2 * Copyright © 2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 #include <linux/circ_buf.h>
26 #include <trace/events/dma_fence.h>
28 #include "intel_guc_submission.h"
29 #include "intel_lrc_reg.h"
32 #define GUC_PREEMPT_FINISHED 0x1
33 #define GUC_PREEMPT_BREADCRUMB_DWORDS 0x8
34 #define GUC_PREEMPT_BREADCRUMB_BYTES \
35 (sizeof(u32) * GUC_PREEMPT_BREADCRUMB_DWORDS)
38 * DOC: GuC-based command submission
41 * A intel_guc_client refers to a submission path through GuC. Currently, there
42 * are two clients. One of them (the execbuf_client) is charged with all
43 * submissions to the GuC, the other one (preempt_client) is responsible for
44 * preempting the execbuf_client. This struct is the owner of a doorbell, a
45 * process descriptor and a workqueue (all of them inside a single gem object
46 * that contains all required pages for these elements).
48 * GuC stage descriptor:
49 * During initialization, the driver allocates a static pool of 1024 such
50 * descriptors, and shares them with the GuC.
51 * Currently, there exists a 1:1 mapping between a intel_guc_client and a
52 * guc_stage_desc (via the client's stage_id), so effectively only one
53 * gets used. This stage descriptor lets the GuC know about the doorbell,
54 * workqueue and process descriptor. Theoretically, it also lets the GuC
55 * know about our HW contexts (context ID, etc...), but we actually
56 * employ a kind of submission where the GuC uses the LRCA sent via the work
57 * item instead (the single guc_stage_desc associated to execbuf client
58 * contains information about the default kernel context only, but this is
59 * essentially unused). This is called a "proxy" submission.
61 * The Scratch registers:
62 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
63 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
64 * triggers an interrupt on the GuC via another register write (0xC4C8).
65 * Firmware writes a success/fail code back to the action register after
66 * processes the request. The kernel driver polls waiting for this update and
68 * See intel_guc_send()
71 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
72 * mapped into process space.
75 * There are several types of work items that the host may place into a
76 * workqueue, each with its own requirements and limitations. Currently only
77 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
78 * represents in-order queue. The kernel driver packs ring tail pointer and an
79 * ELSP context descriptor dword into Work Item.
80 * See guc_add_request()
84 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
86 return rb_entry(rb, struct i915_priolist, node);
89 static inline bool is_high_priority(struct intel_guc_client *client)
91 return (client->priority == GUC_CLIENT_PRIORITY_KMD_HIGH ||
92 client->priority == GUC_CLIENT_PRIORITY_HIGH);
95 static int reserve_doorbell(struct intel_guc_client *client)
101 GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);
104 * The bitmap tracks which doorbell registers are currently in use.
105 * It is split into two halves; the first half is used for normal
106 * priority contexts, the second half for high-priority ones.
109 end = GUC_NUM_DOORBELLS / 2;
110 if (is_high_priority(client)) {
115 id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset);
119 __set_bit(id, client->guc->doorbell_bitmap);
120 client->doorbell_id = id;
121 DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
122 client->stage_id, yesno(is_high_priority(client)),
127 static bool has_doorbell(struct intel_guc_client *client)
129 if (client->doorbell_id == GUC_DOORBELL_INVALID)
132 return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
135 static void unreserve_doorbell(struct intel_guc_client *client)
137 GEM_BUG_ON(!has_doorbell(client));
139 __clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
140 client->doorbell_id = GUC_DOORBELL_INVALID;
144 * Tell the GuC to allocate or deallocate a specific doorbell
147 static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
150 INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
154 return intel_guc_send(guc, action, ARRAY_SIZE(action));
157 static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
160 INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
164 return intel_guc_send(guc, action, ARRAY_SIZE(action));
167 static struct guc_stage_desc *__get_stage_desc(struct intel_guc_client *client)
169 struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
171 return &base[client->stage_id];
175 * Initialise, update, or clear doorbell data shared with the GuC
177 * These functions modify shared data and so need access to the mapped
178 * client object which contains the page being used for the doorbell
181 static void __update_doorbell_desc(struct intel_guc_client *client, u16 new_id)
183 struct guc_stage_desc *desc;
185 /* Update the GuC's idea of the doorbell ID */
186 desc = __get_stage_desc(client);
187 desc->db_id = new_id;
190 static struct guc_doorbell_info *__get_doorbell(struct intel_guc_client *client)
192 return client->vaddr + client->doorbell_offset;
195 static bool __doorbell_valid(struct intel_guc *guc, u16 db_id)
197 struct drm_i915_private *dev_priv = guc_to_i915(guc);
199 GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
