1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2016-20 Intel Corporation. */
4 #include <linux/file.h>
5 #include <linux/freezer.h>
6 #include <linux/highmem.h>
7 #include <linux/kthread.h>
8 #include <linux/miscdevice.h>
9 #include <linux/node.h>
10 #include <linux/pagemap.h>
11 #include <linux/ratelimit.h>
12 #include <linux/sched/mm.h>
13 #include <linux/sched/signal.h>
14 #include <linux/slab.h>
15 #include <linux/sysfs.h>
21 struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS];
22 static int sgx_nr_epc_sections;
23 static struct task_struct *ksgxd_tsk;
24 static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq);
25 static DEFINE_XARRAY(sgx_epc_address_space);
28 * These variables are part of the state of the reclaimer, and must be accessed
29 * with sgx_reclaimer_lock acquired.
31 static LIST_HEAD(sgx_active_page_list);
32 static DEFINE_SPINLOCK(sgx_reclaimer_lock);
34 static atomic_long_t sgx_nr_free_pages = ATOMIC_LONG_INIT(0);
36 /* Nodes with one or more EPC sections. */
37 static nodemask_t sgx_numa_mask;
40 * Array with one list_head for each possible NUMA node. Each
41 * list contains all the sgx_epc_section's which are on that
44 static struct sgx_numa_node *sgx_numa_nodes;
46 static LIST_HEAD(sgx_dirty_page_list);
49 * Reset post-kexec EPC pages to the uninitialized state. The pages are removed
50 * from the input list, and made available for the page allocator. SECS pages
51 * prepending their children in the input list are left intact.
53 * Return 0 when sanitization was successful or kthread was stopped, and the
54 * number of unsanitized pages otherwise.
56 static unsigned long __sgx_sanitize_pages(struct list_head *dirty_page_list)
58 unsigned long left_dirty = 0;
59 struct sgx_epc_page *page;
63 /* dirty_page_list is thread-local, no need for a lock: */
64 while (!list_empty(dirty_page_list)) {
65 if (kthread_should_stop())
68 page = list_first_entry(dirty_page_list, struct sgx_epc_page, list);
71 * Checking page->poison without holding the node->lock
72 * is racy, but losing the race (i.e. poison is set just
73 * after the check) just means __eremove() will be uselessly
74 * called for a page that sgx_free_epc_page() will put onto
75 * the node->sgx_poison_page_list later.
78 struct sgx_epc_section *section = &sgx_epc_sections[page->section];
79 struct sgx_numa_node *node = section->node;
81 spin_lock(&node->lock);
82 list_move(&page->list, &node->sgx_poison_page_list);
83 spin_unlock(&node->lock);
88 ret = __eremove(sgx_get_epc_virt_addr(page));
91 * page is now sanitized. Make it available via the SGX
94 list_del(&page->list);
95 sgx_free_epc_page(page);
97 /* The page is not yet clean - move to the dirty list. */
98 list_move_tail(&page->list, &dirty);
105 list_splice(&dirty, dirty_page_list);
109 static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page)
111 struct sgx_encl_page *page = epc_page->owner;
112 struct sgx_encl *encl = page->encl;
113 struct sgx_encl_mm *encl_mm;
117 idx = srcu_read_lock(&encl->srcu);
119 list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
120 if (!mmget_not_zero(encl_mm->mm))
123 mmap_read_lock(encl_mm->mm);
124 ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page);
125 mmap_read_unlock(encl_mm->mm);
127 mmput_async(encl_mm->mm);
133 srcu_read_unlock(&encl->srcu, idx);
141 static void sgx_reclaimer_block(struct sgx_epc_page *epc_page)
143 struct sgx_encl_page *page = epc_page->owner;
144 unsigned long addr = page->desc & PAGE_MASK;
145 struct sgx_encl *encl = page->encl;
148 sgx_zap_enclave_ptes(encl, addr);
150 mutex_lock(&encl->lock);
152 ret = __eblock(sgx_get_epc_virt_addr(epc_page));
153 if (encls_failed(ret))
154 ENCLS_WARN(ret, "EBLOCK");
156 mutex_unlock(&encl->lock);
159 static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot,
160 struct sgx_backing *backing)
162 struct sgx_pageinfo pginfo;
168 pginfo.contents = (unsigned long)kmap_local_page(backing->contents);
169 pginfo.metadata = (unsigned long)kmap_local_page(backing->pcmd) +
170 backing->pcmd_offset;
172 ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot);
173 set_page_dirty(backing->pcmd);
174 set_page_dirty(backing->contents);
176 kunmap_local((void *)(unsigned long)(pginfo.metadata -
177 backing->pcmd_offset));
178 kunmap_local((void *)(unsigned long)pginfo.contents);
183 void sgx_ipi_cb(void *info)
188 * Swap page to the regular memory transformed to the blocked state by using
189 * EBLOCK, which means that it can no longer be referenced (no new TLB entries).
