1 // SPDX-License-Identifier: GPL-2.0-only
3 * AMD Memory Encryption Support
5 * Copyright (C) 2019 SUSE
10 #define pr_fmt(fmt) "SEV: " fmt
12 #include <linux/sched/debug.h> /* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/cc_platform.h>
15 #include <linux/printk.h>
16 #include <linux/mm_types.h>
17 #include <linux/set_memory.h>
18 #include <linux/memblock.h>
19 #include <linux/kernel.h>
21 #include <linux/cpumask.h>
22 #include <linux/efi.h>
23 #include <linux/platform_device.h>
25 #include <linux/psp-sev.h>
26 #include <uapi/linux/sev-guest.h>
29 #include <asm/cpu_entry_area.h>
30 #include <asm/stacktrace.h>
32 #include <asm/insn-eval.h>
33 #include <asm/fpu/xcr.h>
34 #include <asm/processor.h>
35 #include <asm/realmode.h>
36 #include <asm/setup.h>
37 #include <asm/traps.h>
42 #include <asm/cpuid.h>
43 #include <asm/cmdline.h>
45 #define DR7_RESET_VALUE 0x400
47 /* AP INIT values as documented in the APM2 section "Processor Initialization State" */
48 #define AP_INIT_CS_LIMIT 0xffff
49 #define AP_INIT_DS_LIMIT 0xffff
50 #define AP_INIT_LDTR_LIMIT 0xffff
51 #define AP_INIT_GDTR_LIMIT 0xffff
52 #define AP_INIT_IDTR_LIMIT 0xffff
53 #define AP_INIT_TR_LIMIT 0xffff
54 #define AP_INIT_RFLAGS_DEFAULT 0x2
55 #define AP_INIT_DR6_DEFAULT 0xffff0ff0
56 #define AP_INIT_GPAT_DEFAULT 0x0007040600070406ULL
57 #define AP_INIT_XCR0_DEFAULT 0x1
58 #define AP_INIT_X87_FTW_DEFAULT 0x5555
59 #define AP_INIT_X87_FCW_DEFAULT 0x0040
60 #define AP_INIT_CR0_DEFAULT 0x60000010
61 #define AP_INIT_MXCSR_DEFAULT 0x1f80
63 static const char * const sev_status_feat_names[] = {
64 [MSR_AMD64_SEV_ENABLED_BIT] = "SEV",
65 [MSR_AMD64_SEV_ES_ENABLED_BIT] = "SEV-ES",
66 [MSR_AMD64_SEV_SNP_ENABLED_BIT] = "SEV-SNP",
67 [MSR_AMD64_SNP_VTOM_BIT] = "vTom",
68 [MSR_AMD64_SNP_REFLECT_VC_BIT] = "ReflectVC",
69 [MSR_AMD64_SNP_RESTRICTED_INJ_BIT] = "RI",
70 [MSR_AMD64_SNP_ALT_INJ_BIT] = "AI",
71 [MSR_AMD64_SNP_DEBUG_SWAP_BIT] = "DebugSwap",
72 [MSR_AMD64_SNP_PREVENT_HOST_IBS_BIT] = "NoHostIBS",
73 [MSR_AMD64_SNP_BTB_ISOLATION_BIT] = "BTBIsol",
74 [MSR_AMD64_SNP_VMPL_SSS_BIT] = "VmplSSS",
75 [MSR_AMD64_SNP_SECURE_TSC_BIT] = "SecureTSC",
76 [MSR_AMD64_SNP_VMGEXIT_PARAM_BIT] = "VMGExitParam",
77 [MSR_AMD64_SNP_IBS_VIRT_BIT] = "IBSVirt",
78 [MSR_AMD64_SNP_VMSA_REG_PROT_BIT] = "VMSARegProt",
79 [MSR_AMD64_SNP_SMT_PROT_BIT] = "SMTProt",
82 /* For early boot hypervisor communication in SEV-ES enabled guests */
83 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
86 * Needs to be in the .data section because we need it NULL before bss is
89 static struct ghcb *boot_ghcb __section(".data");
91 /* Bitmap of SEV features supported by the hypervisor */
92 static u64 sev_hv_features __ro_after_init;
94 /* #VC handler runtime per-CPU data */
95 struct sev_es_runtime_data {
96 struct ghcb ghcb_page;
99 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
100 * It is needed when an NMI happens while the #VC handler uses the real
101 * GHCB, and the NMI handler itself is causing another #VC exception. In
102 * that case the GHCB content of the first handler needs to be backed up
105 struct ghcb backup_ghcb;
108 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
109 * There is no need for it to be atomic, because nothing is written to
110 * the GHCB between the read and the write of ghcb_active. So it is safe
111 * to use it when a nested #VC exception happens before the write.
113 * This is necessary for example in the #VC->NMI->#VC case when the NMI
114 * happens while the first #VC handler uses the GHCB. When the NMI code
115 * raises a second #VC handler it might overwrite the contents of the
116 * GHCB written by the first handler. To avoid this the content of the
117 * GHCB is saved and restored when the GHCB is detected to be in use
121 bool backup_ghcb_active;
124 * Cached DR7 value - write it on DR7 writes and return it on reads.
125 * That value will never make it to the real hardware DR7 as debugging
126 * is currently unsupported in SEV-ES guests.
135 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
136 static DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa);
142 * A flag used by __set_pages_state() that indicates when the
143 * per-CPU GHCB has been created and registered and thus can be
144 * used by the BSP instead of the early boot GHCB.
146 * For APs, the per-CPU GHCB is created before they are started
147 * and registered upon startup, so this flag can be used globally
148 * for the BSP and APs.
150 ghcbs_initialized : 1,
155 static struct sev_config sev_cfg __read_mostly;
157 static __always_inline bool on_vc_stack(struct pt_regs *regs)
159 unsigned long sp = regs->sp;
161 /* User-mode RSP is not trusted */
165 /* SYSCALL gap still has user-mode RSP */
166 if (ip_within_syscall_gap(regs))
169 return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
173 * This function handles the case when an NMI is raised in the #VC
174 * exception handler entry code, before the #VC handler has switched off
175 * its IST stack. In this case, the IST entry for #VC must be adjusted,
176 * so that any nested #VC exception will not overwrite the stack
177 * contents of the interrupted #VC handler.
179 * The IST entry is adjusted unconditionally so that it can be also be
180 * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
181 * nested sev_es_ist_exit() call may adjust back the IST entry too
184 * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
185 * on the NMI IST stack, as they are only called from NMI handling code
188 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
190 unsigned long old_ist, new_ist;
192 /* Read old IST entry */
193 new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
196 * If NMI happened while on the #VC IST stack, set the new IST
197 * value below regs->sp, so that the interrupted stack frame is
198 * not overwritten by subsequent #VC exceptions.
