1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
35 #include <drm/i915_drm.h>
37 #include "i915_trace.h"
38 #include "intel_drv.h"
41 * DOC: interrupt handling
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
118 static const u32 hpd_gen11[HPD_NUM_PINS] = {
119 [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
120 [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
121 [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
122 [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
125 static const u32 hpd_icp[HPD_NUM_PINS] = {
126 [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
127 [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
128 [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
129 [HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
130 [HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
131 [HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
134 /* IIR can theoretically queue up two events. Be paranoid. */
135 #define GEN8_IRQ_RESET_NDX(type, which) do { \
136 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
137 POSTING_READ(GEN8_##type##_IMR(which)); \
138 I915_WRITE(GEN8_##type##_IER(which), 0); \
139 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
140 POSTING_READ(GEN8_##type##_IIR(which)); \
141 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
142 POSTING_READ(GEN8_##type##_IIR(which)); \
145 #define GEN3_IRQ_RESET(type) do { \
146 I915_WRITE(type##IMR, 0xffffffff); \
147 POSTING_READ(type##IMR); \
148 I915_WRITE(type##IER, 0); \
149 I915_WRITE(type##IIR, 0xffffffff); \
150 POSTING_READ(type##IIR); \
151 I915_WRITE(type##IIR, 0xffffffff); \
152 POSTING_READ(type##IIR); \
155 #define GEN2_IRQ_RESET(type) do { \
156 I915_WRITE16(type##IMR, 0xffff); \
157 POSTING_READ16(type##IMR); \
158 I915_WRITE16(type##IER, 0); \
159 I915_WRITE16(type##IIR, 0xffff); \
160 POSTING_READ16(type##IIR); \
161 I915_WRITE16(type##IIR, 0xffff); \
162 POSTING_READ16(type##IIR); \
166 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
168 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
171 u32 val = I915_READ(reg);
176 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177 i915_mmio_reg_offset(reg), val);
178 I915_WRITE(reg, 0xffffffff);
180 I915_WRITE(reg, 0xffffffff);
184 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
187 u16 val = I915_READ16(reg);
192 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
193 i915_mmio_reg_offset(reg), val);
194 I915_WRITE16(reg, 0xffff);
196 I915_WRITE16(reg, 0xffff);
200 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
201 gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
202 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
203 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
204 POSTING_READ(GEN8_##type##_IMR(which)); \
207 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
208 gen3_assert_iir_is_zero(dev_priv, type##IIR); \
209 I915_WRITE(type##IER, (ier_val)); \
210 I915_WRITE(type##IMR, (imr_val)); \
211 POSTING_READ(type##IMR); \
214 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
215 gen2_assert_iir_is_zero(dev_priv, type##IIR); \
216 I915_WRITE16(type##IER, (ier_val)); \
217 I915_WRITE16(type##IMR, (imr_val)); \
218 POSTING_READ16(type##IMR); \
221 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
222 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
224 /* For display hotplug interrupt */
226 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
232 lockdep_assert_held(&dev_priv->irq_lock);
233 WARN_ON(bits & ~mask);
235 val = I915_READ(PORT_HOTPLUG_EN);
238 I915_WRITE(PORT_HOTPLUG_EN, val);
242 * i915_hotplug_interrupt_update - update hotplug interrupt enable
243 * @dev_priv: driver private
244 * @mask: bits to update
245 * @bits: bits to enable
246 * NOTE: the HPD enable bits are modified both inside and outside
247 * of an interrupt context. To avoid that read-modify-write cycles
248 * interfer, these bits are protected by a spinlock. Since this
249 * function is usually not called from a context where the lock is
250 * held already, this function acquires the lock itself. A non-locking
251 * version is also available.
253 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
257 spin_lock_irq(&dev_priv->irq_lock);
258 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
259 spin_unlock_irq(&dev_priv->irq_lock);
263 gen11_gt_engine_identity(struct drm_i915_private * const i915,
264 const unsigned int bank, const unsigned int bit);
266 static bool gen11_reset_one_iir(struct drm_i915_private * const i915,
267 const unsigned int bank,
268 const unsigned int bit)
270 void __iomem * const regs = i915->regs;
273 lockdep_assert_held(&i915->irq_lock);
275 dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
278 * According to the BSpec, DW_IIR bits cannot be cleared without
279 * first servicing the Selector & Shared IIR registers.
281 gen11_gt_engine_identity(i915, bank, bit);
284 * We locked GT INT DW by reading it. If we want to (try
285 * to) recover from this succesfully, we need to clear
286 * our bit, otherwise we are locking the register for
289 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
298 * ilk_update_display_irq - update DEIMR
299 * @dev_priv: driver private
300 * @interrupt_mask: mask of interrupt bits to update
301 * @enabled_irq_mask: mask of interrupt bits to enable
303 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
304 uint32_t interrupt_mask,
305 uint32_t enabled_irq_mask)
309 lockdep_assert_held(&dev_priv->irq_lock);
311 WARN_ON(enabled_irq_mask & ~interrupt_mask);
313 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
316 new_val = dev_priv->irq_mask;
317 new_val &= ~interrupt_mask;
318 new_val |= (~enabled_irq_mask & interrupt_mask);
320 if (new_val != dev_priv->irq_mask) {
321 dev_priv->irq_mask = new_val;
322 I915_WRITE(DEIMR, dev_priv->irq_mask);
328 * ilk_update_gt_irq - update GTIMR
329 * @dev_priv: driver private
330 * @interrupt_mask: mask of interrupt bits to update
331 * @enabled_irq_mask: mask of interrupt bits to enable
333 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
334 uint32_t interrupt_mask,
335 uint32_t enabled_irq_mask)
337 lockdep_assert_held(&dev_priv->irq_lock);
339 WARN_ON(enabled_irq_mask & ~interrupt_mask);
341 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
344 dev_priv->gt_irq_mask &= ~interrupt_mask;
345 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
346 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
349 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
351 ilk_update_gt_irq(dev_priv, mask, mask);
352 POSTING_READ_FW(GTIMR);
355 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
357 ilk_update_gt_irq(dev_priv, mask, 0);
360 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
362 WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
364 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
367 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
369 if (INTEL_GEN(dev_priv) >= 11)
370 return GEN11_GPM_WGBOXPERF_INTR_MASK;
371 else if (INTEL_GEN(dev_priv) >= 8)
372 return GEN8_GT_IMR(2);
377 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
379 if (INTEL_GEN(dev_priv) >= 11)
380 return GEN11_GPM_WGBOXPERF_INTR_ENABLE;
381 else if (INTEL_GEN(dev_priv) >= 8)
382 return GEN8_GT_IER(2);
388 * snb_update_pm_irq - update GEN6_PMIMR
389 * @dev_priv: driver private
390 * @interrupt_mask: mask of interrupt bits to update
391 * @enabled_irq_mask: mask of interrupt bits to enable
393 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
394 uint32_t interrupt_mask,
395 uint32_t enabled_irq_mask)
399 WARN_ON(enabled_irq_mask & ~interrupt_mask);
401 lockdep_assert_held(&dev_priv->irq_lock);
403 new_val = dev_priv->pm_imr;
404 new_val &= ~interrupt_mask;
405 new_val |= (~enabled_irq_mask & interrupt_mask);
407 if (new_val != dev_priv->pm_imr) {
408 dev_priv->pm_imr = new_val;
409 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
410 POSTING_READ(gen6_pm_imr(dev_priv));
414 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
416 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
419 snb_update_pm_irq(dev_priv, mask, mask);
422 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
424 snb_update_pm_irq(dev_priv, mask, 0);
427 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
429 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
432 __gen6_mask_pm_irq(dev_priv, mask);
435 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
437 i915_reg_t reg = gen6_pm_iir(dev_priv);
439 lockdep_assert_held(&dev_priv->irq_lock);
441 I915_WRITE(reg, reset_mask);
442 I915_WRITE(reg, reset_mask);
446 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
448 lockdep_assert_held(&dev_priv->irq_lock);
450 dev_priv->pm_ier |= enable_mask;
451 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
452 gen6_unmask_pm_irq(dev_priv, enable_mask);
453 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
456 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
458 lockdep_assert_held(&dev_priv->irq_lock);
460 dev_priv->pm_ier &= ~disable_mask;
461 __gen6_mask_pm_irq(dev_priv, disable_mask);
462 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
463 /* though a barrier is missing here, but don't really need a one */
466 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
468 spin_lock_irq(&dev_priv->irq_lock);
470 while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM))
473 dev_priv->gt_pm.rps.pm_iir = 0;
475 spin_unlock_irq(&dev_priv->irq_lock);
478 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
480 spin_lock_irq(&dev_priv->irq_lock);
481 gen6_reset_pm_iir(dev_priv, GEN6_PM_RPS_EVENTS);
482 dev_priv->gt_pm.rps.pm_iir = 0;
483 spin_unlock_irq(&dev_priv->irq_lock);
486 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
488 struct intel_rps *rps = &dev_priv->gt_pm.rps;
490 if (READ_ONCE(rps->interrupts_enabled))
493 spin_lock_irq(&dev_priv->irq_lock);
494 WARN_ON_ONCE(rps->pm_iir);
496 if (INTEL_GEN(dev_priv) >= 11)
497 WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM));
499 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
501 rps->interrupts_enabled = true;
502 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
504 spin_unlock_irq(&dev_priv->irq_lock);
507 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
509 struct intel_rps *rps = &dev_priv->gt_pm.rps;
511 if (!READ_ONCE(rps->interrupts_enabled))
514 spin_lock_irq(&dev_priv->irq_lock);
515 rps->interrupts_enabled = false;
517 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
519 gen6_disable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
521 spin_unlock_irq(&dev_priv->irq_lock);
522 synchronize_irq(dev_priv->drm.irq);
524 /* Now that we will not be generating any more work, flush any
525 * outstanding tasks. As we are called on the RPS idle path,
526 * we will reset the GPU to minimum frequencies, so the current
527 * state of the worker can be discarded.
529 cancel_work_sync(&rps->work);
530 if (INTEL_GEN(dev_priv) >= 11)
531 gen11_reset_rps_interrupts(dev_priv);
533 gen6_reset_rps_interrupts(dev_priv);
536 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
538 assert_rpm_wakelock_held(dev_priv);
540 spin_lock_irq(&dev_priv->irq_lock);
541 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
542 spin_unlock_irq(&dev_priv->irq_lock);
545 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
547 assert_rpm_wakelock_held(dev_priv);
549 spin_lock_irq(&dev_priv->irq_lock);
550 if (!dev_priv->guc.interrupts_enabled) {
551 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
552 dev_priv->pm_guc_events);
553 dev_priv->guc.interrupts_enabled = true;
554 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
556 spin_unlock_irq(&dev_priv->irq_lock);
559 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
561 assert_rpm_wakelock_held(dev_priv);
563 spin_lock_irq(&dev_priv->irq_lock);
564 dev_priv->guc.interrupts_enabled = false;
566 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
568 spin_unlock_irq(&dev_priv->irq_lock);
569 synchronize_irq(dev_priv->drm.irq);
571 gen9_reset_guc_interrupts(dev_priv);
575 * bdw_update_port_irq - update DE port interrupt
576 * @dev_priv: driver private
577 * @interrupt_mask: mask of interrupt bits to update
578 * @enabled_irq_mask: mask of interrupt bits to enable
580 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
581 uint32_t interrupt_mask,
582 uint32_t enabled_irq_mask)
587 lockdep_assert_held(&dev_priv->irq_lock);
589 WARN_ON(enabled_irq_mask & ~interrupt_mask);
591 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
594 old_val = I915_READ(GEN8_DE_PORT_IMR);
597 new_val &= ~interrupt_mask;
598 new_val |= (~enabled_irq_mask & interrupt_mask);
600 if (new_val != old_val) {
601 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
602 POSTING_READ(GEN8_DE_PORT_IMR);
607 * bdw_update_pipe_irq - update DE pipe interrupt
608 * @dev_priv: driver private
609 * @pipe: pipe whose interrupt to update
610 * @interrupt_mask: mask of interrupt bits to update
611 * @enabled_irq_mask: mask of interrupt bits to enable
613 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
615 uint32_t interrupt_mask,
616 uint32_t enabled_irq_mask)
620 lockdep_assert_held(&dev_priv->irq_lock);
622 WARN_ON(enabled_irq_mask & ~interrupt_mask);
624 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
627 new_val = dev_priv->de_irq_mask[pipe];
628 new_val &= ~interrupt_mask;
629 new_val |= (~enabled_irq_mask & interrupt_mask);
631 if (new_val != dev_priv->de_irq_mask[pipe]) {
632 dev_priv->de_irq_mask[pipe] = new_val;
633 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
634 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
639 * ibx_display_interrupt_update - update SDEIMR
640 * @dev_priv: driver private
641 * @interrupt_mask: mask of interrupt bits to update
642 * @enabled_irq_mask: mask of interrupt bits to enable
644 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
645 uint32_t interrupt_mask,
646 uint32_t enabled_irq_mask)
648 uint32_t sdeimr = I915_READ(SDEIMR);
649 sdeimr &= ~interrupt_mask;
650 sdeimr |= (~enabled_irq_mask & interrupt_mask);
652 WARN_ON(enabled_irq_mask & ~interrupt_mask);
654 lockdep_assert_held(&dev_priv->irq_lock);
656 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
659 I915_WRITE(SDEIMR, sdeimr);
660 POSTING_READ(SDEIMR);
663 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
666 u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
667 u32 enable_mask = status_mask << 16;
669 lockdep_assert_held(&dev_priv->irq_lock);
671 if (INTEL_GEN(dev_priv) < 5)
675 * On pipe A we don't support the PSR interrupt yet,
676 * on pipe B and C the same bit MBZ.
678 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
681 * On pipe B and C we don't support the PSR interrupt yet, on pipe
682 * A the same bit is for perf counters which we don't use either.