191 * The first trial just tries to write the page assuming that some other thread
192 * has reset the count for threads inside the enclave by using ETRACK, and
193 * previous thread count has been zeroed out. The second trial calls ETRACK
194 * before EWB. If that fails we kick all the HW threads out, and then do EWB,
195 * which should be guaranteed the succeed.
197 static void sgx_encl_ewb(struct sgx_epc_page *epc_page,
198 struct sgx_backing *backing)
200 struct sgx_encl_page *encl_page = epc_page->owner;
201 struct sgx_encl *encl = encl_page->encl;
202 struct sgx_va_page *va_page;
203 unsigned int va_offset;
207 encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED;
209 va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
211 va_offset = sgx_alloc_va_slot(va_page);
212 va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset;
213 if (sgx_va_page_full(va_page))
214 list_move_tail(&va_page->list, &encl->va_pages);
216 ret = __sgx_encl_ewb(epc_page, va_slot, backing);
217 if (ret == SGX_NOT_TRACKED) {
218 ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page));
220 if (encls_failed(ret))
221 ENCLS_WARN(ret, "ETRACK");
224 ret = __sgx_encl_ewb(epc_page, va_slot, backing);
225 if (ret == SGX_NOT_TRACKED) {
227 * Slow path, send IPIs to kick cpus out of the
228 * enclave. Note, it's imperative that the cpu
229 * mask is generated *after* ETRACK, else we'll
230 * miss cpus that entered the enclave between
231 * generating the mask and incrementing epoch.
233 on_each_cpu_mask(sgx_encl_cpumask(encl),
234 sgx_ipi_cb, NULL, 1);
235 ret = __sgx_encl_ewb(epc_page, va_slot, backing);
240 if (encls_failed(ret))
241 ENCLS_WARN(ret, "EWB");
243 sgx_free_va_slot(va_page, va_offset);
245 encl_page->desc |= va_offset;
246 encl_page->va_page = va_page;
250 static void sgx_reclaimer_write(struct sgx_epc_page *epc_page,
251 struct sgx_backing *backing)
253 struct sgx_encl_page *encl_page = epc_page->owner;
254 struct sgx_encl *encl = encl_page->encl;
255 struct sgx_backing secs_backing;
258 mutex_lock(&encl->lock);
260 sgx_encl_ewb(epc_page, backing);
261 encl_page->epc_page = NULL;
262 encl->secs_child_cnt--;
263 sgx_encl_put_backing(backing);
265 if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) {
266 ret = sgx_encl_alloc_backing(encl, PFN_DOWN(encl->size),
271 sgx_encl_ewb(encl->secs.epc_page, &secs_backing);
273 sgx_encl_free_epc_page(encl->secs.epc_page);
274 encl->secs.epc_page = NULL;
276 sgx_encl_put_backing(&secs_backing);
280 mutex_unlock(&encl->lock);
284 * Take a fixed number of pages from the head of the active page pool and
285 * reclaim them to the enclave's private shmem files. Skip the pages, which have
286 * been accessed since the last scan. Move those pages to the tail of active
287 * page pool so that the pages get scanned in LRU like fashion.