200 if (on_vc_stack(regs))
204 * Reserve additional 8 bytes and store old IST value so this
205 * adjustment can be unrolled in __sev_es_ist_exit().
207 new_ist -= sizeof(old_ist);
208 *(unsigned long *)new_ist = old_ist;
210 /* Set new IST entry */
211 this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
214 void noinstr __sev_es_ist_exit(void)
219 ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
221 if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
224 /* Read back old IST entry and write it to the TSS */
225 this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
229 * Nothing shall interrupt this code path while holding the per-CPU
230 * GHCB. The backup GHCB is only for NMIs interrupting this path.
232 * Callers must disable local interrupts around it.
234 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
236 struct sev_es_runtime_data *data;
239 WARN_ON(!irqs_disabled());
241 data = this_cpu_read(runtime_data);
242 ghcb = &data->ghcb_page;
244 if (unlikely(data->ghcb_active)) {
245 /* GHCB is already in use - save its contents */
247 if (unlikely(data->backup_ghcb_active)) {
249 * Backup-GHCB is also already in use. There is no way
250 * to continue here so just kill the machine. To make
251 * panic() work, mark GHCBs inactive so that messages
252 * can be printed out.
254 data->ghcb_active = false;
255 data->backup_ghcb_active = false;
257 instrumentation_begin();
258 panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
259 instrumentation_end();
262 /* Mark backup_ghcb active before writing to it */
263 data->backup_ghcb_active = true;
265 state->ghcb = &data->backup_ghcb;
267 /* Backup GHCB content */
268 *state->ghcb = *ghcb;
271 data->ghcb_active = true;
277 static inline u64 sev_es_rd_ghcb_msr(void)
279 return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
282 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
287 high = (u32)(val >> 32);
289 native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
292 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
293 unsigned char *buffer)
295 return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
298 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
300 char buffer[MAX_INSN_SIZE];
303 insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
304 if (insn_bytes == 0) {
305 /* Nothing could be copied */
306 ctxt->fi.vector = X86_TRAP_PF;
307 ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
308 ctxt->fi.cr2 = ctxt->regs->ip;
310 } else if (insn_bytes == -EINVAL) {
311 /* Effective RIP could not be calculated */
312 ctxt->fi.vector = X86_TRAP_GP;
313 ctxt->fi.error_code = 0;
318 if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
319 return ES_DECODE_FAILED;
321 if (ctxt->insn.immediate.got)
324 return ES_DECODE_FAILED;
327 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
329 char buffer[MAX_INSN_SIZE];
332 res = vc_fetch_insn_kernel(ctxt, buffer);
334 ctxt->fi.vector = X86_TRAP_PF;
335 ctxt->fi.error_code = X86_PF_INSTR;
336 ctxt->fi.cr2 = ctxt->regs->ip;
340 ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
342 return ES_DECODE_FAILED;
347 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
349 if (user_mode(ctxt->regs))
350 return __vc_decode_user_insn(ctxt);
352 return __vc_decode_kern_insn(ctxt);
355 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
356 char *dst, char *buf, size_t size)
358 unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
361 * This function uses __put_user() independent of whether kernel or user
362 * memory is accessed. This works fine because __put_user() does no
363 * sanity checks of the pointer being accessed. All that it does is
364 * to report when the access failed.
366 * Also, this function runs in atomic context, so __put_user() is not
367 * allowed to sleep. The page-fault handler detects that it is running
368 * in atomic context and will not try to take mmap_sem and handle the
369 * fault, so additional pagefault_enable()/disable() calls are not
372 * The access can't be done via copy_to_user() here because
373 * vc_write_mem() must not use string instructions to access unsafe
374 * memory. The reason is that MOVS is emulated by the #VC handler by
375 * splitting the move up into a read and a write and taking a nested #VC
376 * exception on whatever of them is the MMIO access. Using string
377 * instructions here would cause infinite nesting.
382 u8 __user *target = (u8 __user *)dst;
385 if (__put_user(d1, target))
391 u16 __user *target = (u16 __user *)dst;
394 if (__put_user(d2, target))
400 u32 __user *target = (u32 __user *)dst;
403 if (__put_user(d4, target))
409 u64 __user *target = (u64 __user *)dst;
412 if (__put_user(d8, target))
417 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
418 return ES_UNSUPPORTED;
424 if (user_mode(ctxt->regs))
425 error_code |= X86_PF_USER;
427 ctxt->fi.vector = X86_TRAP_PF;
428 ctxt->fi.error_code = error_code;
429 ctxt->fi.cr2 = (unsigned long)dst;
434 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
435 char *src, char *buf, size_t size)
437 unsigned long error_code = X86_PF_PROT;
440 * This function uses __get_user() independent of whether kernel or user
441 * memory is accessed. This works fine because __get_user() does no
442 * sanity checks of the pointer being accessed. All that it does is
443 * to report when the access failed.
445 * Also, this function runs in atomic context, so __get_user() is not
446 * allowed to sleep. The page-fault handler detects that it is running
447 * in atomic context and will not try to take mmap_sem and handle the
448 * fault, so additional pagefault_enable()/disable() calls are not
451 * The access can't be done via copy_from_user() here because
452 * vc_read_mem() must not use string instructions to access unsafe
453 * memory. The reason is that MOVS is emulated by the #VC handler by
454 * splitting the move up into a read and a write and taking a nested #VC
455 * exception on whatever of them is the MMIO access. Using string
456 * instructions here would cause infinite nesting.
461 u8 __user *s = (u8 __user *)src;
463 if (__get_user(d1, s))
470 u16 __user *s = (u16 __user *)src;
472 if (__get_user(d2, s))
479 u32 __user *s = (u32 __user *)src;
481 if (__get_user(d4, s))
488 u64 __user *s = (u64 __user *)src;
489 if (__get_user(d8, s))
495 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
496 return ES_UNSUPPORTED;
502 if (user_mode(ctxt->regs))
503 error_code |= X86_PF_USER;
505 ctxt->fi.vector = X86_TRAP_PF;
506 ctxt->fi.error_code = error_code;
507 ctxt->fi.cr2 = (unsigned long)src;
512 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
513 unsigned long vaddr, phys_addr_t *paddr)
515 unsigned long va = (unsigned long)vaddr;
521 pgd = __va(read_cr3_pa());
522 pgd = &pgd[pgd_index(va)];
523 pte = lookup_address_in_pgd(pgd, va, &level);
525 ctxt->fi.vector = X86_TRAP_PF;
526 ctxt->fi.cr2 = vaddr;
527 ctxt->fi.error_code = 0;
529 if (user_mode(ctxt->regs))
530 ctxt->fi.error_code |= X86_PF_USER;
535 if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
536 /* Emulated MMIO to/from encrypted memory not supported */
537 return ES_UNSUPPORTED;
539 pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
540 pa |= va & ~page_level_mask(level);
547 static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
551 if (user_mode(ctxt->regs)) {
552 struct thread_struct *t = ¤t->thread;
553 struct io_bitmap *iobm = t->io_bitmap;
559 for (idx = port; idx < port + size; ++idx) {
560 if (test_bit(idx, iobm->bitmap))
568 ctxt->fi.vector = X86_TRAP_GP;
569 ctxt->fi.error_code = 0;
574 /* Include code shared with pre-decompression boot stage */
575 #include "sev-shared.c"
577 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
579 struct sev_es_runtime_data *data;
582 WARN_ON(!irqs_disabled());
584 data = this_cpu_read(runtime_data);
585 ghcb = &data->ghcb_page;
588 /* Restore GHCB from Backup */
589 *ghcb = *state->ghcb;
590 data->backup_ghcb_active = false;
594 * Invalidate the GHCB so a VMGEXIT instruction issued
595 * from userspace won't appear to be valid.