200 return I915_READ(GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID;
203 static void __init_doorbell(struct intel_guc_client *client)
205 struct guc_doorbell_info *doorbell;
207 doorbell = __get_doorbell(client);
208 doorbell->db_status = GUC_DOORBELL_ENABLED;
209 doorbell->cookie = 0;
212 static void __fini_doorbell(struct intel_guc_client *client)
214 struct guc_doorbell_info *doorbell;
215 u16 db_id = client->doorbell_id;
217 doorbell = __get_doorbell(client);
218 doorbell->db_status = GUC_DOORBELL_DISABLED;
220 /* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
221 * to go to zero after updating db_status before we call the GuC to
222 * release the doorbell
224 if (wait_for_us(!__doorbell_valid(client->guc, db_id), 10))
225 WARN_ONCE(true, "Doorbell never became invalid after disable\n");
228 static int create_doorbell(struct intel_guc_client *client)
232 if (WARN_ON(!has_doorbell(client)))
233 return -ENODEV; /* internal setup error, should never happen */
235 __update_doorbell_desc(client, client->doorbell_id);
236 __init_doorbell(client);
238 ret = __guc_allocate_doorbell(client->guc, client->stage_id);
240 __fini_doorbell(client);
241 __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
242 DRM_DEBUG_DRIVER("Couldn't create client %u doorbell: %d\n",
243 client->stage_id, ret);
250 static int destroy_doorbell(struct intel_guc_client *client)
254 GEM_BUG_ON(!has_doorbell(client));
256 __fini_doorbell(client);
257 ret = __guc_deallocate_doorbell(client->guc, client->stage_id);
259 DRM_ERROR("Couldn't destroy client %u doorbell: %d\n",
260 client->stage_id, ret);
262 __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
267 static unsigned long __select_cacheline(struct intel_guc *guc)
269 unsigned long offset;
271 /* Doorbell uses a single cache line within a page */
272 offset = offset_in_page(guc->db_cacheline);
274 /* Moving to next cache line to reduce contention */
275 guc->db_cacheline += cache_line_size();
277 DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
278 offset, guc->db_cacheline, cache_line_size());
282 static inline struct guc_process_desc *
283 __get_process_desc(struct intel_guc_client *client)
285 return client->vaddr + client->proc_desc_offset;
289 * Initialise the process descriptor shared with the GuC firmware.
291 static void guc_proc_desc_init(struct intel_guc_client *client)
293 struct guc_process_desc *desc;
295 desc = memset(__get_process_desc(client), 0, sizeof(*desc));
298 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
299 * space for ring3 clients (set them as in mmap_ioctl) or kernel
300 * space for kernel clients (map on demand instead? May make debug
301 * easier to have it mapped).
303 desc->wq_base_addr = 0;
304 desc->db_base_addr = 0;
306 desc->stage_id = client->stage_id;
307 desc->wq_size_bytes = GUC_WQ_SIZE;
308 desc->wq_status = WQ_STATUS_ACTIVE;
309 desc->priority = client->priority;
312 static void guc_proc_desc_fini(struct intel_guc_client *client)
314 struct guc_process_desc *desc;
316 desc = __get_process_desc(client);
317 memset(desc, 0, sizeof(*desc));
320 static int guc_stage_desc_pool_create(struct intel_guc *guc)
322 struct i915_vma *vma;
325 vma = intel_guc_allocate_vma(guc,
326 PAGE_ALIGN(sizeof(struct guc_stage_desc) *
327 GUC_MAX_STAGE_DESCRIPTORS));
331 vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
333 i915_vma_unpin_and_release(&vma, 0);
334 return PTR_ERR(vaddr);
337 guc->stage_desc_pool = vma;
338 guc->stage_desc_pool_vaddr = vaddr;
339 ida_init(&guc->stage_ids);
344 static void guc_stage_desc_pool_destroy(struct intel_guc *guc)
346 ida_destroy(&guc->stage_ids);
347 i915_vma_unpin_and_release(&guc->stage_desc_pool, I915_VMA_RELEASE_MAP);
351 * Initialise/clear the stage descriptor shared with the GuC firmware.
353 * This descriptor tells the GuC where (in GGTT space) to find the important
354 * data structures relating to this client (doorbell, process descriptor,
357 static void guc_stage_desc_init(struct intel_guc_client *client)
359 struct intel_guc *guc = client->guc;
360 struct drm_i915_private *dev_priv = guc_to_i915(guc);
361 struct intel_engine_cs *engine;
362 struct i915_gem_context *ctx = client->owner;
363 struct guc_stage_desc *desc;
367 desc = __get_stage_desc(client);
368 memset(desc, 0, sizeof(*desc));
370 desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE |
371 GUC_STAGE_DESC_ATTR_KERNEL;
372 if (is_high_priority(client))
373 desc->attribute |= GUC_STAGE_DESC_ATTR_PREEMPT;
374 desc->stage_id = client->stage_id;
375 desc->priority = client->priority;
376 desc->db_id = client->doorbell_id;
378 for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
379 struct intel_context *ce = to_intel_context(ctx, engine);
380 u32 guc_engine_id = engine->guc_id;
381 struct guc_execlist_context *lrc = &desc->lrc[guc_engine_id];
383 /* TODO: We have a design issue to be solved here. Only when we
384 * receive the first batch, we know which engine is used by the
385 * user. But here GuC expects the lrc and ring to be pinned. It
386 * is not an issue for default context, which is the only one
387 * for now who owns a GuC client. But for future owner of GuC
388 * client, need to make sure lrc is pinned prior to enter here.