289 * Batch process a chunk of pages (at the moment 16) in order to degrade amount
290 * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit
291 * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI
292 * + EWB) but not sufficiently. Reclaiming one page at a time would also be
293 * problematic as it would increase the lock contention too much, which would
294 * halt forward progress.
296 static void sgx_reclaim_pages(void)
298 struct sgx_epc_page *chunk[SGX_NR_TO_SCAN];
299 struct sgx_backing backing[SGX_NR_TO_SCAN];
300 struct sgx_encl_page *encl_page;
301 struct sgx_epc_page *epc_page;
307 spin_lock(&sgx_reclaimer_lock);
308 for (i = 0; i < SGX_NR_TO_SCAN; i++) {
309 if (list_empty(&sgx_active_page_list))
312 epc_page = list_first_entry(&sgx_active_page_list,
313 struct sgx_epc_page, list);
314 list_del_init(&epc_page->list);
315 encl_page = epc_page->owner;
317 if (kref_get_unless_zero(&encl_page->encl->refcount) != 0)
318 chunk[cnt++] = epc_page;
320 /* The owner is freeing the page. No need to add the
321 * page back to the list of reclaimable pages.
323 epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
325 spin_unlock(&sgx_reclaimer_lock);
327 for (i = 0; i < cnt; i++) {
329 encl_page = epc_page->owner;
331 if (!sgx_reclaimer_age(epc_page))
334 page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
336 mutex_lock(&encl_page->encl->lock);
337 ret = sgx_encl_alloc_backing(encl_page->encl, page_index, &backing[i]);
339 mutex_unlock(&encl_page->encl->lock);
343 encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED;
344 mutex_unlock(&encl_page->encl->lock);
348 spin_lock(&sgx_reclaimer_lock);
349 list_add_tail(&epc_page->list, &sgx_active_page_list);
350 spin_unlock(&sgx_reclaimer_lock);
352 kref_put(&encl_page->encl->refcount, sgx_encl_release);
357 for (i = 0; i < cnt; i++) {
360 sgx_reclaimer_block(epc_page);
363 for (i = 0; i < cnt; i++) {
368 encl_page = epc_page->owner;
369 sgx_reclaimer_write(epc_page, &backing[i]);
371 kref_put(&encl_page->encl->refcount, sgx_encl_release);
372 epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
374 sgx_free_epc_page(epc_page);
378 static bool sgx_should_reclaim(unsigned long watermark)
380 return atomic_long_read(&sgx_nr_free_pages) < watermark &&
381 !list_empty(&sgx_active_page_list);
385 * sgx_reclaim_direct() should be called (without enclave's mutex held)
386 * in locations where SGX memory resources might be low and might be
387 * needed in order to make forward progress.
389 void sgx_reclaim_direct(void)
391 if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
395 static int ksgxd(void *p)
400 * Sanitize pages in order to recover from kexec(). The 2nd pass is
401 * required for SECS pages, whose child pages blocked EREMOVE.
403 __sgx_sanitize_pages(&sgx_dirty_page_list);
404 WARN_ON(__sgx_sanitize_pages(&sgx_dirty_page_list));
406 while (!kthread_should_stop()) {
410 wait_event_freezable(ksgxd_waitq,
411 kthread_should_stop() ||
412 sgx_should_reclaim(SGX_NR_HIGH_PAGES));
414 if (sgx_should_reclaim(SGX_NR_HIGH_PAGES))
423 static bool __init sgx_page_reclaimer_init(void)
425 struct task_struct *tsk;
427 tsk = kthread_run(ksgxd, NULL, "ksgxd");
436 bool current_is_ksgxd(void)
438 return current == ksgxd_tsk;
441 static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid)
443 struct sgx_numa_node *node = &sgx_numa_nodes[nid];
444 struct sgx_epc_page *page = NULL;
446 spin_lock(&node->lock);
448 if (list_empty(&node->free_page_list)) {
449 spin_unlock(&node->lock);
453 page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list);
454 list_del_init(&page->list);
457 spin_unlock(&node->lock);
458 atomic_long_dec(&sgx_nr_free_pages);
464 * __sgx_alloc_epc_page() - Allocate an EPC page
466 * Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start
467 * from the NUMA node, where the caller is executing.