597 vc_ghcb_invalidate(ghcb);
598 data->ghcb_active = false;
602 void noinstr __sev_es_nmi_complete(void)
604 struct ghcb_state state;
607 ghcb = __sev_get_ghcb(&state);
609 vc_ghcb_invalidate(ghcb);
610 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
611 ghcb_set_sw_exit_info_1(ghcb, 0);
612 ghcb_set_sw_exit_info_2(ghcb, 0);
614 sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
617 __sev_put_ghcb(&state);
620 static u64 __init get_secrets_page(void)
622 u64 pa_data = boot_params.cc_blob_address;
623 struct cc_blob_sev_info info;
627 * The CC blob contains the address of the secrets page, check if the
633 map = early_memremap(pa_data, sizeof(info));
635 pr_err("Unable to locate SNP secrets page: failed to map the Confidential Computing blob.\n");
638 memcpy(&info, map, sizeof(info));
639 early_memunmap(map, sizeof(info));
641 /* smoke-test the secrets page passed */
642 if (!info.secrets_phys || info.secrets_len != PAGE_SIZE)
645 return info.secrets_phys;
648 static u64 __init get_snp_jump_table_addr(void)
650 struct snp_secrets_page_layout *layout;
654 pa = get_secrets_page();
658 mem = ioremap_encrypted(pa, PAGE_SIZE);
660 pr_err("Unable to locate AP jump table address: failed to map the SNP secrets page.\n");
664 layout = (__force struct snp_secrets_page_layout *)mem;
666 addr = layout->os_area.ap_jump_table_pa;
672 static u64 __init get_jump_table_addr(void)
674 struct ghcb_state state;
679 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
680 return get_snp_jump_table_addr();
682 local_irq_save(flags);
684 ghcb = __sev_get_ghcb(&state);
686 vc_ghcb_invalidate(ghcb);
687 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
688 ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
689 ghcb_set_sw_exit_info_2(ghcb, 0);
691 sev_es_wr_ghcb_msr(__pa(ghcb));
694 if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
695 ghcb_sw_exit_info_2_is_valid(ghcb))
696 ret = ghcb->save.sw_exit_info_2;
698 __sev_put_ghcb(&state);
700 local_irq_restore(flags);
706 early_set_pages_state(unsigned long vaddr, unsigned long paddr,
707 unsigned long npages, enum psc_op op)
709 unsigned long paddr_end;
713 vaddr = vaddr & PAGE_MASK;
715 paddr = paddr & PAGE_MASK;
716 paddr_end = paddr + (npages << PAGE_SHIFT);
718 while (paddr < paddr_end) {
719 if (op == SNP_PAGE_STATE_SHARED) {
720 /* Page validation must be rescinded before changing to shared */
721 ret = pvalidate(vaddr, RMP_PG_SIZE_4K, false);
722 if (WARN(ret, "Failed to validate address 0x%lx ret %d", paddr, ret))
727 * Use the MSR protocol because this function can be called before
728 * the GHCB is established.
730 sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
733 val = sev_es_rd_ghcb_msr();
735 if (WARN(GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP,
736 "Wrong PSC response code: 0x%x\n",
737 (unsigned int)GHCB_RESP_CODE(val)))
740 if (WARN(GHCB_MSR_PSC_RESP_VAL(val),
741 "Failed to change page state to '%s' paddr 0x%lx error 0x%llx\n",
742 op == SNP_PAGE_STATE_PRIVATE ? "private" : "shared",
743 paddr, GHCB_MSR_PSC_RESP_VAL(val)))
746 if (op == SNP_PAGE_STATE_PRIVATE) {
747 /* Page validation must be performed after changing to private */
748 ret = pvalidate(vaddr, RMP_PG_SIZE_4K, true);
749 if (WARN(ret, "Failed to validate address 0x%lx ret %d", paddr, ret))
760 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
763 void __head early_snp_set_memory_private(unsigned long vaddr, unsigned long paddr,
764 unsigned long npages)
767 * This can be invoked in early boot while running identity mapped, so
768 * use an open coded check for SNP instead of using cc_platform_has().
769 * This eliminates worries about jump tables or checking boot_cpu_data
770 * in the cc_platform_has() function.
772 if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED))
776 * Ask the hypervisor to mark the memory pages as private in the RMP
779 early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_PRIVATE);
782 void __init early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr,
783 unsigned long npages)
786 * This can be invoked in early boot while running identity mapped, so
787 * use an open coded check for SNP instead of using cc_platform_has().
788 * This eliminates worries about jump tables or checking boot_cpu_data
789 * in the cc_platform_has() function.
