]> Git Repo - J-linux.git/blob - arch/s390/kernel/kprobes.c
Merge tag 'kbuild-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[J-linux.git] / arch / s390 / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright IBM Corp. 2002, 2006
6  *
7  * s390 port, used ppc64 as template. Mike Grundy <[email protected]>
8  */
9
10 #define pr_fmt(fmt) "kprobes: " fmt
11
12 #include <linux/moduleloader.h>
13 #include <linux/kprobes.h>
14 #include <linux/ptrace.h>
15 #include <linux/preempt.h>
16 #include <linux/stop_machine.h>
17 #include <linux/kdebug.h>
18 #include <linux/uaccess.h>
19 #include <linux/extable.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/hardirq.h>
23 #include <linux/ftrace.h>
24 #include <asm/set_memory.h>
25 #include <asm/sections.h>
26 #include <asm/dis.h>
27 #include "kprobes.h"
28 #include "entry.h"
29
30 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
31 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
32
33 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
34
35 static int insn_page_in_use;
36
37 void *alloc_insn_page(void)
38 {
39         void *page;
40
41         page = module_alloc(PAGE_SIZE);
42         if (!page)
43                 return NULL;
44         set_memory_rox((unsigned long)page, 1);
45         return page;
46 }
47
48 static void *alloc_s390_insn_page(void)
49 {
50         if (xchg(&insn_page_in_use, 1) == 1)
51                 return NULL;
52         return &kprobes_insn_page;
53 }
54
55 static void free_s390_insn_page(void *page)
56 {
57         xchg(&insn_page_in_use, 0);
58 }
59
60 struct kprobe_insn_cache kprobe_s390_insn_slots = {
61         .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
62         .alloc = alloc_s390_insn_page,
63         .free = free_s390_insn_page,
64         .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
65         .insn_size = MAX_INSN_SIZE,
66 };
67
68 static void copy_instruction(struct kprobe *p)
69 {
70         kprobe_opcode_t insn[MAX_INSN_SIZE];
71         s64 disp, new_disp;
72         u64 addr, new_addr;
73         unsigned int len;
74
75         len = insn_length(*p->addr >> 8);
76         memcpy(&insn, p->addr, len);
77         p->opcode = insn[0];
78         if (probe_is_insn_relative_long(&insn[0])) {
79                 /*
80                  * For pc-relative instructions in RIL-b or RIL-c format patch
81                  * the RI2 displacement field. We have already made sure that
82                  * the insn slot for the patched instruction is within the same
83                  * 2GB area as the original instruction (either kernel image or
84                  * module area). Therefore the new displacement will always fit.
85                  */
86                 disp = *(s32 *)&insn[1];
87                 addr = (u64)(unsigned long)p->addr;
88                 new_addr = (u64)(unsigned long)p->ainsn.insn;
89                 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
90                 *(s32 *)&insn[1] = new_disp;
91         }
92         s390_kernel_write(p->ainsn.insn, &insn, len);
93 }
94 NOKPROBE_SYMBOL(copy_instruction);
95
96 static int s390_get_insn_slot(struct kprobe *p)
97 {
98         /*
99          * Get an insn slot that is within the same 2GB area like the original
100          * instruction. That way instructions with a 32bit signed displacement
101          * field can be patched and executed within the insn slot.
102          */
103         p->ainsn.insn = NULL;
104         if (is_kernel((unsigned long)p->addr))
105                 p->ainsn.insn = get_s390_insn_slot();
106         else if (is_module_addr(p->addr))
107                 p->ainsn.insn = get_insn_slot();
108         return p->ainsn.insn ? 0 : -ENOMEM;
109 }
110 NOKPROBE_SYMBOL(s390_get_insn_slot);
111
112 static void s390_free_insn_slot(struct kprobe *p)
113 {
114         if (!p->ainsn.insn)
115                 return;
116         if (is_kernel((unsigned long)p->addr))
117                 free_s390_insn_slot(p->ainsn.insn, 0);
118         else
119                 free_insn_slot(p->ainsn.insn, 0);
120         p->ainsn.insn = NULL;
121 }
122 NOKPROBE_SYMBOL(s390_free_insn_slot);
123
124 /* Check if paddr is at an instruction boundary */
125 static bool can_probe(unsigned long paddr)
126 {
127         unsigned long addr, offset = 0;
128         kprobe_opcode_t insn;
129         struct kprobe *kp;
130
131         if (paddr & 0x01)
132                 return false;
133
134         if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
135                 return false;
136
137         /* Decode instructions */
138         addr = paddr - offset;
139         while (addr < paddr) {
140                 if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn)))
141                         return false;
142
143                 if (insn >> 8 == 0) {
144                         if (insn != BREAKPOINT_INSTRUCTION) {
145                                 /*
146                                  * Note that QEMU inserts opcode 0x0000 to implement
147                                  * software breakpoints for guests. Since the size of
148                                  * the original instruction is unknown, stop following
149                                  * instructions and prevent setting a kprobe.
