 {
1271         unsigned long cr0 = read_cr0();
1272
1273         if (handle_xfd_event(regs))
1274                 return;
1275
1276 #ifdef CONFIG_MATH_EMULATION
1277         if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1278                 struct math_emu_info info = { };
1279
1280                 cond_local_irq_enable(regs);
1281
1282                 info.regs = regs;
1283                 math_emulate(&info);
1284
1285                 cond_local_irq_disable(regs);
1286                 return;
1287         }
1288 #endif
1289
1290         /* This should not happen. */
1291         if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1292                 /* Try to fix it up and carry on. */
1293                 write_cr0(cr0 & ~X86_CR0_TS);
1294         } else {
1295                 /*
1296                  * Something terrible happened, and we're better off trying
1297                  * to kill the task than getting stuck in a never-ending
1298                  * loop of #NM faults.
1299                  */
1300                 die("unexpected #NM exception", regs, 0);
1301         }
1302 }
1303
1304 #ifdef CONFIG_INTEL_TDX_GUEST
1305
1306 #define VE_FAULT_STR "VE fault"
1307
1308 static void ve_raise_fault(struct pt_regs *regs, long error_code,
1309                            unsigned long address)
1310 {
1311         if (user_mode(regs)) {
1312                 gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1313                 return;
1314         }
1315
1316         if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code,
1317                                     VE_FAULT_STR, address)) {
1318                 return;
1319         }
1320
1321         die_addr(VE_FAULT_STR, regs, error_code, address);
1322 }
1323
1324 /*
1325  * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1326  * specific guest actions which may happen in either user space or the
1327  * kernel:
1328  *
1329  *  * Specific instructions (WBINVD, for example)
1330  *  * Specific MSR accesses
1331  *  * Specific CPUID leaf accesses
1332  *  * Access to specific guest physical addresses
1333  *
1334  * In the settings that Linux will run in, virtualization exceptions are
1335  * never generated on accesses to normal, TD-private memory that has been
1336  * accepted (by BIOS or with tdx_enc_status_changed()).
1337  *
1338  * Syscall entry code has a critical window where the kernel stack is not
1339  * yet set up. Any exception in this window leads to hard to debug issues
1340  * and can be exploited for privilege escalation. Exceptions in the NMI
1341  * entry code also cause issues. Returning from the exception handler with
1342  * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1343  *
1344  * For these reasons, the kernel avoids #VEs during the syscall gap and
1345  * the NMI entry code. Entry code paths do not access TD-shared memory,
1346  * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1347  * that might generate #VE. VMM can remove memory from TD at any point,
1348  * but access to unaccepted (or missing) private memory leads to VM
1349  * termination, not to #VE.
1350  *
1351  * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1352  * handlers once the kernel is ready to deal with nested NMIs.
1353  *
1354  * During #VE delivery, all interrupts, including NMIs, are blocked until
1355  * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1356  * the VE info.
1357  *
1358  * If a guest kernel action which would normally cause a #VE occurs in
1359  * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1360  * exception) is delivered to the guest which will result in an oops.
1361  *
1362  * The entry code has been audited carefully for following these expectations.
1363  * Changes in the entry code have to be audited for correctness vs. this
1364  * aspect. Similarly to #PF, #VE in these places will expose kernel to
1365  * privilege escalation or may lead to random crashes.
1366  */
1367 DEFINE_IDTENTRY(exc_virtualization_exception)
1368 {
1369         struct ve_info ve;
1370
1371         /*
1372          * NMIs/Machine-checks/Interrupts will be in a disabled state
1373          * till TDGETVEINFO TDCALL is executed. This ensures that VE
1374          * info cannot be overwritten by a nested #VE.
1375          */
1376         tdx_get_ve_info(&ve);
1377
1378         cond_local_irq_enable(regs);
1379
1380         /*
1381          * If tdx_handle_virt_exception() could not process
1382          * it successfully, treat it as #GP(0) and handle it.
1383          */
1384         if (!tdx_handle_virt_exception(regs, &ve))
1385                 ve_raise_fault(regs, 0, ve.gla);
1386
1387         cond_local_irq_disable(regs);
1388 }
1389
1390 #endif
1391
1392 #ifdef CONFIG_X86_32
1393 DEFINE_IDTENTRY_SW(iret_error)
1394 {
1395         local_irq_enable();
1396         if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1397                         X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1398                 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1399                         ILL_BADSTK, (void __user *)NULL);
1400         }
1401         local_irq_disable();
1402 }
1403 #endif
1404
1405 /* Do not enable FRED by default yet. */
1406 static bool enable_fred __ro_after_init = false;
1407
1408 #ifdef CONFIG_X86_FRED
1409 static int __init fred_setup(char *str)
1410 {
1411         if (!str)
1412                 return -EINVAL;
1413
1414         if (!cpu_feature_enabled(X86_FEATURE_FRED))
1415                 return 0;
1416
1417         if (!strcmp(str, "on"))
1418                 enable_fred = true;
1419         else if (!strcmp(str, "off"))
1420                 enable_fred = false;
1421         else
1422                 pr_warn("invalid FRED option: 'fred=%s'\n", str);
1423         return 0;
1424 }
1425 early_param("fred", fred_setup);
1426 #endif
1427
1428 void __init trap_init(void)
1429 {
1430         if (cpu_feature_enabled(X86_FEATURE_FRED) && !enable_fred)
1431                 setup_clear_cpu_cap(X86_FEATURE_FRED);
1432
1433         /* Init cpu_entry_area before IST entries are set up */
1434         setup_cpu_entry_areas();
1435
1436         /* Init GHCB memory pages when running as an SEV-ES guest */
1437         sev_es_init_vc_handling();
1438
1439         /* Initialize TSS before setting up traps so ISTs work */
1440         cpu_init_exception_handling();
1441
1442         /* Setup traps as cpu_init() might #GP */
1443         if (!cpu_feature_enabled(X86_FEATURE_FRED))
1444                 idt_setup_traps();
1445
1446         cpu_init();
1447 }
This page took 0.110388 seconds and 4 git commands to generate.