]> Git Repo - J-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
Merge tag 'topic/drmp-cleanup-2019-01-02' of git://anongit.freedesktop.org/drm/drm...
[J-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <[email protected]>
25  *    Michel Thierry <[email protected]>
26  *    Thomas Daniel <[email protected]>
27  *    Oscar Mateo <[email protected]>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "i915_vgpu.h"
141 #include "intel_lrc_reg.h"
142 #include "intel_mocs.h"
143 #include "intel_workarounds.h"
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161
162 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
163 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
164 #define WA_TAIL_DWORDS 2
165 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166
167 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
168                                             struct intel_engine_cs *engine,
169                                             struct intel_context *ce);
170 static void execlists_init_reg_state(u32 *reg_state,
171                                      struct i915_gem_context *ctx,
172                                      struct intel_engine_cs *engine,
173                                      struct intel_ring *ring);
174
175 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
176 {
177         return rb_entry(rb, struct i915_priolist, node);
178 }
179
180 static inline int rq_prio(const struct i915_request *rq)
181 {
182         return rq->sched.attr.priority;
183 }
184
185 static inline bool need_preempt(const struct intel_engine_cs *engine,
186                                 const struct i915_request *last,
187                                 int prio)
188 {
189         return (intel_engine_has_preemption(engine) &&
190                 __execlists_need_preempt(prio, rq_prio(last)) &&
191                 !i915_request_completed(last));
192 }
193
194 /*
195  * The context descriptor encodes various attributes of a context,
196  * including its GTT address and some flags. Because it's fairly
197  * expensive to calculate, we'll just do it once and cache the result,
198  * which remains valid until the context is unpinned.
199  *
200  * This is what a descriptor looks like, from LSB to MSB::
201  *
202  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
204  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
205  *      bits 53-54:    mbz, reserved for use by hardware
206  *      bits 55-63:    group ID, currently unused and set to 0
207  *
208  * Starting from Gen11, the upper dword of the descriptor has a new format:
209  *
210  *      bits 32-36:    reserved
211  *      bits 37-47:    SW context ID
212  *      bits 48:53:    engine instance
213  *      bit 54:        mbz, reserved for use by hardware
214  *      bits 55-60:    SW counter
215  *      bits 61-63:    engine class
216  *
217  * engine info, SW context ID and SW counter need to form a unique number
218  * (Context ID) per lrc.
219  */
220 static void
221 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222                                    struct intel_engine_cs *engine,
223                                    struct intel_context *ce)
224 {
225         u64 desc;
226
227         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
228         BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229
230         desc = ctx->desc_template;                              /* bits  0-11 */
231         GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
232
233         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234                                                                 /* bits 12-31 */
235         GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
236
237         /*
238          * The following 32bits are copied into the OA reports (dword 2).
239          * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
240          * anything below.
241          */
242         if (INTEL_GEN(ctx->i915) >= 11) {
243                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
244                 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
245                                                                 /* bits 37-47 */
246
247                 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
248                                                                 /* bits 48-53 */
249
250                 /* TODO: decide what to do with SW counter (bits 55-60) */
251
252                 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
253                                                                 /* bits 61-63 */
254         } else {
255                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
256                 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
257         }
258
259         ce->lrc_desc = desc;
260 }
261
262 static void unwind_wa_tail(struct i915_request *rq)
263 {
264         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
265         assert_ring_tail_valid(rq->ring, rq->tail);
266 }
267
268 static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
269 {
270         struct i915_request *rq, *rn, *active = NULL;
271         struct list_head *uninitialized_var(pl);
272         int prio = I915_PRIORITY_INVALID | I915_PRIORITY_NEWCLIENT;
273
274         lockdep_assert_held(&engine->timeline.lock);
275
276         list_for_each_entry_safe_reverse(rq, rn,
277                                          &engine->timeline.requests,
278                                          link) {
279                 if (i915_request_completed(rq))
280                         break;
281
282                 __i915_request_unsubmit(rq);
283                 unwind_wa_tail(rq);
284
285                 GEM_BUG_ON(rq->hw_context->active);
286
287                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
288                 if (rq_prio(rq) != prio) {
289                         prio = rq_prio(rq);
290                         pl = i915_sched_lookup_priolist(engine, prio);
291                 }
292                 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
293
294                 list_add(&rq->sched.link, pl);
295
296                 active = rq;
297         }
298
299         /*
300          * The active request is now effectively the start of a new client
301          * stream, so give it the equivalent small priority bump to prevent
302          * it being gazumped a second time by another peer.
303          */
304         if (!(prio & I915_PRIORITY_NEWCLIENT)) {
305                 prio |= I915_PRIORITY_NEWCLIENT;
306                 list_move_tail(&active->sched.link,
307                                i915_sched_lookup_priolist(engine, prio));
308         }
309 }
310
311 void
312 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
313 {
314         struct intel_engine_cs *engine =
315                 container_of(execlists, typeof(*engine), execlists);
316
317         __unwind_incomplete_requests(engine);
318 }
319
320 static inline void
321 execlists_context_status_change(struct i915_request *rq, unsigned long status)
322 {
323         /*
324          * Only used when GVT-g is enabled now. When GVT-g is disabled,
325          * The compiler should eliminate this function as dead-code.
326          */
327         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
328                 return;
329
330         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
331                                    status, rq);
332 }
333
334 inline void
335 execlists_user_begin(struct intel_engine_execlists *execlists,
336                      const struct execlist_port *port)
337 {
338         execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
339 }
340
341 inline void
342 execlists_user_end(struct intel_engine_execlists *execlists)
343 {
344         execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
345 }
346
347 static inline void
348 execlists_context_schedule_in(struct i915_request *rq)
349 {
350         GEM_BUG_ON(rq->hw_context->active);
351
352         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
353         intel_engine_context_in(rq->engine);
354         rq->hw_context->active = rq->engine;
355 }
356
357 static inline void
358 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
359 {
360         rq->hw_context->active = NULL;
361         intel_engine_context_out(rq->engine);
362         execlists_context_status_change(rq, status);
363         trace_i915_request_out(rq);
364 }
365
366 static void
367 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
368 {
369         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
370         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
371         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
372         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
373 }
374
375 static u64 execlists_update_context(struct i915_request *rq)
376 {
377         struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
378         struct intel_context *ce = rq->hw_context;
379         u32 *reg_state = ce->lrc_reg_state;
380
381         reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
382
383         /*
384          * True 32b PPGTT with dynamic page allocation: update PDP
385          * registers and point the unallocated PDPs to scratch page.
386          * PML4 is allocated during ppgtt init, so this is not needed
387          * in 48-bit mode.
388          */
389         if (!i915_vm_is_48bit(&ppgtt->vm))
390                 execlists_update_context_pdps(ppgtt, reg_state);
391
392         /*
393          * Make sure the context image is complete before we submit it to HW.
394          *
395          * Ostensibly, writes (including the WCB) should be flushed prior to
396          * an uncached write such as our mmio register access, the empirical
397          * evidence (esp. on Braswell) suggests that the WC write into memory
398          * may not be visible to the HW prior to the completion of the UC
399          * register write and that we may begin execution from the context
400          * before its image is complete leading to invalid PD chasing.
401          */
402         wmb();
403         return ce->lrc_desc;
404 }
405
406 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
407 {
408         if (execlists->ctrl_reg) {
409                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
410                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
411         } else {
412                 writel(upper_32_bits(desc), execlists->submit_reg);
413                 writel(lower_32_bits(desc), execlists->submit_reg);
414         }
415 }
416
417 static void execlists_submit_ports(struct intel_engine_cs *engine)
418 {
419         struct intel_engine_execlists *execlists = &engine->execlists;
420         struct execlist_port *port = execlists->port;
421         unsigned int n;
422
423         /*
424          * We can skip acquiring intel_runtime_pm_get() here as it was taken
425          * on our behalf by the request (see i915_gem_mark_busy()) and it will
426          * not be relinquished until the device is idle (see
427          * i915_gem_idle_work_handler()). As a precaution, we make sure
428          * that all ELSP are drained i.e. we have processed the CSB,
429          * before allowing ourselves to idle and calling intel_runtime_pm_put().
430          */
431         GEM_BUG_ON(!engine->i915->gt.awake);
432
433         /*
434          * ELSQ note: the submit queue is not cleared after being submitted
435          * to the HW so we need to make sure we always clean it up. This is
436          * currently ensured by the fact that we always write the same number
437          * of elsq entries, keep this in mind before changing the loop below.
438          */
439         for (n = execlists_num_ports(execlists); n--; ) {
440                 struct i915_request *rq;
441                 unsigned int count;
442                 u64 desc;
443
444                 rq = port_unpack(&port[n], &count);
445                 if (rq) {
446                         GEM_BUG_ON(count > !n);
447                         if (!count++)
448                                 execlists_context_schedule_in(rq);
449                         port_set(&port[n], port_pack(rq, count));
450                         desc = execlists_update_context(rq);
451                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
452
453                         GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%lld) (current %d), prio=%d\n",
454                                   engine->name, n,
455                                   port[n].context_id, count,
456                                   rq->global_seqno,
457                                   rq->fence.context, rq->fence.seqno,
458                                   intel_engine_get_seqno(engine),
459                                   rq_prio(rq));
460                 } else {
461                         GEM_BUG_ON(!n);
462                         desc = 0;
463                 }
464
465                 write_desc(execlists, desc, n);
466         }
467
468         /* we need to manually load the submit queue */
469         if (execlists->ctrl_reg)
470                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
471
472         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
473 }
474
475 static bool ctx_single_port_submission(const struct intel_context *ce)
476 {
477         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
478                 i915_gem_context_force_single_submission(ce->gem_context));
479 }
480
481 static bool can_merge_ctx(const struct intel_context *prev,
482                           const struct intel_context *next)
483 {
484         if (prev != next)
485                 return false;
486
487         if (ctx_single_port_submission(prev))
488                 return false;
489
490         return true;
491 }
492
493 static void port_assign(struct execlist_port *port, struct i915_request *rq)
494 {
495         GEM_BUG_ON(rq == port_request(port));
496
497         if (port_isset(port))
498                 i915_request_put(port_request(port));
499
500         port_set(port, port_pack(i915_request_get(rq), port_count(port)));
501 }
502
503 static void inject_preempt_context(struct intel_engine_cs *engine)
504 {
505         struct intel_engine_execlists *execlists = &engine->execlists;
506         struct intel_context *ce =
507                 to_intel_context(engine->i915->preempt_context, engine);
508         unsigned int n;
509
510         GEM_BUG_ON(execlists->preempt_complete_status !=
511                    upper_32_bits(ce->lrc_desc));
512
513         /*
514          * Switch to our empty preempt context so
515          * the state of the GPU is known (idle).