470 * - an EPC page: A borrowed EPC pages were available.
471 * - NULL: Out of EPC pages.
473 struct sgx_epc_page *__sgx_alloc_epc_page(void)
475 struct sgx_epc_page *page;
476 int nid_of_current = numa_node_id();
477 int nid = nid_of_current;
479 if (node_isset(nid_of_current, sgx_numa_mask)) {
480 page = __sgx_alloc_epc_page_from_node(nid_of_current);
485 /* Fall back to the non-local NUMA nodes: */
487 nid = next_node_in(nid, sgx_numa_mask);
488 if (nid == nid_of_current)
491 page = __sgx_alloc_epc_page_from_node(nid);
496 return ERR_PTR(-ENOMEM);
500 * sgx_mark_page_reclaimable() - Mark a page as reclaimable
503 * Mark a page as reclaimable and add it to the active page list. Pages
504 * are automatically removed from the active list when freed.
506 void sgx_mark_page_reclaimable(struct sgx_epc_page *page)
508 spin_lock(&sgx_reclaimer_lock);
509 page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED;
510 list_add_tail(&page->list, &sgx_active_page_list);
511 spin_unlock(&sgx_reclaimer_lock);
515 * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list
518 * Clear the reclaimable flag and remove the page from the active page list.
522 * -EBUSY if the page is in the process of being reclaimed
524 int sgx_unmark_page_reclaimable(struct sgx_epc_page *page)
526 spin_lock(&sgx_reclaimer_lock);
527 if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) {
528 /* The page is being reclaimed. */
529 if (list_empty(&page->list)) {
530 spin_unlock(&sgx_reclaimer_lock);
534 list_del(&page->list);
535 page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
537 spin_unlock(&sgx_reclaimer_lock);
543 * sgx_alloc_epc_page() - Allocate an EPC page
544 * @owner: the owner of the EPC page
545 * @reclaim: reclaim pages if necessary
547 * Iterate through EPC sections and borrow a free EPC page to the caller. When a
548 * page is no longer needed it must be released with sgx_free_epc_page(). If
549 * @reclaim is set to true, directly reclaim pages when we are out of pages. No
550 * mm's can be locked when @reclaim is set to true.
552 * Finally, wake up ksgxd when the number of pages goes below the watermark
553 * before returning back to the caller.
559 struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim)
561 struct sgx_epc_page *page;
564 page = __sgx_alloc_epc_page();
570 if (list_empty(&sgx_active_page_list))
571 return ERR_PTR(-ENOMEM);
574 page = ERR_PTR(-EBUSY);
578 if (signal_pending(current)) {
579 page = ERR_PTR(-ERESTARTSYS);
587 if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
588 wake_up(&ksgxd_waitq);
594 * sgx_free_epc_page() - Free an EPC page
597 * Put the EPC page back to the list of free pages. It's the caller's
598 * responsibility to make sure that the page is in uninitialized state. In other
599 * words, do EREMOVE, EWB or whatever operation is necessary before calling
602 void sgx_free_epc_page(struct sgx_epc_page *page)
604 struct sgx_epc_section *section = &sgx_epc_sections[page->section];
605 struct sgx_numa_node *node = section->node;
607 spin_lock(&node->lock);
611 list_add(&page->list, &node->sgx_poison_page_list);
613 list_add_tail(&page->list, &node->free_page_list);
614 page->flags = SGX_EPC_PAGE_IS_FREE;
616 spin_unlock(&node->lock);
617 atomic_long_inc(&sgx_nr_free_pages);
620 static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size,
622 struct sgx_epc_section *section)
624 unsigned long nr_pages = size >> PAGE_SHIFT;
627 section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB);
628 if (!section->virt_addr)
631 section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page));
632 if (!section->pages) {
633 memunmap(section->virt_addr);
637 section->phys_addr = phys_addr;
638 xa_store_range(&sgx_epc_address_space, section->phys_addr,
639 phys_addr + size - 1, section, GFP_KERNEL);
641 for (i = 0; i < nr_pages; i++) {
642 section->pages[i].section = index;
643 section->pages[i].flags = 0;
644 section->pages[i].owner = NULL;
645 section->pages[i].poison = 0;
646 list_add_tail(§ion->pages[i].list, &sgx_dirty_page_list);
652 bool arch_is_platform_page(u64 paddr)
654 return !!xa_load(&sgx_epc_address_space, paddr);
656 EXPORT_SYMBOL_GPL(arch_is_platform_page);
658 static struct sgx_epc_page *sgx_paddr_to_page(u64 paddr)
660 struct sgx_epc_section *section;
662 section = xa_load(&sgx_epc_address_space, paddr);
666 return §ion->pages[PFN_DOWN(paddr - section->phys_addr)];
670 * Called in process context to handle a hardware reported
671 * error in an SGX EPC page.