684 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
687 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
688 SPRITE0_FLIP_DONE_INT_EN_VLV |
689 SPRITE1_FLIP_DONE_INT_EN_VLV);
690 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
691 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
692 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
693 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
696 WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
697 status_mask & ~PIPESTAT_INT_STATUS_MASK,
698 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
699 pipe_name(pipe), enable_mask, status_mask);
704 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
705 enum pipe pipe, u32 status_mask)
707 i915_reg_t reg = PIPESTAT(pipe);
710 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
711 "pipe %c: status_mask=0x%x\n",
712 pipe_name(pipe), status_mask);
714 lockdep_assert_held(&dev_priv->irq_lock);
715 WARN_ON(!intel_irqs_enabled(dev_priv));
717 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
720 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
721 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
723 I915_WRITE(reg, enable_mask | status_mask);
727 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
728 enum pipe pipe, u32 status_mask)
730 i915_reg_t reg = PIPESTAT(pipe);
733 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
734 "pipe %c: status_mask=0x%x\n",
735 pipe_name(pipe), status_mask);
737 lockdep_assert_held(&dev_priv->irq_lock);
738 WARN_ON(!intel_irqs_enabled(dev_priv));
740 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
743 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
744 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
746 I915_WRITE(reg, enable_mask | status_mask);
751 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
752 * @dev_priv: i915 device private
754 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
756 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
759 spin_lock_irq(&dev_priv->irq_lock);
761 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
762 if (INTEL_GEN(dev_priv) >= 4)
763 i915_enable_pipestat(dev_priv, PIPE_A,
764 PIPE_LEGACY_BLC_EVENT_STATUS);
766 spin_unlock_irq(&dev_priv->irq_lock);
770 * This timing diagram depicts the video signal in and
771 * around the vertical blanking period.
773 * Assumptions about the fictitious mode used in this example:
775 * vsync_start = vblank_start + 1
776 * vsync_end = vblank_start + 2
777 * vtotal = vblank_start + 3
780 * latch double buffered registers
781 * increment frame counter (ctg+)
782 * generate start of vblank interrupt (gen4+)
785 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
786 * | may be shifted forward 1-3 extra lines via PIPECONF
788 * | | start of vsync:
789 * | | generate vsync interrupt
791 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
792 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
793 * ----va---> <-----------------vb--------------------> <--------va-------------
794 * | | <----vs-----> |
795 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
796 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
797 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
799 * last visible pixel first visible pixel
800 * | increment frame counter (gen3/4)
801 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
803 * x = horizontal active
804 * _ = horizontal blanking
805 * hs = horizontal sync
806 * va = vertical active
807 * vb = vertical blanking
809 * vbs = vblank_start (number)
812 * - most events happen at the start of horizontal sync
813 * - frame start happens at the start of horizontal blank, 1-4 lines
814 * (depending on PIPECONF settings) after the start of vblank
815 * - gen3/4 pixel and frame counter are synchronized with the start
816 * of horizontal active on the first line of vertical active
819 /* Called from drm generic code, passed a 'crtc', which
820 * we use as a pipe index
822 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
824 struct drm_i915_private *dev_priv = to_i915(dev);
825 i915_reg_t high_frame, low_frame;
826 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
827 const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
828 unsigned long irqflags;
830 htotal = mode->crtc_htotal;
831 hsync_start = mode->crtc_hsync_start;
832 vbl_start = mode->crtc_vblank_start;
833 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
834 vbl_start = DIV_ROUND_UP(vbl_start, 2);
836 /* Convert to pixel count */
839 /* Start of vblank event occurs at start of hsync */
840 vbl_start -= htotal - hsync_start;
842 high_frame = PIPEFRAME(pipe);
843 low_frame = PIPEFRAMEPIXEL(pipe);
845 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
848 * High & low register fields aren't synchronized, so make sure
849 * we get a low value that's stable across two reads of the high
853 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
854 low = I915_READ_FW(low_frame);
855 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
856 } while (high1 != high2);
858 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
860 high1 >>= PIPE_FRAME_HIGH_SHIFT;
861 pixel = low & PIPE_PIXEL_MASK;
862 low >>= PIPE_FRAME_LOW_SHIFT;
865 * The frame counter increments at beginning of active.
866 * Cook up a vblank counter by also checking the pixel
867 * counter against vblank start.
869 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
872 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
874 struct drm_i915_private *dev_priv = to_i915(dev);
876 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
880 * On certain encoders on certain platforms, pipe
881 * scanline register will not work to get the scanline,
882 * since the timings are driven from the PORT or issues
883 * with scanline register updates.
884 * This function will use Framestamp and current
885 * timestamp registers to calculate the scanline.
887 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
889 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
890 struct drm_vblank_crtc *vblank =
891 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
892 const struct drm_display_mode *mode = &vblank->hwmode;
893 u32 vblank_start = mode->crtc_vblank_start;
894 u32 vtotal = mode->crtc_vtotal;
895 u32 htotal = mode->crtc_htotal;
896 u32 clock = mode->crtc_clock;
897 u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
900 * To avoid the race condition where we might cross into the
901 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
902 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
903 * during the same frame.
907 * This field provides read back of the display
908 * pipe frame time stamp. The time stamp value
909 * is sampled at every start of vertical blank.
911 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
914 * The TIMESTAMP_CTR register has the current
917 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
919 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
920 } while (scan_post_time != scan_prev_time);
922 scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
923 clock), 1000 * htotal);
924 scanline = min(scanline, vtotal - 1);
925 scanline = (scanline + vblank_start) % vtotal;
930 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
931 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
933 struct drm_device *dev = crtc->base.dev;
934 struct drm_i915_private *dev_priv = to_i915(dev);
935 const struct drm_display_mode *mode;
936 struct drm_vblank_crtc *vblank;
937 enum pipe pipe = crtc->pipe;
938 int position, vtotal;
943 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
944 mode = &vblank->hwmode;
946 if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
947 return __intel_get_crtc_scanline_from_timestamp(crtc);
949 vtotal = mode->crtc_vtotal;
950 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
953 if (IS_GEN2(dev_priv))
954 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
956 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
959 * On HSW, the DSL reg (0x70000) appears to return 0 if we
960 * read it just before the start of vblank. So try it again
961 * so we don't accidentally end up spanning a vblank frame
962 * increment, causing the pipe_update_end() code to squak at us.
964 * The nature of this problem means we can't simply check the ISR
965 * bit and return the vblank start value; nor can we use the scanline
966 * debug register in the transcoder as it appears to have the same
967 * problem. We may need to extend this to include other platforms,
968 * but so far testing only shows the problem on HSW.
970 if (HAS_DDI(dev_priv) && !position) {
973 for (i = 0; i < 100; i++) {
975 temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
976 if (temp != position) {
984 * See update_scanline_offset() for the details on the
985 * scanline_offset adjustment.
987 return (position + crtc->scanline_offset) % vtotal;
990 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
991 bool in_vblank_irq, int *vpos, int *hpos,
992 ktime_t *stime, ktime_t *etime,
993 const struct drm_display_mode *mode)
995 struct drm_i915_private *dev_priv = to_i915(dev);
996 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
999 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
1000 unsigned long irqflags;
1002 if (WARN_ON(!mode->crtc_clock)) {
1003 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
1004 "pipe %c\n", pipe_name(pipe));
1008 htotal = mode->crtc_htotal;
1009 hsync_start = mode->crtc_hsync_start;
1010 vtotal = mode->crtc_vtotal;
1011 vbl_start = mode->crtc_vblank_start;
1012 vbl_end = mode->crtc_vblank_end;
1014 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1015 vbl_start = DIV_ROUND_UP(vbl_start, 2);
1021 * Lock uncore.lock, as we will do multiple timing critical raw
1022 * register reads, potentially with preemption disabled, so the
1023 * following code must not block on uncore.lock.
1025 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1027 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
1029 /* Get optional system timestamp before query. */
1031 *stime = ktime_get();
1033 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1034 /* No obvious pixelcount register. Only query vertical
1035 * scanout position from Display scan line register.
1037 position = __intel_get_crtc_scanline(intel_crtc);
1039 /* Have access to pixelcount since start of frame.
1040 * We can split this into vertical and horizontal
1043 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1045 /* convert to pixel counts */
1046 vbl_start *= htotal;
1051 * In interlaced modes, the pixel counter counts all pixels,
1052 * so one field will have htotal more pixels. In order to avoid
1053 * the reported position from jumping backwards when the pixel
1054 * counter is beyond the length of the shorter field, just
1055 * clamp the position the length of the shorter field. This
1056 * matches how the scanline counter based position works since
1057 * the scanline counter doesn't count the two half lines.
1059 if (position >= vtotal)
1060 position = vtotal - 1;
1063 * Start of vblank interrupt is triggered at start of hsync,
1064 * just prior to the first active line of vblank. However we
1065 * consider lines to start at the leading edge of horizontal
1066 * active. So, should we get here before we've crossed into
1067 * the horizontal active of the first line in vblank, we would
1068 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1069 * always add htotal-hsync_start to the current pixel position.
1071 position = (position + htotal - hsync_start) % vtotal;
1074 /* Get optional system timestamp after query. */
1076 *etime = ktime_get();
1078 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1080 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1083 * While in vblank, position will be negative
1084 * counting up towards 0 at vbl_end. And outside
1085 * vblank, position will be positive counting
1088 if (position >= vbl_start)
1089 position -= vbl_end;
1091 position += vtotal - vbl_end;
1093 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1097 *vpos = position / htotal;
1098 *hpos = position - (*vpos * htotal);
1104 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1106 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1107 unsigned long irqflags;
1110 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1111 position = __intel_get_crtc_scanline(crtc);
1112 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1117 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1119 u32 busy_up, busy_down, max_avg, min_avg;
1122 spin_lock(&mchdev_lock);
1124 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1126 new_delay = dev_priv->ips.cur_delay;
1128 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1129 busy_up = I915_READ(RCPREVBSYTUPAVG);
1130 busy_down = I915_READ(RCPREVBSYTDNAVG);
1131 max_avg = I915_READ(RCBMAXAVG);
1132 min_avg = I915_READ(RCBMINAVG);
1134 /* Handle RCS change request from hw */
1135 if (busy_up > max_avg) {
1136 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1137 new_delay = dev_priv->ips.cur_delay - 1;
1138 if (new_delay < dev_priv->ips.max_delay)
1139 new_delay = dev_priv->ips.max_delay;
1140 } else if (busy_down < min_avg) {
1141 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1142 new_delay = dev_priv->ips.cur_delay + 1;
1143 if (new_delay > dev_priv->ips.min_delay)
1144 new_delay = dev_priv->ips.min_delay;
1147 if (ironlake_set_drps(dev_priv, new_delay))
1148 dev_priv->ips.cur_delay = new_delay;
1150 spin_unlock(&mchdev_lock);
1155 static void notify_ring(struct intel_engine_cs *engine)
1157 const u32 seqno = intel_engine_get_seqno(engine);
1158 struct i915_request *rq = NULL;
1159 struct task_struct *tsk = NULL;
1160 struct intel_wait *wait;
1162 if (unlikely(!engine->breadcrumbs.irq_armed))
1167 spin_lock(&engine->breadcrumbs.irq_lock);
1168 wait = engine->breadcrumbs.irq_wait;
1171 * We use a callback from the dma-fence to submit
1172 * requests after waiting on our own requests. To
1173 * ensure minimum delay in queuing the next request to
1174 * hardware, signal the fence now rather than wait for
1175 * the signaler to be woken up. We still wake up the
1176 * waiter in order to handle the irq-seqno coherency
1177 * issues (we may receive the interrupt before the
1178 * seqno is written, see __i915_request_irq_complete())
1179 * and to handle coalescing of multiple seqno updates
1182 if (i915_seqno_passed(seqno, wait->seqno)) {
1183 struct i915_request *waiter = wait->request;
1186 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1187 &waiter->fence.flags) &&
1188 intel_wait_check_request(wait, waiter))
1189 rq = i915_request_get(waiter);
1193 if (engine->irq_seqno_barrier &&
1194 i915_seqno_passed(seqno, wait->seqno - 1)) {
1195 set_bit(ENGINE_IRQ_BREADCRUMB,
1196 &engine->irq_posted);
1201 engine->breadcrumbs.irq_count++;
1203 if (engine->breadcrumbs.irq_armed)
1204 __intel_engine_disarm_breadcrumbs(engine);
1206 spin_unlock(&engine->breadcrumbs.irq_lock);
1209 spin_lock(&rq->lock);
1210 dma_fence_signal_locked(&rq->fence);
1211 GEM_BUG_ON(!i915_request_completed(rq));
1212 spin_unlock(&rq->lock);
1214 i915_request_put(rq);
1217 if (tsk && tsk->state & TASK_NORMAL)
1218 wake_up_process(tsk);
1222 trace_intel_engine_notify(engine, wait);
1225 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1226 struct intel_rps_ei *ei)
1228 ei->ktime = ktime_get_raw();
1229 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1230 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1233 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1235 memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1238 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1240 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1241 const struct intel_rps_ei *prev = &rps->ei;
1242 struct intel_rps_ei now;
1245 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1248 vlv_c0_read(dev_priv, &now);
1254 time = ktime_us_delta(now.ktime, prev->ktime);
1256 time *= dev_priv->czclk_freq;
1258 /* Workload can be split between render + media,
1259 * e.g. SwapBuffers being blitted in X after being rendered in
1260 * mesa. To account for this we need to combine both engines
1261 * into our activity counter.