150                                  */
151                                 return false;
152                         }
153                         /*
154                          * Check if the instruction has been modified by another
155                          * kprobe, in which case the original instruction is
156                          * decoded.
157                          */
158                         kp = get_kprobe((void *)addr);
159                         if (!kp) {
160                                 /* not a kprobe */
161                                 return false;
162                         }
163                         insn = kp->opcode;
164                 }
165                 addr += insn_length(insn >> 8);
166         }
167         return addr == paddr;
168 }
169
170 int arch_prepare_kprobe(struct kprobe *p)
171 {
172         if (!can_probe((unsigned long)p->addr))
173                 return -EINVAL;
174         /* Make sure the probe isn't going on a difficult instruction */
175         if (probe_is_prohibited_opcode(p->addr))
176                 return -EINVAL;
177         if (s390_get_insn_slot(p))
178                 return -ENOMEM;
179         copy_instruction(p);
180         return 0;
181 }
182 NOKPROBE_SYMBOL(arch_prepare_kprobe);
183
184 struct swap_insn_args {
185         struct kprobe *p;
186         unsigned int arm_kprobe : 1;
187 };
188
189 static int swap_instruction(void *data)
190 {
191         struct swap_insn_args *args = data;
192         struct kprobe *p = args->p;
193         u16 opc;
194
195         opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
196         s390_kernel_write(p->addr, &opc, sizeof(opc));
197         return 0;
198 }
199 NOKPROBE_SYMBOL(swap_instruction);
200
201 void arch_arm_kprobe(struct kprobe *p)
202 {
203         struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
204
205         stop_machine_cpuslocked(swap_instruction, &args, NULL);
206 }
207 NOKPROBE_SYMBOL(arch_arm_kprobe);
208
209 void arch_disarm_kprobe(struct kprobe *p)
210 {
211         struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
212
213         stop_machine_cpuslocked(swap_instruction, &args, NULL);
214 }
215 NOKPROBE_SYMBOL(arch_disarm_kprobe);
216
217 void arch_remove_kprobe(struct kprobe *p)
218 {
219         s390_free_insn_slot(p);
220 }
221 NOKPROBE_SYMBOL(arch_remove_kprobe);
222
223 static void enable_singlestep(struct kprobe_ctlblk *kcb,
224                               struct pt_regs *regs,
225                               unsigned long ip)
226 {
227         union {
228                 struct ctlreg regs[3];
229                 struct {
230                         struct ctlreg control;
231                         struct ctlreg start;
232                         struct ctlreg end;
233                 };
234         } per_kprobe;
235
236         /* Set up the PER control registers %cr9-%cr11 */
237         per_kprobe.control.val = PER_EVENT_IFETCH;
238         per_kprobe.start.val = ip;
239         per_kprobe.end.val = ip;
240
241         /* Save control regs and psw mask */
242         __local_ctl_store(9, 11, kcb->kprobe_saved_ctl);
243         kcb->kprobe_saved_imask = regs->psw.mask &
244                 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
245
246         /* Set PER control regs, turns on single step for the given address */
247         __local_ctl_load(9, 11, per_kprobe.regs);
248         regs->psw.mask |= PSW_MASK_PER;
249         regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
250         regs->psw.addr = ip;
251 }
252 NOKPROBE_SYMBOL(enable_singlestep);
253
254 static void disable_singlestep(struct kprobe_ctlblk *kcb,
255                                struct pt_regs *regs,
256                                unsigned long ip)
257 {
258         /* Restore control regs and psw mask, set new psw address */
259         __local_ctl_load(9, 11, kcb->kprobe_saved_ctl);
260         regs->psw.mask &= ~PSW_MASK_PER;
261         regs->psw.mask |= kcb->kprobe_saved_imask;
262         regs->psw.addr = ip;
263 }
264 NOKPROBE_SYMBOL(disable_singlestep);
265
266 /*
267  * Activate a kprobe by storing its pointer to current_kprobe. The
268  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
269  * two kprobes can be active, see KPROBE_REENTER.
