1 // SPDX-License-Identifier: GPL-2.0
3 * BPF Jit compiler for s390.
5 * Minimum build requirements:
7 * - HAVE_MARCH_Z196_FEATURES: laal, laalg
8 * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9 * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
12 * Copyright IBM Corp. 2012,2015
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
26 #include <linux/kernel.h>
27 #include <asm/cacheflush.h>
28 #include <asm/extable.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include <asm/text-patching.h>
37 u32 seen; /* Flags to remember seen eBPF instructions */
38 u32 seen_reg[16]; /* Array to remember which registers are used */
39 u32 *addrs; /* Array with relative instruction addresses */
40 u8 *prg_buf; /* Start of program */
41 int size; /* Size of program and literal pool */
42 int size_prg; /* Size of program */
43 int prg; /* Current position in program */
44 int lit32_start; /* Start of 32-bit literal pool */
45 int lit32; /* Current position in 32-bit literal pool */
46 int lit64_start; /* Start of 64-bit literal pool */
47 int lit64; /* Current position in 64-bit literal pool */
48 int base_ip; /* Base address for literal pool */
49 int exit_ip; /* Address of exit */
50 int r1_thunk_ip; /* Address of expoline thunk for 'br %r1' */
51 int r14_thunk_ip; /* Address of expoline thunk for 'br %r14' */
52 int tail_call_start; /* Tail call start offset */
53 int excnt; /* Number of exception table entries */
54 int prologue_plt_ret; /* Return address for prologue hotpatch PLT */
55 int prologue_plt; /* Start of prologue hotpatch PLT */
58 #define SEEN_MEM BIT(0) /* use mem[] for temporary storage */
59 #define SEEN_LITERAL BIT(1) /* code uses literals */
60 #define SEEN_FUNC BIT(2) /* calls C functions */
61 #define SEEN_STACK (SEEN_FUNC | SEEN_MEM)
66 #define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
67 #define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
68 #define REG_L (MAX_BPF_JIT_REG + 2) /* Literal pool register */
69 #define REG_15 (MAX_BPF_JIT_REG + 3) /* Register 15 */
70 #define REG_0 REG_W0 /* Register 0 */
71 #define REG_1 REG_W1 /* Register 1 */
72 #define REG_2 BPF_REG_1 /* Register 2 */
73 #define REG_3 BPF_REG_2 /* Register 3 */
74 #define REG_4 BPF_REG_3 /* Register 4 */
75 #define REG_7 BPF_REG_6 /* Register 7 */
76 #define REG_8 BPF_REG_7 /* Register 8 */
77 #define REG_14 BPF_REG_0 /* Register 14 */
80 * Mapping of BPF registers to s390 registers
82 static const int reg2hex[] = {
85 /* Function parameters */
91 /* Call saved registers */
96 /* BPF stack pointer */
98 /* Register for blinding */
100 /* Work registers for s390x backend */
107 static inline u32 reg(u32 dst_reg, u32 src_reg)
109 return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
112 static inline u32 reg_high(u32 reg)
114 return reg2hex[reg] << 4;
117 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
119 u32 r1 = reg2hex[b1];
121 if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
122 jit->seen_reg[r1] = 1;
125 #define REG_SET_SEEN(b1) \
127 reg_set_seen(jit, b1); \
130 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
133 * EMIT macros for code generation
139 *(u16 *) (jit->prg_buf + jit->prg) = (op); \
143 #define EMIT2(op, b1, b2) \
145 _EMIT2((op) | reg(b1, b2)); \
153 *(u32 *) (jit->prg_buf + jit->prg) = (op); \
157 #define EMIT4(op, b1, b2) \
159 _EMIT4((op) | reg(b1, b2)); \
164 #define EMIT4_RRF(op, b1, b2, b3) \
166 _EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2)); \
172 #define _EMIT4_DISP(op, disp) \
174 unsigned int __disp = (disp) & 0xfff; \
175 _EMIT4((op) | __disp); \
178 #define EMIT4_DISP(op, b1, b2, disp) \
180 _EMIT4_DISP((op) | reg_high(b1) << 16 | \
181 reg_high(b2) << 8, (disp)); \
186 #define EMIT4_IMM(op, b1, imm) \
188 unsigned int __imm = (imm) & 0xffff; \
189 _EMIT4((op) | reg_high(b1) << 16 | __imm); \
193 #define EMIT4_PCREL(op, pcrel) \
195 long __pcrel = ((pcrel) >> 1) & 0xffff; \
196 _EMIT4((op) | __pcrel); \
199 #define EMIT4_PCREL_RIC(op, mask, target) \
201 int __rel = ((target) - jit->prg) / 2; \
202 _EMIT4((op) | (mask) << 20 | (__rel & 0xffff)); \
205 #define _EMIT6(op1, op2) \
207 if (jit->prg_buf) { \
208 *(u32 *) (jit->prg_buf + jit->prg) = (op1); \
209 *(u16 *) (jit->prg_buf + jit->prg + 4) = (op2); \
214 #define _EMIT6_DISP(op1, op2, disp) \
216 unsigned int __disp = (disp) & 0xfff; \
217 _EMIT6((op1) | __disp, op2); \
220 #define _EMIT6_DISP_LH(op1, op2, disp) \
222 u32 _disp = (u32) (disp); \
223 unsigned int __disp_h = _disp & 0xff000; \
224 unsigned int __disp_l = _disp & 0x00fff; \
225 _EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4); \
228 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
230 _EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 | \
231 reg_high(b3) << 8, op2, disp); \
237 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target) \
239 unsigned int rel = (int)((target) - jit->prg) / 2; \
240 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), \
241 (op2) | (mask) << 12); \
246 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target) \
248 unsigned int rel = (int)((target) - jit->prg) / 2; \
249 _EMIT6((op1) | (reg_high(b1) | (mask)) << 16 | \
250 (rel & 0xffff), (op2) | ((imm) & 0xff) << 8); \
252 BUILD_BUG_ON(((unsigned long) (imm)) > 0xff); \
255 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
257 int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2; \
258 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
263 #define EMIT6_PCREL_RILB(op, b, target) \
265 unsigned int rel = (int)((target) - jit->prg) / 2; \
266 _EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
270 #define EMIT6_PCREL_RIL(op, target) \
272 unsigned int rel = (int)((target) - jit->prg) / 2; \
273 _EMIT6((op) | rel >> 16, rel & 0xffff); \
276 #define EMIT6_PCREL_RILC(op, mask, target) \
278 EMIT6_PCREL_RIL((op) | (mask) << 20, (target)); \
281 #define _EMIT6_IMM(op, imm) \
283 unsigned int __imm = (imm); \
284 _EMIT6((op) | (__imm >> 16), __imm & 0xffff); \
287 #define EMIT6_IMM(op, b1, imm) \
289 _EMIT6_IMM((op) | reg_high(b1) << 16, imm); \
293 #define _EMIT_CONST_U32(val) \
298 *(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
303 #define EMIT_CONST_U32(val) \
305 jit->seen |= SEEN_LITERAL; \
306 _EMIT_CONST_U32(val) - jit->base_ip; \
309 #define _EMIT_CONST_U64(val) \
314 *(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
319 #define EMIT_CONST_U64(val) \
321 jit->seen |= SEEN_LITERAL; \
322 _EMIT_CONST_U64(val) - jit->base_ip; \
325 #define EMIT_ZERO(b1) \
327 if (!fp->aux->verifier_zext) { \
328 /* llgfr %dst,%dst (zero extend to 64 bit) */ \
329 EMIT4(0xb9160000, b1, b1); \
335 * Return whether this is the first pass. The first pass is special, since we
336 * don't know any sizes yet, and thus must be conservative.
338 static bool is_first_pass(struct bpf_jit *jit)
340 return jit->size == 0;
344 * Return whether this is the code generation pass. The code generation pass is
345 * special, since we should change as little as possible.