1263 render = now.render_c0 - prev->render_c0;
1264 media = now.media_c0 - prev->media_c0;
1265 c0 = max(render, media);
1266 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1268 if (c0 > time * rps->power.up_threshold)
1269 events = GEN6_PM_RP_UP_THRESHOLD;
1270 else if (c0 < time * rps->power.down_threshold)
1271 events = GEN6_PM_RP_DOWN_THRESHOLD;
1278 static void gen6_pm_rps_work(struct work_struct *work)
1280 struct drm_i915_private *dev_priv =
1281 container_of(work, struct drm_i915_private, gt_pm.rps.work);
1282 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1283 bool client_boost = false;
1284 int new_delay, adj, min, max;
1287 spin_lock_irq(&dev_priv->irq_lock);
1288 if (rps->interrupts_enabled) {
1289 pm_iir = fetch_and_zero(&rps->pm_iir);
1290 client_boost = atomic_read(&rps->num_waiters);
1292 spin_unlock_irq(&dev_priv->irq_lock);
1294 /* Make sure we didn't queue anything we're not going to process. */
1295 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1296 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1299 mutex_lock(&dev_priv->pcu_lock);
1301 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1303 adj = rps->last_adj;
1304 new_delay = rps->cur_freq;
1305 min = rps->min_freq_softlimit;
1306 max = rps->max_freq_softlimit;
1308 max = rps->max_freq;
1309 if (client_boost && new_delay < rps->boost_freq) {
1310 new_delay = rps->boost_freq;
1312 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1315 else /* CHV needs even encode values */
1316 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1318 if (new_delay >= rps->max_freq_softlimit)
1320 } else if (client_boost) {
1322 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1323 if (rps->cur_freq > rps->efficient_freq)
1324 new_delay = rps->efficient_freq;
1325 else if (rps->cur_freq > rps->min_freq_softlimit)
1326 new_delay = rps->min_freq_softlimit;
1328 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1331 else /* CHV needs even encode values */
1332 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1334 if (new_delay <= rps->min_freq_softlimit)
1336 } else { /* unknown event */
1340 rps->last_adj = adj;
1342 /* sysfs frequency interfaces may have snuck in while servicing the
1346 new_delay = clamp_t(int, new_delay, min, max);
1348 if (intel_set_rps(dev_priv, new_delay)) {
1349 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1353 mutex_unlock(&dev_priv->pcu_lock);
1356 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1357 spin_lock_irq(&dev_priv->irq_lock);
1358 if (rps->interrupts_enabled)
1359 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1360 spin_unlock_irq(&dev_priv->irq_lock);
1365 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1367 * @work: workqueue struct
1369 * Doesn't actually do anything except notify userspace. As a consequence of
1370 * this event, userspace should try to remap the bad rows since statistically
1371 * it is likely the same row is more likely to go bad again.
1373 static void ivybridge_parity_work(struct work_struct *work)
1375 struct drm_i915_private *dev_priv =
1376 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1377 u32 error_status, row, bank, subbank;
1378 char *parity_event[6];
1382 /* We must turn off DOP level clock gating to access the L3 registers.
1383 * In order to prevent a get/put style interface, acquire struct mutex
1384 * any time we access those registers.
1386 mutex_lock(&dev_priv->drm.struct_mutex);
1388 /* If we've screwed up tracking, just let the interrupt fire again */
1389 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1392 misccpctl = I915_READ(GEN7_MISCCPCTL);
1393 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1394 POSTING_READ(GEN7_MISCCPCTL);
1396 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1400 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1403 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1405 reg = GEN7_L3CDERRST1(slice);
1407 error_status = I915_READ(reg);
1408 row = GEN7_PARITY_ERROR_ROW(error_status);
1409 bank = GEN7_PARITY_ERROR_BANK(error_status);
1410 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1412 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1415 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1416 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1417 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1418 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1419 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1420 parity_event[5] = NULL;
1422 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1423 KOBJ_CHANGE, parity_event);
1425 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1426 slice, row, bank, subbank);
1428 kfree(parity_event[4]);
1429 kfree(parity_event[3]);
1430 kfree(parity_event[2]);
1431 kfree(parity_event[1]);
1434 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1437 WARN_ON(dev_priv->l3_parity.which_slice);
1438 spin_lock_irq(&dev_priv->irq_lock);
1439 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1440 spin_unlock_irq(&dev_priv->irq_lock);
1442 mutex_unlock(&dev_priv->drm.struct_mutex);
1445 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1448 if (!HAS_L3_DPF(dev_priv))
1451 spin_lock(&dev_priv->irq_lock);
1452 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1453 spin_unlock(&dev_priv->irq_lock);
1455 iir &= GT_PARITY_ERROR(dev_priv);
1456 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1457 dev_priv->l3_parity.which_slice |= 1 << 1;
1459 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1460 dev_priv->l3_parity.which_slice |= 1 << 0;
1462 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1465 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1468 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1469 notify_ring(dev_priv->engine[RCS]);
1470 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1471 notify_ring(dev_priv->engine[VCS]);
1474 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1477 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1478 notify_ring(dev_priv->engine[RCS]);
1479 if (gt_iir & GT_BSD_USER_INTERRUPT)
1480 notify_ring(dev_priv->engine[VCS]);
1481 if (gt_iir & GT_BLT_USER_INTERRUPT)
1482 notify_ring(dev_priv->engine[BCS]);
1484 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1485 GT_BSD_CS_ERROR_INTERRUPT |
1486 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1487 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1489 if (gt_iir & GT_PARITY_ERROR(dev_priv))
1490 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1494 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
1496 bool tasklet = false;
1498 if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
1501 if (iir & GT_RENDER_USER_INTERRUPT) {
1502 notify_ring(engine);
1503 tasklet |= USES_GUC_SUBMISSION(engine->i915);
1507 tasklet_hi_schedule(&engine->execlists.tasklet);
1510 static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1511 u32 master_ctl, u32 gt_iir[4])
1513 void __iomem * const regs = i915->regs;
1515 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1517 GEN8_GT_VCS1_IRQ | \
1518 GEN8_GT_VCS2_IRQ | \
1519 GEN8_GT_VECS_IRQ | \
1523 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1524 gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1525 if (likely(gt_iir[0]))
1526 raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1529 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1530 gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1531 if (likely(gt_iir[1]))
1532 raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1535 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1536 gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1537 if (likely(gt_iir[2]))
1538 raw_reg_write(regs, GEN8_GT_IIR(2), gt_iir[2]);
1541 if (master_ctl & GEN8_GT_VECS_IRQ) {
1542 gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1543 if (likely(gt_iir[3]))
1544 raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1548 static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1549 u32 master_ctl, u32 gt_iir[4])
1551 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1552 gen8_cs_irq_handler(i915->engine[RCS],
1553 gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
1554 gen8_cs_irq_handler(i915->engine[BCS],
1555 gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
1558 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1559 gen8_cs_irq_handler(i915->engine[VCS],
1560 gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
1561 gen8_cs_irq_handler(i915->engine[VCS2],
1562 gt_iir[1] >> GEN8_VCS2_IRQ_SHIFT);
1565 if (master_ctl & GEN8_GT_VECS_IRQ) {
1566 gen8_cs_irq_handler(i915->engine[VECS],
1567 gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
1570 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1571 gen6_rps_irq_handler(i915, gt_iir[2]);
1572 gen9_guc_irq_handler(i915, gt_iir[2]);
1576 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1580 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1582 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1584 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1586 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1592 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1596 return val & PORTA_HOTPLUG_LONG_DETECT;
1598 return val & PORTB_HOTPLUG_LONG_DETECT;
1600 return val & PORTC_HOTPLUG_LONG_DETECT;
1606 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1610 return val & ICP_DDIA_HPD_LONG_DETECT;
1612 return val & ICP_DDIB_HPD_LONG_DETECT;
1618 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1622 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1624 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1626 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1628 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1634 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1638 return val & PORTE_HOTPLUG_LONG_DETECT;
1644 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1648 return val & PORTA_HOTPLUG_LONG_DETECT;
1650 return val & PORTB_HOTPLUG_LONG_DETECT;
1652 return val & PORTC_HOTPLUG_LONG_DETECT;
1654 return val & PORTD_HOTPLUG_LONG_DETECT;
1660 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1664 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1670 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1674 return val & PORTB_HOTPLUG_LONG_DETECT;
1676 return val & PORTC_HOTPLUG_LONG_DETECT;
1678 return val & PORTD_HOTPLUG_LONG_DETECT;
1684 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1688 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1690 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1692 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1699 * Get a bit mask of pins that have triggered, and which ones may be long.
1700 * This can be called multiple times with the same masks to accumulate
1701 * hotplug detection results from several registers.
1703 * Note that the caller is expected to zero out the masks initially.
1705 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1706 u32 *pin_mask, u32 *long_mask,
1707 u32 hotplug_trigger, u32 dig_hotplug_reg,
1708 const u32 hpd[HPD_NUM_PINS],
1709 bool long_pulse_detect(enum hpd_pin pin, u32 val))
1713 for_each_hpd_pin(pin) {
1714 if ((hpd[pin] & hotplug_trigger) == 0)
1717 *pin_mask |= BIT(pin);
1719 if (long_pulse_detect(pin, dig_hotplug_reg))
1720 *long_mask |= BIT(pin);
1723 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1724 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1728 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1730 wake_up_all(&dev_priv->gmbus_wait_queue);
1733 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1735 wake_up_all(&dev_priv->gmbus_wait_queue);
1738 #if defined(CONFIG_DEBUG_FS)
1739 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1741 uint32_t crc0, uint32_t crc1,
1742 uint32_t crc2, uint32_t crc3,
1745 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1746 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1749 spin_lock(&pipe_crc->lock);
1751 * For some not yet identified reason, the first CRC is
1752 * bonkers. So let's just wait for the next vblank and read
1753 * out the buggy result.
1755 * On GEN8+ sometimes the second CRC is bonkers as well, so
1756 * don't trust that one either.
1758 if (pipe_crc->skipped <= 0 ||
1759 (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1760 pipe_crc->skipped++;
1761 spin_unlock(&pipe_crc->lock);
1764 spin_unlock(&pipe_crc->lock);
1771 drm_crtc_add_crc_entry(&crtc->base, true,
1772 drm_crtc_accurate_vblank_count(&crtc->base),
1777 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1779 uint32_t crc0, uint32_t crc1,
1780 uint32_t crc2, uint32_t crc3,
1785 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1788 display_pipe_crc_irq_handler(dev_priv, pipe,
1789 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1793 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1796 display_pipe_crc_irq_handler(dev_priv, pipe,
1797 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1798 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1799 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1800 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1801 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1804 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1807 uint32_t res1, res2;
1809 if (INTEL_GEN(dev_priv) >= 3)
1810 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1814 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1815 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1819 display_pipe_crc_irq_handler(dev_priv, pipe,
1820 I915_READ(PIPE_CRC_RES_RED(pipe)),
1821 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1822 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1826 /* The RPS events need forcewake, so we add them to a work queue and mask their
1827 * IMR bits until the work is done. Other interrupts can be processed without
1828 * the work queue. */
1829 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1831 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1833 if (pm_iir & dev_priv->pm_rps_events) {
1834 spin_lock(&dev_priv->irq_lock);
1835 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1836 if (rps->interrupts_enabled) {
1837 rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1838 schedule_work(&rps->work);
1840 spin_unlock(&dev_priv->irq_lock);
1843 if (INTEL_GEN(dev_priv) >= 8)
1846 if (HAS_VEBOX(dev_priv)) {
1847 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1848 notify_ring(dev_priv->engine[VECS]);
1850 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1851 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1855 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1857 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
1858 intel_guc_to_host_event_handler(&dev_priv->guc);
1861 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1865 for_each_pipe(dev_priv, pipe) {
1866 I915_WRITE(PIPESTAT(pipe),
1867 PIPESTAT_INT_STATUS_MASK |
1868 PIPE_FIFO_UNDERRUN_STATUS);
1870 dev_priv->pipestat_irq_mask[pipe] = 0;
1874 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1875 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1879 spin_lock(&dev_priv->irq_lock);
1881 if (!dev_priv->display_irqs_enabled) {
1882 spin_unlock(&dev_priv->irq_lock);
1886 for_each_pipe(dev_priv, pipe) {
1888 u32 status_mask, enable_mask, iir_bit = 0;
1891 * PIPESTAT bits get signalled even when the interrupt is
1892 * disabled with the mask bits, and some of the status bits do
1893 * not generate interrupts at all (like the underrun bit). Hence
1894 * we need to be careful that we only handle what we want to
1898 /* fifo underruns are filterered in the underrun handler. */
1899 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1903 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1906 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1909 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1913 status_mask |= dev_priv->pipestat_irq_mask[pipe];
1918 reg = PIPESTAT(pipe);
1919 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1920 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1923 * Clear the PIPE*STAT regs before the IIR
1925 * Toggle the enable bits to make sure we get an
1926 * edge in the ISR pipe event bit if we don't clear
1927 * all the enabled status bits. Otherwise the edge
1928 * triggered IIR on i965/g4x wouldn't notice that
1929 * an interrupt is still pending.
1931 if (pipe_stats[pipe]) {
1932 I915_WRITE(reg, pipe_stats[pipe]);
1933 I915_WRITE(reg, enable_mask);
1936 spin_unlock(&dev_priv->irq_lock);
1939 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1940 u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1944 for_each_pipe(dev_priv, pipe) {
1945 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1946 drm_handle_vblank(&dev_priv->drm, pipe);
1948 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1949 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1951 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1952 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1956 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1957 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1959 bool blc_event = false;
1962 for_each_pipe(dev_priv, pipe) {
1963 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1964 drm_handle_vblank(&dev_priv->drm, pipe);
1966 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1969 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1970 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1972 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1973 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1976 if (blc_event || (iir & I915_ASLE_INTERRUPT))
1977 intel_opregion_asle_intr(dev_priv);
1980 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1981 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1983 bool blc_event = false;
1986 for_each_pipe(dev_priv, pipe) {
1987 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1988 drm_handle_vblank(&dev_priv->drm, pipe);
1990 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1993 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1994 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1996 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1997 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2000 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2001 intel_opregion_asle_intr(dev_priv);
2003 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2004 gmbus_irq_handler(dev_priv);
2007 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2008 u32 pipe_stats[I915_MAX_PIPES])
2012 for_each_pipe(dev_priv, pipe) {
2013 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2014 drm_handle_vblank(&dev_priv->drm, pipe);
2016 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2017 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2019 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2020 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2023 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2024 gmbus_irq_handler(dev_priv);
2027 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
2029 u32 hotplug_status = 0, hotplug_status_mask;
2032 if (IS_G4X(dev_priv) ||
2033 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2034 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
2035 DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
2037 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
2040 * We absolutely have to clear all the pending interrupt
2041 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
2042 * interrupt bit won't have an edge, and the i965/g4x
2043 * edge triggered IIR will not notice that an interrupt
2044 * is still pending. We can't use PORT_HOTPLUG_EN to
2045 * guarantee the edge as the act of toggling the enable
2046 * bits can itself generate a new hotplug interrupt :(
2048 for (i = 0; i < 10; i++) {
2049 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
2052 return hotplug_status;
2054 hotplug_status |= tmp;
2055 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2059 "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
2060 I915_READ(PORT_HOTPLUG_STAT));
2062 return hotplug_status;
2065 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2068 u32 pin_mask = 0, long_mask = 0;
2070 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
2071 IS_CHERRYVIEW(dev_priv)) {
2072 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2074 if (hotplug_trigger) {
2075 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2076 hotplug_trigger, hotplug_trigger,
2078 i9xx_port_hotplug_long_detect);
2080 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2083 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2084 dp_aux_irq_handler(dev_priv);
2086 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2088 if (hotplug_trigger) {
2089 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2090 hotplug_trigger, hotplug_trigger,
2092 i9xx_port_hotplug_long_detect);
2093 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2098 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2100 struct drm_device *dev = arg;
2101 struct drm_i915_private *dev_priv = to_i915(dev);
2102 irqreturn_t ret = IRQ_NONE;
2104 if (!intel_irqs_enabled(dev_priv))
2107 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2108 disable_rpm_wakeref_asserts(dev_priv);
2111 u32 iir, gt_iir, pm_iir;
2112 u32 pipe_stats[I915_MAX_PIPES] = {};
2113 u32 hotplug_status = 0;
2116 gt_iir = I915_READ(GTIIR);
2117 pm_iir = I915_READ(GEN6_PMIIR);
2118 iir = I915_READ(VLV_IIR);
2120 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2126 * Theory on interrupt generation, based on empirical evidence:
2128 * x = ((VLV_IIR & VLV_IER) ||
2129 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2130 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2132 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2133 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2134 * guarantee the CPU interrupt will be raised again even if we
2135 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2136 * bits this time around.