791 if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED))
794 /* Ask hypervisor to mark the memory pages shared in the RMP table. */
795 early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_SHARED);
798 void __init snp_prep_memory(unsigned long paddr, unsigned int sz, enum psc_op op)
800 unsigned long vaddr, npages;
802 vaddr = (unsigned long)__va(paddr);
803 npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
805 if (op == SNP_PAGE_STATE_PRIVATE)
806 early_snp_set_memory_private(vaddr, paddr, npages);
807 else if (op == SNP_PAGE_STATE_SHARED)
808 early_snp_set_memory_shared(vaddr, paddr, npages);
810 WARN(1, "invalid memory op %d\n", op);
813 static unsigned long __set_pages_state(struct snp_psc_desc *data, unsigned long vaddr,
814 unsigned long vaddr_end, int op)
816 struct ghcb_state state;
817 bool use_large_entry;
828 memset(data, 0, sizeof(*data));
831 while (vaddr < vaddr_end && i < ARRAY_SIZE(data->entries)) {
834 if (is_vmalloc_addr((void *)vaddr)) {
835 pfn = vmalloc_to_pfn((void *)vaddr);
836 use_large_entry = false;
838 pfn = __pa(vaddr) >> PAGE_SHIFT;
839 use_large_entry = true;
845 if (use_large_entry && IS_ALIGNED(vaddr, PMD_SIZE) &&
846 (vaddr_end - vaddr) >= PMD_SIZE) {
847 e->pagesize = RMP_PG_SIZE_2M;
850 e->pagesize = RMP_PG_SIZE_4K;
858 /* Page validation must be rescinded before changing to shared */
859 if (op == SNP_PAGE_STATE_SHARED)
860 pvalidate_pages(data);
862 local_irq_save(flags);
864 if (sev_cfg.ghcbs_initialized)
865 ghcb = __sev_get_ghcb(&state);
869 /* Invoke the hypervisor to perform the page state changes */
870 if (!ghcb || vmgexit_psc(ghcb, data))
871 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
873 if (sev_cfg.ghcbs_initialized)
874 __sev_put_ghcb(&state);
876 local_irq_restore(flags);
878 /* Page validation must be performed after changing to private */
879 if (op == SNP_PAGE_STATE_PRIVATE)
880 pvalidate_pages(data);
885 static void set_pages_state(unsigned long vaddr, unsigned long npages, int op)
887 struct snp_psc_desc desc;
888 unsigned long vaddr_end;
890 /* Use the MSR protocol when a GHCB is not available. */
892 return early_set_pages_state(vaddr, __pa(vaddr), npages, op);
894 vaddr = vaddr & PAGE_MASK;
895 vaddr_end = vaddr + (npages << PAGE_SHIFT);
897 while (vaddr < vaddr_end)
898 vaddr = __set_pages_state(&desc, vaddr, vaddr_end, op);
901 void snp_set_memory_shared(unsigned long vaddr, unsigned long npages)
903 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
906 set_pages_state(vaddr, npages, SNP_PAGE_STATE_SHARED);
909 void snp_set_memory_private(unsigned long vaddr, unsigned long npages)
911 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
914 set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
917 void snp_accept_memory(phys_addr_t start, phys_addr_t end)
919 unsigned long vaddr, npages;
921 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
924 vaddr = (unsigned long)__va(start);
925 npages = (end - start) >> PAGE_SHIFT;
927 set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
930 static int snp_set_vmsa(void *va, bool vmsa)
935 * Running at VMPL0 allows the kernel to change the VMSA bit for a page
936 * using the RMPADJUST instruction. However, for the instruction to
937 * succeed it must target the permissions of a lesser privileged
938 * (higher numbered) VMPL level, so use VMPL1 (refer to the RMPADJUST
939 * instruction in the AMD64 APM Volume 3).
943 attrs |= RMPADJUST_VMSA_PAGE_BIT;
945 return rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs);
948 #define __ATTR_BASE (SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK)
949 #define INIT_CS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK)
950 #define INIT_DS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_WRITE_MASK)
952 #define INIT_LDTR_ATTRIBS (SVM_SELECTOR_P_MASK | 2)
953 #define INIT_TR_ATTRIBS (SVM_SELECTOR_P_MASK | 3)
955 static void *snp_alloc_vmsa_page(void)
960 * Allocate VMSA page to work around the SNP erratum where the CPU will
961 * incorrectly signal an RMP violation #PF if a large page (2MB or 1GB)
962 * collides with the RMP entry of VMSA page. The recommended workaround
963 * is to not use a large page.
965 * Allocate an 8k page which is also 8k-aligned.
967 p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
973 /* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */
976 return page_address(p + 1);
979 static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa)
983 err = snp_set_vmsa(vmsa, false);
985 pr_err("clear VMSA page failed (%u), leaking page\n", err);
987 free_page((unsigned long)vmsa);
990 static int wakeup_cpu_via_vmgexit(u32 apic_id, unsigned long start_ip)
992 struct sev_es_save_area *cur_vmsa, *vmsa;
993 struct ghcb_state state;
1001 * The hypervisor SNP feature support check has happened earlier, just check
1002 * the AP_CREATION one here.
1004 if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION))
1008 * Verify the desired start IP against the known trampoline start IP
1009 * to catch any future new trampolines that may be introduced that
1010 * would require a new protected guest entry point.
1012 if (WARN_ONCE(start_ip != real_mode_header->trampoline_start,
1013 "Unsupported SNP start_ip: %lx\n", start_ip))
1016 /* Override start_ip with known protected guest start IP */
1017 start_ip = real_mode_header->sev_es_trampoline_start;
1019 /* Find the logical CPU for the APIC ID */
1020 for_each_present_cpu(cpu) {
1021 if (arch_match_cpu_phys_id(cpu, apic_id))
1024 if (cpu >= nr_cpu_ids)
1027 cur_vmsa = per_cpu(sev_vmsa, cpu);
1030 * A new VMSA is created each time because there is no guarantee that
1031 * the current VMSA is the kernels or that the vCPU is not running. If
1032 * an attempt was done to use the current VMSA with a running vCPU, a
1033 * #VMEXIT of that vCPU would wipe out all of the settings being done
1036 vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page();
1040 /* CR4 should maintain the MCE value */
1041 cr4 = native_read_cr4() & X86_CR4_MCE;
1043 /* Set the CS value based on the start_ip converted to a SIPI vector */
1044 sipi_vector = (start_ip >> 12);
1045 vmsa->cs.base = sipi_vector << 12;
1046 vmsa->cs.limit = AP_INIT_CS_LIMIT;
1047 vmsa->cs.attrib = INIT_CS_ATTRIBS;
1048 vmsa->cs.selector = sipi_vector << 8;
1050 /* Set the RIP value based on start_ip */
1051 vmsa->rip = start_ip & 0xfff;
1053 /* Set AP INIT defaults as documented in the APM */
1054 vmsa->ds.limit = AP_INIT_DS_LIMIT;
1055 vmsa->ds.attrib = INIT_DS_ATTRIBS;
1056 vmsa->es = vmsa->ds;
1057 vmsa->fs = vmsa->ds;
1058 vmsa->gs = vmsa->ds;
1059 vmsa->ss = vmsa->ds;
1061 vmsa->gdtr.limit = AP_INIT_GDTR_LIMIT;
1062 vmsa->ldtr.limit = AP_INIT_LDTR_LIMIT;
1063 vmsa->ldtr.attrib = INIT_LDTR_ATTRIBS;
1064 vmsa->idtr.limit = AP_INIT_IDTR_LIMIT;
1065 vmsa->tr.limit = AP_INIT_TR_LIMIT;
1066 vmsa->tr.attrib = INIT_TR_ATTRIBS;
1069 vmsa->cr0 = AP_INIT_CR0_DEFAULT;
1070 vmsa->dr7 = DR7_RESET_VALUE;
1071 vmsa->dr6 = AP_INIT_DR6_DEFAULT;
1072 vmsa->rflags = AP_INIT_RFLAGS_DEFAULT;
1073 vmsa->g_pat = AP_INIT_GPAT_DEFAULT;
1074 vmsa->xcr0 = AP_INIT_XCR0_DEFAULT;
1075 vmsa->mxcsr = AP_INIT_MXCSR_DEFAULT;
1076 vmsa->x87_ftw = AP_INIT_X87_FTW_DEFAULT;
1077 vmsa->x87_fcw = AP_INIT_X87_FCW_DEFAULT;
1079 /* SVME must be set. */
1080 vmsa->efer = EFER_SVME;
1083 * Set the SNP-specific fields for this VMSA:
1085 * SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits)
1088 vmsa->sev_features = sev_status >> 2;
1090 /* Switch the page over to a VMSA page now that it is initialized */
1091 ret = snp_set_vmsa(vmsa, true);
1093 pr_err("set VMSA page failed (%u)\n", ret);
1094 free_page((unsigned long)vmsa);
1099 /* Issue VMGEXIT AP Creation NAE event */
1100 local_irq_save(flags);
1102 ghcb = __sev_get_ghcb(&state);
1104 vc_ghcb_invalidate(ghcb);
1105 ghcb_set_rax(ghcb, vmsa->sev_features);
1106 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION);
1107 ghcb_set_sw_exit_info_1(ghcb, ((u64)apic_id << 32) | SVM_VMGEXIT_AP_CREATE);
1108 ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa));
1110 sev_es_wr_ghcb_msr(__pa(ghcb));
1113 if (!ghcb_sw_exit_info_1_is_valid(ghcb) ||
1114 lower_32_bits(ghcb->save.sw_exit_info_1)) {
1115 pr_err("SNP AP Creation error\n");
1119 __sev_put_ghcb(&state);
1121 local_irq_restore(flags);
1123 /* Perform cleanup if there was an error */
1125 snp_cleanup_vmsa(vmsa);
1129 /* Free up any previous VMSA page */
1131 snp_cleanup_vmsa(cur_vmsa);
1133 /* Record the current VMSA page */
1134 per_cpu(sev_vmsa, cpu) = vmsa;
1139 void __init snp_set_wakeup_secondary_cpu(void)
1141 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1145 * Always set this override if SNP is enabled. This makes it the
1146 * required method to start APs under SNP. If the hypervisor does
1147 * not support AP creation, then no APs will be started.