347 static bool is_codegen_pass(struct bpf_jit *jit)
353 * Return whether "rel" can be encoded as a short PC-relative offset
355 static bool is_valid_rel(int rel)
357 return rel >= -65536 && rel <= 65534;
361 * Return whether "off" can be reached using a short PC-relative offset
363 static bool can_use_rel(struct bpf_jit *jit, int off)
365 return is_valid_rel(off - jit->prg);
369 * Return whether given displacement can be encoded using
370 * Long-Displacement Facility
372 static bool is_valid_ldisp(int disp)
374 return disp >= -524288 && disp <= 524287;
378 * Return whether the next 32-bit literal pool entry can be referenced using
379 * Long-Displacement Facility
381 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
383 return is_valid_ldisp(jit->lit32 - jit->base_ip);
387 * Return whether the next 64-bit literal pool entry can be referenced using
388 * Long-Displacement Facility
390 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
392 return is_valid_ldisp(jit->lit64 - jit->base_ip);
396 * Fill whole space with illegal instructions
398 static void jit_fill_hole(void *area, unsigned int size)
400 memset(area, 0, size);
404 * Save registers from "rs" (register start) to "re" (register end) on stack
406 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
408 u32 off = STK_OFF_R6 + (rs - 6) * 8;
411 /* stg %rs,off(%r15) */
412 _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
414 /* stmg %rs,%re,off(%r15) */
415 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
419 * Restore registers from "rs" (register start) to "re" (register end) on stack
421 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
423 u32 off = STK_OFF_R6 + (rs - 6) * 8;
425 if (jit->seen & SEEN_STACK)
426 off += STK_OFF + stack_depth;
429 /* lg %rs,off(%r15) */
430 _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
432 /* lmg %rs,%re,off(%r15) */
433 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
437 * Return first seen register (from start)
439 static int get_start(struct bpf_jit *jit, int start)
443 for (i = start; i <= 15; i++) {
444 if (jit->seen_reg[i])
451 * Return last seen register (from start) (gap >= 2)
453 static int get_end(struct bpf_jit *jit, int start)
457 for (i = start; i < 15; i++) {
458 if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
461 return jit->seen_reg[15] ? 15 : 14;
465 #define REGS_RESTORE 0
467 * Save and restore clobbered registers (6-15) on stack.
468 * We save/restore registers in chunks with gap >= 2 registers.
470 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
472 const int last = 15, save_restore_size = 6;
475 if (is_first_pass(jit)) {
477 * We don't know yet which registers are used. Reserve space
480 jit->prg += (last - re + 1) * save_restore_size;
485 rs = get_start(jit, re);
488 re = get_end(jit, rs + 1);
490 save_regs(jit, rs, re);
492 restore_regs(jit, rs, re, stack_depth);
494 } while (re <= last);
497 static void bpf_skip(struct bpf_jit *jit, int size)
499 if (size >= 6 && !is_valid_rel(size)) {
501 EMIT6_PCREL_RIL(0xc0f4000000, size);
503 } else if (size >= 4 && is_valid_rel(size)) {
505 EMIT4_PCREL(0xa7f40000, size);
516 * PLT for hotpatchable calls. The calling convention is the same as for the
517 * ftrace hotpatch trampolines: %r0 is return address, %r1 is clobbered.
519 extern const char bpf_plt[];
520 extern const char bpf_plt_ret[];
521 extern const char bpf_plt_target[];
522 extern const char bpf_plt_end[];
523 #define BPF_PLT_SIZE 32
525 ".pushsection .rodata\n"
528 " lgrl %r0,bpf_plt_ret\n"
529 " lgrl %r1,bpf_plt_target\n"
532 "bpf_plt_ret: .quad 0\n"
533 "bpf_plt_target: .quad 0\n"
538 static void bpf_jit_plt(void *plt, void *ret, void *target)
540 memcpy(plt, bpf_plt, BPF_PLT_SIZE);
541 *(void **)((char *)plt + (bpf_plt_ret - bpf_plt)) = ret;
542 *(void **)((char *)plt + (bpf_plt_target - bpf_plt)) = target ?: ret;
546 * Emit function prologue
548 * Save registers and create stack frame if necessary.
549 * See stack frame layout description in "bpf_jit.h"!
551 static void bpf_jit_prologue(struct bpf_jit *jit, struct bpf_prog *fp,
554 /* No-op for hotpatching */
555 /* brcl 0,prologue_plt */
556 EMIT6_PCREL_RILC(0xc0040000, 0, jit->prologue_plt);
557 jit->prologue_plt_ret = jit->prg;
559 if (!bpf_is_subprog(fp)) {
560 /* Initialize the tail call counter in the main program. */
561 /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
562 _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
565 * Skip the tail call counter initialization in subprograms.
566 * Insert nops in order to have tail_call_start at a
567 * predictable offset.
571 /* Tail calls have to skip above initialization */
572 jit->tail_call_start = jit->prg;
574 save_restore_regs(jit, REGS_SAVE, stack_depth);
575 /* Setup literal pool */
576 if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
577 if (!is_first_pass(jit) &&
578 is_valid_ldisp(jit->size - (jit->prg + 2))) {
580 EMIT2(0x0d00, REG_L, REG_0);
581 jit->base_ip = jit->prg;
583 /* larl %l,lit32_start */
584 EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
585 jit->base_ip = jit->lit32_start;
588 /* Setup stack and backchain */
589 if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
590 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
591 /* lgr %w1,%r15 (backchain) */
592 EMIT4(0xb9040000, REG_W1, REG_15);
593 /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
594 EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
595 /* aghi %r15,-STK_OFF */
596 EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
597 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
598 /* stg %w1,152(%r15) (backchain) */
599 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
605 * Emit an expoline for a jump that follows
607 static void emit_expoline(struct bpf_jit *jit)
610 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
612 EMIT4_PCREL(0xa7f40000, 0);
616 * Emit __s390_indirect_jump_r1 thunk if necessary
618 static void emit_r1_thunk(struct bpf_jit *jit)
620 if (nospec_uses_trampoline()) {
621 jit->r1_thunk_ip = jit->prg;
629 * Call r1 either directly or via __s390_indirect_jump_r1 thunk
631 static void call_r1(struct bpf_jit *jit)
633 if (nospec_uses_trampoline())
634 /* brasl %r14,__s390_indirect_jump_r1 */
635 EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
638 EMIT2(0x0d00, REG_14, REG_1);
644 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
646 jit->exit_ip = jit->prg;
647 /* Load exit code: lgr %r2,%b0 */
648 EMIT4(0xb9040000, REG_2, BPF_REG_0);
649 /* Restore registers */
650 save_restore_regs(jit, REGS_RESTORE, stack_depth);
651 if (nospec_uses_trampoline()) {
652 jit->r14_thunk_ip = jit->prg;
653 /* Generate __s390_indirect_jump_r14 thunk */
659 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
662 jit->prg = ALIGN(jit->prg, 8);
663 jit->prologue_plt = jit->prg;
665 bpf_jit_plt(jit->prg_buf + jit->prg,
666 jit->prg_buf + jit->prologue_plt_ret, NULL);
667 jit->prg += BPF_PLT_SIZE;
670 static int get_probe_mem_regno(const u8 *insn)
673 * insn must point to llgc, llgh, llgf, lg, lgb, lgh or lgf, which have
674 * destination register at the same position.
676 if (insn[0] != 0xe3) /* common prefix */
678 if (insn[5] != 0x90 && /* llgc */
679 insn[5] != 0x91 && /* llgh */
680 insn[5] != 0x16 && /* llgf */
681 insn[5] != 0x04 && /* lg */
682 insn[5] != 0x77 && /* lgb */
683 insn[5] != 0x15 && /* lgh */
684 insn[5] != 0x14) /* lgf */
689 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
691 regs->psw.addr = extable_fixup(x);
692 regs->gprs[x->data] = 0;
696 static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
697 int probe_prg, int nop_prg)
699 struct exception_table_entry *ex;
705 if (!fp->aux->extable)
706 /* Do nothing during early JIT passes. */
708 insn = jit->prg_buf + probe_prg;
709 reg = get_probe_mem_regno(insn);
710 if (WARN_ON_ONCE(reg < 0))
711 /* JIT bug - unexpected probe instruction. */
713 if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
714 /* JIT bug - gap between probe and nop instructions. */
716 for (i = 0; i < 2; i++) {
717 if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
718 /* Verifier bug - not enough entries. */
720 ex = &fp->aux->extable[jit->excnt];
721 /* Add extable entries for probe and nop instructions. */
722 prg = i == 0 ? probe_prg : nop_prg;
723 delta = jit->prg_buf + prg - (u8 *)&ex->insn;
724 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
725 /* JIT bug - code and extable must be close. */
729 * Always land on the nop. Note that extable infrastructure
730 * ignores fixup field, it is handled by ex_handler_bpf().
732 delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
733 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
734 /* JIT bug - landing pad and extable must be close. */
737 ex->type = EX_TYPE_BPF;
745 * Sign-extend the register if necessary
747 static int sign_extend(struct bpf_jit *jit, int r, u8 size, u8 flags)
749 if (!(flags & BTF_FMODEL_SIGNED_ARG))
755 EMIT4(0xb9060000, r, r);
759 EMIT4(0xb9070000, r, r);
763 EMIT4(0xb9140000, r, r);
773 * Compile one eBPF instruction into s390x code
775 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
776 * stack space for the large switch statement.