2138 I915_WRITE(VLV_MASTER_IER, 0);
2139 ier = I915_READ(VLV_IER);
2140 I915_WRITE(VLV_IER, 0);
2143 I915_WRITE(GTIIR, gt_iir);
2145 I915_WRITE(GEN6_PMIIR, pm_iir);
2147 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2148 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2150 /* Call regardless, as some status bits might not be
2151 * signalled in iir */
2152 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2154 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2155 I915_LPE_PIPE_B_INTERRUPT))
2156 intel_lpe_audio_irq_handler(dev_priv);
2159 * VLV_IIR is single buffered, and reflects the level
2160 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2163 I915_WRITE(VLV_IIR, iir);
2165 I915_WRITE(VLV_IER, ier);
2166 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2169 snb_gt_irq_handler(dev_priv, gt_iir);
2171 gen6_rps_irq_handler(dev_priv, pm_iir);
2174 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2176 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2179 enable_rpm_wakeref_asserts(dev_priv);
2184 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2186 struct drm_device *dev = arg;
2187 struct drm_i915_private *dev_priv = to_i915(dev);
2188 irqreturn_t ret = IRQ_NONE;
2190 if (!intel_irqs_enabled(dev_priv))
2193 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2194 disable_rpm_wakeref_asserts(dev_priv);
2197 u32 master_ctl, iir;
2198 u32 pipe_stats[I915_MAX_PIPES] = {};
2199 u32 hotplug_status = 0;
2203 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2204 iir = I915_READ(VLV_IIR);
2206 if (master_ctl == 0 && iir == 0)
2212 * Theory on interrupt generation, based on empirical evidence:
2214 * x = ((VLV_IIR & VLV_IER) ||
2215 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2216 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2218 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2219 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2220 * guarantee the CPU interrupt will be raised again even if we
2221 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2222 * bits this time around.
2224 I915_WRITE(GEN8_MASTER_IRQ, 0);
2225 ier = I915_READ(VLV_IER);
2226 I915_WRITE(VLV_IER, 0);
2228 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2230 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2231 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2233 /* Call regardless, as some status bits might not be
2234 * signalled in iir */
2235 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2237 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2238 I915_LPE_PIPE_B_INTERRUPT |
2239 I915_LPE_PIPE_C_INTERRUPT))
2240 intel_lpe_audio_irq_handler(dev_priv);
2243 * VLV_IIR is single buffered, and reflects the level
2244 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2247 I915_WRITE(VLV_IIR, iir);
2249 I915_WRITE(VLV_IER, ier);
2250 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2252 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2255 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2257 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2260 enable_rpm_wakeref_asserts(dev_priv);
2265 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2266 u32 hotplug_trigger,
2267 const u32 hpd[HPD_NUM_PINS])
2269 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2272 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2273 * unless we touch the hotplug register, even if hotplug_trigger is
2274 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2277 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2278 if (!hotplug_trigger) {
2279 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2280 PORTD_HOTPLUG_STATUS_MASK |
2281 PORTC_HOTPLUG_STATUS_MASK |
2282 PORTB_HOTPLUG_STATUS_MASK;
2283 dig_hotplug_reg &= ~mask;
2286 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2287 if (!hotplug_trigger)
2290 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2291 dig_hotplug_reg, hpd,
2292 pch_port_hotplug_long_detect);
2294 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2297 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2300 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2302 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2304 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2305 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2306 SDE_AUDIO_POWER_SHIFT);
2307 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2311 if (pch_iir & SDE_AUX_MASK)
2312 dp_aux_irq_handler(dev_priv);
2314 if (pch_iir & SDE_GMBUS)
2315 gmbus_irq_handler(dev_priv);
2317 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2318 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2320 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2321 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2323 if (pch_iir & SDE_POISON)
2324 DRM_ERROR("PCH poison interrupt\n");
2326 if (pch_iir & SDE_FDI_MASK)
2327 for_each_pipe(dev_priv, pipe)
2328 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2330 I915_READ(FDI_RX_IIR(pipe)));
2332 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2333 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2335 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2336 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2338 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2339 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2341 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2342 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2345 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2347 u32 err_int = I915_READ(GEN7_ERR_INT);
2350 if (err_int & ERR_INT_POISON)
2351 DRM_ERROR("Poison interrupt\n");
2353 for_each_pipe(dev_priv, pipe) {
2354 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2355 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2357 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2358 if (IS_IVYBRIDGE(dev_priv))
2359 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2361 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2365 I915_WRITE(GEN7_ERR_INT, err_int);
2368 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2370 u32 serr_int = I915_READ(SERR_INT);
2373 if (serr_int & SERR_INT_POISON)
2374 DRM_ERROR("PCH poison interrupt\n");
2376 for_each_pipe(dev_priv, pipe)
2377 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2378 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2380 I915_WRITE(SERR_INT, serr_int);
2383 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2386 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2388 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2390 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2391 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2392 SDE_AUDIO_POWER_SHIFT_CPT);
2393 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2397 if (pch_iir & SDE_AUX_MASK_CPT)
2398 dp_aux_irq_handler(dev_priv);
2400 if (pch_iir & SDE_GMBUS_CPT)
2401 gmbus_irq_handler(dev_priv);
2403 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2404 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2406 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2407 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2409 if (pch_iir & SDE_FDI_MASK_CPT)
2410 for_each_pipe(dev_priv, pipe)
2411 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2413 I915_READ(FDI_RX_IIR(pipe)));
2415 if (pch_iir & SDE_ERROR_CPT)
2416 cpt_serr_int_handler(dev_priv);
2419 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2421 u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2422 u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2423 u32 pin_mask = 0, long_mask = 0;
2425 if (ddi_hotplug_trigger) {
2426 u32 dig_hotplug_reg;
2428 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2429 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2431 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2432 ddi_hotplug_trigger,
2433 dig_hotplug_reg, hpd_icp,
2434 icp_ddi_port_hotplug_long_detect);
2437 if (tc_hotplug_trigger) {
2438 u32 dig_hotplug_reg;
2440 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2441 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2443 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2445 dig_hotplug_reg, hpd_icp,
2446 icp_tc_port_hotplug_long_detect);
2450 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2452 if (pch_iir & SDE_GMBUS_ICP)
2453 gmbus_irq_handler(dev_priv);
2456 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2458 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2459 ~SDE_PORTE_HOTPLUG_SPT;
2460 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2461 u32 pin_mask = 0, long_mask = 0;
2463 if (hotplug_trigger) {
2464 u32 dig_hotplug_reg;
2466 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2467 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2469 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2470 hotplug_trigger, dig_hotplug_reg, hpd_spt,
2471 spt_port_hotplug_long_detect);
2474 if (hotplug2_trigger) {
2475 u32 dig_hotplug_reg;
2477 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2478 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2480 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2481 hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2482 spt_port_hotplug2_long_detect);
2486 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2488 if (pch_iir & SDE_GMBUS_CPT)
2489 gmbus_irq_handler(dev_priv);
2492 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2493 u32 hotplug_trigger,
2494 const u32 hpd[HPD_NUM_PINS])
2496 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2498 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2499 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2501 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2502 dig_hotplug_reg, hpd,
2503 ilk_port_hotplug_long_detect);
2505 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2508 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2512 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2514 if (hotplug_trigger)
2515 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2517 if (de_iir & DE_AUX_CHANNEL_A)
2518 dp_aux_irq_handler(dev_priv);
2520 if (de_iir & DE_GSE)
2521 intel_opregion_asle_intr(dev_priv);
2523 if (de_iir & DE_POISON)
2524 DRM_ERROR("Poison interrupt\n");
2526 for_each_pipe(dev_priv, pipe) {
2527 if (de_iir & DE_PIPE_VBLANK(pipe))
2528 drm_handle_vblank(&dev_priv->drm, pipe);
2530 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2531 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2533 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2534 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2537 /* check event from PCH */
2538 if (de_iir & DE_PCH_EVENT) {
2539 u32 pch_iir = I915_READ(SDEIIR);
2541 if (HAS_PCH_CPT(dev_priv))
2542 cpt_irq_handler(dev_priv, pch_iir);
2544 ibx_irq_handler(dev_priv, pch_iir);
2546 /* should clear PCH hotplug event before clear CPU irq */
2547 I915_WRITE(SDEIIR, pch_iir);
2550 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2551 ironlake_rps_change_irq_handler(dev_priv);
2554 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2558 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2560 if (hotplug_trigger)
2561 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2563 if (de_iir & DE_ERR_INT_IVB)
2564 ivb_err_int_handler(dev_priv);
2566 if (de_iir & DE_EDP_PSR_INT_HSW) {
2567 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2569 intel_psr_irq_handler(dev_priv, psr_iir);
2570 I915_WRITE(EDP_PSR_IIR, psr_iir);
2573 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2574 dp_aux_irq_handler(dev_priv);
2576 if (de_iir & DE_GSE_IVB)
2577 intel_opregion_asle_intr(dev_priv);
2579 for_each_pipe(dev_priv, pipe) {
2580 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2581 drm_handle_vblank(&dev_priv->drm, pipe);
2584 /* check event from PCH */
2585 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2586 u32 pch_iir = I915_READ(SDEIIR);
2588 cpt_irq_handler(dev_priv, pch_iir);
2590 /* clear PCH hotplug event before clear CPU irq */
2591 I915_WRITE(SDEIIR, pch_iir);
2596 * To handle irqs with the minimum potential races with fresh interrupts, we:
2597 * 1 - Disable Master Interrupt Control.
2598 * 2 - Find the source(s) of the interrupt.
2599 * 3 - Clear the Interrupt Identity bits (IIR).
2600 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2601 * 5 - Re-enable Master Interrupt Control.
2603 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2605 struct drm_device *dev = arg;
2606 struct drm_i915_private *dev_priv = to_i915(dev);
2607 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2608 irqreturn_t ret = IRQ_NONE;
2610 if (!intel_irqs_enabled(dev_priv))
2613 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2614 disable_rpm_wakeref_asserts(dev_priv);
2616 /* disable master interrupt before clearing iir */
2617 de_ier = I915_READ(DEIER);
2618 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2620 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2621 * interrupts will will be stored on its back queue, and then we'll be
2622 * able to process them after we restore SDEIER (as soon as we restore
2623 * it, we'll get an interrupt if SDEIIR still has something to process
2624 * due to its back queue). */
2625 if (!HAS_PCH_NOP(dev_priv)) {
2626 sde_ier = I915_READ(SDEIER);
2627 I915_WRITE(SDEIER, 0);
2630 /* Find, clear, then process each source of interrupt */
2632 gt_iir = I915_READ(GTIIR);
2634 I915_WRITE(GTIIR, gt_iir);
2636 if (INTEL_GEN(dev_priv) >= 6)
2637 snb_gt_irq_handler(dev_priv, gt_iir);
2639 ilk_gt_irq_handler(dev_priv, gt_iir);
2642 de_iir = I915_READ(DEIIR);
2644 I915_WRITE(DEIIR, de_iir);
2646 if (INTEL_GEN(dev_priv) >= 7)
2647 ivb_display_irq_handler(dev_priv, de_iir);
2649 ilk_display_irq_handler(dev_priv, de_iir);
2652 if (INTEL_GEN(dev_priv) >= 6) {
2653 u32 pm_iir = I915_READ(GEN6_PMIIR);
2655 I915_WRITE(GEN6_PMIIR, pm_iir);
2657 gen6_rps_irq_handler(dev_priv, pm_iir);
2661 I915_WRITE(DEIER, de_ier);
2662 if (!HAS_PCH_NOP(dev_priv))
2663 I915_WRITE(SDEIER, sde_ier);
2665 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2666 enable_rpm_wakeref_asserts(dev_priv);
2671 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2672 u32 hotplug_trigger,
2673 const u32 hpd[HPD_NUM_PINS])
2675 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2677 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2678 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2680 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2681 dig_hotplug_reg, hpd,
2682 bxt_port_hotplug_long_detect);
2684 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2687 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2689 u32 pin_mask = 0, long_mask = 0;
2690 u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2691 u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2694 u32 dig_hotplug_reg;
2696 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2697 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2699 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2700 dig_hotplug_reg, hpd_gen11,
2701 gen11_port_hotplug_long_detect);
2705 u32 dig_hotplug_reg;
2707 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2708 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2710 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2711 dig_hotplug_reg, hpd_gen11,
2712 gen11_port_hotplug_long_detect);
2716 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2718 DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2722 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2724 irqreturn_t ret = IRQ_NONE;
2728 if (master_ctl & GEN8_DE_MISC_IRQ) {
2729 iir = I915_READ(GEN8_DE_MISC_IIR);
2733 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2736 if (iir & GEN8_DE_MISC_GSE) {
2737 intel_opregion_asle_intr(dev_priv);
2741 if (iir & GEN8_DE_EDP_PSR) {
2742 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2744 intel_psr_irq_handler(dev_priv, psr_iir);
2745 I915_WRITE(EDP_PSR_IIR, psr_iir);
2750 DRM_ERROR("Unexpected DE Misc interrupt\n");
2753 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2756 if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2757 iir = I915_READ(GEN11_DE_HPD_IIR);
2759 I915_WRITE(GEN11_DE_HPD_IIR, iir);
2761 gen11_hpd_irq_handler(dev_priv, iir);
2763 DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2767 if (master_ctl & GEN8_DE_PORT_IRQ) {
2768 iir = I915_READ(GEN8_DE_PORT_IIR);
2773 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2776 tmp_mask = GEN8_AUX_CHANNEL_A;
2777 if (INTEL_GEN(dev_priv) >= 9)
2778 tmp_mask |= GEN9_AUX_CHANNEL_B |
2779 GEN9_AUX_CHANNEL_C |
2782 if (INTEL_GEN(dev_priv) >= 11)
2783 tmp_mask |= ICL_AUX_CHANNEL_E;
2785 if (IS_CNL_WITH_PORT_F(dev_priv) ||
2786 INTEL_GEN(dev_priv) >= 11)
2787 tmp_mask |= CNL_AUX_CHANNEL_F;
2789 if (iir & tmp_mask) {
2790 dp_aux_irq_handler(dev_priv);
2794 if (IS_GEN9_LP(dev_priv)) {
2795 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2797 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2801 } else if (IS_BROADWELL(dev_priv)) {
2802 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2804 ilk_hpd_irq_handler(dev_priv,
2810 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2811 gmbus_irq_handler(dev_priv);
2816 DRM_ERROR("Unexpected DE Port interrupt\n");
2819 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2822 for_each_pipe(dev_priv, pipe) {
2825 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2828 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2830 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2835 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2837 if (iir & GEN8_PIPE_VBLANK)
2838 drm_handle_vblank(&dev_priv->drm, pipe);
2840 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2841 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2843 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2844 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2847 if (INTEL_GEN(dev_priv) >= 9)
2848 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2850 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2853 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2858 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2859 master_ctl & GEN8_DE_PCH_IRQ) {
2861 * FIXME(BDW): Assume for now that the new interrupt handling
2862 * scheme also closed the SDE interrupt handling race we've seen
2863 * on older pch-split platforms. But this needs testing.