391 break; /* XXX: continue? */
394 * XXX: When this is a GUC_STAGE_DESC_ATTR_KERNEL client (proxy
395 * submission or, in other words, not using a direct submission
396 * model) the KMD's LRCA is not used for any work submission.
397 * Instead, the GuC uses the LRCA of the user mode context (see
398 * guc_add_request below).
400 lrc->context_desc = lower_32_bits(ce->lrc_desc);
402 /* The state page is after PPHWSP */
403 lrc->ring_lrca = intel_guc_ggtt_offset(guc, ce->state) +
404 LRC_STATE_PN * PAGE_SIZE;
406 /* XXX: In direct submission, the GuC wants the HW context id
407 * here. In proxy submission, it wants the stage id
409 lrc->context_id = (client->stage_id << GUC_ELC_CTXID_OFFSET) |
410 (guc_engine_id << GUC_ELC_ENGINE_OFFSET);
412 lrc->ring_begin = intel_guc_ggtt_offset(guc, ce->ring->vma);
413 lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
414 lrc->ring_next_free_location = lrc->ring_begin;
415 lrc->ring_current_tail_pointer_value = 0;
417 desc->engines_used |= (1 << guc_engine_id);
420 DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
421 client->engines, desc->engines_used);
422 WARN_ON(desc->engines_used == 0);
425 * The doorbell, process descriptor, and workqueue are all parts
426 * of the client object, which the GuC will reference via the GGTT
428 gfx_addr = intel_guc_ggtt_offset(guc, client->vma);
429 desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
430 client->doorbell_offset;
431 desc->db_trigger_cpu = ptr_to_u64(__get_doorbell(client));
432 desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
433 desc->process_desc = gfx_addr + client->proc_desc_offset;
434 desc->wq_addr = gfx_addr + GUC_DB_SIZE;
435 desc->wq_size = GUC_WQ_SIZE;
437 desc->desc_private = ptr_to_u64(client);
440 static void guc_stage_desc_fini(struct intel_guc_client *client)
442 struct guc_stage_desc *desc;
444 desc = __get_stage_desc(client);
445 memset(desc, 0, sizeof(*desc));
448 /* Construct a Work Item and append it to the GuC's Work Queue */
449 static void guc_wq_item_append(struct intel_guc_client *client,
450 u32 target_engine, u32 context_desc,
451 u32 ring_tail, u32 fence_id)
453 /* wqi_len is in DWords, and does not include the one-word header */
454 const size_t wqi_size = sizeof(struct guc_wq_item);
455 const u32 wqi_len = wqi_size / sizeof(u32) - 1;
456 struct guc_process_desc *desc = __get_process_desc(client);
457 struct guc_wq_item *wqi;
460 lockdep_assert_held(&client->wq_lock);
462 /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
463 * should not have the case where structure wqi is across page, neither
464 * wrapped to the beginning. This simplifies the implementation below.
466 * XXX: if not the case, we need save data to a temp wqi and copy it to
467 * workqueue buffer dw by dw.
469 BUILD_BUG_ON(wqi_size != 16);
471 /* We expect the WQ to be active if we're appending items to it */
472 GEM_BUG_ON(desc->wq_status != WQ_STATUS_ACTIVE);
474 /* Free space is guaranteed. */
475 wq_off = READ_ONCE(desc->tail);
476 GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head),
477 GUC_WQ_SIZE) < wqi_size);
478 GEM_BUG_ON(wq_off & (wqi_size - 1));
480 /* WQ starts from the page after doorbell / process_desc */
481 wqi = client->vaddr + wq_off + GUC_DB_SIZE;
483 if (I915_SELFTEST_ONLY(client->use_nop_wqi)) {
484 wqi->header = WQ_TYPE_NOOP | (wqi_len << WQ_LEN_SHIFT);
486 /* Now fill in the 4-word work queue item */
487 wqi->header = WQ_TYPE_INORDER |
488 (wqi_len << WQ_LEN_SHIFT) |
489 (target_engine << WQ_TARGET_SHIFT) |
491 wqi->context_desc = context_desc;
492 wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT;
493 GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX);
494 wqi->fence_id = fence_id;
497 /* Make the update visible to GuC */
498 WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1));
501 static void guc_ring_doorbell(struct intel_guc_client *client)
503 struct guc_doorbell_info *db;
506 lockdep_assert_held(&client->wq_lock);
508 /* pointer of current doorbell cacheline */
509 db = __get_doorbell(client);
512 * We're not expecting the doorbell cookie to change behind our back,
513 * we also need to treat 0 as a reserved value.