1149 apic_update_callback(wakeup_secondary_cpu, wakeup_cpu_via_vmgexit);
1152 int __init sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
1154 u16 startup_cs, startup_ip;
1155 phys_addr_t jump_table_pa;
1156 u64 jump_table_addr;
1157 u16 __iomem *jump_table;
1159 jump_table_addr = get_jump_table_addr();
1161 /* On UP guests there is no jump table so this is not a failure */
1162 if (!jump_table_addr)
1165 /* Check if AP Jump Table is page-aligned */
1166 if (jump_table_addr & ~PAGE_MASK)
1169 jump_table_pa = jump_table_addr & PAGE_MASK;
1171 startup_cs = (u16)(rmh->trampoline_start >> 4);
1172 startup_ip = (u16)(rmh->sev_es_trampoline_start -
1173 rmh->trampoline_start);
1175 jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
1179 writew(startup_ip, &jump_table[0]);
1180 writew(startup_cs, &jump_table[1]);
1182 iounmap(jump_table);
1188 * This is needed by the OVMF UEFI firmware which will use whatever it finds in
1189 * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
1190 * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
1192 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
1194 struct sev_es_runtime_data *data;
1195 unsigned long address, pflags;
1199 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1202 pflags = _PAGE_NX | _PAGE_RW;
1204 for_each_possible_cpu(cpu) {
1205 data = per_cpu(runtime_data, cpu);
1207 address = __pa(&data->ghcb_page);
1208 pfn = address >> PAGE_SHIFT;
1210 if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
1217 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1219 struct pt_regs *regs = ctxt->regs;
1223 /* Is it a WRMSR? */
1224 exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
1226 ghcb_set_rcx(ghcb, regs->cx);
1228 ghcb_set_rax(ghcb, regs->ax);
1229 ghcb_set_rdx(ghcb, regs->dx);
1232 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
1234 if ((ret == ES_OK) && (!exit_info_1)) {
1235 regs->ax = ghcb->save.rax;
1236 regs->dx = ghcb->save.rdx;
1242 static void snp_register_per_cpu_ghcb(void)
1244 struct sev_es_runtime_data *data;
1247 data = this_cpu_read(runtime_data);
1248 ghcb = &data->ghcb_page;
1250 snp_register_ghcb_early(__pa(ghcb));
1253 void setup_ghcb(void)
1255 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1259 * Check whether the runtime #VC exception handler is active. It uses
1260 * the per-CPU GHCB page which is set up by sev_es_init_vc_handling().
1262 * If SNP is active, register the per-CPU GHCB page so that the runtime
1263 * exception handler can use it.
1265 if (initial_vc_handler == (unsigned long)kernel_exc_vmm_communication) {
1266 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1267 snp_register_per_cpu_ghcb();
1269 sev_cfg.ghcbs_initialized = true;
1275 * Make sure the hypervisor talks a supported protocol.
1276 * This gets called only in the BSP boot phase.
1278 if (!sev_es_negotiate_protocol())
1279 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1282 * Clear the boot_ghcb. The first exception comes in before the bss
1283 * section is cleared.
1285 memset(&boot_ghcb_page, 0, PAGE_SIZE);
1287 /* Alright - Make the boot-ghcb public */
1288 boot_ghcb = &boot_ghcb_page;
1290 /* SNP guest requires that GHCB GPA must be registered. */
1291 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1292 snp_register_ghcb_early(__pa(&boot_ghcb_page));
1295 #ifdef CONFIG_HOTPLUG_CPU
1296 static void sev_es_ap_hlt_loop(void)
1298 struct ghcb_state state;
1301 ghcb = __sev_get_ghcb(&state);
1304 vc_ghcb_invalidate(ghcb);
1305 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
1306 ghcb_set_sw_exit_info_1(ghcb, 0);
1307 ghcb_set_sw_exit_info_2(ghcb, 0);
1309 sev_es_wr_ghcb_msr(__pa(ghcb));
1312 /* Wakeup signal? */
1313 if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
1314 ghcb->save.sw_exit_info_2)
1318 __sev_put_ghcb(&state);
1322 * Play_dead handler when running under SEV-ES. This is needed because
1323 * the hypervisor can't deliver an SIPI request to restart the AP.
1324 * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
1325 * hypervisor wakes it up again.
1327 static void sev_es_play_dead(void)
1331 /* IRQs now disabled */
1333 sev_es_ap_hlt_loop();
1336 * If we get here, the VCPU was woken up again. Jump to CPU
1337 * startup code to get it back online.