778 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
779 int i, bool extra_pass, u32 stack_depth)
781 struct bpf_insn *insn = &fp->insnsi[i];
782 s32 branch_oc_off = insn->off;
783 u32 dst_reg = insn->dst_reg;
784 u32 src_reg = insn->src_reg;
785 int last, insn_count = 1;
786 u32 *addrs = jit->addrs;
794 if (BPF_CLASS(insn->code) == BPF_LDX &&
795 (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
796 BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
797 probe_prg = jit->prg;
799 switch (insn->code) {
803 case BPF_ALU | BPF_MOV | BPF_X:
805 case 0: /* DST = (u32) SRC */
806 /* llgfr %dst,%src */
807 EMIT4(0xb9160000, dst_reg, src_reg);
808 if (insn_is_zext(&insn[1]))
811 case 8: /* DST = (u32)(s8) SRC */
813 EMIT4(0xb9260000, dst_reg, src_reg);
814 /* llgfr %dst,%dst */
815 EMIT4(0xb9160000, dst_reg, dst_reg);
817 case 16: /* DST = (u32)(s16) SRC */
819 EMIT4(0xb9270000, dst_reg, src_reg);
820 /* llgfr %dst,%dst */
821 EMIT4(0xb9160000, dst_reg, dst_reg);
825 case BPF_ALU64 | BPF_MOV | BPF_X:
827 case 0: /* DST = SRC */
829 EMIT4(0xb9040000, dst_reg, src_reg);
831 case 8: /* DST = (s8) SRC */
833 EMIT4(0xb9060000, dst_reg, src_reg);
835 case 16: /* DST = (s16) SRC */
837 EMIT4(0xb9070000, dst_reg, src_reg);
839 case 32: /* DST = (s32) SRC */
841 EMIT4(0xb9140000, dst_reg, src_reg);
845 case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
847 EMIT6_IMM(0xc00f0000, dst_reg, imm);
848 if (insn_is_zext(&insn[1]))
851 case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
853 EMIT6_IMM(0xc0010000, dst_reg, imm);
858 case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
860 /* 16 byte instruction that uses two 'struct bpf_insn' */
863 imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
865 EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
872 case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
874 EMIT2(0x1a00, dst_reg, src_reg);
877 case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
879 EMIT4(0xb9080000, dst_reg, src_reg);
881 case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
884 EMIT6_IMM(0xc20b0000, dst_reg, imm);
888 case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
892 EMIT6_IMM(0xc2080000, dst_reg, imm);
897 case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
899 EMIT2(0x1b00, dst_reg, src_reg);
902 case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
904 EMIT4(0xb9090000, dst_reg, src_reg);
906 case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
909 EMIT6_IMM(0xc20b0000, dst_reg, -imm);
913 case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
916 if (imm == -0x80000000) {
917 /* algfi %dst,0x80000000 */
918 EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
921 EMIT6_IMM(0xc2080000, dst_reg, -imm);
927 case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
929 EMIT4(0xb2520000, dst_reg, src_reg);
932 case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
934 EMIT4(0xb90c0000, dst_reg, src_reg);
936 case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
939 EMIT6_IMM(0xc2010000, dst_reg, imm);
943 case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
947 EMIT6_IMM(0xc2000000, dst_reg, imm);
952 case BPF_ALU | BPF_DIV | BPF_X:
953 case BPF_ALU | BPF_MOD | BPF_X:
955 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
958 case 0: /* dst = (u32) dst {/,%} (u32) src */
960 EMIT2(0x1700, REG_W0, REG_W0);
962 EMIT2(0x1800, REG_W1, dst_reg);
964 EMIT4(0xb9970000, REG_W0, src_reg);
966 case 1: /* dst = (u32) ((s32) dst {/,%} (s32) src) */
968 EMIT4(0xb9140000, REG_W1, dst_reg);
970 EMIT4(0xb91d0000, REG_W0, src_reg);
974 EMIT4(0xb9160000, dst_reg, rc_reg);
975 if (insn_is_zext(&insn[1]))
979 case BPF_ALU64 | BPF_DIV | BPF_X:
980 case BPF_ALU64 | BPF_MOD | BPF_X:
982 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
985 case 0: /* dst = dst {/,%} src */
987 EMIT4_IMM(0xa7090000, REG_W0, 0);
989 EMIT4(0xb9040000, REG_W1, dst_reg);
991 EMIT4(0xb9870000, REG_W0, src_reg);
993 case 1: /* dst = (s64) dst {/,%} (s64) src */
995 EMIT4(0xb9040000, REG_W1, dst_reg);
997 EMIT4(0xb90d0000, REG_W0, src_reg);
1001 EMIT4(0xb9040000, dst_reg, rc_reg);
1004 case BPF_ALU | BPF_DIV | BPF_K:
1005 case BPF_ALU | BPF_MOD | BPF_K:
1007 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1010 if (BPF_OP(insn->code) == BPF_MOD)
1012 EMIT4_IMM(0xa7090000, dst_reg, 0);
1017 if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
1019 case 0: /* dst = (u32) dst {/,%} (u32) imm */
1021 EMIT2(0x1700, REG_W0, REG_W0);
1023 EMIT2(0x1800, REG_W1, dst_reg);
1024 /* dl %w0,<d(imm)>(%l) */
1025 EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0,
1026 REG_L, EMIT_CONST_U32(imm));
1028 case 1: /* dst = (s32) dst {/,%} (s32) imm */
1030 EMIT4(0xb9140000, REG_W1, dst_reg);
1031 /* dsgf %r0,<d(imm)>(%l) */
1032 EMIT6_DISP_LH(0xe3000000, 0x001d, REG_W0, REG_0,
1033 REG_L, EMIT_CONST_U32(imm));
1038 case 0: /* dst = (u32) dst {/,%} (u32) imm */
1040 EMIT2(0x1700, REG_W0, REG_W0);
1042 EMIT2(0x1800, REG_W1, dst_reg);
1044 EMIT6_PCREL_RILB(0xc40d0000, dst_reg,
1045 _EMIT_CONST_U32(imm));
1046 jit->seen |= SEEN_LITERAL;
1048 EMIT4(0xb9970000, REG_W0, dst_reg);
1050 case 1: /* dst = (s32) dst {/,%} (s32) imm */
1052 EMIT4(0xb9140000, REG_W1, dst_reg);
1053 /* lgfrl %dst,imm */
1054 EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
1055 _EMIT_CONST_U32(imm));
1056 jit->seen |= SEEN_LITERAL;
1058 EMIT4(0xb90d0000, REG_W0, dst_reg);
1062 /* llgfr %dst,%rc */
1063 EMIT4(0xb9160000, dst_reg, rc_reg);
1064 if (insn_is_zext(&insn[1]))
1068 case BPF_ALU64 | BPF_DIV | BPF_K:
1069 case BPF_ALU64 | BPF_MOD | BPF_K:
1071 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1074 if (BPF_OP(insn->code) == BPF_MOD)
1076 EMIT4_IMM(0xa7090000, dst_reg, 0);
1079 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1081 case 0: /* dst = dst {/,%} imm */
1083 EMIT4_IMM(0xa7090000, REG_W0, 0);
1085 EMIT4(0xb9040000, REG_W1, dst_reg);
1086 /* dlg %w0,<d(imm)>(%l) */
1087 EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0,
1088 REG_L, EMIT_CONST_U64(imm));
1090 case 1: /* dst = (s64) dst {/,%} (s64) imm */
1092 EMIT4(0xb9040000, REG_W1, dst_reg);
1093 /* dsg %w0,<d(imm)>(%l) */
1094 EMIT6_DISP_LH(0xe3000000, 0x000d, REG_W0, REG_0,
1095 REG_L, EMIT_CONST_U64(imm));
1100 case 0: /* dst = dst {/,%} imm */
1102 EMIT4_IMM(0xa7090000, REG_W0, 0);
1104 EMIT4(0xb9040000, REG_W1, dst_reg);
1106 EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1107 _EMIT_CONST_U64(imm));
1108 jit->seen |= SEEN_LITERAL;
1110 EMIT4(0xb9870000, REG_W0, dst_reg);
1112 case 1: /* dst = (s64) dst {/,%} (s64) imm */
1114 EMIT4(0xb9040000, REG_W1, dst_reg);
1116 EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1117 _EMIT_CONST_U64(imm));
1118 jit->seen |= SEEN_LITERAL;
1120 EMIT4(0xb90d0000, REG_W0, dst_reg);
1125 EMIT4(0xb9040000, dst_reg, rc_reg);
1131 case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
1133 EMIT2(0x1400, dst_reg, src_reg);
1136 case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
1138 EMIT4(0xb9800000, dst_reg, src_reg);
1140 case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
1142 EMIT6_IMM(0xc00b0000, dst_reg, imm);
1145 case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
1146 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1147 /* ng %dst,<d(imm)>(%l) */
1148 EMIT6_DISP_LH(0xe3000000, 0x0080,
1149 dst_reg, REG_0, REG_L,
1150 EMIT_CONST_U64(imm));
1153 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1154 _EMIT_CONST_U64(imm));
1155 jit->seen |= SEEN_LITERAL;
1157 EMIT4(0xb9800000, dst_reg, REG_W0);
1163 case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
1165 EMIT2(0x1600, dst_reg, src_reg);
1168 case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
1170 EMIT4(0xb9810000, dst_reg, src_reg);
1172 case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
1174 EMIT6_IMM(0xc00d0000, dst_reg, imm);
1177 case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
1178 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1179 /* og %dst,<d(imm)>(%l) */
1180 EMIT6_DISP_LH(0xe3000000, 0x0081,
1181 dst_reg, REG_0, REG_L,
1182 EMIT_CONST_U64(imm));
1185 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1186 _EMIT_CONST_U64(imm));
1187 jit->seen |= SEEN_LITERAL;
1189 EMIT4(0xb9810000, dst_reg, REG_W0);
1195 case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
1197 EMIT2(0x1700, dst_reg, src_reg);
1200 case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1202 EMIT4(0xb9820000, dst_reg, src_reg);
1204 case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1207 EMIT6_IMM(0xc0070000, dst_reg, imm);
1211 case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1212 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1213 /* xg %dst,<d(imm)>(%l) */
1214 EMIT6_DISP_LH(0xe3000000, 0x0082,
1215 dst_reg, REG_0, REG_L,