672 * If the MF_ACTION_REQUIRED bit is set in flags, then the
673 * context is the task that consumed the poison data. Otherwise
674 * this is called from a kernel thread unrelated to the page.
676 int arch_memory_failure(unsigned long pfn, int flags)
678 struct sgx_epc_page *page = sgx_paddr_to_page(pfn << PAGE_SHIFT);
679 struct sgx_epc_section *section;
680 struct sgx_numa_node *node;
683 * mm/memory-failure.c calls this routine for all errors
684 * where there isn't a "struct page" for the address. But that
685 * includes other address ranges besides SGX.
691 * If poison was consumed synchronously. Send a SIGBUS to
692 * the task. Hardware has already exited the SGX enclave and
693 * will not allow re-entry to an enclave that has a memory
694 * error. The signal may help the task understand why the
697 if (flags & MF_ACTION_REQUIRED)
700 section = &sgx_epc_sections[page->section];
701 node = section->node;
703 spin_lock(&node->lock);
705 /* Already poisoned? Nothing more to do */
712 * If the page is on a free list, move it to the per-node
715 if (page->flags & SGX_EPC_PAGE_IS_FREE) {
716 list_move(&page->list, &node->sgx_poison_page_list);
721 * TBD: Add additional plumbing to enable pre-emptive
722 * action for asynchronous poison notification. Until
723 * then just hope that the poison:
724 * a) is not accessed - sgx_free_epc_page() will deal with it
725 * when the user gives it back
726 * b) results in a recoverable machine check rather than
730 spin_unlock(&node->lock);
735 * A section metric is concatenated in a way that @low bits 12-31 define the
736 * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the
739 static inline u64 __init sgx_calc_section_metric(u64 low, u64 high)
741 return (low & GENMASK_ULL(31, 12)) +
742 ((high & GENMASK_ULL(19, 0)) << 32);
746 static ssize_t sgx_total_bytes_show(struct device *dev, struct device_attribute *attr, char *buf)
748 return sysfs_emit(buf, "%lu\n", sgx_numa_nodes[dev->id].size);
750 static DEVICE_ATTR_RO(sgx_total_bytes);
752 static umode_t arch_node_attr_is_visible(struct kobject *kobj,
753 struct attribute *attr, int idx)
755 /* Make all x86/ attributes invisible when SGX is not initialized: */
756 if (nodes_empty(sgx_numa_mask))
762 static struct attribute *arch_node_dev_attrs[] = {
763 &dev_attr_sgx_total_bytes.attr,
767 const struct attribute_group arch_node_dev_group = {
769 .attrs = arch_node_dev_attrs,
770 .is_visible = arch_node_attr_is_visible,
773 static void __init arch_update_sysfs_visibility(int nid)
775 struct node *node = node_devices[nid];
778 ret = sysfs_update_group(&node->dev.kobj, &arch_node_dev_group);
781 pr_err("sysfs update failed (%d), files may be invisible", ret);
783 #else /* !CONFIG_NUMA */
784 static void __init arch_update_sysfs_visibility(int nid) {}
787 static bool __init sgx_page_cache_init(void)
789 u32 eax, ebx, ecx, edx, type;
794 sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL);
798 for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) {
799 cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx);
801 type = eax & SGX_CPUID_EPC_MASK;
802 if (type == SGX_CPUID_EPC_INVALID)
805 if (type != SGX_CPUID_EPC_SECTION) {
806 pr_err_once("Unknown EPC section type: %u\n", type);
810 pa = sgx_calc_section_metric(eax, ebx);