2865 iir = I915_READ(SDEIIR);
2867 I915_WRITE(SDEIIR, iir);
2870 if (HAS_PCH_ICP(dev_priv))
2871 icp_irq_handler(dev_priv, iir);
2872 else if (HAS_PCH_SPT(dev_priv) ||
2873 HAS_PCH_KBP(dev_priv) ||
2874 HAS_PCH_CNP(dev_priv))
2875 spt_irq_handler(dev_priv, iir);
2877 cpt_irq_handler(dev_priv, iir);
2880 * Like on previous PCH there seems to be something
2881 * fishy going on with forwarding PCH interrupts.
2883 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2890 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2892 raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2895 * Now with master disabled, get a sample of level indications
2896 * for this interrupt. Indications will be cleared on related acks.
2897 * New indications can and will light up during processing,
2898 * and will generate new interrupt after enabling master.
2900 return raw_reg_read(regs, GEN8_MASTER_IRQ);
2903 static inline void gen8_master_intr_enable(void __iomem * const regs)
2905 raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2908 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2910 struct drm_i915_private *dev_priv = to_i915(arg);
2911 void __iomem * const regs = dev_priv->regs;
2915 if (!intel_irqs_enabled(dev_priv))
2918 master_ctl = gen8_master_intr_disable(regs);
2920 gen8_master_intr_enable(regs);
2924 /* Find, clear, then process each source of interrupt */
2925 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2927 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2928 if (master_ctl & ~GEN8_GT_IRQS) {
2929 disable_rpm_wakeref_asserts(dev_priv);
2930 gen8_de_irq_handler(dev_priv, master_ctl);
2931 enable_rpm_wakeref_asserts(dev_priv);
2934 gen8_master_intr_enable(regs);
2936 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2942 struct delayed_work work;
2943 struct drm_i915_private *i915;
2947 static void wedge_me(struct work_struct *work)
2949 struct wedge_me *w = container_of(work, typeof(*w), work.work);
2951 dev_err(w->i915->drm.dev,
2952 "%s timed out, cancelling all in-flight rendering.\n",
2954 i915_gem_set_wedged(w->i915);
2957 static void __init_wedge(struct wedge_me *w,
2958 struct drm_i915_private *i915,
2965 INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2966 schedule_delayed_work(&w->work, timeout);
2969 static void __fini_wedge(struct wedge_me *w)
2971 cancel_delayed_work_sync(&w->work);
2972 destroy_delayed_work_on_stack(&w->work);
2976 #define i915_wedge_on_timeout(W, DEV, TIMEOUT) \
2977 for (__init_wedge((W), (DEV), (TIMEOUT), __func__); \
2982 gen11_gt_engine_identity(struct drm_i915_private * const i915,
2983 const unsigned int bank, const unsigned int bit)
2985 void __iomem * const regs = i915->regs;
2989 lockdep_assert_held(&i915->irq_lock);
2991 raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
2994 * NB: Specs do not specify how long to spin wait,
2995 * so we do ~100us as an educated guess.
2997 timeout_ts = (local_clock() >> 10) + 100;
2999 ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
3000 } while (!(ident & GEN11_INTR_DATA_VALID) &&
3001 !time_after32(local_clock() >> 10, timeout_ts));
3003 if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
3004 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
3009 raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
3010 GEN11_INTR_DATA_VALID);
3016 gen11_other_irq_handler(struct drm_i915_private * const i915,
3017 const u8 instance, const u16 iir)
3019 if (instance == OTHER_GTPM_INSTANCE)
3020 return gen6_rps_irq_handler(i915, iir);
3022 WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
3027 gen11_engine_irq_handler(struct drm_i915_private * const i915,
3028 const u8 class, const u8 instance, const u16 iir)
3030 struct intel_engine_cs *engine;
3032 if (instance <= MAX_ENGINE_INSTANCE)
3033 engine = i915->engine_class[class][instance];
3038 return gen8_cs_irq_handler(engine, iir);
3040 WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
3045 gen11_gt_identity_handler(struct drm_i915_private * const i915,
3048 const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
3049 const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
3050 const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
3052 if (unlikely(!intr))
3055 if (class <= COPY_ENGINE_CLASS)
3056 return gen11_engine_irq_handler(i915, class, instance, intr);
3058 if (class == OTHER_CLASS)
3059 return gen11_other_irq_handler(i915, instance, intr);
3061 WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
3062 class, instance, intr);
3066 gen11_gt_bank_handler(struct drm_i915_private * const i915,
3067 const unsigned int bank)
3069 void __iomem * const regs = i915->regs;
3070 unsigned long intr_dw;
3073 lockdep_assert_held(&i915->irq_lock);
3075 intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
3077 if (unlikely(!intr_dw)) {
3078 DRM_ERROR("GT_INTR_DW%u blank!\n", bank);
3082 for_each_set_bit(bit, &intr_dw, 32) {
3083 const u32 ident = gen11_gt_engine_identity(i915,
3086 gen11_gt_identity_handler(i915, ident);
3089 /* Clear must be after shared has been served for engine */
3090 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
3094 gen11_gt_irq_handler(struct drm_i915_private * const i915,
3095 const u32 master_ctl)
3099 spin_lock(&i915->irq_lock);
3101 for (bank = 0; bank < 2; bank++) {
3102 if (master_ctl & GEN11_GT_DW_IRQ(bank))
3103 gen11_gt_bank_handler(i915, bank);
3106 spin_unlock(&i915->irq_lock);
3110 gen11_gu_misc_irq_ack(struct drm_i915_private *dev_priv, const u32 master_ctl)
3112 void __iomem * const regs = dev_priv->regs;
3115 if (!(master_ctl & GEN11_GU_MISC_IRQ))
3118 iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
3120 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
3126 gen11_gu_misc_irq_handler(struct drm_i915_private *dev_priv, const u32 iir)
3128 if (iir & GEN11_GU_MISC_GSE)
3129 intel_opregion_asle_intr(dev_priv);
3132 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
3134 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
3137 * Now with master disabled, get a sample of level indications
3138 * for this interrupt. Indications will be cleared on related acks.
3139 * New indications can and will light up during processing,
3140 * and will generate new interrupt after enabling master.
3142 return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
3145 static inline void gen11_master_intr_enable(void __iomem * const regs)
3147 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
3150 static irqreturn_t gen11_irq_handler(int irq, void *arg)
3152 struct drm_i915_private * const i915 = to_i915(arg);
3153 void __iomem * const regs = i915->regs;
3157 if (!intel_irqs_enabled(i915))
3160 master_ctl = gen11_master_intr_disable(regs);
3162 gen11_master_intr_enable(regs);
3166 /* Find, clear, then process each source of interrupt. */
3167 gen11_gt_irq_handler(i915, master_ctl);
3169 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3170 if (master_ctl & GEN11_DISPLAY_IRQ) {
3171 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
3173 disable_rpm_wakeref_asserts(i915);
3175 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
3176 * for the display related bits.
3178 gen8_de_irq_handler(i915, disp_ctl);
3179 enable_rpm_wakeref_asserts(i915);
3182 gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
3184 gen11_master_intr_enable(regs);
3186 gen11_gu_misc_irq_handler(i915, gu_misc_iir);
3191 static void i915_reset_device(struct drm_i915_private *dev_priv,
3195 struct i915_gpu_error *error = &dev_priv->gpu_error;
3196 struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
3197 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
3198 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
3199 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
3202 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
3204 DRM_DEBUG_DRIVER("resetting chip\n");
3205 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
3207 /* Use a watchdog to ensure that our reset completes */
3208 i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
3209 intel_prepare_reset(dev_priv);
3211 error->reason = reason;
3212 error->stalled_mask = engine_mask;
3214 /* Signal that locked waiters should reset the GPU */
3215 smp_mb__before_atomic();
3216 set_bit(I915_RESET_HANDOFF, &error->flags);
3217 wake_up_all(&error->wait_queue);
3219 /* Wait for anyone holding the lock to wakeup, without
3220 * blocking indefinitely on struct_mutex.
3223 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
3224 i915_reset(dev_priv, engine_mask, reason);
3225 mutex_unlock(&dev_priv->drm.struct_mutex);
3227 } while (wait_on_bit_timeout(&error->flags,
3229 TASK_UNINTERRUPTIBLE,
3232 error->stalled_mask = 0;
3233 error->reason = NULL;
3235 intel_finish_reset(dev_priv);
3238 if (!test_bit(I915_WEDGED, &error->flags))
3239 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
3242 void i915_clear_error_registers(struct drm_i915_private *dev_priv)
3246 if (!IS_GEN2(dev_priv))
3247 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
3249 if (INTEL_GEN(dev_priv) < 4)
3250 I915_WRITE(IPEIR, I915_READ(IPEIR));
3252 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
3254 I915_WRITE(EIR, I915_READ(EIR));
3255 eir = I915_READ(EIR);
3258 * some errors might have become stuck,
3261 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
3262 I915_WRITE(EMR, I915_READ(EMR) | eir);
3263 I915_WRITE(IIR, I915_MASTER_ERROR_INTERRUPT);
3266 if (INTEL_GEN(dev_priv) >= 8) {
3267 I915_WRITE(GEN8_RING_FAULT_REG,
3268 I915_READ(GEN8_RING_FAULT_REG) & ~RING_FAULT_VALID);
3269 POSTING_READ(GEN8_RING_FAULT_REG);
3270 } else if (INTEL_GEN(dev_priv) >= 6) {
3271 struct intel_engine_cs *engine;
3272 enum intel_engine_id id;
3274 for_each_engine(engine, dev_priv, id) {
3275 I915_WRITE(RING_FAULT_REG(engine),
3276 I915_READ(RING_FAULT_REG(engine)) &
3279 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
3284 * i915_handle_error - handle a gpu error
3285 * @dev_priv: i915 device private
3286 * @engine_mask: mask representing engines that are hung
3287 * @flags: control flags
3288 * @fmt: Error message format string
3290 * Do some basic checking of register state at error time and
3291 * dump it to the syslog. Also call i915_capture_error_state() to make
3292 * sure we get a record and make it available in debugfs. Fire a uevent
3293 * so userspace knows something bad happened (should trigger collection
3294 * of a ring dump etc.).
3296 void i915_handle_error(struct drm_i915_private *dev_priv,
3298 unsigned long flags,
3299 const char *fmt, ...)
3301 struct intel_engine_cs *engine;
3309 va_start(args, fmt);
3310 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
3317 * In most cases it's guaranteed that we get here with an RPM
3318 * reference held, for example because there is a pending GPU
3319 * request that won't finish until the reset is done. This
3320 * isn't the case at least when we get here by doing a
3321 * simulated reset via debugfs, so get an RPM reference.
3323 intel_runtime_pm_get(dev_priv);
3325 engine_mask &= INTEL_INFO(dev_priv)->ring_mask;
3327 if (flags & I915_ERROR_CAPTURE) {
3328 i915_capture_error_state(dev_priv, engine_mask, msg);
3329 i915_clear_error_registers(dev_priv);
3333 * Try engine reset when available. We fall back to full reset if
3334 * single reset fails.
