]> Git Repo - J-linux.git/blob - drivers/gpu/drm/i915/i915_irq.c
Merge tag 'topic/drmp-cleanup-2019-01-02' of git://anongit.freedesktop.org/drm/drm...
[J-linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 static const u32 hpd_gen11[HPD_NUM_PINS] = {
119         [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
120         [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
121         [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
122         [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
123 };
124
125 static const u32 hpd_icp[HPD_NUM_PINS] = {
126         [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
127         [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
128         [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
129         [HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
130         [HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
131         [HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
132 };
133
134 /* IIR can theoretically queue up two events. Be paranoid. */
135 #define GEN8_IRQ_RESET_NDX(type, which) do { \
136         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
137         POSTING_READ(GEN8_##type##_IMR(which)); \
138         I915_WRITE(GEN8_##type##_IER(which), 0); \
139         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
140         POSTING_READ(GEN8_##type##_IIR(which)); \
141         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
142         POSTING_READ(GEN8_##type##_IIR(which)); \
143 } while (0)
144
145 #define GEN3_IRQ_RESET(type) do { \
146         I915_WRITE(type##IMR, 0xffffffff); \
147         POSTING_READ(type##IMR); \
148         I915_WRITE(type##IER, 0); \
149         I915_WRITE(type##IIR, 0xffffffff); \
150         POSTING_READ(type##IIR); \
151         I915_WRITE(type##IIR, 0xffffffff); \
152         POSTING_READ(type##IIR); \
153 } while (0)
154
155 #define GEN2_IRQ_RESET(type) do { \
156         I915_WRITE16(type##IMR, 0xffff); \
157         POSTING_READ16(type##IMR); \
158         I915_WRITE16(type##IER, 0); \
159         I915_WRITE16(type##IIR, 0xffff); \
160         POSTING_READ16(type##IIR); \
161         I915_WRITE16(type##IIR, 0xffff); \
162         POSTING_READ16(type##IIR); \
163 } while (0)
164
165 /*
166  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
167  */
168 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
169                                     i915_reg_t reg)
170 {
171         u32 val = I915_READ(reg);
172
173         if (val == 0)
174                 return;
175
176         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177              i915_mmio_reg_offset(reg), val);
178         I915_WRITE(reg, 0xffffffff);
179         POSTING_READ(reg);
180         I915_WRITE(reg, 0xffffffff);
181         POSTING_READ(reg);
182 }
183
184 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
185                                     i915_reg_t reg)
186 {
187         u16 val = I915_READ16(reg);
188
189         if (val == 0)
190                 return;
191
192         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
193              i915_mmio_reg_offset(reg), val);
194         I915_WRITE16(reg, 0xffff);
195         POSTING_READ16(reg);
196         I915_WRITE16(reg, 0xffff);
197         POSTING_READ16(reg);
198 }
199
200 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
201         gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
202         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
203         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
204         POSTING_READ(GEN8_##type##_IMR(which)); \
205 } while (0)
206
207 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
208         gen3_assert_iir_is_zero(dev_priv, type##IIR); \
209         I915_WRITE(type##IER, (ier_val)); \
210         I915_WRITE(type##IMR, (imr_val)); \
211         POSTING_READ(type##IMR); \
212 } while (0)
213
214 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
215         gen2_assert_iir_is_zero(dev_priv, type##IIR); \
216         I915_WRITE16(type##IER, (ier_val)); \
217         I915_WRITE16(type##IMR, (imr_val)); \
218         POSTING_READ16(type##IMR); \
219 } while (0)
220
221 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
222 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
223
224 /* For display hotplug interrupt */
225 static inline void
226 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
227                                      uint32_t mask,
228                                      uint32_t bits)
229 {
230         uint32_t val;
231
232         lockdep_assert_held(&dev_priv->irq_lock);
233         WARN_ON(bits & ~mask);
234
235         val = I915_READ(PORT_HOTPLUG_EN);
236         val &= ~mask;
237         val |= bits;
238         I915_WRITE(PORT_HOTPLUG_EN, val);
239 }
240
241 /**
242  * i915_hotplug_interrupt_update - update hotplug interrupt enable
243  * @dev_priv: driver private
244  * @mask: bits to update
245  * @bits: bits to enable
246  * NOTE: the HPD enable bits are modified both inside and outside
247  * of an interrupt context. To avoid that read-modify-write cycles
248  * interfer, these bits are protected by a spinlock. Since this
249  * function is usually not called from a context where the lock is
250  * held already, this function acquires the lock itself. A non-locking
251  * version is also available.