516          */
517         GEM_TRACE("%s\n", engine->name);
518         for (n = execlists_num_ports(execlists); --n; )
519                 write_desc(execlists, 0, n);
520
521         write_desc(execlists, ce->lrc_desc, n);
522
523         /* we need to manually load the submit queue */
524         if (execlists->ctrl_reg)
525                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
526
527         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
528         execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
529 }
530
531 static void complete_preempt_context(struct intel_engine_execlists *execlists)
532 {
533         GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
534
535         if (inject_preempt_hang(execlists))
536                 return;
537
538         execlists_cancel_port_requests(execlists);
539         __unwind_incomplete_requests(container_of(execlists,
540                                                   struct intel_engine_cs,
541                                                   execlists));
542 }
543
544 static void execlists_dequeue(struct intel_engine_cs *engine)
545 {
546         struct intel_engine_execlists * const execlists = &engine->execlists;
547         struct execlist_port *port = execlists->port;
548         const struct execlist_port * const last_port =
549                 &execlists->port[execlists->port_mask];
550         struct i915_request *last = port_request(port);
551         struct rb_node *rb;
552         bool submit = false;
553
554         /*
555          * Hardware submission is through 2 ports. Conceptually each port
556          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
557          * static for a context, and unique to each, so we only execute
558          * requests belonging to a single context from each ring. RING_HEAD
559          * is maintained by the CS in the context image, it marks the place
560          * where it got up to last time, and through RING_TAIL we tell the CS
561          * where we want to execute up to this time.
562          *
563          * In this list the requests are in order of execution. Consecutive
564          * requests from the same context are adjacent in the ringbuffer. We
565          * can combine these requests into a single RING_TAIL update:
566          *
567          *              RING_HEAD...req1...req2
568          *                                    ^- RING_TAIL
569          * since to execute req2 the CS must first execute req1.
570          *
571          * Our goal then is to point each port to the end of a consecutive
572          * sequence of requests as being the most optimal (fewest wake ups
573          * and context switches) submission.
574          */
575
576         if (last) {
577                 /*
578                  * Don't resubmit or switch until all outstanding
579                  * preemptions (lite-restore) are seen. Then we
580                  * know the next preemption status we see corresponds
581                  * to this ELSP update.
582                  */
583                 GEM_BUG_ON(!execlists_is_active(execlists,
584                                                 EXECLISTS_ACTIVE_USER));
585                 GEM_BUG_ON(!port_count(&port[0]));
586
587                 /*
588                  * If we write to ELSP a second time before the HW has had
589                  * a chance to respond to the previous write, we can confuse
590                  * the HW and hit "undefined behaviour". After writing to ELSP,
591                  * we must then wait until we see a context-switch event from
592                  * the HW to indicate that it has had a chance to respond.
593                  */
594                 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
595                         return;
596
597                 if (need_preempt(engine, last, execlists->queue_priority)) {
598                         inject_preempt_context(engine);
599                         return;
600                 }
601
602                 /*
603                  * In theory, we could coalesce more requests onto
604                  * the second port (the first port is active, with
605                  * no preemptions pending). However, that means we
606                  * then have to deal with the possible lite-restore
607                  * of the second port (as we submit the ELSP, there
608                  * may be a context-switch) but also we may complete
609                  * the resubmission before the context-switch. Ergo,
610                  * coalescing onto the second port will cause a
611                  * preemption event, but we cannot predict whether
612                  * that will affect port[0] or port[1].
613                  *
614                  * If the second port is already active, we can wait
615                  * until the next context-switch before contemplating
616                  * new requests. The GPU will be busy and we should be
617                  * able to resubmit the new ELSP before it idles,
618                  * avoiding pipeline bubbles (momentary pauses where
619                  * the driver is unable to keep up the supply of new
620                  * work). However, we have to double check that the
621                  * priorities of the ports haven't been switch.
622                  */
623                 if (port_count(&port[1]))
624                         return;
625
626                 /*
627                  * WaIdleLiteRestore:bdw,skl
628                  * Apply the wa NOOPs to prevent
629                  * ring:HEAD == rq:TAIL as we resubmit the
630                  * request. See gen8_emit_breadcrumb() for
631                  * where we prepare the padding after the
632                  * end of the request.
633                  */
634                 last->tail = last->wa_tail;
635         }
636
637         while ((rb = rb_first_cached(&execlists->queue))) {
638                 struct i915_priolist *p = to_priolist(rb);
639                 struct i915_request *rq, *rn;
640                 int i;
641
642                 priolist_for_each_request_consume(rq, rn, p, i) {
643                         /*
644                          * Can we combine this request with the current port?
645                          * It has to be the same context/ringbuffer and not
646                          * have any exceptions (e.g. GVT saying never to
647                          * combine contexts).
648                          *
649                          * If we can combine the requests, we can execute both
650                          * by updating the RING_TAIL to point to the end of the
651                          * second request, and so we never need to tell the
652                          * hardware about the first.
653                          */
654                         if (last &&
655                             !can_merge_ctx(rq->hw_context, last->hw_context)) {
656                                 /*
657                                  * If we are on the second port and cannot
658                                  * combine this request with the last, then we
659                                  * are done.
660                                  */
661                                 if (port == last_port)
662                                         goto done;
663
664                                 /*
665                                  * If GVT overrides us we only ever submit
666                                  * port[0], leaving port[1] empty. Note that we
667                                  * also have to be careful that we don't queue
668                                  * the same context (even though a different
669                                  * request) to the second port.
670                                  */
671                                 if (ctx_single_port_submission(last->hw_context) ||
672                                     ctx_single_port_submission(rq->hw_context))
673                                         goto done;
674
675                                 GEM_BUG_ON(last->hw_context == rq->hw_context);
676
677                                 if (submit)
678                                         port_assign(port, last);
679                                 port++;
680
681                                 GEM_BUG_ON(port_isset(port));
682                         }
683
684                         list_del_init(&rq->sched.link);
685
686                         __i915_request_submit(rq);
687                         trace_i915_request_in(rq, port_index(port, execlists));
688
689                         last = rq;
690                         submit = true;
691                 }
692
693                 rb_erase_cached(&p->node, &execlists->queue);
694                 if (p->priority != I915_PRIORITY_NORMAL)
695                         kmem_cache_free(engine->i915->priorities, p);
696         }
697
698 done:
699         /*
700          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
701          *
702          * We choose queue_priority such that if we add a request of greater
703          * priority than this, we kick the submission tasklet to decide on
704          * the right order of submitting the requests to hardware. We must
705          * also be prepared to reorder requests as they are in-flight on the
706          * HW. We derive the queue_priority then as the first "hole" in
707          * the HW submission ports and if there are no available slots,
708          * the priority of the lowest executing request, i.e. last.
709          *
710          * When we do receive a higher priority request ready to run from the
711          * user, see queue_request(), the queue_priority is bumped to that
712          * request triggering preemption on the next dequeue (or subsequent
713          * interrupt for secondary ports).
714          */
715         execlists->queue_priority =
716                 port != execlists->port ? rq_prio(last) : INT_MIN;
717
718         if (submit) {
719                 port_assign(port, last);
720                 execlists_submit_ports(engine);
721         }
722
723         /* We must always keep the beast fed if we have work piled up */
724         GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
725                    !port_isset(execlists->port));
726
727         /* Re-evaluate the executing context setup after each preemptive kick */
728         if (last)
729                 execlists_user_begin(execlists, execlists->port);
730
731         /* If the engine is now idle, so should be the flag; and vice versa. */
732         GEM_BUG_ON(execlists_is_active(&engine->execlists,
733                                        EXECLISTS_ACTIVE_USER) ==
734                    !port_isset(engine->execlists.port));
735 }
736
737 void
738 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
739 {
740         struct execlist_port *port = execlists->port;
741         unsigned int num_ports = execlists_num_ports(execlists);
742
743         while (num_ports-- && port_isset(port)) {
744                 struct i915_request *rq = port_request(port);
745
746                 GEM_TRACE("%s:port%u global=%d (fence %llx:%lld), (current %d)\n",
747                           rq->engine->name,
748                           (unsigned int)(port - execlists->port),
749                           rq->global_seqno,
750                           rq->fence.context, rq->fence.seqno,
751                           intel_engine_get_seqno(rq->engine));
752
753                 GEM_BUG_ON(!execlists->active);
754                 execlists_context_schedule_out(rq,
755                                                i915_request_completed(rq) ?
756                                                INTEL_CONTEXT_SCHEDULE_OUT :
757                                                INTEL_CONTEXT_SCHEDULE_PREEMPTED);
758
759                 i915_request_put(rq);
760
761                 memset(port, 0, sizeof(*port));
762                 port++;
763         }
764
765         execlists_clear_all_active(execlists);
766 }
767
768 static void reset_csb_pointers(struct intel_engine_execlists *execlists)
769 {
770         /*
771          * After a reset, the HW starts writing into CSB entry [0]. We
772          * therefore have to set our HEAD pointer back one entry so that
773          * the *first* entry we check is entry 0. To complicate this further,
774          * as we don't wait for the first interrupt after reset, we have to
775          * fake the HW write to point back to the last entry so that our
776          * inline comparison of our cached head position against the last HW
777          * write works even before the first interrupt.