3336 if (intel_has_reset_engine(dev_priv) &&
3337 !i915_terminally_wedged(&dev_priv->gpu_error)) {
3338 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
3339 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
3340 if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3341 &dev_priv->gpu_error.flags))
3344 if (i915_reset_engine(engine, msg) == 0)
3345 engine_mask &= ~intel_engine_flag(engine);
3347 clear_bit(I915_RESET_ENGINE + engine->id,
3348 &dev_priv->gpu_error.flags);
3349 wake_up_bit(&dev_priv->gpu_error.flags,
3350 I915_RESET_ENGINE + engine->id);
3357 /* Full reset needs the mutex, stop any other user trying to do so. */
3358 if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
3359 wait_event(dev_priv->gpu_error.reset_queue,
3360 !test_bit(I915_RESET_BACKOFF,
3361 &dev_priv->gpu_error.flags));
3365 /* Prevent any other reset-engine attempt. */
3366 for_each_engine(engine, dev_priv, tmp) {
3367 while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3368 &dev_priv->gpu_error.flags))
3369 wait_on_bit(&dev_priv->gpu_error.flags,
3370 I915_RESET_ENGINE + engine->id,
3371 TASK_UNINTERRUPTIBLE);
3374 i915_reset_device(dev_priv, engine_mask, msg);
3376 for_each_engine(engine, dev_priv, tmp) {
3377 clear_bit(I915_RESET_ENGINE + engine->id,
3378 &dev_priv->gpu_error.flags);
3381 clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
3382 wake_up_all(&dev_priv->gpu_error.reset_queue);
3385 intel_runtime_pm_put(dev_priv);
3388 /* Called from drm generic code, passed 'crtc' which
3389 * we use as a pipe index
3391 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
3393 struct drm_i915_private *dev_priv = to_i915(dev);
3394 unsigned long irqflags;
3396 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3397 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3398 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3403 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
3405 struct drm_i915_private *dev_priv = to_i915(dev);
3406 unsigned long irqflags;
3408 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3409 i915_enable_pipestat(dev_priv, pipe,
3410 PIPE_START_VBLANK_INTERRUPT_STATUS);
3411 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3416 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3418 struct drm_i915_private *dev_priv = to_i915(dev);
3419 unsigned long irqflags;
3420 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3421 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3423 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3424 ilk_enable_display_irq(dev_priv, bit);
3425 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3427 /* Even though there is no DMC, frame counter can get stuck when
3428 * PSR is active as no frames are generated.
3430 if (HAS_PSR(dev_priv))
3431 drm_vblank_restore(dev, pipe);
3436 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
3438 struct drm_i915_private *dev_priv = to_i915(dev);
3439 unsigned long irqflags;
3441 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3442 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3443 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3445 /* Even if there is no DMC, frame counter can get stuck when
3446 * PSR is active as no frames are generated, so check only for PSR.
3448 if (HAS_PSR(dev_priv))
3449 drm_vblank_restore(dev, pipe);
3454 /* Called from drm generic code, passed 'crtc' which
3455 * we use as a pipe index
3457 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
3459 struct drm_i915_private *dev_priv = to_i915(dev);
3460 unsigned long irqflags;
3462 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3463 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3464 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3467 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
3469 struct drm_i915_private *dev_priv = to_i915(dev);
3470 unsigned long irqflags;
3472 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3473 i915_disable_pipestat(dev_priv, pipe,
3474 PIPE_START_VBLANK_INTERRUPT_STATUS);
3475 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3478 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3480 struct drm_i915_private *dev_priv = to_i915(dev);
3481 unsigned long irqflags;
3482 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3483 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3485 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3486 ilk_disable_display_irq(dev_priv, bit);
3487 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3490 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3492 struct drm_i915_private *dev_priv = to_i915(dev);
3493 unsigned long irqflags;
3495 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3496 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3497 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3500 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3502 if (HAS_PCH_NOP(dev_priv))
3505 GEN3_IRQ_RESET(SDE);
3507 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3508 I915_WRITE(SERR_INT, 0xffffffff);
3512 * SDEIER is also touched by the interrupt handler to work around missed PCH
3513 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3514 * instead we unconditionally enable all PCH interrupt sources here, but then
3515 * only unmask them as needed with SDEIMR.
3517 * This function needs to be called before interrupts are enabled.
3519 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3521 struct drm_i915_private *dev_priv = to_i915(dev);
3523 if (HAS_PCH_NOP(dev_priv))
3526 WARN_ON(I915_READ(SDEIER) != 0);
3527 I915_WRITE(SDEIER, 0xffffffff);
3528 POSTING_READ(SDEIER);
3531 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3534 if (INTEL_GEN(dev_priv) >= 6)
3535 GEN3_IRQ_RESET(GEN6_PM);
3538 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3540 if (IS_CHERRYVIEW(dev_priv))
3541 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3543 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3545 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3546 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3548 i9xx_pipestat_irq_reset(dev_priv);
3550 GEN3_IRQ_RESET(VLV_);
3551 dev_priv->irq_mask = ~0u;
3554 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3560 pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3562 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3563 for_each_pipe(dev_priv, pipe)
3564 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3566 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3567 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3568 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3569 I915_LPE_PIPE_A_INTERRUPT |
3570 I915_LPE_PIPE_B_INTERRUPT;
3572 if (IS_CHERRYVIEW(dev_priv))
3573 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3574 I915_LPE_PIPE_C_INTERRUPT;
3576 WARN_ON(dev_priv->irq_mask != ~0u);
3578 dev_priv->irq_mask = ~enable_mask;
3580 GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3585 static void ironlake_irq_reset(struct drm_device *dev)
3587 struct drm_i915_private *dev_priv = to_i915(dev);
3589 if (IS_GEN5(dev_priv))
3590 I915_WRITE(HWSTAM, 0xffffffff);
3593 if (IS_GEN7(dev_priv))
3594 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3596 if (IS_HASWELL(dev_priv)) {
3597 I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3598 I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3601 gen5_gt_irq_reset(dev_priv);
3603 ibx_irq_reset(dev_priv);
3606 static void valleyview_irq_reset(struct drm_device *dev)
3608 struct drm_i915_private *dev_priv = to_i915(dev);
3610 I915_WRITE(VLV_MASTER_IER, 0);
3611 POSTING_READ(VLV_MASTER_IER);
3613 gen5_gt_irq_reset(dev_priv);
3615 spin_lock_irq(&dev_priv->irq_lock);
3616 if (dev_priv->display_irqs_enabled)
3617 vlv_display_irq_reset(dev_priv);
3618 spin_unlock_irq(&dev_priv->irq_lock);
3621 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3623 GEN8_IRQ_RESET_NDX(GT, 0);
3624 GEN8_IRQ_RESET_NDX(GT, 1);
3625 GEN8_IRQ_RESET_NDX(GT, 2);
3626 GEN8_IRQ_RESET_NDX(GT, 3);
3629 static void gen8_irq_reset(struct drm_device *dev)
3631 struct drm_i915_private *dev_priv = to_i915(dev);
3634 gen8_master_intr_disable(dev_priv->regs);
3636 gen8_gt_irq_reset(dev_priv);
3638 I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3639 I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3641 for_each_pipe(dev_priv, pipe)
3642 if (intel_display_power_is_enabled(dev_priv,
3643 POWER_DOMAIN_PIPE(pipe)))
3644 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3646 GEN3_IRQ_RESET(GEN8_DE_PORT_);
3647 GEN3_IRQ_RESET(GEN8_DE_MISC_);
3648 GEN3_IRQ_RESET(GEN8_PCU_);
3650 if (HAS_PCH_SPLIT(dev_priv))
3651 ibx_irq_reset(dev_priv);
3654 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
3656 /* Disable RCS, BCS, VCS and VECS class engines. */
3657 I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
3658 I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, 0);
3660 /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3661 I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~0);
3662 I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~0);
3663 I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~0);
3664 I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~0);
3665 I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0);
3667 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
3668 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK, ~0);
3671 static void gen11_irq_reset(struct drm_device *dev)
3673 struct drm_i915_private *dev_priv = dev->dev_private;
3676 gen11_master_intr_disable(dev_priv->regs);
3678 gen11_gt_irq_reset(dev_priv);
3680 I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
3682 I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3683 I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3685 for_each_pipe(dev_priv, pipe)
3686 if (intel_display_power_is_enabled(dev_priv,
3687 POWER_DOMAIN_PIPE(pipe)))
3688 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3690 GEN3_IRQ_RESET(GEN8_DE_PORT_);
3691 GEN3_IRQ_RESET(GEN8_DE_MISC_);
3692 GEN3_IRQ_RESET(GEN11_DE_HPD_);
3693 GEN3_IRQ_RESET(GEN11_GU_MISC_);
3694 GEN3_IRQ_RESET(GEN8_PCU_);
3696 if (HAS_PCH_ICP(dev_priv))
3697 GEN3_IRQ_RESET(SDE);
3700 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3703 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3706 spin_lock_irq(&dev_priv->irq_lock);
3708 if (!intel_irqs_enabled(dev_priv)) {
3709 spin_unlock_irq(&dev_priv->irq_lock);
3713 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3714 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3715 dev_priv->de_irq_mask[pipe],
3716 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3718 spin_unlock_irq(&dev_priv->irq_lock);
3721 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3726 spin_lock_irq(&dev_priv->irq_lock);
3728 if (!intel_irqs_enabled(dev_priv)) {
3729 spin_unlock_irq(&dev_priv->irq_lock);
3733 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3734 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3736 spin_unlock_irq(&dev_priv->irq_lock);
3738 /* make sure we're done processing display irqs */
3739 synchronize_irq(dev_priv->drm.irq);
3742 static void cherryview_irq_reset(struct drm_device *dev)
3744 struct drm_i915_private *dev_priv = to_i915(dev);
3746 I915_WRITE(GEN8_MASTER_IRQ, 0);
3747 POSTING_READ(GEN8_MASTER_IRQ);
3749 gen8_gt_irq_reset(dev_priv);
3751 GEN3_IRQ_RESET(GEN8_PCU_);
3753 spin_lock_irq(&dev_priv->irq_lock);
3754 if (dev_priv->display_irqs_enabled)
3755 vlv_display_irq_reset(dev_priv);
3756 spin_unlock_irq(&dev_priv->irq_lock);
3759 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3760 const u32 hpd[HPD_NUM_PINS])
3762 struct intel_encoder *encoder;
3763 u32 enabled_irqs = 0;
3765 for_each_intel_encoder(&dev_priv->drm, encoder)
3766 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3767 enabled_irqs |= hpd[encoder->hpd_pin];
3769 return enabled_irqs;
3772 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3777 * Enable digital hotplug on the PCH, and configure the DP short pulse
3778 * duration to 2ms (which is the minimum in the Display Port spec).
3779 * The pulse duration bits are reserved on LPT+.
3781 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3782 hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3783 PORTC_PULSE_DURATION_MASK |
3784 PORTD_PULSE_DURATION_MASK);
3785 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3786 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3787 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3789 * When CPU and PCH are on the same package, port A
3790 * HPD must be enabled in both north and south.
3792 if (HAS_PCH_LPT_LP(dev_priv))
3793 hotplug |= PORTA_HOTPLUG_ENABLE;
3794 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3797 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3799 u32 hotplug_irqs, enabled_irqs;
3801 if (HAS_PCH_IBX(dev_priv)) {
3802 hotplug_irqs = SDE_HOTPLUG_MASK;
3803 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3805 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3806 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3809 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3811 ibx_hpd_detection_setup(dev_priv);
3814 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv)
3818 hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3819 hotplug |= ICP_DDIA_HPD_ENABLE |
3820 ICP_DDIB_HPD_ENABLE;
3821 I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3823 hotplug = I915_READ(SHOTPLUG_CTL_TC);
3824 hotplug |= ICP_TC_HPD_ENABLE(PORT_TC1) |
3825 ICP_TC_HPD_ENABLE(PORT_TC2) |
3826 ICP_TC_HPD_ENABLE(PORT_TC3) |
3827 ICP_TC_HPD_ENABLE(PORT_TC4);
3828 I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3831 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3833 u32 hotplug_irqs, enabled_irqs;
3835 hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3836 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3838 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3840 icp_hpd_detection_setup(dev_priv);
3843 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3847 hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3848 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3849 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3850 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3851 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3852 I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3854 hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3855 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3856 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3857 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3858 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3859 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3862 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3864 u32 hotplug_irqs, enabled_irqs;
3867 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_gen11);
3868 hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3870 val = I915_READ(GEN11_DE_HPD_IMR);
3871 val &= ~hotplug_irqs;
3872 I915_WRITE(GEN11_DE_HPD_IMR, val);
3873 POSTING_READ(GEN11_DE_HPD_IMR);
3875 gen11_hpd_detection_setup(dev_priv);
3877 if (HAS_PCH_ICP(dev_priv))
3878 icp_hpd_irq_setup(dev_priv);
3881 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3885 /* Display WA #1179 WaHardHangonHotPlug: cnp */
3886 if (HAS_PCH_CNP(dev_priv)) {
3887 val = I915_READ(SOUTH_CHICKEN1);
3888 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3889 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3890 I915_WRITE(SOUTH_CHICKEN1, val);
3893 /* Enable digital hotplug on the PCH */
3894 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3895 hotplug |= PORTA_HOTPLUG_ENABLE |
3896 PORTB_HOTPLUG_ENABLE |
3897 PORTC_HOTPLUG_ENABLE |
3898 PORTD_HOTPLUG_ENABLE;
3899 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3901 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3902 hotplug |= PORTE_HOTPLUG_ENABLE;
3903 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3906 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3908 u32 hotplug_irqs, enabled_irqs;
3910 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3911 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3913 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3915 spt_hpd_detection_setup(dev_priv);
3918 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3923 * Enable digital hotplug on the CPU, and configure the DP short pulse
3924 * duration to 2ms (which is the minimum in the Display Port spec)
3925 * The pulse duration bits are reserved on HSW+.
3927 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3928 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3929 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3930 DIGITAL_PORTA_PULSE_DURATION_2ms;
3931 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3934 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3936 u32 hotplug_irqs, enabled_irqs;
3938 if (INTEL_GEN(dev_priv) >= 8) {
3939 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3940 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3942 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3943 } else if (INTEL_GEN(dev_priv) >= 7) {
3944 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3945 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3947 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3949 hotplug_irqs = DE_DP_A_HOTPLUG;
3950 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3952 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3955 ilk_hpd_detection_setup(dev_priv);
3957 ibx_hpd_irq_setup(dev_priv);
3960 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3965 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3966 hotplug |= PORTA_HOTPLUG_ENABLE |
3967 PORTB_HOTPLUG_ENABLE |
3968 PORTC_HOTPLUG_ENABLE;
3970 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3971 hotplug, enabled_irqs);
3972 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3975 * For BXT invert bit has to be set based on AOB design
3976 * for HPD detection logic, update it based on VBT fields.