252  */
253 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
254                                    uint32_t mask,
255                                    uint32_t bits)
256 {
257         spin_lock_irq(&dev_priv->irq_lock);
258         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
259         spin_unlock_irq(&dev_priv->irq_lock);
260 }
261
262 static u32
263 gen11_gt_engine_identity(struct drm_i915_private * const i915,
264                          const unsigned int bank, const unsigned int bit);
265
266 static bool gen11_reset_one_iir(struct drm_i915_private * const i915,
267                                 const unsigned int bank,
268                                 const unsigned int bit)
269 {
270         void __iomem * const regs = i915->regs;
271         u32 dw;
272
273         lockdep_assert_held(&i915->irq_lock);
274
275         dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
276         if (dw & BIT(bit)) {
277                 /*
278                  * According to the BSpec, DW_IIR bits cannot be cleared without
279                  * first servicing the Selector & Shared IIR registers.
280                  */
281                 gen11_gt_engine_identity(i915, bank, bit);
282
283                 /*
284                  * We locked GT INT DW by reading it. If we want to (try
285                  * to) recover from this succesfully, we need to clear
286                  * our bit, otherwise we are locking the register for
287                  * everybody.
288                  */
289                 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
290
291                 return true;
292         }
293
294         return false;
295 }
296
297 /**
298  * ilk_update_display_irq - update DEIMR
299  * @dev_priv: driver private
300  * @interrupt_mask: mask of interrupt bits to update
301  * @enabled_irq_mask: mask of interrupt bits to enable
302  */
303 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
304                             uint32_t interrupt_mask,
305                             uint32_t enabled_irq_mask)
306 {
307         uint32_t new_val;
308
309         lockdep_assert_held(&dev_priv->irq_lock);
310
311         WARN_ON(enabled_irq_mask & ~interrupt_mask);
312
313         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
314                 return;
315
316         new_val = dev_priv->irq_mask;
317         new_val &= ~interrupt_mask;
318         new_val |= (~enabled_irq_mask & interrupt_mask);
319
320         if (new_val != dev_priv->irq_mask) {
321                 dev_priv->irq_mask = new_val;
322                 I915_WRITE(DEIMR, dev_priv->irq_mask);
323                 POSTING_READ(DEIMR);
324         }
325 }
326
327 /**
328  * ilk_update_gt_irq - update GTIMR
329  * @dev_priv: driver private
330  * @interrupt_mask: mask of interrupt bits to update
331  * @enabled_irq_mask: mask of interrupt bits to enable
332  */
333 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
334                               uint32_t interrupt_mask,
335                               uint32_t enabled_irq_mask)
336 {
337         lockdep_assert_held(&dev_priv->irq_lock);
338
339         WARN_ON(enabled_irq_mask & ~interrupt_mask);
340
341         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
342                 return;
343
344         dev_priv->gt_irq_mask &= ~interrupt_mask;
345         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
346         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
347 }
348
349 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
350 {
351         ilk_update_gt_irq(dev_priv, mask, mask);
352         POSTING_READ_FW(GTIMR);
353 }
354
355 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
356 {
357         ilk_update_gt_irq(dev_priv, mask, 0);
358 }
359
360 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
361 {
362         WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
363
364         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
365 }
366
367 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
368 {
369         if (INTEL_GEN(dev_priv) >= 11)
370                 return GEN11_GPM_WGBOXPERF_INTR_MASK;
371         else if (INTEL_GEN(dev_priv) >= 8)
372                 return GEN8_GT_IMR(2);
373         else
374                 return GEN6_PMIMR;
375 }
376
377 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
378 {
379         if (INTEL_GEN(dev_priv) >= 11)
380                 return GEN11_GPM_WGBOXPERF_INTR_ENABLE;
381         else if (INTEL_GEN(dev_priv) >= 8)
382                 return GEN8_GT_IER(2);
383         else
384                 return GEN6_PMIER;
385 }
386
387 /**