778          */
779         execlists->csb_head = execlists->csb_write_reset;
780         WRITE_ONCE(*execlists->csb_write, execlists->csb_write_reset);
781 }
782
783 static void nop_submission_tasklet(unsigned long data)
784 {
785         /* The driver is wedged; don't process any more events. */
786 }
787
788 static void execlists_cancel_requests(struct intel_engine_cs *engine)
789 {
790         struct intel_engine_execlists * const execlists = &engine->execlists;
791         struct i915_request *rq, *rn;
792         struct rb_node *rb;
793         unsigned long flags;
794
795         GEM_TRACE("%s current %d\n",
796                   engine->name, intel_engine_get_seqno(engine));
797
798         /*
799          * Before we call engine->cancel_requests(), we should have exclusive
800          * access to the submission state. This is arranged for us by the
801          * caller disabling the interrupt generation, the tasklet and other
802          * threads that may then access the same state, giving us a free hand
803          * to reset state. However, we still need to let lockdep be aware that
804          * we know this state may be accessed in hardirq context, so we
805          * disable the irq around this manipulation and we want to keep
806          * the spinlock focused on its duties and not accidentally conflate
807          * coverage to the submission's irq state. (Similarly, although we
808          * shouldn't need to disable irq around the manipulation of the
809          * submission's irq state, we also wish to remind ourselves that
810          * it is irq state.)
811          */
812         spin_lock_irqsave(&engine->timeline.lock, flags);
813
814         /* Cancel the requests on the HW and clear the ELSP tracker. */
815         execlists_cancel_port_requests(execlists);
816         execlists_user_end(execlists);
817
818         /* Mark all executing requests as skipped. */
819         list_for_each_entry(rq, &engine->timeline.requests, link) {
820                 GEM_BUG_ON(!rq->global_seqno);
821                 if (!i915_request_completed(rq))
822                         dma_fence_set_error(&rq->fence, -EIO);
823         }
824
825         /* Flush the queued requests to the timeline list (for retiring). */
826         while ((rb = rb_first_cached(&execlists->queue))) {
827                 struct i915_priolist *p = to_priolist(rb);
828                 int i;
829
830                 priolist_for_each_request_consume(rq, rn, p, i) {
831                         list_del_init(&rq->sched.link);
832
833                         dma_fence_set_error(&rq->fence, -EIO);
834                         __i915_request_submit(rq);
835                 }
836
837                 rb_erase_cached(&p->node, &execlists->queue);
838                 if (p->priority != I915_PRIORITY_NORMAL)
839                         kmem_cache_free(engine->i915->priorities, p);
840         }
841
842         /* Remaining _unready_ requests will be nop'ed when submitted */
843
844         execlists->queue_priority = INT_MIN;
845         execlists->queue = RB_ROOT_CACHED;
846         GEM_BUG_ON(port_isset(execlists->port));
847
848         GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
849         execlists->tasklet.func = nop_submission_tasklet;
850
851         spin_unlock_irqrestore(&engine->timeline.lock, flags);
852 }
853
854 static inline bool
855 reset_in_progress(const struct intel_engine_execlists *execlists)
856 {
857         return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
858 }
859
860 static void process_csb(struct intel_engine_cs *engine)
861 {
862         struct intel_engine_execlists * const execlists = &engine->execlists;
863         struct execlist_port *port = execlists->port;
864         const u32 * const buf = execlists->csb_status;
865         u8 head, tail;
866
867         /*
868          * Note that csb_write, csb_status may be either in HWSP or mmio.
869          * When reading from the csb_write mmio register, we have to be
870          * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
871          * the low 4bits. As it happens we know the next 4bits are always
872          * zero and so we can simply masked off the low u8 of the register
873          * and treat it identically to reading from the HWSP (without having
874          * to use explicit shifting and masking, and probably bifurcating
875          * the code to handle the legacy mmio read).
876          */
877         head = execlists->csb_head;
878         tail = READ_ONCE(*execlists->csb_write);
879         GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
880         if (unlikely(head == tail))
881                 return;
882
883         /*
884          * Hopefully paired with a wmb() in HW!
885          *
886          * We must complete the read of the write pointer before any reads
887          * from the CSB, so that we do not see stale values. Without an rmb
888          * (lfence) the HW may speculatively perform the CSB[] reads *before*
889          * we perform the READ_ONCE(*csb_write).
890          */
891         rmb();
892
893         do {
894                 struct i915_request *rq;
895                 unsigned int status;
896                 unsigned int count;
897
898                 if (++head == GEN8_CSB_ENTRIES)
899                         head = 0;
900
901                 /*
902                  * We are flying near dragons again.
903                  *
904                  * We hold a reference to the request in execlist_port[]
905                  * but no more than that. We are operating in softirq
906                  * context and so cannot hold any mutex or sleep. That
907                  * prevents us stopping the requests we are processing
908                  * in port[] from being retired simultaneously (the
909                  * breadcrumb will be complete before we see the
910                  * context-switch). As we only hold the reference to the
911                  * request, any pointer chasing underneath the request
912                  * is subject to a potential use-after-free. Thus we
913                  * store all of the bookkeeping within port[] as
914                  * required, and avoid using unguarded pointers beneath
915                  * request itself. The same applies to the atomic
916                  * status notifier.
917                  */
918
919                 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
920                           engine->name, head,
921                           buf[2 * head + 0], buf[2 * head + 1],
922                           execlists->active);
923
924                 status = buf[2 * head];
925                 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
926                               GEN8_CTX_STATUS_PREEMPTED))
927                         execlists_set_active(execlists,
928                                              EXECLISTS_ACTIVE_HWACK);
929                 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
930                         execlists_clear_active(execlists,
931                                                EXECLISTS_ACTIVE_HWACK);
932
933                 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
934                         continue;
935
936                 /* We should never get a COMPLETED | IDLE_ACTIVE! */
937                 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
938
939                 if (status & GEN8_CTX_STATUS_COMPLETE &&
940                     buf[2*head + 1] == execlists->preempt_complete_status) {
941                         GEM_TRACE("%s preempt-idle\n", engine->name);
942                         complete_preempt_context(execlists);
943                         continue;
944                 }
945
946                 if (status & GEN8_CTX_STATUS_PREEMPTED &&
947                     execlists_is_active(execlists,
948                                         EXECLISTS_ACTIVE_PREEMPT))
949                         continue;
950
951                 GEM_BUG_ON(!execlists_is_active(execlists,
952                                                 EXECLISTS_ACTIVE_USER));
953
954                 rq = port_unpack(port, &count);
955                 GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%lld) (current %d), prio=%d\n",
956                           engine->name,
957                           port->context_id, count,
958                           rq ? rq->global_seqno : 0,
959                           rq ? rq->fence.context : 0,
960                           rq ? rq->fence.seqno : 0,
961                           intel_engine_get_seqno(engine),
962                           rq ? rq_prio(rq) : 0);
963
964                 /* Check the context/desc id for this event matches */
965                 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
966
967                 GEM_BUG_ON(count == 0);
968                 if (--count == 0) {
969                         /*
970                          * On the final event corresponding to the
971                          * submission of this context, we expect either
972                          * an element-switch event or a completion
973                          * event (and on completion, the active-idle
974                          * marker). No more preemptions, lite-restore
975                          * or otherwise.
976                          */
977                         GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
978                         GEM_BUG_ON(port_isset(&port[1]) &&
979                                    !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
980                         GEM_BUG_ON(!port_isset(&port[1]) &&
981                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
982
983                         /*
984                          * We rely on the hardware being strongly
985                          * ordered, that the breadcrumb write is
986                          * coherent (visible from the CPU) before the
987                          * user interrupt and CSB is processed.
988                          */
989                         GEM_BUG_ON(!i915_request_completed(rq));
990
991                         execlists_context_schedule_out(rq,
992                                                        INTEL_CONTEXT_SCHEDULE_OUT);
993                         i915_request_put(rq);
994
995                         GEM_TRACE("%s completed ctx=%d\n",
996                                   engine->name, port->context_id);
997
998                         port = execlists_port_complete(execlists, port);
999                         if (port_isset(port))
1000                                 execlists_user_begin(execlists, port);
1001                         else
1002                                 execlists_user_end(execlists);
1003                 } else {
1004                         port_set(port, port_pack(rq, count));
1005                 }
1006         } while (head != tail);
1007
1008         execlists->csb_head = head;
1009 }
1010
1011 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1012 {
1013         lockdep_assert_held(&engine->timeline.lock);
1014
1015         process_csb(engine);
1016         if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
1017                 execlists_dequeue(engine);
1018 }
1019
1020 /*
1021  * Check the unread Context Status Buffers and manage the submission of new
1022  * contexts to the ELSP accordingly.
1023  */
1024 static void execlists_submission_tasklet(unsigned long data)
1025 {
1026         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1027         unsigned long flags;
1028
1029         GEM_TRACE("%s awake?=%d, active=%x\n",
1030                   engine->name,
1031                   engine->i915->gt.awake,
1032                   engine->execlists.active);
1033
1034         spin_lock_irqsave(&engine->timeline.lock, flags);
1035         __execlists_submission_tasklet(engine);
1036         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1037 }
1038
1039 static void queue_request(struct intel_engine_cs *engine,
1040                           struct i915_sched_node *node,
1041                           int prio)
1042 {
1043         list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1044 }
1045
1046 static void __submit_queue_imm(struct intel_engine_cs *engine)
1047 {
1048         struct intel_engine_execlists * const execlists = &engine->execlists;
1049
1050         if (reset_in_progress(execlists))
1051                 return; /* defer until we restart the engine following reset */
1052
1053         if (execlists->tasklet.func == execlists_submission_tasklet)
1054                 __execlists_submission_tasklet(engine);
1055         else
1056                 tasklet_hi_schedule(&execlists->tasklet);
1057 }
1058
1059 static void submit_queue(struct intel_engine_cs *engine, int prio)
1060 {
1061         if (prio > engine->execlists.queue_priority) {
1062                 engine->execlists.queue_priority = prio;
1063                 __submit_queue_imm(engine);
1064         }
1065 }
1066
1067 static void execlists_submit_request(struct i915_request *request)
1068 {
1069         struct intel_engine_cs *engine = request->engine;
1070         unsigned long flags;
1071
1072         /* Will be called from irq-context when using foreign fences. */
1073         spin_lock_irqsave(&engine->timeline.lock, flags);
1074
1075         queue_request(engine, &request->sched, rq_prio(request));
1076
1077         GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1078         GEM_BUG_ON(list_empty(&request->sched.link));
1079
1080         submit_queue(engine, rq_prio(request));
1081
1082         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1083 }
1084
1085 static void execlists_context_destroy(struct intel_context *ce)
1086 {
1087         GEM_BUG_ON(ce->pin_count);
1088
1089         if (!ce->state)
1090                 return;
1091
1092         intel_ring_free(ce->ring);
1093
1094         GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1095         i915_gem_object_put(ce->state->obj);
1096 }
1097
1098 static void execlists_context_unpin(struct intel_context *ce)
1099 {
1100         struct intel_engine_cs *engine;
1101
1102         /*
1103          * The tasklet may still be using a pointer to our state, via an
1104          * old request. However, since we know we only unpin the context
1105          * on retirement of the following request, we know that the last
1106          * request referencing us will have had a completion CS interrupt.