1216 EMIT_CONST_U64(imm));
1219 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1220 _EMIT_CONST_U64(imm));
1221 jit->seen |= SEEN_LITERAL;
1223 EMIT4(0xb9820000, dst_reg, REG_W0);
1229 case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1230 /* sll %dst,0(%src) */
1231 EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1234 case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1235 /* sllg %dst,%dst,0(%src) */
1236 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1238 case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1240 /* sll %dst,imm(%r0) */
1241 EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1245 case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1248 /* sllg %dst,%dst,imm(%r0) */
1249 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1254 case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1255 /* srl %dst,0(%src) */
1256 EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1259 case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1260 /* srlg %dst,%dst,0(%src) */
1261 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1263 case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1265 /* srl %dst,imm(%r0) */
1266 EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1270 case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1273 /* srlg %dst,%dst,imm(%r0) */
1274 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1279 case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1280 /* sra %dst,%dst,0(%src) */
1281 EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1284 case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1285 /* srag %dst,%dst,0(%src) */
1286 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1288 case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1290 /* sra %dst,imm(%r0) */
1291 EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1295 case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1298 /* srag %dst,%dst,imm(%r0) */
1299 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1304 case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1306 EMIT2(0x1300, dst_reg, dst_reg);
1309 case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1310 /* lcgr %dst,%dst */
1311 EMIT4(0xb9030000, dst_reg, dst_reg);
1316 case BPF_ALU | BPF_END | BPF_FROM_BE:
1317 /* s390 is big endian, therefore only clear high order bytes */
1319 case 16: /* dst = (u16) cpu_to_be16(dst) */
1320 /* llghr %dst,%dst */
1321 EMIT4(0xb9850000, dst_reg, dst_reg);
1322 if (insn_is_zext(&insn[1]))
1325 case 32: /* dst = (u32) cpu_to_be32(dst) */
1326 if (!fp->aux->verifier_zext)
1327 /* llgfr %dst,%dst */
1328 EMIT4(0xb9160000, dst_reg, dst_reg);
1330 case 64: /* dst = (u64) cpu_to_be64(dst) */
1334 case BPF_ALU | BPF_END | BPF_FROM_LE:
1335 case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1337 case 16: /* dst = (u16) cpu_to_le16(dst) */
1338 /* lrvr %dst,%dst */
1339 EMIT4(0xb91f0000, dst_reg, dst_reg);
1340 /* srl %dst,16(%r0) */
1341 EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1342 /* llghr %dst,%dst */
1343 EMIT4(0xb9850000, dst_reg, dst_reg);
1344 if (insn_is_zext(&insn[1]))
1347 case 32: /* dst = (u32) cpu_to_le32(dst) */
1348 /* lrvr %dst,%dst */
1349 EMIT4(0xb91f0000, dst_reg, dst_reg);
1350 if (!fp->aux->verifier_zext)
1351 /* llgfr %dst,%dst */
1352 EMIT4(0xb9160000, dst_reg, dst_reg);
1354 case 64: /* dst = (u64) cpu_to_le64(dst) */
1355 /* lrvgr %dst,%dst */
1356 EMIT4(0xb90f0000, dst_reg, dst_reg);
1361 * BPF_NOSPEC (speculation barrier)
1363 case BPF_ST | BPF_NOSPEC:
1368 case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1369 /* stcy %src,off(%dst) */
1370 EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1371 jit->seen |= SEEN_MEM;
1373 case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1374 /* sthy %src,off(%dst) */
1375 EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1376 jit->seen |= SEEN_MEM;
1378 case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1379 /* sty %src,off(%dst) */
1380 EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1381 jit->seen |= SEEN_MEM;
1383 case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1384 /* stg %src,off(%dst) */
1385 EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1386 jit->seen |= SEEN_MEM;
1388 case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1390 EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1391 /* stcy %w0,off(dst) */
1392 EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1393 jit->seen |= SEEN_MEM;
1395 case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1397 EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1398 /* sthy %w0,off(dst) */
1399 EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1400 jit->seen |= SEEN_MEM;
1402 case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1404 EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1405 /* sty %w0,off(%dst) */
1406 EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1407 jit->seen |= SEEN_MEM;
1409 case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1411 EMIT6_IMM(0xc0010000, REG_W0, imm);
1412 /* stg %w0,off(%dst) */
1413 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1414 jit->seen |= SEEN_MEM;
1419 case BPF_STX | BPF_ATOMIC | BPF_DW:
1420 case BPF_STX | BPF_ATOMIC | BPF_W:
1422 bool is32 = BPF_SIZE(insn->code) == BPF_W;
1424 switch (insn->imm) {
1425 /* {op32|op64} {%w0|%src},%src,off(%dst) */
1426 #define EMIT_ATOMIC(op32, op64) do { \
1427 EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64), \
1428 (insn->imm & BPF_FETCH) ? src_reg : REG_W0, \
1429 src_reg, dst_reg, off); \
1430 if (is32 && (insn->imm & BPF_FETCH)) \
1431 EMIT_ZERO(src_reg); \
1434 case BPF_ADD | BPF_FETCH:
1436 EMIT_ATOMIC(0x00fa, 0x00ea);
1439 case BPF_AND | BPF_FETCH:
1441 EMIT_ATOMIC(0x00f4, 0x00e4);
1444 case BPF_OR | BPF_FETCH:
1446 EMIT_ATOMIC(0x00f6, 0x00e6);
1449 case BPF_XOR | BPF_FETCH:
1451 EMIT_ATOMIC(0x00f7, 0x00e7);
1455 /* {ly|lg} %w0,off(%dst) */
1456 EMIT6_DISP_LH(0xe3000000,
1457 is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1459 /* 0: {csy|csg} %w0,%src,off(%dst) */
1460 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1461 REG_W0, src_reg, dst_reg, off);
1463 EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6);
1464 /* {llgfr|lgr} %src,%w0 */
1465 EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1466 if (is32 && insn_is_zext(&insn[1]))
1470 /* 0: {csy|csg} %b0,%src,off(%dst) */
1471 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1472 BPF_REG_0, src_reg, dst_reg, off);
1475 pr_err("Unknown atomic operation %02x\n", insn->imm);
1479 jit->seen |= SEEN_MEM;
1485 case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1486 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1487 /* llgc %dst,0(off,%src) */
1488 EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1489 jit->seen |= SEEN_MEM;
1490 if (insn_is_zext(&insn[1]))
1493 case BPF_LDX | BPF_MEMSX | BPF_B: /* dst = *(s8 *)(ul) (src + off) */
1494 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1495 /* lgb %dst,0(off,%src) */
1496 EMIT6_DISP_LH(0xe3000000, 0x0077, dst_reg, src_reg, REG_0, off);
1497 jit->seen |= SEEN_MEM;
1499 case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1500 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1501 /* llgh %dst,0(off,%src) */
1502 EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1503 jit->seen |= SEEN_MEM;
1504 if (insn_is_zext(&insn[1]))
1507 case BPF_LDX | BPF_MEMSX | BPF_H: /* dst = *(s16 *)(ul) (src + off) */
1508 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1509 /* lgh %dst,0(off,%src) */
1510 EMIT6_DISP_LH(0xe3000000, 0x0015, dst_reg, src_reg, REG_0, off);
1511 jit->seen |= SEEN_MEM;
1513 case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1514 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1515 /* llgf %dst,off(%src) */
1516 jit->seen |= SEEN_MEM;
1517 EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1518 if (insn_is_zext(&insn[1]))
1521 case BPF_LDX | BPF_MEMSX | BPF_W: /* dst = *(s32 *)(ul) (src + off) */
1522 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1523 /* lgf %dst,off(%src) */
1524 jit->seen |= SEEN_MEM;
1525 EMIT6_DISP_LH(0xe3000000, 0x0014, dst_reg, src_reg, REG_0, off);
1527 case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1528 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1529 /* lg %dst,0(off,%src) */
1530 jit->seen |= SEEN_MEM;
1531 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1536 case BPF_JMP | BPF_CALL:
1538 const struct btf_func_model *m;
1539 bool func_addr_fixed;
1543 ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1544 &func, &func_addr_fixed);
1548 REG_SET_SEEN(BPF_REG_5);
1549 jit->seen |= SEEN_FUNC;
1551 * Copy the tail call counter to where the callee expects it.