388  * snb_update_pm_irq - update GEN6_PMIMR
389  * @dev_priv: driver private
390  * @interrupt_mask: mask of interrupt bits to update
391  * @enabled_irq_mask: mask of interrupt bits to enable
392  */
393 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
394                               uint32_t interrupt_mask,
395                               uint32_t enabled_irq_mask)
396 {
397         uint32_t new_val;
398
399         WARN_ON(enabled_irq_mask & ~interrupt_mask);
400
401         lockdep_assert_held(&dev_priv->irq_lock);
402
403         new_val = dev_priv->pm_imr;
404         new_val &= ~interrupt_mask;
405         new_val |= (~enabled_irq_mask & interrupt_mask);
406
407         if (new_val != dev_priv->pm_imr) {
408                 dev_priv->pm_imr = new_val;
409                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
410                 POSTING_READ(gen6_pm_imr(dev_priv));
411         }
412 }
413
414 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
415 {
416         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
417                 return;
418
419         snb_update_pm_irq(dev_priv, mask, mask);
420 }
421
422 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
423 {
424         snb_update_pm_irq(dev_priv, mask, 0);
425 }
426
427 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
428 {
429         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
430                 return;
431
432         __gen6_mask_pm_irq(dev_priv, mask);
433 }
434
435 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
436 {
437         i915_reg_t reg = gen6_pm_iir(dev_priv);
438
439         lockdep_assert_held(&dev_priv->irq_lock);
440
441         I915_WRITE(reg, reset_mask);
442         I915_WRITE(reg, reset_mask);
443         POSTING_READ(reg);
444 }
445
446 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
447 {
448         lockdep_assert_held(&dev_priv->irq_lock);
449
450         dev_priv->pm_ier |= enable_mask;
451         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
452         gen6_unmask_pm_irq(dev_priv, enable_mask);
453         /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
454 }
455
456 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
457 {
458         lockdep_assert_held(&dev_priv->irq_lock);
459
460         dev_priv->pm_ier &= ~disable_mask;
461         __gen6_mask_pm_irq(dev_priv, disable_mask);
462         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
463         /* though a barrier is missing here, but don't really need a one */
464 }
465
466 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
467 {
468         spin_lock_irq(&dev_priv->irq_lock);
469
470         while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM))
471                 ;
472
473         dev_priv->gt_pm.rps.pm_iir = 0;
474
475         spin_unlock_irq(&dev_priv->irq_lock);
476 }
477
478 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
479 {
480         spin_lock_irq(&dev_priv->irq_lock);
481         gen6_reset_pm_iir(dev_priv, GEN6_PM_RPS_EVENTS);
482         dev_priv->gt_pm.rps.pm_iir = 0;
483         spin_unlock_irq(&dev_priv->irq_lock);
484 }
485
486 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
487 {
488         struct intel_rps *rps = &dev_priv->gt_pm.rps;
489
490         if (READ_ONCE(rps->interrupts_enabled))
491                 return;
492
493         spin_lock_irq(&dev_priv->irq_lock);
494         WARN_ON_ONCE(rps->pm_iir);
495
496         if (INTEL_GEN(dev_priv) >= 11)
497                 WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM));
498         else
499                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
500
501         rps->interrupts_enabled = true;
502         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
503
504         spin_unlock_irq(&dev_priv->irq_lock);
505 }
506
507 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
508 {
509         struct intel_rps *rps = &dev_priv->gt_pm.rps;
510
511         if (!READ_ONCE(rps->interrupts_enabled))
512                 return;
513
514         spin_lock_irq(&dev_priv->irq_lock);
515         rps->interrupts_enabled = false;
516
517         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
518
519         gen6_disable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
520
521         spin_unlock_irq(&dev_priv->irq_lock);
522         synchronize_irq(dev_priv->drm.irq);
523
524         /* Now that we will not be generating any more work, flush any
525          * outstanding tasks. As we are called on the RPS idle path,
526          * we will reset the GPU to minimum frequencies, so the current
527          * state of the worker can be discarded.