1107          * If we see that it is still active, it means that the tasklet hasn't
1108          * had the chance to run yet; let it run before we teardown the
1109          * reference it may use.
1110          */
1111         engine = READ_ONCE(ce->active);
1112         if (unlikely(engine)) {
1113                 unsigned long flags;
1114
1115                 spin_lock_irqsave(&engine->timeline.lock, flags);
1116                 process_csb(engine);
1117                 spin_unlock_irqrestore(&engine->timeline.lock, flags);
1118
1119                 GEM_BUG_ON(READ_ONCE(ce->active));
1120         }
1121
1122         i915_gem_context_unpin_hw_id(ce->gem_context);
1123
1124         intel_ring_unpin(ce->ring);
1125
1126         ce->state->obj->pin_global--;
1127         i915_gem_object_unpin_map(ce->state->obj);
1128         i915_vma_unpin(ce->state);
1129
1130         i915_gem_context_put(ce->gem_context);
1131 }
1132
1133 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1134 {
1135         unsigned int flags;
1136         int err;
1137
1138         /*
1139          * Clear this page out of any CPU caches for coherent swap-in/out.
1140          * We only want to do this on the first bind so that we do not stall
1141          * on an active context (which by nature is already on the GPU).
1142          */
1143         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1144                 err = i915_gem_object_set_to_wc_domain(vma->obj, true);
1145                 if (err)
1146                         return err;
1147         }
1148
1149         flags = PIN_GLOBAL | PIN_HIGH;
1150         flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1151
1152         return i915_vma_pin(vma, 0, 0, flags);
1153 }
1154
1155 static struct intel_context *
1156 __execlists_context_pin(struct intel_engine_cs *engine,
1157                         struct i915_gem_context *ctx,
1158                         struct intel_context *ce)
1159 {
1160         void *vaddr;
1161         int ret;
1162
1163         ret = execlists_context_deferred_alloc(ctx, engine, ce);
1164         if (ret)
1165                 goto err;
1166         GEM_BUG_ON(!ce->state);
1167
1168         ret = __context_pin(ctx, ce->state);
1169         if (ret)
1170                 goto err;
1171
1172         vaddr = i915_gem_object_pin_map(ce->state->obj,
1173                                         i915_coherent_map_type(ctx->i915) |
1174                                         I915_MAP_OVERRIDE);
1175         if (IS_ERR(vaddr)) {
1176                 ret = PTR_ERR(vaddr);
1177                 goto unpin_vma;
1178         }
1179
1180         ret = intel_ring_pin(ce->ring);
1181         if (ret)
1182                 goto unpin_map;
1183
1184         ret = i915_gem_context_pin_hw_id(ctx);
1185         if (ret)
1186                 goto unpin_ring;
1187
1188         intel_lr_context_descriptor_update(ctx, engine, ce);
1189
1190         GEM_BUG_ON(!intel_ring_offset_valid(ce->ring, ce->ring->head));
1191
1192         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1193         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1194                 i915_ggtt_offset(ce->ring->vma);
1195         ce->lrc_reg_state[CTX_RING_HEAD + 1] = ce->ring->head;
1196         ce->lrc_reg_state[CTX_RING_TAIL + 1] = ce->ring->tail;
1197
1198         ce->state->obj->pin_global++;
1199         i915_gem_context_get(ctx);
1200         return ce;
1201
1202 unpin_ring:
1203         intel_ring_unpin(ce->ring);
1204 unpin_map:
1205         i915_gem_object_unpin_map(ce->state->obj);
1206 unpin_vma:
1207         __i915_vma_unpin(ce->state);
1208 err:
1209         ce->pin_count = 0;
1210         return ERR_PTR(ret);
1211 }
1212
1213 static const struct intel_context_ops execlists_context_ops = {
1214         .unpin = execlists_context_unpin,
1215         .destroy = execlists_context_destroy,
1216 };
1217
1218 static struct intel_context *
1219 execlists_context_pin(struct intel_engine_cs *engine,
1220                       struct i915_gem_context *ctx)
1221 {
1222         struct intel_context *ce = to_intel_context(ctx, engine);
1223
1224         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1225         GEM_BUG_ON(!ctx->ppgtt);
1226
1227         if (likely(ce->pin_count++))
1228                 return ce;
1229         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1230
1231         ce->ops = &execlists_context_ops;
1232
1233         return __execlists_context_pin(engine, ctx, ce);
1234 }
1235
1236 static int execlists_request_alloc(struct i915_request *request)
1237 {
1238         int ret;
1239
1240         GEM_BUG_ON(!request->hw_context->pin_count);
1241
1242         /* Flush enough space to reduce the likelihood of waiting after
1243          * we start building the request - in which case we will just
1244          * have to repeat work.
1245          */
1246         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1247
1248         ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1249         if (ret)
1250                 return ret;
1251
1252         /* Note that after this point, we have committed to using
1253          * this request as it is being used to both track the
1254          * state of engine initialisation and liveness of the
1255          * golden renderstate above. Think twice before you try
1256          * to cancel/unwind this request now.
1257          */
1258
1259         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1260         return 0;
1261 }
1262
1263 /*
1264  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1265  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1266  * but there is a slight complication as this is applied in WA batch where the
1267  * values are only initialized once so we cannot take register value at the
1268  * beginning and reuse it further; hence we save its value to memory, upload a
1269  * constant value with bit21 set and then we restore it back with the saved value.
1270  * To simplify the WA, a constant value is formed by using the default value
1271  * of this register. This shouldn't be a problem because we are only modifying
1272  * it for a short period and this batch in non-premptible. We can ofcourse
1273  * use additional instructions that read the actual value of the register
1274  * at that time and set our bit of interest but it makes the WA complicated.
1275  *
1276  * This WA is also required for Gen9 so extracting as a function avoids
1277  * code duplication.
1278  */
1279 static u32 *
1280 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1281 {
1282         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1283         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1284         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1285         *batch++ = 0;
1286
1287         *batch++ = MI_LOAD_REGISTER_IMM(1);
1288         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1289         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1290
1291         batch = gen8_emit_pipe_control(batch,
1292                                        PIPE_CONTROL_CS_STALL |
1293                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1294                                        0);
1295
1296         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1297         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1298         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1299         *batch++ = 0;
1300
1301         return batch;
1302 }
1303
1304 /*
1305  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1306  * initialized at the beginning and shared across all contexts but this field
1307  * helps us to have multiple batches at different offsets and select them based
1308  * on a criteria. At the moment this batch always start at the beginning of the page
1309  * and at this point we don't have multiple wa_ctx batch buffers.
1310  *
1311  * The number of WA applied are not known at the beginning; we use this field
1312  * to return the no of DWORDS written.
1313  *
1314  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1315  * so it adds NOOPs as padding to make it cacheline aligned.
1316  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1317  * makes a complete batch buffer.
1318  */
1319 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1320 {
1321         /* WaDisableCtxRestoreArbitration:bdw,chv */
1322         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1323
1324         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1325         if (IS_BROADWELL(engine->i915))
1326                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1327
1328         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1329         /* Actual scratch location is at 128 bytes offset */
1330         batch = gen8_emit_pipe_control(batch,
1331                                        PIPE_CONTROL_FLUSH_L3 |
1332                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1333                                        PIPE_CONTROL_CS_STALL |
1334                                        PIPE_CONTROL_QW_WRITE,
1335                                        i915_ggtt_offset(engine->scratch) +
1336                                        2 * CACHELINE_BYTES);
1337
1338         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1339
1340         /* Pad to end of cacheline */
1341         while ((unsigned long)batch % CACHELINE_BYTES)
1342                 *batch++ = MI_NOOP;
1343
1344         /*
1345          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1346          * execution depends on the length specified in terms of cache lines
1347          * in the register CTX_RCS_INDIRECT_CTX
1348          */
1349
1350         return batch;
1351 }
1352
1353 struct lri {
1354         i915_reg_t reg;
1355         u32 value;
1356 };
1357
1358 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1359 {
1360         GEM_BUG_ON(!count || count > 63);
1361
1362         *batch++ = MI_LOAD_REGISTER_IMM(count);
1363         do {
1364                 *batch++ = i915_mmio_reg_offset(lri->reg);
1365                 *batch++ = lri->value;
1366         } while (lri++, --count);
1367         *batch++ = MI_NOOP;
1368
1369         return batch;
1370 }
1371
1372 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1373 {
1374         static const struct lri lri[] = {
1375                 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1376                 {
1377                         COMMON_SLICE_CHICKEN2,
1378                         __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1379                                        0),
1380                 },
1381
1382                 /* BSpec: 11391 */
1383                 {
1384                         FF_SLICE_CHICKEN,
1385                         __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1386                                        FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1387                 },
1388
1389                 /* BSpec: 11299 */
1390                 {
1391                         _3D_CHICKEN3,
1392                         __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1393                                        _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1394                 }
1395         };
1396
1397         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1398
1399         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1400         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1401
1402         batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1403
1404         /* WaClearSlmSpaceAtContextSwitch:kbl */
1405         /* Actual scratch location is at 128 bytes offset */
1406         if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1407                 batch = gen8_emit_pipe_control(batch,
1408                                                PIPE_CONTROL_FLUSH_L3 |
1409                                                PIPE_CONTROL_GLOBAL_GTT_IVB |
1410                                                PIPE_CONTROL_CS_STALL |
1411                                                PIPE_CONTROL_QW_WRITE,
1412                                                i915_ggtt_offset(engine->scratch)
1413                                                + 2 * CACHELINE_BYTES);
1414         }
1415
1416         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1417         if (HAS_POOLED_EU(engine->i915)) {
1418                 /*
1419                  * EU pool configuration is setup along with golden context
1420                  * during context initialization. This value depends on
1421                  * device type (2x6 or 3x6) and needs to be updated based
1422                  * on which subslice is disabled especially for 2x6
1423                  * devices, however it is safe to load default
1424                  * configuration of 3x6 device instead of masking off
1425                  * corresponding bits because HW ignores bits of a disabled
1426                  * subslice and drops down to appropriate config. Please
1427                  * see render_state_setup() in i915_gem_render_state.c for
1428                  * possible configurations, to avoid duplication they are
1429                  * not shown here again.