270  */
271 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
272 {
273         kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
274         kcb->prev_kprobe.status = kcb->kprobe_status;
275         __this_cpu_write(current_kprobe, p);
276 }
277 NOKPROBE_SYMBOL(push_kprobe);
278
279 /*
280  * Deactivate a kprobe by backing up to the previous state. If the
281  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
282  * for any other state prev_kprobe.kp will be NULL.
283  */
284 static void pop_kprobe(struct kprobe_ctlblk *kcb)
285 {
286         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
287         kcb->kprobe_status = kcb->prev_kprobe.status;
288         kcb->prev_kprobe.kp = NULL;
289 }
290 NOKPROBE_SYMBOL(pop_kprobe);
291
292 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
293 {
294         switch (kcb->kprobe_status) {
295         case KPROBE_HIT_SSDONE:
296         case KPROBE_HIT_ACTIVE:
297                 kprobes_inc_nmissed_count(p);
298                 break;
299         case KPROBE_HIT_SS:
300         case KPROBE_REENTER:
301         default:
302                 /*
303                  * A kprobe on the code path to single step an instruction
304                  * is a BUG. The code path resides in the .kprobes.text
305                  * section and is executed with interrupts disabled.
306                  */
307                 pr_err("Failed to recover from reentered kprobes.\n");
308                 dump_kprobe(p);
309                 BUG();
310         }
311 }
312 NOKPROBE_SYMBOL(kprobe_reenter_check);
313
314 static int kprobe_handler(struct pt_regs *regs)
315 {
316         struct kprobe_ctlblk *kcb;
317         struct kprobe *p;
318
319         /*
320          * We want to disable preemption for the entire duration of kprobe
321          * processing. That includes the calls to the pre/post handlers
322          * and single stepping the kprobe instruction.
323          */
324         preempt_disable();
325         kcb = get_kprobe_ctlblk();
326         p = get_kprobe((void *)(regs->psw.addr - 2));
327
328         if (p) {
329                 if (kprobe_running()) {
330                         /*
331                          * We have hit a kprobe while another is still
332                          * active. This can happen in the pre and post
333                          * handler. Single step the instruction of the
334                          * new probe but do not call any handler function
335                          * of this secondary kprobe.
336                          * push_kprobe and pop_kprobe saves and restores
337                          * the currently active kprobe.
338                          */
339                         kprobe_reenter_check(kcb, p);
340                         push_kprobe(kcb, p);
341                         kcb->kprobe_status = KPROBE_REENTER;
342                 } else {
343                         /*
344                          * If we have no pre-handler or it returned 0, we
345                          * continue with single stepping. If we have a
346                          * pre-handler and it returned non-zero, it prepped
347                          * for changing execution path, so get out doing
348                          * nothing more here.
349                          */
350                         push_kprobe(kcb, p);
351                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
352                         if (p->pre_handler && p->pre_handler(p, regs)) {
353                                 pop_kprobe(kcb);
354                                 preempt_enable_no_resched();
355                                 return 1;
356                         }
357                         kcb->kprobe_status = KPROBE_HIT_SS;
358                 }
359                 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
360                 return 1;
361         } /* else:
362            * No kprobe at this address and no active kprobe. The trap has
363            * not been caused by a kprobe breakpoint. The race of breakpoint
364            * vs. kprobe remove does not exist because on s390 as we use
365            * stop_machine to arm/disarm the breakpoints.
366            */
367         preempt_enable_no_resched();
368         return 0;
369 }
370 NOKPROBE_SYMBOL(kprobe_handler);
371
372 /*
373  * Called after single-stepping.  p->addr is the address of the
374  * instruction whose first byte has been replaced by the "breakpoint"
375  * instruction.  To avoid the SMP problems that can occur when we
376  * temporarily put back the original opcode to single-step, we
377  * single-stepped a copy of the instruction.  The address of this
378  * copy is p->ainsn.insn.