515 cookie = READ_ONCE(db->cookie);
516 WARN_ON_ONCE(xchg(&db->cookie, cookie + 1 ?: cookie + 2) != cookie);
518 /* XXX: doorbell was lost and need to acquire it again */
519 GEM_BUG_ON(db->db_status != GUC_DOORBELL_ENABLED);
522 static void guc_add_request(struct intel_guc *guc, struct i915_request *rq)
524 struct intel_guc_client *client = guc->execbuf_client;
525 struct intel_engine_cs *engine = rq->engine;
526 u32 ctx_desc = lower_32_bits(rq->hw_context->lrc_desc);
527 u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64);
529 spin_lock(&client->wq_lock);
531 guc_wq_item_append(client, engine->guc_id, ctx_desc,
532 ring_tail, rq->global_seqno);
533 guc_ring_doorbell(client);
535 client->submissions[engine->id] += 1;
537 spin_unlock(&client->wq_lock);
541 * When we're doing submissions using regular execlists backend, writing to
542 * ELSP from CPU side is enough to make sure that writes to ringbuffer pages
543 * pinned in mappable aperture portion of GGTT are visible to command streamer.
544 * Writes done by GuC on our behalf are not guaranteeing such ordering,
545 * therefore, to ensure the flush, we're issuing a POSTING READ.
547 static void flush_ggtt_writes(struct i915_vma *vma)
549 struct drm_i915_private *dev_priv = vma->vm->i915;
551 if (i915_vma_is_map_and_fenceable(vma))
552 POSTING_READ_FW(GUC_STATUS);
555 static void inject_preempt_context(struct work_struct *work)
557 struct guc_preempt_work *preempt_work =
558 container_of(work, typeof(*preempt_work), work);
559 struct intel_engine_cs *engine = preempt_work->engine;
560 struct intel_guc *guc = container_of(preempt_work, typeof(*guc),
561 preempt_work[engine->id]);
562 struct intel_guc_client *client = guc->preempt_client;
563 struct guc_stage_desc *stage_desc = __get_stage_desc(client);
564 struct intel_context *ce = to_intel_context(client->owner, engine);
567 if (!ce->ring->emit) { /* recreate upon load/resume */
568 u32 addr = intel_hws_preempt_done_address(engine);
571 cs = ce->ring->vaddr;
572 if (engine->id == RCS) {
573 cs = gen8_emit_ggtt_write_rcs(cs,
574 GUC_PREEMPT_FINISHED,
577 cs = gen8_emit_ggtt_write(cs,
578 GUC_PREEMPT_FINISHED,
583 *cs++ = MI_USER_INTERRUPT;
586 ce->ring->emit = GUC_PREEMPT_BREADCRUMB_BYTES;
587 GEM_BUG_ON((void *)cs - ce->ring->vaddr != ce->ring->emit);
589 flush_ggtt_writes(ce->ring->vma);
592 spin_lock_irq(&client->wq_lock);
593 guc_wq_item_append(client, engine->guc_id, lower_32_bits(ce->lrc_desc),
594 GUC_PREEMPT_BREADCRUMB_BYTES / sizeof(u64), 0);
595 spin_unlock_irq(&client->wq_lock);
598 * If GuC firmware performs an engine reset while that engine had
599 * a preemption pending, it will set the terminated attribute bit
600 * on our preemption stage descriptor. GuC firmware retains all
601 * pending work items for a high-priority GuC client, unlike the
602 * normal-priority GuC client where work items are dropped. It
603 * wants to make sure the preempt-to-idle work doesn't run when
604 * scheduling resumes, and uses this bit to inform its scheduler
605 * and presumably us as well. Our job is to clear it for the next
606 * preemption after reset, otherwise that and future preemptions
607 * will never complete. We'll just clear it every time.
609 stage_desc->attribute &= ~GUC_STAGE_DESC_ATTR_TERMINATED;
611 data[0] = INTEL_GUC_ACTION_REQUEST_PREEMPTION;
612 data[1] = client->stage_id;
613 data[2] = INTEL_GUC_PREEMPT_OPTION_DROP_WORK_Q |
614 INTEL_GUC_PREEMPT_OPTION_DROP_SUBMIT_Q;
615 data[3] = engine->guc_id;
616 data[4] = guc->execbuf_client->priority;
617 data[5] = guc->execbuf_client->stage_id;
618 data[6] = intel_guc_ggtt_offset(guc, guc->shared_data);
620 if (WARN_ON(intel_guc_send(guc, data, ARRAY_SIZE(data)))) {
621 execlists_clear_active(&engine->execlists,
622 EXECLISTS_ACTIVE_PREEMPT);
623 tasklet_schedule(&engine->execlists.tasklet);
628 * We're using user interrupt and HWSP value to mark that preemption has
629 * finished and GPU is idle. Normally, we could unwind and continue similar to
630 * execlists submission path. Unfortunately, with GuC we also need to wait for
631 * it to finish its own postprocessing, before attempting to submit. Otherwise
632 * GuC may silently ignore our submissions, and thus we risk losing request at
633 * best, executing out-of-order and causing kernel panic at worst.