1553 * Note 1: The callee can increment the tail call counter, but
1554 * we do not load it back, since the x86 JIT does not do this
1557 * Note 2: We assume that the verifier does not let us call the
1558 * main program, which clears the tail call counter on entry.
1560 /* mvc STK_OFF_TCCNT(4,%r15),N(%r15) */
1561 _EMIT6(0xd203f000 | STK_OFF_TCCNT,
1562 0xf000 | (STK_OFF_TCCNT + STK_OFF + stack_depth));
1564 /* Sign-extend the kfunc arguments. */
1565 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1566 m = bpf_jit_find_kfunc_model(fp, insn);
1570 for (j = 0; j < m->nr_args; j++) {
1571 if (sign_extend(jit, BPF_REG_1 + j,
1579 EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1582 /* lgr %b0,%r2: load return value into %b0 */
1583 EMIT4(0xb9040000, BPF_REG_0, REG_2);
1586 case BPF_JMP | BPF_TAIL_CALL: {
1587 int patch_1_clrj, patch_2_clij, patch_3_brc;
1591 * B1: pointer to ctx
1592 * B2: pointer to bpf_array
1593 * B3: index in bpf_array
1595 * if (index >= array->map.max_entries)
1599 /* llgf %w1,map.max_entries(%b2) */
1600 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1601 offsetof(struct bpf_array, map.max_entries));
1602 /* if ((u32)%b3 >= (u32)%w1) goto out; */
1603 /* clrj %b3,%w1,0xa,out */
1604 patch_1_clrj = jit->prg;
1605 EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1609 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1613 if (jit->seen & SEEN_STACK)
1614 off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1616 off = STK_OFF_TCCNT;
1618 EMIT4_IMM(0xa7080000, REG_W0, 1);
1619 /* laal %w1,%w0,off(%r15) */
1620 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1621 /* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1622 patch_2_clij = jit->prg;
1623 EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1627 * prog = array->ptrs[index];
1632 /* llgfr %r1,%b3: %r1 = (u32) index */
1633 EMIT4(0xb9160000, REG_1, BPF_REG_3);
1634 /* sllg %r1,%r1,3: %r1 *= 8 */
1635 EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1636 /* ltg %r1,prog(%b2,%r1) */
1637 EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1638 REG_1, offsetof(struct bpf_array, ptrs));
1640 patch_3_brc = jit->prg;
1641 EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1644 * Restore registers before calling function
1646 save_restore_regs(jit, REGS_RESTORE, stack_depth);
1649 * goto *(prog->bpf_func + tail_call_start);
1652 /* lg %r1,bpf_func(%r1) */
1653 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1654 offsetof(struct bpf_prog, bpf_func));
1655 if (nospec_uses_trampoline()) {
1656 jit->seen |= SEEN_FUNC;
1657 /* aghi %r1,tail_call_start */
1658 EMIT4_IMM(0xa70b0000, REG_1, jit->tail_call_start);
1659 /* brcl 0xf,__s390_indirect_jump_r1 */
1660 EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->r1_thunk_ip);
1662 /* bc 0xf,tail_call_start(%r1) */
1663 _EMIT4(0x47f01000 + jit->tail_call_start);
1667 *(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1668 (jit->prg - patch_1_clrj) >> 1;
1669 *(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1670 (jit->prg - patch_2_clij) >> 1;
1671 *(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1672 (jit->prg - patch_3_brc) >> 1;
1676 case BPF_JMP | BPF_EXIT: /* return b0 */
1677 last = (i == fp->len - 1) ? 1 : 0;
1680 if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1681 /* brc 0xf, <exit> */
1682 EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1684 /* brcl 0xf, <exit> */
1685 EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1688 * Branch relative (number of skipped instructions) to offset on
1691 * Condition code to mask mapping:
1693 * CC | Description | Mask
1694 * ------------------------------
1695 * 0 | Operands equal | 8
1696 * 1 | First operand low | 4
1697 * 2 | First operand high | 2
1700 * For s390x relative branches: ip = ip + off_bytes
1701 * For BPF relative branches: insn = insn + off_insns + 1
1703 * For example for s390x with offset 0 we jump to the branch
1704 * instruction itself (loop) and for BPF with offset 0 we
1705 * branch to the instruction behind the branch.