3978 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3979 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3980 hotplug |= BXT_DDIA_HPD_INVERT;
3981 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3982 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3983 hotplug |= BXT_DDIB_HPD_INVERT;
3984 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3985 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3986 hotplug |= BXT_DDIC_HPD_INVERT;
3988 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3991 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3993 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3996 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3998 u32 hotplug_irqs, enabled_irqs;
4000 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
4001 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
4003 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
4005 __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
4008 static void ibx_irq_postinstall(struct drm_device *dev)
4010 struct drm_i915_private *dev_priv = to_i915(dev);
4013 if (HAS_PCH_NOP(dev_priv))
4016 if (HAS_PCH_IBX(dev_priv))
4017 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
4018 else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
4019 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
4021 mask = SDE_GMBUS_CPT;
4023 gen3_assert_iir_is_zero(dev_priv, SDEIIR);
4024 I915_WRITE(SDEIMR, ~mask);
4026 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
4027 HAS_PCH_LPT(dev_priv))
4028 ibx_hpd_detection_setup(dev_priv);
4030 spt_hpd_detection_setup(dev_priv);
4033 static void gen5_gt_irq_postinstall(struct drm_device *dev)
4035 struct drm_i915_private *dev_priv = to_i915(dev);
4036 u32 pm_irqs, gt_irqs;
4038 pm_irqs = gt_irqs = 0;
4040 dev_priv->gt_irq_mask = ~0;
4041 if (HAS_L3_DPF(dev_priv)) {
4042 /* L3 parity interrupt is always unmasked. */
4043 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
4044 gt_irqs |= GT_PARITY_ERROR(dev_priv);
4047 gt_irqs |= GT_RENDER_USER_INTERRUPT;
4048 if (IS_GEN5(dev_priv)) {
4049 gt_irqs |= ILK_BSD_USER_INTERRUPT;
4051 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
4054 GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
4056 if (INTEL_GEN(dev_priv) >= 6) {
4058 * RPS interrupts will get enabled/disabled on demand when RPS
4059 * itself is enabled/disabled.
4061 if (HAS_VEBOX(dev_priv)) {
4062 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
4063 dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
4066 dev_priv->pm_imr = 0xffffffff;
4067 GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
4071 static int ironlake_irq_postinstall(struct drm_device *dev)
4073 struct drm_i915_private *dev_priv = to_i915(dev);
4074 u32 display_mask, extra_mask;
4076 if (INTEL_GEN(dev_priv) >= 7) {
4077 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
4078 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
4079 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
4080 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
4081 DE_DP_A_HOTPLUG_IVB);
4083 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
4084 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
4085 DE_PIPEA_CRC_DONE | DE_POISON);
4086 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
4087 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
4091 if (IS_HASWELL(dev_priv)) {
4092 gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
4093 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4094 display_mask |= DE_EDP_PSR_INT_HSW;
4097 dev_priv->irq_mask = ~display_mask;
4099 ibx_irq_pre_postinstall(dev);
4101 GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
4103 gen5_gt_irq_postinstall(dev);
4105 ilk_hpd_detection_setup(dev_priv);
4107 ibx_irq_postinstall(dev);
4109 if (IS_IRONLAKE_M(dev_priv)) {
4110 /* Enable PCU event interrupts
4112 * spinlocking not required here for correctness since interrupt
4113 * setup is guaranteed to run in single-threaded context. But we
4114 * need it to make the assert_spin_locked happy. */
4115 spin_lock_irq(&dev_priv->irq_lock);
4116 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
4117 spin_unlock_irq(&dev_priv->irq_lock);
4123 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
4125 lockdep_assert_held(&dev_priv->irq_lock);
4127 if (dev_priv->display_irqs_enabled)
4130 dev_priv->display_irqs_enabled = true;
4132 if (intel_irqs_enabled(dev_priv)) {
4133 vlv_display_irq_reset(dev_priv);
4134 vlv_display_irq_postinstall(dev_priv);
4138 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
4140 lockdep_assert_held(&dev_priv->irq_lock);
4142 if (!dev_priv->display_irqs_enabled)
4145 dev_priv->display_irqs_enabled = false;
4147 if (intel_irqs_enabled(dev_priv))
4148 vlv_display_irq_reset(dev_priv);
4152 static int valleyview_irq_postinstall(struct drm_device *dev)
4154 struct drm_i915_private *dev_priv = to_i915(dev);
4156 gen5_gt_irq_postinstall(dev);
4158 spin_lock_irq(&dev_priv->irq_lock);
4159 if (dev_priv->display_irqs_enabled)
4160 vlv_display_irq_postinstall(dev_priv);
4161 spin_unlock_irq(&dev_priv->irq_lock);
4163 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
4164 POSTING_READ(VLV_MASTER_IER);
4169 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4171 /* These are interrupts we'll toggle with the ring mask register */
4172 uint32_t gt_interrupts[] = {
4173 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4174 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4175 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
4176 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
4177 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4178 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4179 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
4180 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
4182 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
4183 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
4186 if (HAS_L3_DPF(dev_priv))
4187 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
4189 dev_priv->pm_ier = 0x0;
4190 dev_priv->pm_imr = ~dev_priv->pm_ier;
4191 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
4192 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
4194 * RPS interrupts will get enabled/disabled on demand when RPS itself
4195 * is enabled/disabled. Same wil be the case for GuC interrupts.
4197 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
4198 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
4201 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
4203 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
4204 uint32_t de_pipe_enables;
4205 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
4206 u32 de_port_enables;
4207 u32 de_misc_masked = GEN8_DE_EDP_PSR;
4210 if (INTEL_GEN(dev_priv) <= 10)
4211 de_misc_masked |= GEN8_DE_MISC_GSE;
4213 if (INTEL_GEN(dev_priv) >= 9) {
4214 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
4215 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
4217 if (IS_GEN9_LP(dev_priv))
4218 de_port_masked |= BXT_DE_PORT_GMBUS;
4220 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
4223 if (INTEL_GEN(dev_priv) >= 11)
4224 de_port_masked |= ICL_AUX_CHANNEL_E;
4226 if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
4227 de_port_masked |= CNL_AUX_CHANNEL_F;
4229 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
4230 GEN8_PIPE_FIFO_UNDERRUN;
4232 de_port_enables = de_port_masked;
4233 if (IS_GEN9_LP(dev_priv))
4234 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
4235 else if (IS_BROADWELL(dev_priv))
4236 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
4238 gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
4239 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4241 for_each_pipe(dev_priv, pipe) {
4242 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
4244 if (intel_display_power_is_enabled(dev_priv,
4245 POWER_DOMAIN_PIPE(pipe)))
4246 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
4247 dev_priv->de_irq_mask[pipe],
4251 GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
4252 GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
4254 if (INTEL_GEN(dev_priv) >= 11) {
4255 u32 de_hpd_masked = 0;
4256 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
4257 GEN11_DE_TBT_HOTPLUG_MASK;
4259 GEN3_IRQ_INIT(GEN11_DE_HPD_, ~de_hpd_masked, de_hpd_enables);
4260 gen11_hpd_detection_setup(dev_priv);
4261 } else if (IS_GEN9_LP(dev_priv)) {
4262 bxt_hpd_detection_setup(dev_priv);
4263 } else if (IS_BROADWELL(dev_priv)) {
4264 ilk_hpd_detection_setup(dev_priv);
4268 static int gen8_irq_postinstall(struct drm_device *dev)
4270 struct drm_i915_private *dev_priv = to_i915(dev);
4272 if (HAS_PCH_SPLIT(dev_priv))
4273 ibx_irq_pre_postinstall(dev);
4275 gen8_gt_irq_postinstall(dev_priv);
4276 gen8_de_irq_postinstall(dev_priv);
4278 if (HAS_PCH_SPLIT(dev_priv))
4279 ibx_irq_postinstall(dev);
4281 gen8_master_intr_enable(dev_priv->regs);
4286 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4288 const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
4290 BUILD_BUG_ON(irqs & 0xffff0000);
4292 /* Enable RCS, BCS, VCS and VECS class interrupts. */
4293 I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
4294 I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, irqs << 16 | irqs);
4296 /* Unmask irqs on RCS, BCS, VCS and VECS engines. */
4297 I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~(irqs << 16));
4298 I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~(irqs << 16));
4299 I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~(irqs | irqs << 16));
4300 I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~(irqs | irqs << 16));
4301 I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16));
4304 * RPS interrupts will get enabled/disabled on demand when RPS itself
4305 * is enabled/disabled.
4307 dev_priv->pm_ier = 0x0;
4308 dev_priv->pm_imr = ~dev_priv->pm_ier;
4309 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
4310 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK, ~0);
4313 static void icp_irq_postinstall(struct drm_device *dev)
4315 struct drm_i915_private *dev_priv = to_i915(dev);
4316 u32 mask = SDE_GMBUS_ICP;
4318 WARN_ON(I915_READ(SDEIER) != 0);
4319 I915_WRITE(SDEIER, 0xffffffff);
4320 POSTING_READ(SDEIER);
4322 gen3_assert_iir_is_zero(dev_priv, SDEIIR);
4323 I915_WRITE(SDEIMR, ~mask);
4325 icp_hpd_detection_setup(dev_priv);
4328 static int gen11_irq_postinstall(struct drm_device *dev)
4330 struct drm_i915_private *dev_priv = dev->dev_private;
4331 u32 gu_misc_masked = GEN11_GU_MISC_GSE;
4333 if (HAS_PCH_ICP(dev_priv))
4334 icp_irq_postinstall(dev);
4336 gen11_gt_irq_postinstall(dev_priv);
4337 gen8_de_irq_postinstall(dev_priv);
4339 GEN3_IRQ_INIT(GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
4341 I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
4343 gen11_master_intr_enable(dev_priv->regs);
4348 static int cherryview_irq_postinstall(struct drm_device *dev)
4350 struct drm_i915_private *dev_priv = to_i915(dev);
4352 gen8_gt_irq_postinstall(dev_priv);
4354 spin_lock_irq(&dev_priv->irq_lock);
4355 if (dev_priv->display_irqs_enabled)
4356 vlv_display_irq_postinstall(dev_priv);
4357 spin_unlock_irq(&dev_priv->irq_lock);
4359 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4360 POSTING_READ(GEN8_MASTER_IRQ);
4365 static void i8xx_irq_reset(struct drm_device *dev)
4367 struct drm_i915_private *dev_priv = to_i915(dev);
4369 i9xx_pipestat_irq_reset(dev_priv);
4371 I915_WRITE16(HWSTAM, 0xffff);
4376 static int i8xx_irq_postinstall(struct drm_device *dev)
4378 struct drm_i915_private *dev_priv = to_i915(dev);
4381 I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
4382 I915_ERROR_MEMORY_REFRESH));
4384 /* Unmask the interrupts that we always want on. */
4385 dev_priv->irq_mask =
4386 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4387 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4388 I915_MASTER_ERROR_INTERRUPT);
4391 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4392 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4393 I915_MASTER_ERROR_INTERRUPT |
4394 I915_USER_INTERRUPT;
4396 GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4398 /* Interrupt setup is already guaranteed to be single-threaded, this is
4399 * just to make the assert_spin_locked check happy. */
4400 spin_lock_irq(&dev_priv->irq_lock);
4401 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4402 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4403 spin_unlock_irq(&dev_priv->irq_lock);
4408 static void i8xx_error_irq_ack(struct drm_i915_private *dev_priv,
4409 u16 *eir, u16 *eir_stuck)
4413 *eir = I915_READ16(EIR);
4416 I915_WRITE16(EIR, *eir);
4418 *eir_stuck = I915_READ16(EIR);
4419 if (*eir_stuck == 0)
4423 * Toggle all EMR bits to make sure we get an edge
4424 * in the ISR master error bit if we don't clear
4425 * all the EIR bits. Otherwise the edge triggered
4426 * IIR on i965/g4x wouldn't notice that an interrupt
4427 * is still pending. Also some EIR bits can't be
4428 * cleared except by handling the underlying error
4429 * (or by a GPU reset) so we mask any bit that
4432 emr = I915_READ16(EMR);
4433 I915_WRITE16(EMR, 0xffff);
4434 I915_WRITE16(EMR, emr | *eir_stuck);
4437 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
4438 u16 eir, u16 eir_stuck)
4440 DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
4443 DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
4446 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
4447 u32 *eir, u32 *eir_stuck)
4451 *eir = I915_READ(EIR);
4453 I915_WRITE(EIR, *eir);
4455 *eir_stuck = I915_READ(EIR);
4456 if (*eir_stuck == 0)
4460 * Toggle all EMR bits to make sure we get an edge
4461 * in the ISR master error bit if we don't clear
4462 * all the EIR bits. Otherwise the edge triggered
4463 * IIR on i965/g4x wouldn't notice that an interrupt
4464 * is still pending. Also some EIR bits can't be
4465 * cleared except by handling the underlying error
4466 * (or by a GPU reset) so we mask any bit that
4469 emr = I915_READ(EMR);
4470 I915_WRITE(EMR, 0xffffffff);
4471 I915_WRITE(EMR, emr | *eir_stuck);
4474 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4475 u32 eir, u32 eir_stuck)
4477 DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4480 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4483 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4485 struct drm_device *dev = arg;
4486 struct drm_i915_private *dev_priv = to_i915(dev);
4487 irqreturn_t ret = IRQ_NONE;
4489 if (!intel_irqs_enabled(dev_priv))
4492 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4493 disable_rpm_wakeref_asserts(dev_priv);
4496 u32 pipe_stats[I915_MAX_PIPES] = {};
4497 u16 eir = 0, eir_stuck = 0;
4500 iir = I915_READ16(IIR);
4506 /* Call regardless, as some status bits might not be
4507 * signalled in iir */
4508 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4510 if (iir & I915_MASTER_ERROR_INTERRUPT)
4511 i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4513 I915_WRITE16(IIR, iir);
4515 if (iir & I915_USER_INTERRUPT)
4516 notify_ring(dev_priv->engine[RCS]);
4518 if (iir & I915_MASTER_ERROR_INTERRUPT)
4519 i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4521 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4524 enable_rpm_wakeref_asserts(dev_priv);
4529 static void i915_irq_reset(struct drm_device *dev)
4531 struct drm_i915_private *dev_priv = to_i915(dev);
4533 if (I915_HAS_HOTPLUG(dev_priv)) {
4534 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4535 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4538 i9xx_pipestat_irq_reset(dev_priv);
4540 I915_WRITE(HWSTAM, 0xffffffff);
4545 static int i915_irq_postinstall(struct drm_device *dev)
4547 struct drm_i915_private *dev_priv = to_i915(dev);
4550 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4551 I915_ERROR_MEMORY_REFRESH));
4553 /* Unmask the interrupts that we always want on. */
4554 dev_priv->irq_mask =
4555 ~(I915_ASLE_INTERRUPT |
4556 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4557 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4558 I915_MASTER_ERROR_INTERRUPT);
4561 I915_ASLE_INTERRUPT |
4562 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4563 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4564 I915_MASTER_ERROR_INTERRUPT |
4565 I915_USER_INTERRUPT;
4567 if (I915_HAS_HOTPLUG(dev_priv)) {
4568 /* Enable in IER... */
4569 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4570 /* and unmask in IMR */
4571 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4574 GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4576 /* Interrupt setup is already guaranteed to be single-threaded, this is
4577 * just to make the assert_spin_locked check happy. */
4578 spin_lock_irq(&dev_priv->irq_lock);
4579 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4580 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4581 spin_unlock_irq(&dev_priv->irq_lock);
4583 i915_enable_asle_pipestat(dev_priv);
4588 static irqreturn_t i915_irq_handler(int irq, void *arg)
4590 struct drm_device *dev = arg;
4591 struct drm_i915_private *dev_priv = to_i915(dev);
4592 irqreturn_t ret = IRQ_NONE;
4594 if (!intel_irqs_enabled(dev_priv))
4597 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4598 disable_rpm_wakeref_asserts(dev_priv);
4601 u32 pipe_stats[I915_MAX_PIPES] = {};
4602 u32 eir = 0, eir_stuck = 0;
4603 u32 hotplug_status = 0;
4606 iir = I915_READ(IIR);
4612 if (I915_HAS_HOTPLUG(dev_priv) &&
4613 iir & I915_DISPLAY_PORT_INTERRUPT)
4614 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4616 /* Call regardless, as some status bits might not be
4617 * signalled in iir */
4618 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4620 if (iir & I915_MASTER_ERROR_INTERRUPT)
4621 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4623 I915_WRITE(IIR, iir);
4625 if (iir & I915_USER_INTERRUPT)
4626 notify_ring(dev_priv->engine[RCS]);
4628 if (iir & I915_MASTER_ERROR_INTERRUPT)
4629 i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4632 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4634 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4637 enable_rpm_wakeref_asserts(dev_priv);
4642 static void i965_irq_reset(struct drm_device *dev)
4644 struct drm_i915_private *dev_priv = to_i915(dev);
4646 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4647 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4649 i9xx_pipestat_irq_reset(dev_priv);
4651 I915_WRITE(HWSTAM, 0xffffffff);
4656 static int i965_irq_postinstall(struct drm_device *dev)
4658 struct drm_i915_private *dev_priv = to_i915(dev);
4663 * Enable some error detection, note the instruction error mask
4664 * bit is reserved, so we leave it masked.