811 size = sgx_calc_section_metric(ecx, edx);
813 pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1);
815 if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) {
816 pr_err("No free memory for an EPC section\n");
820 nid = numa_map_to_online_node(phys_to_target_node(pa));
821 if (nid == NUMA_NO_NODE) {
822 /* The physical address is already printed above. */
823 pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n");
827 if (!node_isset(nid, sgx_numa_mask)) {
828 spin_lock_init(&sgx_numa_nodes[nid].lock);
829 INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list);
830 INIT_LIST_HEAD(&sgx_numa_nodes[nid].sgx_poison_page_list);
831 node_set(nid, sgx_numa_mask);
832 sgx_numa_nodes[nid].size = 0;
834 /* Make SGX-specific node sysfs files visible: */
835 arch_update_sysfs_visibility(nid);
838 sgx_epc_sections[i].node = &sgx_numa_nodes[nid];
839 sgx_numa_nodes[nid].size += size;
841 sgx_nr_epc_sections++;
844 if (!sgx_nr_epc_sections) {
845 pr_err("There are zero EPC sections.\n");
853 * Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller.
854 * Bare-metal driver requires to update them to hash of enclave's signer
855 * before EINIT. KVM needs to update them to guest's virtual MSR values
856 * before doing EINIT from guest.
858 void sgx_update_lepubkeyhash(u64 *lepubkeyhash)
862 WARN_ON_ONCE(preemptible());
864 for (i = 0; i < 4; i++)
865 wrmsrl(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]);
868 const struct file_operations sgx_provision_fops = {
869 .owner = THIS_MODULE,
872 static struct miscdevice sgx_dev_provision = {
873 .minor = MISC_DYNAMIC_MINOR,
874 .name = "sgx_provision",
875 .nodename = "sgx_provision",
876 .fops = &sgx_provision_fops,
880 * sgx_set_attribute() - Update allowed attributes given file descriptor
881 * @allowed_attributes: Pointer to allowed enclave attributes
882 * @attribute_fd: File descriptor for specific attribute
884 * Append enclave attribute indicated by file descriptor to allowed
885 * attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by
886 * /dev/sgx_provision is supported.
889 * -0: SGX_ATTR_PROVISIONKEY is appended to allowed_attributes
890 * -EINVAL: Invalid, or not supported file descriptor
892 int sgx_set_attribute(unsigned long *allowed_attributes,
893 unsigned int attribute_fd)
895 struct fd f = fdget(attribute_fd);
900 if (f.file->f_op != &sgx_provision_fops) {
905 *allowed_attributes |= SGX_ATTR_PROVISIONKEY;
910 EXPORT_SYMBOL_GPL(sgx_set_attribute);
912 static int __init sgx_init(void)
917 if (!cpu_feature_enabled(X86_FEATURE_SGX))
920 if (!sgx_page_cache_init())
923 if (!sgx_page_reclaimer_init()) {
928 ret = misc_register(&sgx_dev_provision);
933 * Always try to initialize the native *and* KVM drivers.
934 * The KVM driver is less picky than the native one and
935 * can function if the native one is not supported on the
936 * current system or fails to initialize.
938 * Error out only if both fail to initialize.
940 ret = sgx_drv_init();
942 if (sgx_vepc_init() && ret)
948 misc_deregister(&sgx_dev_provision);
951 kthread_stop(ksgxd_tsk);
954 for (i = 0; i < sgx_nr_epc_sections; i++) {
955 vfree(sgx_epc_sections[i].pages);
956 memunmap(sgx_epc_sections[i].virt_addr);
962 device_initcall(sgx_init);