1341 #else /* CONFIG_HOTPLUG_CPU */
1342 #define sev_es_play_dead native_play_dead
1343 #endif /* CONFIG_HOTPLUG_CPU */
1346 static void __init sev_es_setup_play_dead(void)
1348 smp_ops.play_dead = sev_es_play_dead;
1351 static inline void sev_es_setup_play_dead(void) { }
1354 static void __init alloc_runtime_data(int cpu)
1356 struct sev_es_runtime_data *data;
1358 data = memblock_alloc(sizeof(*data), PAGE_SIZE);
1360 panic("Can't allocate SEV-ES runtime data");
1362 per_cpu(runtime_data, cpu) = data;
1365 static void __init init_ghcb(int cpu)
1367 struct sev_es_runtime_data *data;
1370 data = per_cpu(runtime_data, cpu);
1372 err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
1373 sizeof(data->ghcb_page));
1375 panic("Can't map GHCBs unencrypted");
1377 memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
1379 data->ghcb_active = false;
1380 data->backup_ghcb_active = false;
1383 void __init sev_es_init_vc_handling(void)
1387 BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
1389 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1392 if (!sev_es_check_cpu_features())
1393 panic("SEV-ES CPU Features missing");
1396 * SNP is supported in v2 of the GHCB spec which mandates support for HV
1399 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
1400 sev_hv_features = get_hv_features();
1402 if (!(sev_hv_features & GHCB_HV_FT_SNP))
1403 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
1406 /* Initialize per-cpu GHCB pages */
1407 for_each_possible_cpu(cpu) {
1408 alloc_runtime_data(cpu);
1412 sev_es_setup_play_dead();
1414 /* Secondary CPUs use the runtime #VC handler */
1415 initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
1418 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
1420 int trapnr = ctxt->fi.vector;
1422 if (trapnr == X86_TRAP_PF)
1423 native_write_cr2(ctxt->fi.cr2);
1425 ctxt->regs->orig_ax = ctxt->fi.error_code;
1426 do_early_exception(ctxt->regs, trapnr);
1429 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
1434 reg_array = (long *)ctxt->regs;
1435 offset = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
1440 offset /= sizeof(long);
1442 return reg_array + offset;
1444 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
1445 unsigned int bytes, bool read)
1447 u64 exit_code, exit_info_1, exit_info_2;
1448 unsigned long ghcb_pa = __pa(ghcb);
1453 ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
1454 if (ref == (void __user *)-1L)
1455 return ES_UNSUPPORTED;
1457 exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
1459 res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
1461 if (res == ES_EXCEPTION && !read)
1462 ctxt->fi.error_code |= X86_PF_WRITE;
1467 exit_info_1 = paddr;
1468 /* Can never be greater than 8 */
1469 exit_info_2 = bytes;
1471 ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
1473 return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
1477 * The MOVS instruction has two memory operands, which raises the
1478 * problem that it is not known whether the access to the source or the
1479 * destination caused the #VC exception (and hence whether an MMIO read
1480 * or write operation needs to be emulated).
1482 * Instead of playing games with walking page-tables and trying to guess
1483 * whether the source or destination is an MMIO range, split the move
1484 * into two operations, a read and a write with only one memory operand.
1485 * This will cause a nested #VC exception on the MMIO address which can
1488 * This implementation has the benefit that it also supports MOVS where
1489 * source _and_ destination are MMIO regions.
1491 * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
1492 * rare operation. If it turns out to be a performance problem the split
1493 * operations can be moved to memcpy_fromio() and memcpy_toio().
1495 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
1498 unsigned long ds_base, es_base;
1499 unsigned char *src, *dst;
1500 unsigned char buffer[8];
1505 ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
1506 es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
1508 if (ds_base == -1L || es_base == -1L) {
1509 ctxt->fi.vector = X86_TRAP_GP;
1510 ctxt->fi.error_code = 0;
1511 return ES_EXCEPTION;
1514 src = ds_base + (unsigned char *)ctxt->regs->si;
1515 dst = es_base + (unsigned char *)ctxt->regs->di;
1517 ret = vc_read_mem(ctxt, src, buffer, bytes);
1521 ret = vc_write_mem(ctxt, dst, buffer, bytes);
1525 if (ctxt->regs->flags & X86_EFLAGS_DF)
1530 ctxt->regs->si += off;
1531 ctxt->regs->di += off;
1533 rep = insn_has_rep_prefix(&ctxt->insn);
1535 ctxt->regs->cx -= 1;
1537 if (!rep || ctxt->regs->cx == 0)
1543 static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1545 struct insn *insn = &ctxt->insn;
1546 enum insn_mmio_type mmio;
1547 unsigned int bytes = 0;
1552 mmio = insn_decode_mmio(insn, &bytes);
1553 if (mmio == INSN_MMIO_DECODE_FAILED)
1554 return ES_DECODE_FAILED;
1556 if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
1557 reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
1559 return ES_DECODE_FAILED;
1562 if (user_mode(ctxt->regs))
1563 return ES_UNSUPPORTED;
1566 case INSN_MMIO_WRITE:
1567 memcpy(ghcb->shared_buffer, reg_data, bytes);
1568 ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1570 case INSN_MMIO_WRITE_IMM:
1571 memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
1572 ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1574 case INSN_MMIO_READ:
1575 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1579 /* Zero-extend for 32-bit operation */
1583 memcpy(reg_data, ghcb->shared_buffer, bytes);
1585 case INSN_MMIO_READ_ZERO_EXTEND:
1586 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1590 /* Zero extend based on operand size */
1591 memset(reg_data, 0, insn->opnd_bytes);
1592 memcpy(reg_data, ghcb->shared_buffer, bytes);
1594 case INSN_MMIO_READ_SIGN_EXTEND:
1595 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1600 u8 *val = (u8 *)ghcb->shared_buffer;
1602 sign_byte = (*val & 0x80) ? 0xff : 0x00;
1604 u16 *val = (u16 *)ghcb->shared_buffer;
1606 sign_byte = (*val & 0x8000) ? 0xff : 0x00;
1609 /* Sign extend based on operand size */
1610 memset(reg_data, sign_byte, insn->opnd_bytes);
1611 memcpy(reg_data, ghcb->shared_buffer, bytes);
1613 case INSN_MMIO_MOVS:
1614 ret = vc_handle_mmio_movs(ctxt, bytes);
1617 ret = ES_UNSUPPORTED;
1624 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
1625 struct es_em_ctxt *ctxt)
1627 struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1628 long val, *reg = vc_insn_get_rm(ctxt);
1631 if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
1632 return ES_VMM_ERROR;
1635 return ES_DECODE_FAILED;
1639 /* Upper 32 bits must be written as zeroes */
1641 ctxt->fi.vector = X86_TRAP_GP;
1642 ctxt->fi.error_code = 0;
1643 return ES_EXCEPTION;
1646 /* Clear out other reserved bits and set bit 10 */
1647 val = (val & 0xffff23ffL) | BIT(10);
1649 /* Early non-zero writes to DR7 are not supported */
1650 if (!data && (val & ~DR7_RESET_VALUE))
1651 return ES_UNSUPPORTED;
1653 /* Using a value of 0 for ExitInfo1 means RAX holds the value */
1654 ghcb_set_rax(ghcb, val);
1655 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1665 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1666 struct es_em_ctxt *ctxt)
1668 struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1669 long *reg = vc_insn_get_rm(ctxt);
1671 if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
1672 return ES_VMM_ERROR;
1675 return ES_DECODE_FAILED;
1680 *reg = DR7_RESET_VALUE;
1685 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1686 struct es_em_ctxt *ctxt)
1688 return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
1691 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1695 ghcb_set_rcx(ghcb, ctxt->regs->cx);
1697 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
1701 if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1702 return ES_VMM_ERROR;
1704 ctxt->regs->ax = ghcb->save.rax;
1705 ctxt->regs->dx = ghcb->save.rdx;
1710 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1711 struct es_em_ctxt *ctxt)
1714 * Treat it as a NOP and do not leak a physical address to the
1720 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1721 struct es_em_ctxt *ctxt)
1723 /* Treat the same as MONITOR/MONITORX */
1727 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1728 struct es_em_ctxt *ctxt)
1732 ghcb_set_rax(ghcb, ctxt->regs->ax);
1733 ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1735 if (x86_platform.hyper.sev_es_hcall_prepare)
1736 x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1738 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1742 if (!ghcb_rax_is_valid(ghcb))
1743 return ES_VMM_ERROR;
1745 ctxt->regs->ax = ghcb->save.rax;
1748 * Call sev_es_hcall_finish() after regs->ax is already set.