4666 if (IS_G4X(dev_priv)) {
4667 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4668 GM45_ERROR_MEM_PRIV |
4669 GM45_ERROR_CP_PRIV |
4670 I915_ERROR_MEMORY_REFRESH);
4672 error_mask = ~(I915_ERROR_PAGE_TABLE |
4673 I915_ERROR_MEMORY_REFRESH);
4675 I915_WRITE(EMR, error_mask);
4677 /* Unmask the interrupts that we always want on. */
4678 dev_priv->irq_mask =
4679 ~(I915_ASLE_INTERRUPT |
4680 I915_DISPLAY_PORT_INTERRUPT |
4681 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4682 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4683 I915_MASTER_ERROR_INTERRUPT);
4686 I915_ASLE_INTERRUPT |
4687 I915_DISPLAY_PORT_INTERRUPT |
4688 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4689 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4690 I915_MASTER_ERROR_INTERRUPT |
4691 I915_USER_INTERRUPT;
4693 if (IS_G4X(dev_priv))
4694 enable_mask |= I915_BSD_USER_INTERRUPT;
4696 GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4698 /* Interrupt setup is already guaranteed to be single-threaded, this is
4699 * just to make the assert_spin_locked check happy. */
4700 spin_lock_irq(&dev_priv->irq_lock);
4701 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4702 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4703 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4704 spin_unlock_irq(&dev_priv->irq_lock);
4706 i915_enable_asle_pipestat(dev_priv);
4711 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4715 lockdep_assert_held(&dev_priv->irq_lock);
4717 /* Note HDMI and DP share hotplug bits */
4718 /* enable bits are the same for all generations */
4719 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4720 /* Programming the CRT detection parameters tends
4721 to generate a spurious hotplug event about three
4722 seconds later. So just do it once.
4724 if (IS_G4X(dev_priv))
4725 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4726 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4728 /* Ignore TV since it's buggy */
4729 i915_hotplug_interrupt_update_locked(dev_priv,
4730 HOTPLUG_INT_EN_MASK |
4731 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4732 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4736 static irqreturn_t i965_irq_handler(int irq, void *arg)
4738 struct drm_device *dev = arg;
4739 struct drm_i915_private *dev_priv = to_i915(dev);
4740 irqreturn_t ret = IRQ_NONE;
4742 if (!intel_irqs_enabled(dev_priv))
4745 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4746 disable_rpm_wakeref_asserts(dev_priv);
4749 u32 pipe_stats[I915_MAX_PIPES] = {};
4750 u32 eir = 0, eir_stuck = 0;
4751 u32 hotplug_status = 0;
4754 iir = I915_READ(IIR);
4760 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4761 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4763 /* Call regardless, as some status bits might not be
4764 * signalled in iir */
4765 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4767 if (iir & I915_MASTER_ERROR_INTERRUPT)
4768 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4770 I915_WRITE(IIR, iir);
4772 if (iir & I915_USER_INTERRUPT)
4773 notify_ring(dev_priv->engine[RCS]);
4775 if (iir & I915_BSD_USER_INTERRUPT)
4776 notify_ring(dev_priv->engine[VCS]);
4778 if (iir & I915_MASTER_ERROR_INTERRUPT)
4779 i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4782 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4784 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4787 enable_rpm_wakeref_asserts(dev_priv);
4793 * intel_irq_init - initializes irq support
4794 * @dev_priv: i915 device instance
4796 * This function initializes all the irq support including work items, timers
4797 * and all the vtables. It does not setup the interrupt itself though.
4799 void intel_irq_init(struct drm_i915_private *dev_priv)
4801 struct drm_device *dev = &dev_priv->drm;
4802 struct intel_rps *rps = &dev_priv->gt_pm.rps;
4805 intel_hpd_init_work(dev_priv);
4807 INIT_WORK(&rps->work, gen6_pm_rps_work);
4809 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4810 for (i = 0; i < MAX_L3_SLICES; ++i)
4811 dev_priv->l3_parity.remap_info[i] = NULL;
4813 if (HAS_GUC_SCHED(dev_priv))
4814 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4816 /* Let's track the enabled rps events */
4817 if (IS_VALLEYVIEW(dev_priv))
4818 /* WaGsvRC0ResidencyMethod:vlv */
4819 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4821 dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD |
4822 GEN6_PM_RP_DOWN_THRESHOLD |
4823 GEN6_PM_RP_DOWN_TIMEOUT);
4825 rps->pm_intrmsk_mbz = 0;
4828 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4829 * if GEN6_PM_UP_EI_EXPIRED is masked.
4831 * TODO: verify if this can be reproduced on VLV,CHV.
4833 if (INTEL_GEN(dev_priv) <= 7)
4834 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4836 if (INTEL_GEN(dev_priv) >= 8)
4837 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4839 if (IS_GEN2(dev_priv)) {
4840 /* Gen2 doesn't have a hardware frame counter */
4841 dev->max_vblank_count = 0;
4842 } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4843 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4844 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4846 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4847 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4851 * Opt out of the vblank disable timer on everything except gen2.
4852 * Gen2 doesn't have a hardware frame counter and so depends on
4853 * vblank interrupts to produce sane vblank seuquence numbers.
4855 if (!IS_GEN2(dev_priv))
4856 dev->vblank_disable_immediate = true;
4858 /* Most platforms treat the display irq block as an always-on
4859 * power domain. vlv/chv can disable it at runtime and need
4860 * special care to avoid writing any of the display block registers
4861 * outside of the power domain. We defer setting up the display irqs
4862 * in this case to the runtime pm.
4864 dev_priv->display_irqs_enabled = true;
4865 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4866 dev_priv->display_irqs_enabled = false;
4868 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4869 /* If we have MST support, we want to avoid doing short HPD IRQ storm
4870 * detection, as short HPD storms will occur as a natural part of
4871 * sideband messaging with MST.
4872 * On older platforms however, IRQ storms can occur with both long and
4873 * short pulses, as seen on some G4x systems.
4875 dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4877 dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4878 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4880 if (IS_CHERRYVIEW(dev_priv)) {
4881 dev->driver->irq_handler = cherryview_irq_handler;
4882 dev->driver->irq_preinstall = cherryview_irq_reset;
4883 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4884 dev->driver->irq_uninstall = cherryview_irq_reset;
4885 dev->driver->enable_vblank = i965_enable_vblank;
4886 dev->driver->disable_vblank = i965_disable_vblank;
4887 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4888 } else if (IS_VALLEYVIEW(dev_priv)) {
4889 dev->driver->irq_handler = valleyview_irq_handler;
4890 dev->driver->irq_preinstall = valleyview_irq_reset;
4891 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4892 dev->driver->irq_uninstall = valleyview_irq_reset;
4893 dev->driver->enable_vblank = i965_enable_vblank;
4894 dev->driver->disable_vblank = i965_disable_vblank;
4895 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4896 } else if (INTEL_GEN(dev_priv) >= 11) {
4897 dev->driver->irq_handler = gen11_irq_handler;
4898 dev->driver->irq_preinstall = gen11_irq_reset;
4899 dev->driver->irq_postinstall = gen11_irq_postinstall;
4900 dev->driver->irq_uninstall = gen11_irq_reset;
4901 dev->driver->enable_vblank = gen8_enable_vblank;
4902 dev->driver->disable_vblank = gen8_disable_vblank;
4903 dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4904 } else if (INTEL_GEN(dev_priv) >= 8) {
4905 dev->driver->irq_handler = gen8_irq_handler;
4906 dev->driver->irq_preinstall = gen8_irq_reset;
4907 dev->driver->irq_postinstall = gen8_irq_postinstall;
4908 dev->driver->irq_uninstall = gen8_irq_reset;
4909 dev->driver->enable_vblank = gen8_enable_vblank;
4910 dev->driver->disable_vblank = gen8_disable_vblank;
4911 if (IS_GEN9_LP(dev_priv))
4912 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4913 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4914 HAS_PCH_CNP(dev_priv))
4915 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4917 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4918 } else if (HAS_PCH_SPLIT(dev_priv)) {
4919 dev->driver->irq_handler = ironlake_irq_handler;
4920 dev->driver->irq_preinstall = ironlake_irq_reset;
4921 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4922 dev->driver->irq_uninstall = ironlake_irq_reset;
4923 dev->driver->enable_vblank = ironlake_enable_vblank;
4924 dev->driver->disable_vblank = ironlake_disable_vblank;
4925 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4927 if (IS_GEN2(dev_priv)) {
4928 dev->driver->irq_preinstall = i8xx_irq_reset;
4929 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4930 dev->driver->irq_handler = i8xx_irq_handler;
4931 dev->driver->irq_uninstall = i8xx_irq_reset;
4932 dev->driver->enable_vblank = i8xx_enable_vblank;
4933 dev->driver->disable_vblank = i8xx_disable_vblank;
4934 } else if (IS_GEN3(dev_priv)) {
4935 dev->driver->irq_preinstall = i915_irq_reset;
4936 dev->driver->irq_postinstall = i915_irq_postinstall;
4937 dev->driver->irq_uninstall = i915_irq_reset;
4938 dev->driver->irq_handler = i915_irq_handler;
4939 dev->driver->enable_vblank = i8xx_enable_vblank;
4940 dev->driver->disable_vblank = i8xx_disable_vblank;
4942 dev->driver->irq_preinstall = i965_irq_reset;
4943 dev->driver->irq_postinstall = i965_irq_postinstall;
4944 dev->driver->irq_uninstall = i965_irq_reset;
4945 dev->driver->irq_handler = i965_irq_handler;
4946 dev->driver->enable_vblank = i965_enable_vblank;
4947 dev->driver->disable_vblank = i965_disable_vblank;
4949 if (I915_HAS_HOTPLUG(dev_priv))
4950 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4955 * intel_irq_fini - deinitializes IRQ support
4956 * @i915: i915 device instance
4958 * This function deinitializes all the IRQ support.
4960 void intel_irq_fini(struct drm_i915_private *i915)
4964 for (i = 0; i < MAX_L3_SLICES; ++i)
4965 kfree(i915->l3_parity.remap_info[i]);
4969 * intel_irq_install - enables the hardware interrupt
4970 * @dev_priv: i915 device instance
4972 * This function enables the hardware interrupt handling, but leaves the hotplug
4973 * handling still disabled. It is called after intel_irq_init().
4975 * In the driver load and resume code we need working interrupts in a few places
4976 * but don't want to deal with the hassle of concurrent probe and hotplug
4977 * workers. Hence the split into this two-stage approach.
4979 int intel_irq_install(struct drm_i915_private *dev_priv)
4982 * We enable some interrupt sources in our postinstall hooks, so mark
4983 * interrupts as enabled _before_ actually enabling them to avoid
4984 * special cases in our ordering checks.
4986 dev_priv->runtime_pm.irqs_enabled = true;
4988 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4992 * intel_irq_uninstall - finilizes all irq handling
4993 * @dev_priv: i915 device instance
4995 * This stops interrupt and hotplug handling and unregisters and frees all
4996 * resources acquired in the init functions.
4998 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
5000 drm_irq_uninstall(&dev_priv->drm);
5001 intel_hpd_cancel_work(dev_priv);
5002 dev_priv->runtime_pm.irqs_enabled = false;
5006 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
5007 * @dev_priv: i915 device instance
5009 * This function is used to disable interrupts at runtime, both in the runtime
5010 * pm and the system suspend/resume code.
5012 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
5014 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
5015 dev_priv->runtime_pm.irqs_enabled = false;
5016 synchronize_irq(dev_priv->drm.irq);
5020 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
5021 * @dev_priv: i915 device instance
5023 * This function is used to enable interrupts at runtime, both in the runtime
5024 * pm and the system suspend/resume code.
5026 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
5028 dev_priv->runtime_pm.irqs_enabled = true;
5029 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
5030 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);