528          */
529         cancel_work_sync(&rps->work);
530         if (INTEL_GEN(dev_priv) >= 11)
531                 gen11_reset_rps_interrupts(dev_priv);
532         else
533                 gen6_reset_rps_interrupts(dev_priv);
534 }
535
536 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
537 {
538         assert_rpm_wakelock_held(dev_priv);
539
540         spin_lock_irq(&dev_priv->irq_lock);
541         gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
542         spin_unlock_irq(&dev_priv->irq_lock);
543 }
544
545 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
546 {
547         assert_rpm_wakelock_held(dev_priv);
548
549         spin_lock_irq(&dev_priv->irq_lock);
550         if (!dev_priv->guc.interrupts_enabled) {
551                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
552                                        dev_priv->pm_guc_events);
553                 dev_priv->guc.interrupts_enabled = true;
554                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
555         }
556         spin_unlock_irq(&dev_priv->irq_lock);
557 }
558
559 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
560 {
561         assert_rpm_wakelock_held(dev_priv);
562
563         spin_lock_irq(&dev_priv->irq_lock);
564         dev_priv->guc.interrupts_enabled = false;
565
566         gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
567
568         spin_unlock_irq(&dev_priv->irq_lock);
569         synchronize_irq(dev_priv->drm.irq);
570
571         gen9_reset_guc_interrupts(dev_priv);
572 }
573
574 /**
575  * bdw_update_port_irq - update DE port interrupt
576  * @dev_priv: driver private
577  * @interrupt_mask: mask of interrupt bits to update
578  * @enabled_irq_mask: mask of interrupt bits to enable
579  */
580 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
581                                 uint32_t interrupt_mask,
582                                 uint32_t enabled_irq_mask)
583 {
584         uint32_t new_val;
585         uint32_t old_val;
586
587         lockdep_assert_held(&dev_priv->irq_lock);
588
589         WARN_ON(enabled_irq_mask & ~interrupt_mask);
590
591         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
592                 return;
593
594         old_val = I915_READ(GEN8_DE_PORT_IMR);
595
596         new_val = old_val;
597         new_val &= ~interrupt_mask;
598         new_val |= (~enabled_irq_mask & interrupt_mask);
599
600         if (new_val != old_val) {
601                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
602                 POSTING_READ(GEN8_DE_PORT_IMR);
603         }
604 }
605
606 /**
607  * bdw_update_pipe_irq - update DE pipe interrupt
608  * @dev_priv: driver private
609  * @pipe: pipe whose interrupt to update
610  * @interrupt_mask: mask of interrupt bits to update
611  * @enabled_irq_mask: mask of interrupt bits to enable
612  */
613 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
614                          enum pipe pipe,
615                          uint32_t interrupt_mask,
616                          uint32_t enabled_irq_mask)
617 {
618         uint32_t new_val;
619
620         lockdep_assert_held(&dev_priv->irq_lock);
621
622         WARN_ON(enabled_irq_mask & ~interrupt_mask);
623
624         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
625                 return;
626
627         new_val = dev_priv->de_irq_mask[pipe];
628         new_val &= ~interrupt_mask;
629         new_val |= (~enabled_irq_mask & interrupt_mask);
630
631         if (new_val != dev_priv->de_irq_mask[pipe]) {
632                 dev_priv->de_irq_mask[pipe] = new_val;
633                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
634                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
635         }
636 }
637
638 /**
639  * ibx_display_interrupt_update - update SDEIMR
640  * @dev_priv: driver private
641  * @interrupt_mask: mask of interrupt bits to update
642  * @enabled_irq_mask: mask of interrupt bits to enable
643  */
644 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
645                                   uint32_t interrupt_mask,
646                                   uint32_t enabled_irq_mask)
647 {
648         uint32_t sdeimr = I915_READ(SDEIMR);
649         sdeimr &= ~interrupt_mask;
650         sdeimr |= (~enabled_irq_mask & interrupt_mask);
651
652         WARN_ON(enabled_irq_mask & ~interrupt_mask);
653
654         lockdep_assert_held(&dev_priv->irq_lock);
655
656         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
657                 return;
658
659         I915_WRITE(SDEIMR, sdeimr);
660         POSTING_READ(SDEIMR);
661 }
662
663 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
664                               enum pipe pipe)
665 {
666         u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
667         u32 enable_mask = status_mask << 16;
668
669         lockdep_assert_held(&dev_priv->irq_lock);
670
671         if (INTEL_GEN(dev_priv) < 5)
672                 goto out;
673
674         /*
675          * On pipe A we don't support the PSR interrupt yet,
676          * on pipe B and C the same bit MBZ.