1430                  */
1431                 *batch++ = GEN9_MEDIA_POOL_STATE;
1432                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1433                 *batch++ = 0x00777000;
1434                 *batch++ = 0;
1435                 *batch++ = 0;
1436                 *batch++ = 0;
1437         }
1438
1439         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1440
1441         /* Pad to end of cacheline */
1442         while ((unsigned long)batch % CACHELINE_BYTES)
1443                 *batch++ = MI_NOOP;
1444
1445         return batch;
1446 }
1447
1448 static u32 *
1449 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1450 {
1451         int i;
1452
1453         /*
1454          * WaPipeControlBefore3DStateSamplePattern: cnl
1455          *
1456          * Ensure the engine is idle prior to programming a
1457          * 3DSTATE_SAMPLE_PATTERN during a context restore.
1458          */
1459         batch = gen8_emit_pipe_control(batch,
1460                                        PIPE_CONTROL_CS_STALL,
1461                                        0);
1462         /*
1463          * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1464          * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1465          * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1466          * confusing. Since gen8_emit_pipe_control() already advances the
1467          * batch by 6 dwords, we advance the other 10 here, completing a
1468          * cacheline. It's not clear if the workaround requires this padding
1469          * before other commands, or if it's just the regular padding we would
1470          * already have for the workaround bb, so leave it here for now.
1471          */
1472         for (i = 0; i < 10; i++)
1473                 *batch++ = MI_NOOP;
1474
1475         /* Pad to end of cacheline */
1476         while ((unsigned long)batch % CACHELINE_BYTES)
1477                 *batch++ = MI_NOOP;
1478
1479         return batch;
1480 }
1481
1482 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1483
1484 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1485 {
1486         struct drm_i915_gem_object *obj;
1487         struct i915_vma *vma;
1488         int err;
1489
1490         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1491         if (IS_ERR(obj))
1492                 return PTR_ERR(obj);
1493
1494         vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1495         if (IS_ERR(vma)) {
1496                 err = PTR_ERR(vma);
1497                 goto err;
1498         }
1499
1500         err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1501         if (err)
1502                 goto err;
1503
1504         engine->wa_ctx.vma = vma;
1505         return 0;
1506
1507 err:
1508         i915_gem_object_put(obj);
1509         return err;
1510 }
1511
1512 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1513 {
1514         i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1515 }
1516
1517 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1518
1519 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1520 {
1521         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1522         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1523                                             &wa_ctx->per_ctx };
1524         wa_bb_func_t wa_bb_fn[2];
1525         struct page *page;
1526         void *batch, *batch_ptr;
1527         unsigned int i;
1528         int ret;
1529
1530         if (GEM_DEBUG_WARN_ON(engine->id != RCS))
1531                 return -EINVAL;
1532
1533         switch (INTEL_GEN(engine->i915)) {
1534         case 11:
1535                 return 0;
1536         case 10:
1537                 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1538                 wa_bb_fn[1] = NULL;
1539                 break;
1540         case 9:
1541                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1542                 wa_bb_fn[1] = NULL;
1543                 break;
1544         case 8:
1545                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1546                 wa_bb_fn[1] = NULL;
1547                 break;
1548         default:
1549                 MISSING_CASE(INTEL_GEN(engine->i915));
1550                 return 0;
1551         }
1552
1553         ret = lrc_setup_wa_ctx(engine);
1554         if (ret) {
1555                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1556                 return ret;
1557         }
1558
1559         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1560         batch = batch_ptr = kmap_atomic(page);
1561
1562         /*
1563          * Emit the two workaround batch buffers, recording the offset from the
1564          * start of the workaround batch buffer object for each and their
1565          * respective sizes.
1566          */
1567         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1568                 wa_bb[i]->offset = batch_ptr - batch;
1569                 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1570                                                   CACHELINE_BYTES))) {
1571                         ret = -EINVAL;
1572                         break;
1573                 }
1574                 if (wa_bb_fn[i])
1575                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1576                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1577         }
1578
1579         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1580
1581         kunmap_atomic(batch);
1582         if (ret)
1583                 lrc_destroy_wa_ctx(engine);
1584
1585         return ret;
1586 }
1587
1588 static void enable_execlists(struct intel_engine_cs *engine)
1589 {
1590         struct drm_i915_private *dev_priv = engine->i915;
1591
1592         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1593
1594         /*
1595          * Make sure we're not enabling the new 12-deep CSB
1596          * FIFO as that requires a slightly updated handling
1597          * in the ctx switch irq. Since we're currently only
1598          * using only 2 elements of the enhanced execlists the
1599          * deeper FIFO it's not needed and it's not worth adding
1600          * more statements to the irq handler to support it.
1601          */
1602         if (INTEL_GEN(dev_priv) >= 11)
1603                 I915_WRITE(RING_MODE_GEN7(engine),
1604                            _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1605         else
1606                 I915_WRITE(RING_MODE_GEN7(engine),
1607                            _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1608
1609         I915_WRITE(RING_MI_MODE(engine->mmio_base),
1610                    _MASKED_BIT_DISABLE(STOP_RING));
1611
1612         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1613                    engine->status_page.ggtt_offset);
1614         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1615 }
1616
1617 static bool unexpected_starting_state(struct intel_engine_cs *engine)
1618 {
1619         struct drm_i915_private *dev_priv = engine->i915;
1620         bool unexpected = false;
1621
1622         if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
1623                 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
1624                 unexpected = true;
1625         }
1626
1627         return unexpected;
1628 }
1629
1630 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1631 {
1632         intel_mocs_init_engine(engine);
1633
1634         intel_engine_reset_breadcrumbs(engine);
1635
1636         if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
1637                 struct drm_printer p = drm_debug_printer(__func__);
1638
1639                 intel_engine_dump(engine, &p, NULL);
1640         }
1641
1642         enable_execlists(engine);
1643
1644         return 0;
1645 }
1646
1647 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1648 {
1649         struct drm_i915_private *dev_priv = engine->i915;
1650         int ret;
1651
1652         ret = gen8_init_common_ring(engine);
1653         if (ret)
1654                 return ret;
1655
1656         intel_whitelist_workarounds_apply(engine);
1657
1658         /* We need to disable the AsyncFlip performance optimisations in order
1659          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1660          * programmed to '1' on all products.
1661          *
1662          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1663          */
1664         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1665
1666         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1667
1668         return 0;
1669 }
1670
1671 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1672 {
1673         int ret;
1674
1675         ret = gen8_init_common_ring(engine);
1676         if (ret)
1677                 return ret;
1678
1679         intel_whitelist_workarounds_apply(engine);
1680
1681         return 0;
1682 }
1683
1684 static struct i915_request *
1685 execlists_reset_prepare(struct intel_engine_cs *engine)
1686 {
1687         struct intel_engine_execlists * const execlists = &engine->execlists;
1688         struct i915_request *request, *active;
1689         unsigned long flags;
1690
1691         GEM_TRACE("%s: depth<-%d\n", engine->name,
1692                   atomic_read(&execlists->tasklet.count));
1693
1694         /*
1695          * Prevent request submission to the hardware until we have
1696          * completed the reset in i915_gem_reset_finish(). If a request
1697          * is completed by one engine, it may then queue a request
1698          * to a second via its execlists->tasklet *just* as we are
1699          * calling engine->init_hw() and also writing the ELSP.
1700          * Turning off the execlists->tasklet until the reset is over
1701          * prevents the race.
1702          */
1703         __tasklet_disable_sync_once(&execlists->tasklet);
1704
1705         spin_lock_irqsave(&engine->timeline.lock, flags);
1706
1707         /*
1708          * We want to flush the pending context switches, having disabled
1709          * the tasklet above, we can assume exclusive access to the execlists.
1710          * For this allows us to catch up with an inflight preemption event,
1711          * and avoid blaming an innocent request if the stall was due to the
1712          * preemption itself.
1713          */
1714         process_csb(engine);
1715
1716         /*
1717          * The last active request can then be no later than the last request
1718          * now in ELSP[0]. So search backwards from there, so that if the GPU
1719          * has advanced beyond the last CSB update, it will be pardoned.
1720          */
1721         active = NULL;
1722         request = port_request(execlists->port);
1723         if (request) {
1724                 /*
1725                  * Prevent the breadcrumb from advancing before we decide
1726                  * which request is currently active.
1727                  */
1728                 intel_engine_stop_cs(engine);
1729
1730                 list_for_each_entry_from_reverse(request,
1731                                                  &engine->timeline.requests,
1732                                                  link) {
1733                         if (__i915_request_completed(request,
1734                                                      request->global_seqno))
1735                                 break;
1736
1737                         active = request;
1738                 }
1739         }
1740
1741         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1742
1743         return active;
1744 }
1745
1746 static void execlists_reset(struct intel_engine_cs *engine,
1747                             struct i915_request *request)
1748 {
1749         struct intel_engine_execlists * const execlists = &engine->execlists;
1750         unsigned long flags;
1751         u32 *regs;
1752
1753         GEM_TRACE("%s request global=%d, current=%d\n",
1754                   engine->name, request ? request->global_seqno : 0,
1755                   intel_engine_get_seqno(engine));
1756
1757         spin_lock_irqsave(&engine->timeline.lock, flags);
1758
1759         /*
1760          * Catch up with any missed context-switch interrupts.