1707 case BPF_JMP32 | BPF_JA: /* if (true) */
1708 branch_oc_off = imm;
1710 case BPF_JMP | BPF_JA: /* if (true) */
1711 mask = 0xf000; /* j */
1713 case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1714 case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1715 mask = 0x2000; /* jh */
1717 case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1718 case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1719 mask = 0x4000; /* jl */
1721 case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1722 case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1723 mask = 0xa000; /* jhe */
1725 case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1726 case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1727 mask = 0xc000; /* jle */
1729 case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1730 case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1731 mask = 0x2000; /* jh */
1733 case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1734 case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1735 mask = 0x4000; /* jl */
1737 case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1738 case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1739 mask = 0xa000; /* jhe */
1741 case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1742 case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1743 mask = 0xc000; /* jle */
1745 case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1746 case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1747 mask = 0x7000; /* jne */
1749 case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1750 case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1751 mask = 0x8000; /* je */
1753 case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1754 case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1755 mask = 0x7000; /* jnz */
1756 if (BPF_CLASS(insn->code) == BPF_JMP32) {
1757 /* llilf %w1,imm (load zero extend imm) */
1758 EMIT6_IMM(0xc00f0000, REG_W1, imm);
1760 EMIT2(0x1400, REG_W1, dst_reg);
1762 /* lgfi %w1,imm (load sign extend imm) */
1763 EMIT6_IMM(0xc0010000, REG_W1, imm);
1765 EMIT4(0xb9800000, REG_W1, dst_reg);
1769 case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1770 case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1771 mask = 0x2000; /* jh */
1773 case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1774 case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1775 mask = 0x4000; /* jl */
1777 case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1778 case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1779 mask = 0xa000; /* jhe */
1781 case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1782 case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1783 mask = 0xc000; /* jle */
1785 case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1786 case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1787 mask = 0x2000; /* jh */
1789 case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1790 case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1791 mask = 0x4000; /* jl */
1793 case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1794 case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1795 mask = 0xa000; /* jhe */
1797 case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1798 case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1799 mask = 0xc000; /* jle */
1801 case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1802 case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1803 mask = 0x7000; /* jne */
1805 case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1806 case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1807 mask = 0x8000; /* je */
1809 case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1810 case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1812 bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1814 mask = 0x7000; /* jnz */
1815 /* nrk or ngrk %w1,%dst,%src */
1816 EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1817 REG_W1, dst_reg, src_reg);
1820 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1821 /* cfi or cgfi %dst,imm */
1822 EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1824 if (!is_first_pass(jit) &&
1825 can_use_rel(jit, addrs[i + off + 1])) {
1827 EMIT4_PCREL_RIC(0xa7040000,
1828 mask >> 12, addrs[i + off + 1]);
1831 EMIT6_PCREL_RILC(0xc0040000,
1832 mask >> 12, addrs[i + off + 1]);
1836 /* lgfi %w1,imm (load sign extend imm) */
1838 EMIT6_IMM(0xc0010000, src_reg, imm);
1841 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1842 if (!is_first_pass(jit) &&
1843 can_use_rel(jit, addrs[i + off + 1])) {
1844 /* crj or cgrj %dst,%src,mask,off */
1845 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1846 dst_reg, src_reg, i, off, mask);
1848 /* cr or cgr %dst,%src */
1850 EMIT2(0x1900, dst_reg, src_reg);
1852 EMIT4(0xb9200000, dst_reg, src_reg);
1854 EMIT6_PCREL_RILC(0xc0040000,
1855 mask >> 12, addrs[i + off + 1]);
1859 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1860 if (!is_first_pass(jit) &&
1861 can_use_rel(jit, addrs[i + off + 1])) {
1862 /* clrj or clgrj %dst,%src,mask,off */
1863 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1864 dst_reg, src_reg, i, off, mask);
1866 /* clr or clgr %dst,%src */
1868 EMIT2(0x1500, dst_reg, src_reg);
1870 EMIT4(0xb9210000, dst_reg, src_reg);
1872 EMIT6_PCREL_RILC(0xc0040000,
1873 mask >> 12, addrs[i + off + 1]);
1877 if (!is_first_pass(jit) &&
1878 can_use_rel(jit, addrs[i + branch_oc_off + 1])) {
1880 EMIT4_PCREL_RIC(0xa7040000,
1882 addrs[i + branch_oc_off + 1]);
1885 EMIT6_PCREL_RILC(0xc0040000,
1887 addrs[i + branch_oc_off + 1]);
1891 default: /* too complex, give up */
1892 pr_err("Unknown opcode %02x\n", insn->code);
1896 if (probe_prg != -1) {
1898 * Handlers of certain exceptions leave psw.addr pointing to
1899 * the instruction directly after the failing one. Therefore,
1900 * create two exception table entries and also add a nop in
1901 * case two probing instructions come directly after each
1907 err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1916 * Return whether new i-th instruction address does not violate any invariant
1918 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1920 /* On the first pass anything goes */
1921 if (is_first_pass(jit))
1924 /* The codegen pass must not change anything */
1925 if (is_codegen_pass(jit))
1926 return jit->addrs[i] == jit->prg;
1928 /* Passes in between must not increase code size */
1929 return jit->addrs[i] >= jit->prg;
1933 * Update the address of i-th instruction
1935 static int bpf_set_addr(struct bpf_jit *jit, int i)
1939 if (is_codegen_pass(jit)) {
1940 delta = jit->prg - jit->addrs[i];
1942 bpf_skip(jit, -delta);
1944 if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1946 jit->addrs[i] = jit->prg;
1951 * Compile eBPF program into s390x code
1953 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1954 bool extra_pass, u32 stack_depth)
1956 int i, insn_count, lit32_size, lit64_size;
1958 jit->lit32 = jit->lit32_start;
1959 jit->lit64 = jit->lit64_start;
1963 bpf_jit_prologue(jit, fp, stack_depth);
1964 if (bpf_set_addr(jit, 0) < 0)
1966 for (i = 0; i < fp->len; i += insn_count) {
1967 insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1970 /* Next instruction address */
1971 if (bpf_set_addr(jit, i + insn_count) < 0)
1974 bpf_jit_epilogue(jit, stack_depth);
1976 lit32_size = jit->lit32 - jit->lit32_start;
1977 lit64_size = jit->lit64 - jit->lit64_start;
1978 jit->lit32_start = jit->prg;
1980 jit->lit32_start = ALIGN(jit->lit32_start, 4);
1981 jit->lit64_start = jit->lit32_start + lit32_size;
1983 jit->lit64_start = ALIGN(jit->lit64_start, 8);
1984 jit->size = jit->lit64_start + lit64_size;
1985 jit->size_prg = jit->prg;
1987 if (WARN_ON_ONCE(fp->aux->extable &&
1988 jit->excnt != fp->aux->num_exentries))
1989 /* Verifier bug - too many entries. */
1995 bool bpf_jit_needs_zext(void)
2000 struct s390_jit_data {
2001 struct bpf_binary_header *header;
2006 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
2007 struct bpf_prog *fp)
2009 struct bpf_binary_header *header;
2013 /* We need two entries per insn. */
2014 fp->aux->num_exentries *= 2;
2016 code_size = roundup(jit->size,
2017 __alignof__(struct exception_table_entry));
2018 extable_size = fp->aux->num_exentries *
2019 sizeof(struct exception_table_entry);
2020 header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
2024 fp->aux->extable = (struct exception_table_entry *)
2025 (jit->prg_buf + code_size);
2030 * Compile eBPF program "fp"
2032 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
2034 u32 stack_depth = round_up(fp->aux->stack_depth, 8);
2035 struct bpf_prog *tmp, *orig_fp = fp;
2036 struct bpf_binary_header *header;
2037 struct s390_jit_data *jit_data;
2038 bool tmp_blinded = false;
2039 bool extra_pass = false;
2043 if (WARN_ON_ONCE(bpf_plt_end - bpf_plt != BPF_PLT_SIZE))
2046 if (!fp->jit_requested)
2049 tmp = bpf_jit_blind_constants(fp);
2051 * If blinding was requested and we failed during blinding,
2052 * we must fall back to the interpreter.
2061 jit_data = fp->aux->jit_data;
2063 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2068 fp->aux->jit_data = jit_data;
2070 if (jit_data->ctx.addrs) {
2071 jit = jit_data->ctx;
2072 header = jit_data->header;
2074 pass = jit_data->pass + 1;
2078 memset(&jit, 0, sizeof(jit));
2079 jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
2080 if (jit.addrs == NULL) {
2085 * Three initial passes:
2086 * - 1/2: Determine clobbered registers
2087 * - 3: Calculate program size and addrs array
2089 for (pass = 1; pass <= 3; pass++) {
2090 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
2096 * Final pass: Allocate and generate program
2098 header = bpf_jit_alloc(&jit, fp);
2104 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
2105 bpf_jit_binary_free(header);
2109 if (bpf_jit_enable > 1) {
2110 bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
2111 print_fn_code(jit.prg_buf, jit.size_prg);
2113 if (!fp->is_func || extra_pass) {
2114 bpf_jit_binary_lock_ro(header);
2116 jit_data->header = header;
2117 jit_data->ctx = jit;
2118 jit_data->pass = pass;
2120 fp->bpf_func = (void *) jit.prg_buf;
2122 fp->jited_len = jit.size;
2124 if (!fp->is_func || extra_pass) {
2125 bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
2129 fp->aux->jit_data = NULL;
2133 bpf_jit_prog_release_other(fp, fp == orig_fp ?