1749 * This allows the hypervisor handler to overwrite it again if
1752 if (x86_platform.hyper.sev_es_hcall_finish &&
1753 !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1754 return ES_VMM_ERROR;
1759 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1760 struct es_em_ctxt *ctxt)
1763 * Calling ecx_alignment_check() directly does not work, because it
1764 * enables IRQs and the GHCB is active. Forward the exception and call
1765 * it later from vc_forward_exception().
1767 ctxt->fi.vector = X86_TRAP_AC;
1768 ctxt->fi.error_code = 0;
1769 return ES_EXCEPTION;
1772 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1774 unsigned long exit_code)
1776 enum es_result result = vc_check_opcode_bytes(ctxt, exit_code);
1778 if (result != ES_OK)
1781 switch (exit_code) {
1782 case SVM_EXIT_READ_DR7:
1783 result = vc_handle_dr7_read(ghcb, ctxt);
1785 case SVM_EXIT_WRITE_DR7:
1786 result = vc_handle_dr7_write(ghcb, ctxt);
1788 case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1789 result = vc_handle_trap_ac(ghcb, ctxt);
1791 case SVM_EXIT_RDTSC:
1792 case SVM_EXIT_RDTSCP:
1793 result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1795 case SVM_EXIT_RDPMC:
1796 result = vc_handle_rdpmc(ghcb, ctxt);
1799 pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1800 result = ES_UNSUPPORTED;
1802 case SVM_EXIT_CPUID:
1803 result = vc_handle_cpuid(ghcb, ctxt);
1806 result = vc_handle_ioio(ghcb, ctxt);
1809 result = vc_handle_msr(ghcb, ctxt);
1811 case SVM_EXIT_VMMCALL:
1812 result = vc_handle_vmmcall(ghcb, ctxt);
1814 case SVM_EXIT_WBINVD:
1815 result = vc_handle_wbinvd(ghcb, ctxt);
1817 case SVM_EXIT_MONITOR:
1818 result = vc_handle_monitor(ghcb, ctxt);
1820 case SVM_EXIT_MWAIT:
1821 result = vc_handle_mwait(ghcb, ctxt);
1824 result = vc_handle_mmio(ghcb, ctxt);
1828 * Unexpected #VC exception
1830 result = ES_UNSUPPORTED;
1836 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
1838 long error_code = ctxt->fi.error_code;
1839 int trapnr = ctxt->fi.vector;
1841 ctxt->regs->orig_ax = ctxt->fi.error_code;
1845 exc_general_protection(ctxt->regs, error_code);
1848 exc_invalid_op(ctxt->regs);
1851 write_cr2(ctxt->fi.cr2);
1852 exc_page_fault(ctxt->regs, error_code);
1855 exc_alignment_check(ctxt->regs, error_code);
1858 pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
1863 static __always_inline bool is_vc2_stack(unsigned long sp)
1865 return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
1868 static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
1870 unsigned long sp, prev_sp;
1872 sp = (unsigned long)regs;
1876 * If the code was already executing on the VC2 stack when the #VC
1877 * happened, let it proceed to the normal handling routine. This way the
1878 * code executing on the VC2 stack can cause #VC exceptions to get handled.
1880 return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
1883 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
1885 struct ghcb_state state;
1886 struct es_em_ctxt ctxt;
1887 enum es_result result;
1891 ghcb = __sev_get_ghcb(&state);
1893 vc_ghcb_invalidate(ghcb);
1894 result = vc_init_em_ctxt(&ctxt, regs, error_code);
1896 if (result == ES_OK)
1897 result = vc_handle_exitcode(&ctxt, ghcb, error_code);
1899 __sev_put_ghcb(&state);
1901 /* Done - now check the result */
1904 vc_finish_insn(&ctxt);
1906 case ES_UNSUPPORTED:
1907 pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
1908 error_code, regs->ip);
1912 pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1913 error_code, regs->ip);
1916 case ES_DECODE_FAILED:
1917 pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1918 error_code, regs->ip);
1922 vc_forward_exception(&ctxt);
1928 pr_emerg("Unknown result in %s():%d\n", __func__, result);
1930 * Emulating the instruction which caused the #VC exception
1931 * failed - can't continue so print debug information
1939 static __always_inline bool vc_is_db(unsigned long error_code)
1941 return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
1945 * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
1946 * and will panic when an error happens.
1948 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
1950 irqentry_state_t irq_state;
1953 * With the current implementation it is always possible to switch to a
1954 * safe stack because #VC exceptions only happen at known places, like
1955 * intercepted instructions or accesses to MMIO areas/IO ports. They can
1956 * also happen with code instrumentation when the hypervisor intercepts
1957 * #DB, but the critical paths are forbidden to be instrumented, so #DB
1958 * exceptions currently also only happen in safe places.
1960 * But keep this here in case the noinstr annotations are violated due
1963 if (unlikely(vc_from_invalid_context(regs))) {
1964 instrumentation_begin();
1965 panic("Can't handle #VC exception from unsupported context\n");
1966 instrumentation_end();
1970 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1972 if (vc_is_db(error_code)) {
1977 irq_state = irqentry_nmi_enter(regs);
1979 instrumentation_begin();
1981 if (!vc_raw_handle_exception(regs, error_code)) {
1982 /* Show some debug info */
1985 /* Ask hypervisor to sev_es_terminate */
1986 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1988 /* If that fails and we get here - just panic */
1989 panic("Returned from Terminate-Request to Hypervisor\n");
1992 instrumentation_end();
1993 irqentry_nmi_exit(regs, irq_state);
1997 * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
1998 * and will kill the current task with SIGBUS when an error happens.