1761          *
1762          * Ideally we would just read the remaining CSB entries now that we
1763          * know the gpu is idle. However, the CSB registers are sometimes^W
1764          * often trashed across a GPU reset! Instead we have to rely on
1765          * guessing the missed context-switch events by looking at what
1766          * requests were completed.
1767          */
1768         execlists_cancel_port_requests(execlists);
1769
1770         /* Push back any incomplete requests for replay after the reset. */
1771         __unwind_incomplete_requests(engine);
1772
1773         /* Following the reset, we need to reload the CSB read/write pointers */
1774         reset_csb_pointers(&engine->execlists);
1775
1776         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1777
1778         /*
1779          * If the request was innocent, we leave the request in the ELSP
1780          * and will try to replay it on restarting. The context image may
1781          * have been corrupted by the reset, in which case we may have
1782          * to service a new GPU hang, but more likely we can continue on
1783          * without impact.
1784          *
1785          * If the request was guilty, we presume the context is corrupt
1786          * and have to at least restore the RING register in the context
1787          * image back to the expected values to skip over the guilty request.
1788          */
1789         if (!request || request->fence.error != -EIO)
1790                 return;
1791
1792         /*
1793          * We want a simple context + ring to execute the breadcrumb update.
1794          * We cannot rely on the context being intact across the GPU hang,
1795          * so clear it and rebuild just what we need for the breadcrumb.
1796          * All pending requests for this context will be zapped, and any
1797          * future request will be after userspace has had the opportunity
1798          * to recreate its own state.
1799          */
1800         regs = request->hw_context->lrc_reg_state;
1801         if (engine->pinned_default_state) {
1802                 memcpy(regs, /* skip restoring the vanilla PPHWSP */
1803                        engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
1804                        engine->context_size - PAGE_SIZE);
1805         }
1806         execlists_init_reg_state(regs,
1807                                  request->gem_context, engine, request->ring);
1808
1809         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1810         regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
1811
1812         request->ring->head = intel_ring_wrap(request->ring, request->postfix);
1813         regs[CTX_RING_HEAD + 1] = request->ring->head;
1814
1815         intel_ring_update_space(request->ring);
1816
1817         /* Reset WaIdleLiteRestore:bdw,skl as well */
1818         unwind_wa_tail(request);
1819 }
1820
1821 static void execlists_reset_finish(struct intel_engine_cs *engine)
1822 {
1823         struct intel_engine_execlists * const execlists = &engine->execlists;
1824
1825         /*
1826          * After a GPU reset, we may have requests to replay. Do so now while
1827          * we still have the forcewake to be sure that the GPU is not allowed
1828          * to sleep before we restart and reload a context.
1829          *
1830          */
1831         if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
1832                 execlists->tasklet.func(execlists->tasklet.data);
1833
1834         tasklet_enable(&execlists->tasklet);
1835         GEM_TRACE("%s: depth->%d\n", engine->name,
1836                   atomic_read(&execlists->tasklet.count));
1837 }
1838
1839 static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1840 {
1841         struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
1842         struct intel_engine_cs *engine = rq->engine;
1843         const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1844         u32 *cs;
1845         int i;
1846
1847         cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1848         if (IS_ERR(cs))
1849                 return PTR_ERR(cs);
1850
1851         *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1852         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1853                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1854
1855                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1856                 *cs++ = upper_32_bits(pd_daddr);
1857                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1858                 *cs++ = lower_32_bits(pd_daddr);
1859         }
1860
1861         *cs++ = MI_NOOP;
1862         intel_ring_advance(rq, cs);
1863
1864         return 0;
1865 }
1866
1867 static int gen8_emit_bb_start(struct i915_request *rq,
1868                               u64 offset, u32 len,
1869                               const unsigned int flags)
1870 {
1871         u32 *cs;
1872         int ret;
1873
1874         /* Don't rely in hw updating PDPs, specially in lite-restore.
1875          * Ideally, we should set Force PD Restore in ctx descriptor,
1876          * but we can't. Force Restore would be a second option, but
1877          * it is unsafe in case of lite-restore (because the ctx is
1878          * not idle). PML4 is allocated during ppgtt init so this is
1879          * not needed in 48-bit.*/
1880         if ((intel_engine_flag(rq->engine) & rq->gem_context->ppgtt->pd_dirty_rings) &&
1881             !i915_vm_is_48bit(&rq->gem_context->ppgtt->vm) &&
1882             !intel_vgpu_active(rq->i915)) {
1883                 ret = intel_logical_ring_emit_pdps(rq);
1884                 if (ret)
1885                         return ret;
1886
1887                 rq->gem_context->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1888         }
1889
1890         cs = intel_ring_begin(rq, 6);
1891         if (IS_ERR(cs))
1892                 return PTR_ERR(cs);
1893
1894         /*
1895          * WaDisableCtxRestoreArbitration:bdw,chv
1896          *
1897          * We don't need to perform MI_ARB_ENABLE as often as we do (in
1898          * particular all the gen that do not need the w/a at all!), if we
1899          * took care to make sure that on every switch into this context
1900          * (both ordinary and for preemption) that arbitrartion was enabled
1901          * we would be fine. However, there doesn't seem to be a downside to
1902          * being paranoid and making sure it is set before each batch and
1903          * every context-switch.
1904          *
1905          * Note that if we fail to enable arbitration before the request
1906          * is complete, then we do not see the context-switch interrupt and
1907          * the engine hangs (with RING_HEAD == RING_TAIL).
1908          *
1909          * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1910          */
1911         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1912
1913         /* FIXME(BDW): Address space and security selectors. */
1914         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1915                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
1916         *cs++ = lower_32_bits(offset);
1917         *cs++ = upper_32_bits(offset);
1918
1919         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1920         *cs++ = MI_NOOP;
1921         intel_ring_advance(rq, cs);
1922
1923         return 0;
1924 }
1925
1926 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1927 {
1928         struct drm_i915_private *dev_priv = engine->i915;
1929         I915_WRITE_IMR(engine,
1930                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1931         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1932 }
1933
1934 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1935 {
1936         struct drm_i915_private *dev_priv = engine->i915;
1937         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1938 }
1939
1940 static int gen8_emit_flush(struct i915_request *request, u32 mode)
1941 {
1942         u32 cmd, *cs;
1943
1944         cs = intel_ring_begin(request, 4);
1945         if (IS_ERR(cs))
1946                 return PTR_ERR(cs);
1947
1948         cmd = MI_FLUSH_DW + 1;
1949
1950         /* We always require a command barrier so that subsequent
1951          * commands, such as breadcrumb interrupts, are strictly ordered
1952          * wrt the contents of the write cache being flushed to memory
1953          * (and thus being coherent from the CPU).
1954          */
1955         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1956
1957         if (mode & EMIT_INVALIDATE) {
1958                 cmd |= MI_INVALIDATE_TLB;
1959                 if (request->engine->class == VIDEO_DECODE_CLASS)
1960                         cmd |= MI_INVALIDATE_BSD;
1961         }
1962
1963         *cs++ = cmd;
1964         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1965         *cs++ = 0; /* upper addr */
1966         *cs++ = 0; /* value */
1967         intel_ring_advance(request, cs);
1968
1969         return 0;
1970 }
1971
1972 static int gen8_emit_flush_render(struct i915_request *request,
1973                                   u32 mode)
1974 {
1975         struct intel_engine_cs *engine = request->engine;
1976         u32 scratch_addr =
1977                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1978         bool vf_flush_wa = false, dc_flush_wa = false;
1979         u32 *cs, flags = 0;
1980         int len;
1981
1982         flags |= PIPE_CONTROL_CS_STALL;
1983
1984         if (mode & EMIT_FLUSH) {
1985                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1986                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1987                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1988                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1989         }
1990
1991         if (mode & EMIT_INVALIDATE) {
1992                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1993                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1994                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1995                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1996                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1997                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1998                 flags |= PIPE_CONTROL_QW_WRITE;
1999                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2000
2001                 /*
2002                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2003                  * pipe control.
2004                  */
2005                 if (IS_GEN9(request->i915))
2006                         vf_flush_wa = true;
2007
2008                 /* WaForGAMHang:kbl */
2009                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2010                         dc_flush_wa = true;
2011         }
2012
2013         len = 6;
2014
2015         if (vf_flush_wa)
2016                 len += 6;
2017
2018         if (dc_flush_wa)
2019                 len += 12;
2020
2021         cs = intel_ring_begin(request, len);
2022         if (IS_ERR(cs))
2023                 return PTR_ERR(cs);
2024
2025         if (vf_flush_wa)
2026                 cs = gen8_emit_pipe_control(cs, 0, 0);
2027
2028         if (dc_flush_wa)
2029                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2030                                             0);
2031
2032         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2033
2034         if (dc_flush_wa)
2035                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2036
2037         intel_ring_advance(request, cs);
2038
2039         return 0;
2040 }
2041
2042 /*
2043  * Reserve space for 2 NOOPs at the end of each request to be
2044  * used as a workaround for not being allowed to do lite
2045  * restore with HEAD==TAIL (WaIdleLiteRestore).
2046  */
2047 static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2048 {
2049         /* Ensure there's always at least one preemption point per-request. */
2050         *cs++ = MI_ARB_CHECK;
2051         *cs++ = MI_NOOP;
2052         request->wa_tail = intel_ring_offset(request, cs);
2053 }
2054
2055 static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
2056 {
2057         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
2058         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2059
2060         cs = gen8_emit_ggtt_write(cs, request->global_seqno,
2061                                   intel_hws_seqno_address(request->engine));
2062         *cs++ = MI_USER_INTERRUPT;
2063         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2064         request->tail = intel_ring_offset(request, cs);
2065         assert_ring_tail_valid(request->ring, request->tail);
2066
2067         gen8_emit_wa_tail(request, cs);
2068 }
2069 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
2070
2071 static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2072 {
2073         /* We're using qword write, seqno should be aligned to 8 bytes. */
2074         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
2075
2076         cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
2077                                       intel_hws_seqno_address(request->engine));
2078         *cs++ = MI_USER_INTERRUPT;
2079         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2080         request->tail = intel_ring_offset(request, cs);
2081         assert_ring_tail_valid(request->ring, request->tail);
2082
2083         gen8_emit_wa_tail(request, cs);
2084 }
2085 static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2086
2087 static int gen8_init_rcs_context(struct i915_request *rq)
2088 {
2089         int ret;
2090
2091         ret = intel_ctx_workarounds_emit(rq);
2092         if (ret)
2093                 return ret;
2094
2095         ret = intel_rcs_context_init_mocs(rq);
2096         /*
2097          * Failing to program the MOCS is non-fatal.The system will not
2098          * run at peak performance. So generate an error and carry on.