635 #define GUC_PREEMPT_POSTPROCESS_DELAY_MS 10
636 static void wait_for_guc_preempt_report(struct intel_engine_cs *engine)
638 struct intel_guc *guc = &engine->i915->guc;
639 struct guc_shared_ctx_data *data = guc->shared_data_vaddr;
640 struct guc_ctx_report *report =
641 &data->preempt_ctx_report[engine->guc_id];
643 WARN_ON(wait_for_atomic(report->report_return_status ==
644 INTEL_GUC_REPORT_STATUS_COMPLETE,
645 GUC_PREEMPT_POSTPROCESS_DELAY_MS));
647 * GuC is expecting that we're also going to clear the affected context
648 * counter, let's also reset the return status to not depend on GuC
649 * resetting it after recieving another preempt action
651 report->affected_count = 0;
652 report->report_return_status = INTEL_GUC_REPORT_STATUS_UNKNOWN;
655 static void complete_preempt_context(struct intel_engine_cs *engine)
657 struct intel_engine_execlists *execlists = &engine->execlists;
659 GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
661 if (inject_preempt_hang(execlists))
664 execlists_cancel_port_requests(execlists);
665 execlists_unwind_incomplete_requests(execlists);
667 wait_for_guc_preempt_report(engine);
668 intel_write_status_page(engine, I915_GEM_HWS_PREEMPT_INDEX, 0);
672 * guc_submit() - Submit commands through GuC
673 * @engine: engine associated with the commands
675 * The only error here arises if the doorbell hardware isn't functioning
676 * as expected, which really shouln't happen.
678 static void guc_submit(struct intel_engine_cs *engine)
680 struct intel_guc *guc = &engine->i915->guc;
681 struct intel_engine_execlists * const execlists = &engine->execlists;
682 struct execlist_port *port = execlists->port;
685 for (n = 0; n < execlists_num_ports(execlists); n++) {
686 struct i915_request *rq;
689 rq = port_unpack(&port[n], &count);
690 if (rq && count == 0) {
691 port_set(&port[n], port_pack(rq, ++count));
693 flush_ggtt_writes(rq->ring->vma);
695 guc_add_request(guc, rq);
700 static void port_assign(struct execlist_port *port, struct i915_request *rq)
702 GEM_BUG_ON(port_isset(port));
704 port_set(port, i915_request_get(rq));
707 static inline int rq_prio(const struct i915_request *rq)
709 return rq->sched.attr.priority;
712 static inline int port_prio(const struct execlist_port *port)
714 return rq_prio(port_request(port));
717 static bool __guc_dequeue(struct intel_engine_cs *engine)
719 struct intel_engine_execlists * const execlists = &engine->execlists;
720 struct execlist_port *port = execlists->port;
721 struct i915_request *last = NULL;
722 const struct execlist_port * const last_port =
723 &execlists->port[execlists->port_mask];
727 lockdep_assert_held(&engine->timeline.lock);
729 if (port_isset(port)) {
730 if (intel_engine_has_preemption(engine)) {
731 struct guc_preempt_work *preempt_work =
732 &engine->i915->guc.preempt_work[engine->id];
733 int prio = execlists->queue_priority;
735 if (__execlists_need_preempt(prio, port_prio(port))) {
736 execlists_set_active(execlists,
737 EXECLISTS_ACTIVE_PREEMPT);
738 queue_work(engine->i915->guc.preempt_wq,
739 &preempt_work->work);
745 if (port_isset(port))
748 GEM_BUG_ON(port_isset(port));
750 while ((rb = rb_first_cached(&execlists->queue))) {
751 struct i915_priolist *p = to_priolist(rb);
752 struct i915_request *rq, *rn;
755 priolist_for_each_request_consume(rq, rn, p, i) {
756 if (last && rq->hw_context != last->hw_context) {
757 if (port == last_port)
761 port_assign(port, last);
765 list_del_init(&rq->sched.link);
767 __i915_request_submit(rq);
768 trace_i915_request_in(rq, port_index(port, execlists));
774 rb_erase_cached(&p->node, &execlists->queue);
775 if (p->priority != I915_PRIORITY_NORMAL)
776 kmem_cache_free(engine->i915->priorities, p);
779 execlists->queue_priority = rb ? to_priolist(rb)->priority : INT_MIN;
781 port_assign(port, last);
783 execlists_user_begin(execlists, execlists->port);
785 /* We must always keep the beast fed if we have work piled up */
786 GEM_BUG_ON(port_isset(execlists->port) &&
787 !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
788 GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
789 !port_isset(execlists->port));
794 static void guc_dequeue(struct intel_engine_cs *engine)
796 if (__guc_dequeue(engine))
800 static void guc_submission_tasklet(unsigned long data)
802 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
803 struct intel_engine_execlists * const execlists = &engine->execlists;