2000 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
2003 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
2005 if (vc_is_db(error_code)) {
2006 noist_exc_debug(regs);
2010 irqentry_enter_from_user_mode(regs);
2011 instrumentation_begin();
2013 if (!vc_raw_handle_exception(regs, error_code)) {
2015 * Do not kill the machine if user-space triggered the
2016 * exception. Send SIGBUS instead and let user-space deal with
2019 force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
2022 instrumentation_end();
2023 irqentry_exit_to_user_mode(regs);
2026 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
2028 unsigned long exit_code = regs->orig_ax;
2029 struct es_em_ctxt ctxt;
2030 enum es_result result;
2032 vc_ghcb_invalidate(boot_ghcb);
2034 result = vc_init_em_ctxt(&ctxt, regs, exit_code);
2035 if (result == ES_OK)
2036 result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
2038 /* Done - now check the result */
2041 vc_finish_insn(&ctxt);
2043 case ES_UNSUPPORTED:
2044 early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
2045 exit_code, regs->ip);
2048 early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
2049 exit_code, regs->ip);
2051 case ES_DECODE_FAILED:
2052 early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
2053 exit_code, regs->ip);
2056 vc_early_forward_exception(&ctxt);
2070 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
2074 * Initial set up of SNP relies on information provided by the
2075 * Confidential Computing blob, which can be passed to the kernel
2076 * in the following ways, depending on how it is booted:
2078 * - when booted via the boot/decompress kernel:
2081 * - when booted directly by firmware/bootloader (e.g. CONFIG_PVH):
2082 * - via a setup_data entry, as defined by the Linux Boot Protocol
2084 * Scan for the blob in that order.
2086 static __head struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
2088 struct cc_blob_sev_info *cc_info;
2090 /* Boot kernel would have passed the CC blob via boot_params. */
2091 if (bp->cc_blob_address) {
2092 cc_info = (struct cc_blob_sev_info *)(unsigned long)bp->cc_blob_address;
2097 * If kernel was booted directly, without the use of the
2098 * boot/decompression kernel, the CC blob may have been passed via
2099 * setup_data instead.
2101 cc_info = find_cc_blob_setup_data(bp);
2106 if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
2112 bool __head snp_init(struct boot_params *bp)
2114 struct cc_blob_sev_info *cc_info;
2119 cc_info = find_cc_blob(bp);
2123 setup_cpuid_table(cc_info);
2126 * The CC blob will be used later to access the secrets page. Cache
2127 * it here like the boot kernel does.
2129 bp->cc_blob_address = (u32)(unsigned long)cc_info;
2134 void __head __noreturn snp_abort(void)
2136 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
2139 static void dump_cpuid_table(void)
2141 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2144 pr_info("count=%d reserved=0x%x reserved2=0x%llx\n",
2145 cpuid_table->count, cpuid_table->__reserved1, cpuid_table->__reserved2);
2147 for (i = 0; i < SNP_CPUID_COUNT_MAX; i++) {
2148 const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
2150 pr_info("index=%3d fn=0x%08x subfn=0x%08x: eax=0x%08x ebx=0x%08x ecx=0x%08x edx=0x%08x xcr0_in=0x%016llx xss_in=0x%016llx reserved=0x%016llx\n",
2151 i, fn->eax_in, fn->ecx_in, fn->eax, fn->ebx, fn->ecx,
2152 fn->edx, fn->xcr0_in, fn->xss_in, fn->__reserved);
2157 * It is useful from an auditing/testing perspective to provide an easy way
2158 * for the guest owner to know that the CPUID table has been initialized as
2159 * expected, but that initialization happens too early in boot to print any
2160 * sort of indicator, and there's not really any other good place to do it,
2163 static int __init report_cpuid_table(void)
2165 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2167 if (!cpuid_table->count)
2170 pr_info("Using SNP CPUID table, %d entries present.\n",
2171 cpuid_table->count);
2178 arch_initcall(report_cpuid_table);
2180 static int __init init_sev_config(char *str)
2184 while ((s = strsep(&str, ","))) {
2185 if (!strcmp(s, "debug")) {
2186 sev_cfg.debug = true;
2190 pr_info("SEV command-line option '%s' was not recognized\n", s);
2195 __setup("sev=", init_sev_config);
2197 int snp_issue_guest_request(u64 exit_code, struct snp_req_data *input, struct snp_guest_request_ioctl *rio)
2199 struct ghcb_state state;
2200 struct es_em_ctxt ctxt;
2201 unsigned long flags;
2205 rio->exitinfo2 = SEV_RET_NO_FW_CALL;
2208 * __sev_get_ghcb() needs to run with IRQs disabled because it is using
2211 local_irq_save(flags);
2213 ghcb = __sev_get_ghcb(&state);
2219 vc_ghcb_invalidate(ghcb);
2221 if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2222 ghcb_set_rax(ghcb, input->data_gpa);
2223 ghcb_set_rbx(ghcb, input->data_npages);
2226 ret = sev_es_ghcb_hv_call(ghcb, &ctxt, exit_code, input->req_gpa, input->resp_gpa);
2230 rio->exitinfo2 = ghcb->save.sw_exit_info_2;
2231 switch (rio->exitinfo2) {
2235 case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_BUSY):
2239 case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN):
2240 /* Number of expected pages are returned in RBX */
2241 if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2242 input->data_npages = ghcb_get_rbx(ghcb);
2253 __sev_put_ghcb(&state);
2255 local_irq_restore(flags);
2259 EXPORT_SYMBOL_GPL(snp_issue_guest_request);
2261 static struct platform_device sev_guest_device = {
2262 .name = "sev-guest",
2266 static int __init snp_init_platform_device(void)
2268 struct sev_guest_platform_data data;
2271 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2274 gpa = get_secrets_page();
2278 data.secrets_gpa = gpa;
2279 if (platform_device_add_data(&sev_guest_device, &data, sizeof(data)))
2282 if (platform_device_register(&sev_guest_device))
2285 pr_info("SNP guest platform device initialized.\n");
2288 device_initcall(snp_init_platform_device);
2290 void kdump_sev_callback(void)
2293 * Do wbinvd() on remote CPUs when SNP is enabled in order to
2294 * safely do SNP_SHUTDOWN on the local CPU.
2296 if (cpu_feature_enabled(X86_FEATURE_SEV_SNP))
2300 void sev_show_status(void)
2304 pr_info("Status: ");
2305 for (i = 0; i < MSR_AMD64_SNP_RESV_BIT; i++) {
2306 if (sev_status & BIT_ULL(i)) {
2307 if (!sev_status_feat_names[i])
2310 pr_cont("%s ", sev_status_feat_names[i]);