2099          */
2100         if (ret)
2101                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2102
2103         return i915_gem_render_state_emit(rq);
2104 }
2105
2106 /**
2107  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2108  * @engine: Engine Command Streamer.
2109  */
2110 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2111 {
2112         struct drm_i915_private *dev_priv;
2113
2114         /*
2115          * Tasklet cannot be active at this point due intel_mark_active/idle
2116          * so this is just for documentation.
2117          */
2118         if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2119                              &engine->execlists.tasklet.state)))
2120                 tasklet_kill(&engine->execlists.tasklet);
2121
2122         dev_priv = engine->i915;
2123
2124         if (engine->buffer) {
2125                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2126         }
2127
2128         if (engine->cleanup)
2129                 engine->cleanup(engine);
2130
2131         intel_engine_cleanup_common(engine);
2132
2133         lrc_destroy_wa_ctx(engine);
2134
2135         engine->i915 = NULL;
2136         dev_priv->engine[engine->id] = NULL;
2137         kfree(engine);
2138 }
2139
2140 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2141 {
2142         engine->submit_request = execlists_submit_request;
2143         engine->cancel_requests = execlists_cancel_requests;
2144         engine->schedule = i915_schedule;
2145         engine->execlists.tasklet.func = execlists_submission_tasklet;
2146
2147         engine->reset.prepare = execlists_reset_prepare;
2148
2149         engine->park = NULL;
2150         engine->unpark = NULL;
2151
2152         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2153         if (engine->i915->preempt_context)
2154                 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2155
2156         engine->i915->caps.scheduler =
2157                 I915_SCHEDULER_CAP_ENABLED |
2158                 I915_SCHEDULER_CAP_PRIORITY;
2159         if (intel_engine_has_preemption(engine))
2160                 engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2161 }
2162
2163 static void
2164 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2165 {
2166         /* Default vfuncs which can be overriden by each engine. */
2167         engine->init_hw = gen8_init_common_ring;
2168
2169         engine->reset.prepare = execlists_reset_prepare;
2170         engine->reset.reset = execlists_reset;
2171         engine->reset.finish = execlists_reset_finish;
2172
2173         engine->context_pin = execlists_context_pin;
2174         engine->request_alloc = execlists_request_alloc;
2175
2176         engine->emit_flush = gen8_emit_flush;
2177         engine->emit_breadcrumb = gen8_emit_breadcrumb;
2178         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2179
2180         engine->set_default_submission = intel_execlists_set_default_submission;
2181
2182         if (INTEL_GEN(engine->i915) < 11) {
2183                 engine->irq_enable = gen8_logical_ring_enable_irq;
2184                 engine->irq_disable = gen8_logical_ring_disable_irq;
2185         } else {
2186                 /*
2187                  * TODO: On Gen11 interrupt masks need to be clear
2188                  * to allow C6 entry. Keep interrupts enabled at
2189                  * and take the hit of generating extra interrupts
2190                  * until a more refined solution exists.
2191                  */
2192         }
2193         engine->emit_bb_start = gen8_emit_bb_start;
2194 }
2195
2196 static inline void
2197 logical_ring_default_irqs(struct intel_engine_cs *engine)
2198 {
2199         unsigned int shift = 0;
2200
2201         if (INTEL_GEN(engine->i915) < 11) {
2202                 const u8 irq_shifts[] = {
2203                         [RCS]  = GEN8_RCS_IRQ_SHIFT,
2204                         [BCS]  = GEN8_BCS_IRQ_SHIFT,
2205                         [VCS]  = GEN8_VCS1_IRQ_SHIFT,
2206                         [VCS2] = GEN8_VCS2_IRQ_SHIFT,
2207                         [VECS] = GEN8_VECS_IRQ_SHIFT,
2208                 };
2209
2210                 shift = irq_shifts[engine->id];
2211         }
2212
2213         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2214         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2215 }
2216
2217 static void
2218 logical_ring_setup(struct intel_engine_cs *engine)
2219 {
2220         intel_engine_setup_common(engine);
2221
2222         /* Intentionally left blank. */
2223         engine->buffer = NULL;
2224
2225         tasklet_init(&engine->execlists.tasklet,
2226                      execlists_submission_tasklet, (unsigned long)engine);
2227
2228         logical_ring_default_vfuncs(engine);
2229         logical_ring_default_irqs(engine);
2230 }
2231
2232 static bool csb_force_mmio(struct drm_i915_private *i915)
2233 {
2234         /* Older GVT emulation depends upon intercepting CSB mmio */
2235         return intel_vgpu_active(i915) && !intel_vgpu_has_hwsp_emulation(i915);
2236 }
2237
2238 static int logical_ring_init(struct intel_engine_cs *engine)
2239 {
2240         struct drm_i915_private *i915 = engine->i915;
2241         struct intel_engine_execlists * const execlists = &engine->execlists;
2242         int ret;
2243
2244         ret = intel_engine_init_common(engine);
2245         if (ret)
2246                 return ret;
2247
2248         if (HAS_LOGICAL_RING_ELSQ(i915)) {
2249                 execlists->submit_reg = i915->regs +
2250                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2251                 execlists->ctrl_reg = i915->regs +
2252                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2253         } else {
2254                 execlists->submit_reg = i915->regs +
2255                         i915_mmio_reg_offset(RING_ELSP(engine));
2256         }
2257
2258         execlists->preempt_complete_status = ~0u;
2259         if (i915->preempt_context) {
2260                 struct intel_context *ce =
2261                         to_intel_context(i915->preempt_context, engine);
2262
2263                 execlists->preempt_complete_status =
2264                         upper_32_bits(ce->lrc_desc);
2265         }
2266
2267         execlists->csb_read =
2268                 i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
2269         if (csb_force_mmio(i915)) {
2270                 execlists->csb_status = (u32 __force *)
2271                         (i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
2272
2273                 execlists->csb_write = (u32 __force *)execlists->csb_read;
2274                 execlists->csb_write_reset =
2275                         _MASKED_FIELD(GEN8_CSB_WRITE_PTR_MASK,
2276                                       GEN8_CSB_ENTRIES - 1);
2277         } else {
2278                 execlists->csb_status =
2279                         &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
2280
2281                 execlists->csb_write =
2282                         &engine->status_page.page_addr[intel_hws_csb_write_index(i915)];
2283                 execlists->csb_write_reset = GEN8_CSB_ENTRIES - 1;
2284         }
2285         reset_csb_pointers(execlists);
2286
2287         return 0;
2288 }
2289
2290 int logical_render_ring_init(struct intel_engine_cs *engine)
2291 {
2292         struct drm_i915_private *dev_priv = engine->i915;
2293         int ret;
2294
2295         logical_ring_setup(engine);
2296
2297         if (HAS_L3_DPF(dev_priv))
2298                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2299
2300         /* Override some for render ring. */
2301         if (INTEL_GEN(dev_priv) >= 9)
2302                 engine->init_hw = gen9_init_render_ring;
2303         else
2304                 engine->init_hw = gen8_init_render_ring;
2305         engine->init_context = gen8_init_rcs_context;
2306         engine->emit_flush = gen8_emit_flush_render;
2307         engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2308         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2309
2310         ret = logical_ring_init(engine);
2311         if (ret)
2312                 return ret;
2313
2314         ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2315         if (ret)
2316                 goto err_cleanup_common;
2317
2318         ret = intel_init_workaround_bb(engine);
2319         if (ret) {
2320                 /*
2321                  * We continue even if we fail to initialize WA batch
2322                  * because we only expect rare glitches but nothing
2323                  * critical to prevent us from using GPU
2324                  */
2325                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2326                           ret);
2327         }
2328
2329         return 0;
2330
2331 err_cleanup_common:
2332         intel_engine_cleanup_common(engine);
2333         return ret;
2334 }
2335
2336 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2337 {
2338         logical_ring_setup(engine);
2339
2340         return logical_ring_init(engine);
2341 }
2342
2343 static u32
2344 make_rpcs(struct drm_i915_private *dev_priv)
2345 {
2346         bool subslice_pg = INTEL_INFO(dev_priv)->sseu.has_subslice_pg;
2347         u8 slices = hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask);
2348         u8 subslices = hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]);
2349         u32 rpcs = 0;
2350
2351         /*
2352          * No explicit RPCS request is needed to ensure full
2353          * slice/subslice/EU enablement prior to Gen9.
2354         */
2355         if (INTEL_GEN(dev_priv) < 9)
2356                 return 0;
2357
2358         /*
2359          * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
2360          * wide and Icelake has up to eight subslices, specfial programming is
2361          * needed in order to correctly enable all subslices.
2362          *
2363          * According to documentation software must consider the configuration
2364          * as 2x4x8 and hardware will translate this to 1x8x8.
2365          *
2366          * Furthemore, even though SScount is three bits, maximum documented
2367          * value for it is four. From this some rules/restrictions follow:
2368          *
2369          * 1.
2370          * If enabled subslice count is greater than four, two whole slices must
2371          * be enabled instead.
2372          *
2373          * 2.
2374          * When more than one slice is enabled, hardware ignores the subslice
2375          * count altogether.
2376          *
2377          * From these restrictions it follows that it is not possible to enable
2378          * a count of subslices between the SScount maximum of four restriction,
2379          * and the maximum available number on a particular SKU. Either all
2380          * subslices are enabled, or a count between one and four on the first
2381          * slice.