804 struct execlist_port *port = execlists->port;
805 struct i915_request *rq;
808 spin_lock_irqsave(&engine->timeline.lock, flags);
810 rq = port_request(port);
811 while (rq && i915_request_completed(rq)) {
812 trace_i915_request_out(rq);
813 i915_request_put(rq);
815 port = execlists_port_complete(execlists, port);
816 if (port_isset(port)) {
817 execlists_user_begin(execlists, port);
818 rq = port_request(port);
820 execlists_user_end(execlists);
825 if (execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT) &&
826 intel_read_status_page(engine, I915_GEM_HWS_PREEMPT_INDEX) ==
827 GUC_PREEMPT_FINISHED)
828 complete_preempt_context(engine);
830 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
833 spin_unlock_irqrestore(&engine->timeline.lock, flags);
836 static struct i915_request *
837 guc_reset_prepare(struct intel_engine_cs *engine)
839 struct intel_engine_execlists * const execlists = &engine->execlists;
841 GEM_TRACE("%s\n", engine->name);
844 * Prevent request submission to the hardware until we have
845 * completed the reset in i915_gem_reset_finish(). If a request
846 * is completed by one engine, it may then queue a request
847 * to a second via its execlists->tasklet *just* as we are
848 * calling engine->init_hw() and also writing the ELSP.
849 * Turning off the execlists->tasklet until the reset is over
852 __tasklet_disable_sync_once(&execlists->tasklet);
855 * We're using worker to queue preemption requests from the tasklet in
856 * GuC submission mode.
857 * Even though tasklet was disabled, we may still have a worker queued.
858 * Let's make sure that all workers scheduled before disabling the
859 * tasklet are completed before continuing with the reset.
861 if (engine->i915->guc.preempt_wq)
862 flush_workqueue(engine->i915->guc.preempt_wq);
864 return i915_gem_find_active_request(engine);
868 * Everything below here is concerned with setup & teardown, and is
869 * therefore not part of the somewhat time-critical batch-submission
870 * path of guc_submit() above.
873 /* Check that a doorbell register is in the expected state */
874 static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
878 GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
880 valid = __doorbell_valid(guc, db_id);
882 if (test_bit(db_id, guc->doorbell_bitmap) == valid)
885 DRM_DEBUG_DRIVER("Doorbell %u has unexpected state: valid=%s\n",
886 db_id, yesno(valid));
891 static bool guc_verify_doorbells(struct intel_guc *guc)
893 bool doorbells_ok = true;
896 for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
897 if (!doorbell_ok(guc, db_id))
898 doorbells_ok = false;
904 * guc_client_alloc() - Allocate an intel_guc_client
905 * @dev_priv: driver private data structure
906 * @engines: The set of engines to enable for this client
907 * @priority: four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
908 * The kernel client to replace ExecList submission is created with
909 * NORMAL priority. Priority of a client for scheduler can be HIGH,
910 * while a preemption context can use CRITICAL.
911 * @ctx: the context that owns the client (we use the default render
914 * Return: An intel_guc_client object if success, else NULL.
916 static struct intel_guc_client *
917 guc_client_alloc(struct drm_i915_private *dev_priv,
920 struct i915_gem_context *ctx)
922 struct intel_guc_client *client;
923 struct intel_guc *guc = &dev_priv->guc;
924 struct i915_vma *vma;
928 client = kzalloc(sizeof(*client), GFP_KERNEL);
930 return ERR_PTR(-ENOMEM);
934 client->engines = engines;
935 client->priority = priority;
936 client->doorbell_id = GUC_DOORBELL_INVALID;
937 spin_lock_init(&client->wq_lock);
939 ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
944 client->stage_id = ret;
946 /* The first page is doorbell/proc_desc. Two followed pages are wq. */
947 vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
953 /* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
956 vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
958 ret = PTR_ERR(vaddr);
961 client->vaddr = vaddr;
963 ret = reserve_doorbell(client);
967 client->doorbell_offset = __select_cacheline(guc);
970 * Since the doorbell only requires a single cacheline, we can save
971 * space by putting the application process descriptor in the same
972 * page. Use the half of the page that doesn't include the doorbell.