379  */
380 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
381 {
382         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
383         unsigned long ip = regs->psw.addr;
384         int fixup = probe_get_fixup_type(p->ainsn.insn);
385
386         if (fixup & FIXUP_PSW_NORMAL)
387                 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
388
389         if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
390                 int ilen = insn_length(p->ainsn.insn[0] >> 8);
391                 if (ip - (unsigned long) p->ainsn.insn == ilen)
392                         ip = (unsigned long) p->addr + ilen;
393         }
394
395         if (fixup & FIXUP_RETURN_REGISTER) {
396                 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
397                 regs->gprs[reg] += (unsigned long) p->addr -
398                                    (unsigned long) p->ainsn.insn;
399         }
400
401         disable_singlestep(kcb, regs, ip);
402 }
403 NOKPROBE_SYMBOL(resume_execution);
404
405 static int post_kprobe_handler(struct pt_regs *regs)
406 {
407         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
408         struct kprobe *p = kprobe_running();
409
410         if (!p)
411                 return 0;
412
413         resume_execution(p, regs);
414         if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
415                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
416                 p->post_handler(p, regs, 0);
417         }
418         pop_kprobe(kcb);
419         preempt_enable_no_resched();
420
421         /*
422          * if somebody else is singlestepping across a probe point, psw mask
423          * will have PER set, in which case, continue the remaining processing
424          * of do_single_step, as if this is not a probe hit.
425          */
426         if (regs->psw.mask & PSW_MASK_PER)
427                 return 0;
428
429         return 1;
430 }
431 NOKPROBE_SYMBOL(post_kprobe_handler);
432
433 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
434 {
435         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
436         struct kprobe *p = kprobe_running();
437
438         switch(kcb->kprobe_status) {
439         case KPROBE_HIT_SS:
440         case KPROBE_REENTER:
441                 /*
442                  * We are here because the instruction being single
443                  * stepped caused a page fault. We reset the current
444                  * kprobe and the nip points back to the probe address
445                  * and allow the page fault handler to continue as a
446                  * normal page fault.
447                  */
448                 disable_singlestep(kcb, regs, (unsigned long) p->addr);
449                 pop_kprobe(kcb);
450                 preempt_enable_no_resched();
451                 break;
452         case KPROBE_HIT_ACTIVE:
453         case KPROBE_HIT_SSDONE:
454                 /*
455                  * In case the user-specified fault handler returned
456                  * zero, try to fix up.
457                  */
458                 if (fixup_exception(regs))
459                         return 1;
460                 /*
461                  * fixup_exception() could not handle it,
462                  * Let do_page_fault() fix it.
463                  */
464                 break;
465         default:
466                 break;
467         }
468         return 0;
469 }
470 NOKPROBE_SYMBOL(kprobe_trap_handler);
471
472 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
473 {
474         int ret;
475
476         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
477                 local_irq_disable();
478         ret = kprobe_trap_handler(regs, trapnr);
479         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
480                 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
481         return ret;
482 }
483 NOKPROBE_SYMBOL(kprobe_fault_handler);
484
485 /*
486  * Wrapper routine to for handling exceptions.
487  */
488 int kprobe_exceptions_notify(struct notifier_block *self,
489                              unsigned long val, void *data)
490 {
491         struct die_args *args = (struct die_args *) data;
492         struct pt_regs *regs = args->regs;
493         int ret = NOTIFY_DONE;
494
495         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
496                 local_irq_disable();
497
498         switch (val) {
499         case DIE_BPT:
500                 if (kprobe_handler(regs))
501                         ret = NOTIFY_STOP;
502                 break;
503         case DIE_SSTEP:
504                 if (post_kprobe_handler(regs))
505                         ret = NOTIFY_STOP;
506                 break;
507         case DIE_TRAP:
508                 if (!preemptible() && kprobe_running() &&
509                     kprobe_trap_handler(regs, args->trapnr))
510                         ret = NOTIFY_STOP;
511                 break;
512         default:
513                 break;
514         }
515
516         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
517                 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
518
519         return ret;
520 }
521 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
522
523 int __init arch_init_kprobes(void)
524 {
525         return 0;
526 }
527
528 int arch_trampoline_kprobe(struct kprobe *p)
529 {
530         return 0;
531 }
532 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
This page took 0.058221 seconds and 4 git commands to generate.