2138 bool bpf_jit_supports_kfunc_call(void)
2143 bool bpf_jit_supports_far_kfunc_call(void)
2148 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2149 void *old_addr, void *new_addr)
2155 char expected_plt[BPF_PLT_SIZE];
2156 char current_plt[BPF_PLT_SIZE];
2157 char new_plt[BPF_PLT_SIZE];
2162 /* Verify the branch to be patched. */
2163 err = copy_from_kernel_nofault(&insn, ip, sizeof(insn));
2166 if (insn.opc != (0xc004 | (old_addr ? 0xf0 : 0)))
2169 if (t == BPF_MOD_JUMP &&
2170 insn.disp == ((char *)new_addr - (char *)ip) >> 1) {
2172 * The branch already points to the destination,
2176 /* Verify the PLT. */
2177 plt = (char *)ip + (insn.disp << 1);
2178 err = copy_from_kernel_nofault(current_plt, plt, BPF_PLT_SIZE);
2181 ret = (char *)ip + 6;
2182 bpf_jit_plt(expected_plt, ret, old_addr);
2183 if (memcmp(current_plt, expected_plt, BPF_PLT_SIZE))
2185 /* Adjust the call address. */
2186 bpf_jit_plt(new_plt, ret, new_addr);
2187 s390_kernel_write(plt + (bpf_plt_target - bpf_plt),
2188 new_plt + (bpf_plt_target - bpf_plt),
2192 /* Adjust the mask of the branch. */
2193 insn.opc = 0xc004 | (new_addr ? 0xf0 : 0);
2194 s390_kernel_write((char *)ip + 1, (char *)&insn.opc + 1, 1);
2196 /* Make the new code visible to the other CPUs. */
2197 text_poke_sync_lock();
2202 struct bpf_tramp_jit {
2203 struct bpf_jit common;
2204 int orig_stack_args_off;/* Offset of arguments placed on stack by the
2205 * func_addr's original caller
2207 int stack_size; /* Trampoline stack size */
2208 int backchain_off; /* Offset of backchain */
2209 int stack_args_off; /* Offset of stack arguments for calling
2210 * func_addr, has to be at the top
2212 int reg_args_off; /* Offset of register arguments for calling
2215 int ip_off; /* For bpf_get_func_ip(), has to be at
2218 int arg_cnt_off; /* For bpf_get_func_arg_cnt(), has to be at
2221 int bpf_args_off; /* Offset of BPF_PROG context, which consists
2222 * of BPF arguments followed by return value
2224 int retval_off; /* Offset of return value (see above) */
2225 int r7_r8_off; /* Offset of saved %r7 and %r8, which are used
2226 * for __bpf_prog_enter() return value and
2227 * func_addr respectively
2229 int run_ctx_off; /* Offset of struct bpf_tramp_run_ctx */
2230 int tccnt_off; /* Offset of saved tailcall counter */
2231 int r14_off; /* Offset of saved %r14, has to be at the
2233 int do_fexit; /* do_fexit: label */
2236 static void load_imm64(struct bpf_jit *jit, int dst_reg, u64 val)
2238 /* llihf %dst_reg,val_hi */
2239 EMIT6_IMM(0xc00e0000, dst_reg, (val >> 32));
2240 /* oilf %rdst_reg,val_lo */
2241 EMIT6_IMM(0xc00d0000, dst_reg, val);
2244 static int invoke_bpf_prog(struct bpf_tramp_jit *tjit,
2245 const struct btf_func_model *m,
2246 struct bpf_tramp_link *tlink, bool save_ret)
2248 struct bpf_jit *jit = &tjit->common;
2249 int cookie_off = tjit->run_ctx_off +
2250 offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2251 struct bpf_prog *p = tlink->link.prog;
2255 * run_ctx.cookie = tlink->cookie;
2258 /* %r0 = tlink->cookie */
2259 load_imm64(jit, REG_W0, tlink->cookie);
2260 /* stg %r0,cookie_off(%r15) */
2261 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, REG_0, REG_15, cookie_off);
2264 * if ((start = __bpf_prog_enter(p, &run_ctx)) == 0)
2268 /* %r1 = __bpf_prog_enter */
2269 load_imm64(jit, REG_1, (u64)bpf_trampoline_enter(p));
2271 load_imm64(jit, REG_2, (u64)p);
2272 /* la %r3,run_ctx_off(%r15) */
2273 EMIT4_DISP(0x41000000, REG_3, REG_15, tjit->run_ctx_off);
2277 EMIT4(0xb9020000, REG_7, REG_2);
2280 EMIT6_PCREL_RILC(0xc0040000, 8, 0);
2283 * retval = bpf_func(args, p->insnsi);
2286 /* %r1 = p->bpf_func */
2287 load_imm64(jit, REG_1, (u64)p->bpf_func);
2288 /* la %r2,bpf_args_off(%r15) */
2289 EMIT4_DISP(0x41000000, REG_2, REG_15, tjit->bpf_args_off);
2290 /* %r3 = p->insnsi */
2292 load_imm64(jit, REG_3, (u64)p->insnsi);
2295 /* stg %r2,retval_off(%r15) */
2297 if (sign_extend(jit, REG_2, m->ret_size, m->ret_flags))
2299 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2305 *(u32 *)&jit->prg_buf[patch + 2] = (jit->prg - patch) >> 1;
2308 * __bpf_prog_exit(p, start, &run_ctx);
2311 /* %r1 = __bpf_prog_exit */
2312 load_imm64(jit, REG_1, (u64)bpf_trampoline_exit(p));
2314 load_imm64(jit, REG_2, (u64)p);
2316 EMIT4(0xb9040000, REG_3, REG_7);
2317 /* la %r4,run_ctx_off(%r15) */
2318 EMIT4_DISP(0x41000000, REG_4, REG_15, tjit->run_ctx_off);
2325 static int alloc_stack(struct bpf_tramp_jit *tjit, size_t size)
2327 int stack_offset = tjit->stack_size;
2329 tjit->stack_size += size;
2330 return stack_offset;
2333 /* ABI uses %r2 - %r6 for parameter passing. */
2334 #define MAX_NR_REG_ARGS 5
2336 /* The "L" field of the "mvc" instruction is 8 bits. */
2337 #define MAX_MVC_SIZE 256
2338 #define MAX_NR_STACK_ARGS (MAX_MVC_SIZE / sizeof(u64))
2340 /* -mfentry generates a 6-byte nop on s390x. */
2341 #define S390X_PATCH_SIZE 6
2343 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
2344 struct bpf_tramp_jit *tjit,
2345 const struct btf_func_model *m,
2347 struct bpf_tramp_links *tlinks,
2350 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2351 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2352 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2353 int nr_bpf_args, nr_reg_args, nr_stack_args;
2354 struct bpf_jit *jit = &tjit->common;
2355 int arg, bpf_arg_off;
2358 /* Support as many stack arguments as "mvc" instruction can handle. */
2359 nr_reg_args = min_t(int, m->nr_args, MAX_NR_REG_ARGS);
2360 nr_stack_args = m->nr_args - nr_reg_args;
2361 if (nr_stack_args > MAX_NR_STACK_ARGS)
2364 /* Return to %r14, since func_addr and %r0 are not available. */
2365 if ((!func_addr && !(flags & BPF_TRAMP_F_ORIG_STACK)) ||
2366 (flags & BPF_TRAMP_F_INDIRECT))
2367 flags |= BPF_TRAMP_F_SKIP_FRAME;
2370 * Compute how many arguments we need to pass to BPF programs.
2371 * BPF ABI mirrors that of x86_64: arguments that are 16 bytes or
2372 * smaller are packed into 1 or 2 registers; larger arguments are
2373 * passed via pointers.
2374 * In s390x ABI, arguments that are 8 bytes or smaller are packed into
2375 * a register; larger arguments are passed via pointers.
2376 * We need to deal with this difference.
2379 for (i = 0; i < m->nr_args; i++) {
2380 if (m->arg_size[i] <= 8)
2382 else if (m->arg_size[i] <= 16)
2389 * Calculate the stack layout.
2393 * Allocate STACK_FRAME_OVERHEAD bytes for the callees. As the s390x
2394 * ABI requires, put our backchain at the end of the allocated memory.
2396 tjit->stack_size = STACK_FRAME_OVERHEAD;
2397 tjit->backchain_off = tjit->stack_size - sizeof(u64);
2398 tjit->stack_args_off = alloc_stack(tjit, nr_stack_args * sizeof(u64));
2399 tjit->reg_args_off = alloc_stack(tjit, nr_reg_args * sizeof(u64));
2400 tjit->ip_off = alloc_stack(tjit, sizeof(u64));
2401 tjit->arg_cnt_off = alloc_stack(tjit, sizeof(u64));
2402 tjit->bpf_args_off = alloc_stack(tjit, nr_bpf_args * sizeof(u64));
2403 tjit->retval_off = alloc_stack(tjit, sizeof(u64));
2404 tjit->r7_r8_off = alloc_stack(tjit, 2 * sizeof(u64));
2405 tjit->run_ctx_off = alloc_stack(tjit,
2406 sizeof(struct bpf_tramp_run_ctx));
2407 tjit->tccnt_off = alloc_stack(tjit, sizeof(u64));
2408 tjit->r14_off = alloc_stack(tjit, sizeof(u64) * 2);
2410 * In accordance with the s390x ABI, the caller has allocated
2411 * STACK_FRAME_OVERHEAD bytes for us. 8 of them contain the caller's
2412 * backchain, and the rest we can use.