974 if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
975 client->proc_desc_offset = 0;
977 client->proc_desc_offset = (GUC_DB_SIZE / 2);
979 DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: stage_id %u\n",
980 priority, client, client->engines, client->stage_id);
981 DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
982 client->doorbell_id, client->doorbell_offset);
987 i915_gem_object_unpin_map(client->vma->obj);
989 i915_vma_unpin_and_release(&client->vma, 0);
991 ida_simple_remove(&guc->stage_ids, client->stage_id);
997 static void guc_client_free(struct intel_guc_client *client)
999 unreserve_doorbell(client);
1000 i915_vma_unpin_and_release(&client->vma, I915_VMA_RELEASE_MAP);
1001 ida_simple_remove(&client->guc->stage_ids, client->stage_id);
1005 static inline bool ctx_save_restore_disabled(struct intel_context *ce)
1007 u32 sr = ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1];
1009 #define SR_DISABLED \
1010 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | \
1011 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)
1013 return (sr & SR_DISABLED) == SR_DISABLED;
1018 static int guc_clients_create(struct intel_guc *guc)
1020 struct drm_i915_private *dev_priv = guc_to_i915(guc);
1021 struct intel_guc_client *client;
1023 GEM_BUG_ON(guc->execbuf_client);
1024 GEM_BUG_ON(guc->preempt_client);
1026 client = guc_client_alloc(dev_priv,
1027 INTEL_INFO(dev_priv)->ring_mask,
1028 GUC_CLIENT_PRIORITY_KMD_NORMAL,
1029 dev_priv->kernel_context);
1030 if (IS_ERR(client)) {
1031 DRM_ERROR("Failed to create GuC client for submission!\n");
1032 return PTR_ERR(client);
1034 guc->execbuf_client = client;
1036 if (dev_priv->preempt_context) {
1037 client = guc_client_alloc(dev_priv,
1038 INTEL_INFO(dev_priv)->ring_mask,
1039 GUC_CLIENT_PRIORITY_KMD_HIGH,
1040 dev_priv->preempt_context);
1041 if (IS_ERR(client)) {
1042 DRM_ERROR("Failed to create GuC client for preemption!\n");
1043 guc_client_free(guc->execbuf_client);
1044 guc->execbuf_client = NULL;
1045 return PTR_ERR(client);
1047 guc->preempt_client = client;
1053 static void guc_clients_destroy(struct intel_guc *guc)
1055 struct intel_guc_client *client;
1057 client = fetch_and_zero(&guc->preempt_client);
1059 guc_client_free(client);
1061 client = fetch_and_zero(&guc->execbuf_client);
1063 guc_client_free(client);
1066 static int __guc_client_enable(struct intel_guc_client *client)
1070 guc_proc_desc_init(client);
1071 guc_stage_desc_init(client);
1073 ret = create_doorbell(client);
1080 guc_stage_desc_fini(client);
1081 guc_proc_desc_fini(client);
1085 static void __guc_client_disable(struct intel_guc_client *client)
1088 * By the time we're here, GuC may have already been reset. if that is
1089 * the case, instead of trying (in vain) to communicate with it, let's
1090 * just cleanup the doorbell HW and our internal state.
1092 if (intel_guc_is_alive(client->guc))
1093 destroy_doorbell(client);
1095 __fini_doorbell(client);
1097 guc_stage_desc_fini(client);
1098 guc_proc_desc_fini(client);
1101 static int guc_clients_enable(struct intel_guc *guc)
1105 ret = __guc_client_enable(guc->execbuf_client);
1109 if (guc->preempt_client) {
1110 ret = __guc_client_enable(guc->preempt_client);
1112 __guc_client_disable(guc->execbuf_client);
1120 static void guc_clients_disable(struct intel_guc *guc)
1122 if (guc->preempt_client)
1123 __guc_client_disable(guc->preempt_client);
1125 if (guc->execbuf_client)
1126 __guc_client_disable(guc->execbuf_client);
1130 * Set up the memory resources to be shared with the GuC (via the GGTT)
1131 * at firmware loading time.
1133 int intel_guc_submission_init(struct intel_guc *guc)
1135 struct drm_i915_private *dev_priv = guc_to_i915(guc);
1136 struct intel_engine_cs *engine;
1137 enum intel_engine_id id;
1140 if (guc->stage_desc_pool)
1143 ret = guc_stage_desc_pool_create(guc);
1147 * Keep static analysers happy, let them know that we allocated the
1148 * vma after testing that it didn't exist earlier.