2382          */
2383         if (IS_GEN11(dev_priv) && slices == 1 && subslices >= 4) {
2384                 GEM_BUG_ON(subslices & 1);
2385
2386                 subslice_pg = false;
2387                 slices *= 2;
2388         }
2389
2390         /*
2391          * Starting in Gen9, render power gating can leave
2392          * slice/subslice/EU in a partially enabled state. We
2393          * must make an explicit request through RPCS for full
2394          * enablement.
2395         */
2396         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2397                 u32 mask, val = slices;
2398
2399                 if (INTEL_GEN(dev_priv) >= 11) {
2400                         mask = GEN11_RPCS_S_CNT_MASK;
2401                         val <<= GEN11_RPCS_S_CNT_SHIFT;
2402                 } else {
2403                         mask = GEN8_RPCS_S_CNT_MASK;
2404                         val <<= GEN8_RPCS_S_CNT_SHIFT;
2405                 }
2406
2407                 GEM_BUG_ON(val & ~mask);
2408                 val &= mask;
2409
2410                 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
2411         }
2412
2413         if (subslice_pg) {
2414                 u32 val = subslices;
2415
2416                 val <<= GEN8_RPCS_SS_CNT_SHIFT;
2417
2418                 GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
2419                 val &= GEN8_RPCS_SS_CNT_MASK;
2420
2421                 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
2422         }
2423
2424         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2425                 u32 val;
2426
2427                 val = INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2428                       GEN8_RPCS_EU_MIN_SHIFT;
2429                 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
2430                 val &= GEN8_RPCS_EU_MIN_MASK;
2431
2432                 rpcs |= val;
2433
2434                 val = INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2435                       GEN8_RPCS_EU_MAX_SHIFT;
2436                 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
2437                 val &= GEN8_RPCS_EU_MAX_MASK;
2438
2439                 rpcs |= val;
2440
2441                 rpcs |= GEN8_RPCS_ENABLE;
2442         }
2443
2444         return rpcs;
2445 }
2446
2447 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2448 {
2449         u32 indirect_ctx_offset;
2450
2451         switch (INTEL_GEN(engine->i915)) {
2452         default:
2453                 MISSING_CASE(INTEL_GEN(engine->i915));
2454                 /* fall through */
2455         case 11:
2456                 indirect_ctx_offset =
2457                         GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2458                 break;
2459         case 10:
2460                 indirect_ctx_offset =
2461                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2462                 break;
2463         case 9:
2464                 indirect_ctx_offset =
2465                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2466                 break;
2467         case 8:
2468                 indirect_ctx_offset =
2469                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2470                 break;
2471         }
2472
2473         return indirect_ctx_offset;
2474 }
2475
2476 static void execlists_init_reg_state(u32 *regs,
2477                                      struct i915_gem_context *ctx,
2478                                      struct intel_engine_cs *engine,
2479                                      struct intel_ring *ring)
2480 {
2481         struct drm_i915_private *dev_priv = engine->i915;
2482         u32 base = engine->mmio_base;
2483         bool rcs = engine->class == RENDER_CLASS;
2484
2485         /* A context is actually a big batch buffer with several
2486          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2487          * values we are setting here are only for the first context restore:
2488          * on a subsequent save, the GPU will recreate this batchbuffer with new
2489          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2490          * we are not initializing here).
2491          */
2492         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2493                                  MI_LRI_FORCE_POSTED;
2494
2495         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2496                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2497                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2498         if (INTEL_GEN(dev_priv) < 11) {
2499                 regs[CTX_CONTEXT_CONTROL + 1] |=
2500                         _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
2501                                             CTX_CTRL_RS_CTX_ENABLE);
2502         }
2503         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2504         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2505         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2506         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2507                 RING_CTL_SIZE(ring->size) | RING_VALID);
2508         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2509         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2510         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2511         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2512         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2513         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2514         if (rcs) {
2515                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2516
2517                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2518                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2519                         RING_INDIRECT_CTX_OFFSET(base), 0);
2520                 if (wa_ctx->indirect_ctx.size) {
2521                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2522
2523                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2524                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2525                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2526
2527                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2528                                 intel_lr_indirect_ctx_offset(engine) << 6;
2529                 }
2530
2531                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2532                 if (wa_ctx->per_ctx.size) {
2533                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2534
2535                         regs[CTX_BB_PER_CTX_PTR + 1] =
2536                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2537                 }
2538         }
2539
2540         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2541
2542         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2543         /* PDP values well be assigned later if needed */
2544         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2545         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2546         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2547         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2548         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2549         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2550         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2551         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2552
2553         if (i915_vm_is_48bit(&ctx->ppgtt->vm)) {
2554                 /* 64b PPGTT (48bit canonical)
2555                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2556                  * other PDP Descriptors are ignored.
2557                  */
2558                 ASSIGN_CTX_PML4(ctx->ppgtt, regs);
2559         }
2560
2561         if (rcs) {
2562                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2563                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2564                         make_rpcs(dev_priv));
2565
2566                 i915_oa_init_reg_state(engine, ctx, regs);
2567         }
2568
2569         regs[CTX_END] = MI_BATCH_BUFFER_END;
2570         if (INTEL_GEN(dev_priv) >= 10)
2571                 regs[CTX_END] |= BIT(0);
2572 }
2573
2574 static int
2575 populate_lr_context(struct i915_gem_context *ctx,
2576                     struct drm_i915_gem_object *ctx_obj,
2577                     struct intel_engine_cs *engine,
2578                     struct intel_ring *ring)
2579 {
2580         void *vaddr;
2581         u32 *regs;
2582         int ret;
2583
2584         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2585         if (ret) {
2586                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2587                 return ret;
2588         }
2589
2590         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2591         if (IS_ERR(vaddr)) {
2592                 ret = PTR_ERR(vaddr);
2593                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2594                 return ret;
2595         }
2596         ctx_obj->mm.dirty = true;
2597
2598         if (engine->default_state) {
2599                 /*
2600                  * We only want to copy over the template context state;
2601                  * skipping over the headers reserved for GuC communication,
2602                  * leaving those as zero.
2603                  */
2604                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2605                 void *defaults;
2606
2607                 defaults = i915_gem_object_pin_map(engine->default_state,
2608                                                    I915_MAP_WB);
2609                 if (IS_ERR(defaults)) {
2610                         ret = PTR_ERR(defaults);
2611                         goto err_unpin_ctx;
2612                 }
2613
2614                 memcpy(vaddr + start, defaults + start, engine->context_size);
2615                 i915_gem_object_unpin_map(engine->default_state);
2616         }
2617
2618         /* The second page of the context object contains some fields which must
2619          * be set up prior to the first execution. */
2620         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2621         execlists_init_reg_state(regs, ctx, engine, ring);
2622         if (!engine->default_state)
2623                 regs[CTX_CONTEXT_CONTROL + 1] |=
2624                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2625         if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2626                 regs[CTX_CONTEXT_CONTROL + 1] |=
2627                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2628                                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2629
2630 err_unpin_ctx:
2631         i915_gem_object_unpin_map(ctx_obj);
2632         return ret;
2633 }
2634
2635 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2636                                             struct intel_engine_cs *engine,
2637                                             struct intel_context *ce)
2638 {
2639         struct drm_i915_gem_object *ctx_obj;
2640         struct i915_vma *vma;
2641         uint32_t context_size;
2642         struct intel_ring *ring;
2643         struct i915_timeline *timeline;
2644         int ret;
2645
2646         if (ce->state)
2647                 return 0;
2648
2649         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2650
2651         /*
2652          * Before the actual start of the context image, we insert a few pages
2653          * for our own use and for sharing with the GuC.
2654          */
2655         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2656
2657         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2658         if (IS_ERR(ctx_obj))
2659                 return PTR_ERR(ctx_obj);
2660
2661         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.vm, NULL);
2662         if (IS_ERR(vma)) {
2663                 ret = PTR_ERR(vma);
2664                 goto error_deref_obj;
2665         }
2666
2667         timeline = i915_timeline_create(ctx->i915, ctx->name);
2668         if (IS_ERR(timeline)) {
2669                 ret = PTR_ERR(timeline);
2670                 goto error_deref_obj;
2671         }
2672
2673         ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
2674         i915_timeline_put(timeline);
2675         if (IS_ERR(ring)) {
2676                 ret = PTR_ERR(ring);
2677                 goto error_deref_obj;
2678         }
2679
2680         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2681         if (ret) {
2682                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2683                 goto error_ring_free;
2684         }
2685
2686         ce->ring = ring;
2687         ce->state = vma;
2688
2689         return 0;
2690
2691 error_ring_free:
2692         intel_ring_free(ring);
2693 error_deref_obj:
2694         i915_gem_object_put(ctx_obj);
2695         return ret;
2696 }
2697
2698 void intel_lr_context_resume(struct drm_i915_private *i915)
2699 {
2700         struct intel_engine_cs *engine;
2701         struct i915_gem_context *ctx;
2702         enum intel_engine_id id;
2703
2704         /*
2705          * Because we emit WA_TAIL_DWORDS there may be a disparity
2706          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2707          * that stored in context. As we only write new commands from
2708          * ce->ring->tail onwards, everything before that is junk. If the GPU
2709          * starts reading from its RING_HEAD from the context, it may try to
2710          * execute that junk and die.
2711          *
2712          * So to avoid that we reset the context images upon resume. For
2713          * simplicity, we just zero everything out.
2714          */
2715         list_for_each_entry(ctx, &i915->contexts.list, link) {
2716                 for_each_engine(engine, i915, id) {
2717                         struct intel_context *ce =
2718                                 to_intel_context(ctx, engine);
2719
2720                         if (!ce->state)
2721                                 continue;
2722
2723                         intel_ring_reset(ce->ring, 0);
2724
2725                         if (ce->pin_count) { /* otherwise done in context_pin */
2726                                 u32 *regs = ce->lrc_reg_state;
2727
2728                                 regs[CTX_RING_HEAD + 1] = ce->ring->head;
2729                                 regs[CTX_RING_TAIL + 1] = ce->ring->tail;
2730                         }
2731                 }
2732         }
2733 }
2734
2735 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2736 #include "selftests/intel_lrc.c"
2737 #endif
This page took 0.192609 seconds and 4 git commands to generate.