2414 tjit->stack_size -= STACK_FRAME_OVERHEAD - sizeof(u64);
2415 tjit->orig_stack_args_off = tjit->stack_size + STACK_FRAME_OVERHEAD;
2418 EMIT4(0xb9040000, REG_1, REG_15);
2419 /* aghi %r15,-stack_size */
2420 EMIT4_IMM(0xa70b0000, REG_15, -tjit->stack_size);
2421 /* stg %r1,backchain_off(%r15) */
2422 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_1, REG_0, REG_15,
2423 tjit->backchain_off);
2424 /* mvc tccnt_off(4,%r15),stack_size+STK_OFF_TCCNT(%r15) */
2425 _EMIT6(0xd203f000 | tjit->tccnt_off,
2426 0xf000 | (tjit->stack_size + STK_OFF_TCCNT));
2427 /* stmg %r2,%rN,fwd_reg_args_off(%r15) */
2429 EMIT6_DISP_LH(0xeb000000, 0x0024, REG_2,
2430 REG_2 + (nr_reg_args - 1), REG_15,
2431 tjit->reg_args_off);
2432 for (i = 0, j = 0; i < m->nr_args; i++) {
2433 if (i < MAX_NR_REG_ARGS)
2436 arg = tjit->orig_stack_args_off +
2437 (i - MAX_NR_REG_ARGS) * sizeof(u64);
2438 bpf_arg_off = tjit->bpf_args_off + j * sizeof(u64);
2439 if (m->arg_size[i] <= 8) {
2440 if (i < MAX_NR_REG_ARGS)
2441 /* stg %arg,bpf_arg_off(%r15) */
2442 EMIT6_DISP_LH(0xe3000000, 0x0024, arg,
2443 REG_0, REG_15, bpf_arg_off);
2445 /* mvc bpf_arg_off(8,%r15),arg(%r15) */
2446 _EMIT6(0xd207f000 | bpf_arg_off,
2450 if (i < MAX_NR_REG_ARGS) {
2451 /* mvc bpf_arg_off(16,%r15),0(%arg) */
2452 _EMIT6(0xd20ff000 | bpf_arg_off,
2453 reg2hex[arg] << 12);
2455 /* lg %r1,arg(%r15) */
2456 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_0,
2458 /* mvc bpf_arg_off(16,%r15),0(%r1) */
2459 _EMIT6(0xd20ff000 | bpf_arg_off, 0x1000);
2464 /* stmg %r7,%r8,r7_r8_off(%r15) */
2465 EMIT6_DISP_LH(0xeb000000, 0x0024, REG_7, REG_8, REG_15,
2467 /* stg %r14,r14_off(%r15) */
2468 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_14, REG_0, REG_15, tjit->r14_off);
2470 if (flags & BPF_TRAMP_F_ORIG_STACK) {
2472 * The ftrace trampoline puts the return address (which is the
2473 * address of the original function + S390X_PATCH_SIZE) into
2474 * %r0; see ftrace_shared_hotpatch_trampoline_br and
2475 * ftrace_init_nop() for details.
2479 EMIT4(0xb9040000, REG_8, REG_0);
2481 /* %r8 = func_addr + S390X_PATCH_SIZE */
2482 load_imm64(jit, REG_8, (u64)func_addr + S390X_PATCH_SIZE);
2487 * arg_cnt = m->nr_args;
2490 if (flags & BPF_TRAMP_F_IP_ARG) {
2491 /* %r0 = func_addr */
2492 load_imm64(jit, REG_0, (u64)func_addr);
2493 /* stg %r0,ip_off(%r15) */
2494 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2497 /* lghi %r0,nr_bpf_args */
2498 EMIT4_IMM(0xa7090000, REG_0, nr_bpf_args);
2499 /* stg %r0,arg_cnt_off(%r15) */
2500 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2503 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2505 * __bpf_tramp_enter(im);
2508 /* %r1 = __bpf_tramp_enter */
2509 load_imm64(jit, REG_1, (u64)__bpf_tramp_enter);
2511 load_imm64(jit, REG_2, (u64)im);
2516 for (i = 0; i < fentry->nr_links; i++)
2517 if (invoke_bpf_prog(tjit, m, fentry->links[i],
2518 flags & BPF_TRAMP_F_RET_FENTRY_RET))
2521 if (fmod_ret->nr_links) {
2526 /* xc retval_off(8,%r15),retval_off(%r15) */
2527 _EMIT6(0xd707f000 | tjit->retval_off,
2528 0xf000 | tjit->retval_off);
2530 for (i = 0; i < fmod_ret->nr_links; i++) {
2531 if (invoke_bpf_prog(tjit, m, fmod_ret->links[i], true))
2539 /* ltg %r0,retval_off(%r15) */
2540 EMIT6_DISP_LH(0xe3000000, 0x0002, REG_0, REG_0, REG_15,
2542 /* brcl 7,do_fexit */
2543 EMIT6_PCREL_RILC(0xc0040000, 7, tjit->do_fexit);
2547 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2549 * retval = func_addr(args);
2552 /* lmg %r2,%rN,reg_args_off(%r15) */
2554 EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2555 REG_2 + (nr_reg_args - 1), REG_15,
2556 tjit->reg_args_off);
2557 /* mvc stack_args_off(N,%r15),orig_stack_args_off(%r15) */
2560 (nr_stack_args * sizeof(u64) - 1) << 16 |
2561 tjit->stack_args_off,
2562 0xf000 | tjit->orig_stack_args_off);
2563 /* mvc STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2564 _EMIT6(0xd203f000 | STK_OFF_TCCNT, 0xf000 | tjit->tccnt_off);
2566 EMIT4(0xb9040000, REG_1, REG_8);
2569 /* stg %r2,retval_off(%r15) */
2570 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2573 im->ip_after_call = jit->prg_buf + jit->prg;
2576 * The following nop will be patched by bpf_tramp_image_put().
2579 /* brcl 0,im->ip_epilogue */
2580 EMIT6_PCREL_RILC(0xc0040000, 0, (u64)im->ip_epilogue);
2584 tjit->do_fexit = jit->prg;
2585 for (i = 0; i < fexit->nr_links; i++)
2586 if (invoke_bpf_prog(tjit, m, fexit->links[i], false))
2589 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2590 im->ip_epilogue = jit->prg_buf + jit->prg;
2593 * __bpf_tramp_exit(im);
2596 /* %r1 = __bpf_tramp_exit */
2597 load_imm64(jit, REG_1, (u64)__bpf_tramp_exit);
2599 load_imm64(jit, REG_2, (u64)im);
2604 /* lmg %r2,%rN,reg_args_off(%r15) */
2605 if ((flags & BPF_TRAMP_F_RESTORE_REGS) && nr_reg_args)
2606 EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2607 REG_2 + (nr_reg_args - 1), REG_15,
2608 tjit->reg_args_off);
2610 if (!(flags & BPF_TRAMP_F_SKIP_FRAME))
2611 EMIT4(0xb9040000, REG_1, REG_8);
2612 /* lmg %r7,%r8,r7_r8_off(%r15) */
2613 EMIT6_DISP_LH(0xeb000000, 0x0004, REG_7, REG_8, REG_15,
2615 /* lg %r14,r14_off(%r15) */
2616 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_14, REG_0, REG_15, tjit->r14_off);
2617 /* lg %r2,retval_off(%r15) */
2618 if (flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET))
2619 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_2, REG_0, REG_15,
2621 /* mvc stack_size+STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2622 _EMIT6(0xd203f000 | (tjit->stack_size + STK_OFF_TCCNT),
2623 0xf000 | tjit->tccnt_off);
2624 /* aghi %r15,stack_size */
2625 EMIT4_IMM(0xa70b0000, REG_15, tjit->stack_size);
2626 /* Emit an expoline for the following indirect jump. */
2627 if (nospec_uses_trampoline())
2629 if (flags & BPF_TRAMP_F_SKIP_FRAME)
2641 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2642 struct bpf_tramp_links *tlinks, void *orig_call)
2644 struct bpf_tramp_image im;
2645 struct bpf_tramp_jit tjit;
2648 memset(&tjit, 0, sizeof(tjit));
2650 ret = __arch_prepare_bpf_trampoline(&im, &tjit, m, flags,
2653 return ret < 0 ? ret : tjit.common.prg;
2656 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
2657 void *image_end, const struct btf_func_model *m,
2658 u32 flags, struct bpf_tramp_links *tlinks,
2661 struct bpf_tramp_jit tjit;
2664 /* Compute offsets, check whether the code fits. */
2665 memset(&tjit, 0, sizeof(tjit));
2666 ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2671 if (tjit.common.prg > (char *)image_end - (char *)image)
2673 * Use the same error code as for exceeding
2674 * BPF_MAX_TRAMP_LINKS.
2678 tjit.common.prg = 0;
2679 tjit.common.prg_buf = image;
2680 ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2683 return ret < 0 ? ret : tjit.common.prg;
2686 bool bpf_jit_supports_subprog_tailcalls(void)