1150 GEM_BUG_ON(!guc->stage_desc_pool);
1152 WARN_ON(!guc_verify_doorbells(guc));
1153 ret = guc_clients_create(guc);
1157 for_each_engine(engine, dev_priv, id) {
1158 guc->preempt_work[id].engine = engine;
1159 INIT_WORK(&guc->preempt_work[id].work, inject_preempt_context);
1165 guc_stage_desc_pool_destroy(guc);
1169 void intel_guc_submission_fini(struct intel_guc *guc)
1171 struct drm_i915_private *dev_priv = guc_to_i915(guc);
1172 struct intel_engine_cs *engine;
1173 enum intel_engine_id id;
1175 for_each_engine(engine, dev_priv, id)
1176 cancel_work_sync(&guc->preempt_work[id].work);
1178 guc_clients_destroy(guc);
1179 WARN_ON(!guc_verify_doorbells(guc));
1181 if (guc->stage_desc_pool)
1182 guc_stage_desc_pool_destroy(guc);
1185 static void guc_interrupts_capture(struct drm_i915_private *dev_priv)
1187 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1188 struct intel_engine_cs *engine;
1189 enum intel_engine_id id;
1192 /* tell all command streamers to forward interrupts (but not vblank)
1195 irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
1196 for_each_engine(engine, dev_priv, id)
1197 I915_WRITE(RING_MODE_GEN7(engine), irqs);
1199 /* route USER_INTERRUPT to Host, all others are sent to GuC. */
1200 irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
1201 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1202 /* These three registers have the same bit definitions */
1203 I915_WRITE(GUC_BCS_RCS_IER, ~irqs);
1204 I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs);
1205 I915_WRITE(GUC_WD_VECS_IER, ~irqs);
1208 * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
1209 * (unmasked) PM interrupts to the GuC. All other bits of this
1210 * register *disable* generation of a specific interrupt.
1212 * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
1213 * writing to the PM interrupt mask register, i.e. interrupts
1214 * that must not be disabled.
1216 * If the GuC is handling these interrupts, then we must not let
1217 * the PM code disable ANY interrupt that the GuC is expecting.
1218 * So for each ENABLED (0) bit in this register, we must SET the
1219 * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
1220 * GuC needs ARAT expired interrupt unmasked hence it is set in
1223 * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
1224 * result in the register bit being left SET!
1226 rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1227 rps->pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1230 static void guc_interrupts_release(struct drm_i915_private *dev_priv)
1232 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1233 struct intel_engine_cs *engine;
1234 enum intel_engine_id id;
1238 * tell all command streamers NOT to forward interrupts or vblank
1241 irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
1242 irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
1243 for_each_engine(engine, dev_priv, id)
1244 I915_WRITE(RING_MODE_GEN7(engine), irqs);
1246 /* route all GT interrupts to the host */
1247 I915_WRITE(GUC_BCS_RCS_IER, 0);
1248 I915_WRITE(GUC_VCS2_VCS1_IER, 0);
1249 I915_WRITE(GUC_WD_VECS_IER, 0);
1251 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1252 rps->pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
1255 static void guc_submission_park(struct intel_engine_cs *engine)
1257 intel_engine_unpin_breadcrumbs_irq(engine);
1260 static void guc_submission_unpark(struct intel_engine_cs *engine)
1262 intel_engine_pin_breadcrumbs_irq(engine);
1265 static void guc_set_default_submission(struct intel_engine_cs *engine)
1268 * We inherit a bunch of functions from execlists that we'd like
1271 * engine->submit_request = execlists_submit_request;
1272 * engine->cancel_requests = execlists_cancel_requests;
1273 * engine->schedule = execlists_schedule;
1275 * But we need to override the actual submission backend in order
1276 * to talk to the GuC.
1278 intel_execlists_set_default_submission(engine);
1280 engine->execlists.tasklet.func = guc_submission_tasklet;
1282 engine->park = guc_submission_park;
1283 engine->unpark = guc_submission_unpark;
1285 engine->reset.prepare = guc_reset_prepare;
1287 engine->flags &= ~I915_ENGINE_SUPPORTS_STATS;
1290 int intel_guc_submission_enable(struct intel_guc *guc)
1292 struct drm_i915_private *dev_priv = guc_to_i915(guc);
1293 struct intel_engine_cs *engine;
1294 enum intel_engine_id id;
1298 * We're using GuC work items for submitting work through GuC. Since
1299 * we're coalescing multiple requests from a single context into a
1300 * single work item prior to assigning it to execlist_port, we can
1301 * never have more work items than the total number of ports (for all
1302 * engines). The GuC firmware is controlling the HEAD of work queue,
1303 * and it is guaranteed that it will remove the work item from the
1304 * queue before our request is completed.
1306 BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.port) *
1307 sizeof(struct guc_wq_item) *
1308 I915_NUM_ENGINES > GUC_WQ_SIZE);
1310 GEM_BUG_ON(!guc->execbuf_client);
1312 err = intel_guc_sample_forcewake(guc);
1316 err = guc_clients_enable(guc);
1320 /* Take over from manual control of ELSP (execlists) */
1321 guc_interrupts_capture(dev_priv);
1323 for_each_engine(engine, dev_priv, id) {
1324 engine->set_default_submission = guc_set_default_submission;
1325 engine->set_default_submission(engine);
1331 void intel_guc_submission_disable(struct intel_guc *guc)
1333 struct drm_i915_private *dev_priv = guc_to_i915(guc);
1335 GEM_BUG_ON(dev_priv->gt.awake); /* GT should be parked first */
1337 guc_interrupts_release(dev_priv);
1338 guc_clients_disable(guc);
1341 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1342 #include "selftests/intel_guc.c"