677          */
678         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
679                 return 0;
680         /*
681          * On pipe B and C we don't support the PSR interrupt yet, on pipe
682          * A the same bit is for perf counters which we don't use either.
683          */
684         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
685                 return 0;
686
687         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
688                          SPRITE0_FLIP_DONE_INT_EN_VLV |
689                          SPRITE1_FLIP_DONE_INT_EN_VLV);
690         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
691                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
692         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
693                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
694
695 out:
696         WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
697                   status_mask & ~PIPESTAT_INT_STATUS_MASK,
698                   "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
699                   pipe_name(pipe), enable_mask, status_mask);
700
701         return enable_mask;
702 }
703
704 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
705                           enum pipe pipe, u32 status_mask)
706 {
707         i915_reg_t reg = PIPESTAT(pipe);
708         u32 enable_mask;
709
710         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
711                   "pipe %c: status_mask=0x%x\n",
712                   pipe_name(pipe), status_mask);
713
714         lockdep_assert_held(&dev_priv->irq_lock);
715         WARN_ON(!intel_irqs_enabled(dev_priv));
716
717         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
718                 return;
719
720         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
721         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
722
723         I915_WRITE(reg, enable_mask | status_mask);
724         POSTING_READ(reg);
725 }
726
727 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
728                            enum pipe pipe, u32 status_mask)
729 {
730         i915_reg_t reg = PIPESTAT(pipe);
731         u32 enable_mask;
732
733         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
734                   "pipe %c: status_mask=0x%x\n",
735                   pipe_name(pipe), status_mask);
736
737         lockdep_assert_held(&dev_priv->irq_lock);
738         WARN_ON(!intel_irqs_enabled(dev_priv));
739
740         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
741                 return;
742
743         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
744         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
745
746         I915_WRITE(reg, enable_mask | status_mask);
747         POSTING_READ(reg);
748 }
749
750 /**
751  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
752  * @dev_priv: i915 device private
753  */
754 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
755 {
756         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
757                 return;
758
759         spin_lock_irq(&dev_priv->irq_lock);
760
761         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
762         if (INTEL_GEN(dev_priv) >= 4)
763                 i915_enable_pipestat(dev_priv, PIPE_A,
764                                      PIPE_LEGACY_BLC_EVENT_STATUS);
765
766         spin_unlock_irq(&dev_priv->irq_lock);
767 }
768
769 /*
770  * This timing diagram depicts the video signal in and
771  * around the vertical blanking period.
772  *
773  * Assumptions about the fictitious mode used in this example:
774  *  vblank_start >= 3
775  *  vsync_start = vblank_start + 1
776  *  vsync_end = vblank_start + 2
777  *  vtotal = vblank_start + 3
778  *
779  *           start of vblank:
780  *           latch double buffered registers
781  *           increment frame counter (ctg+)
782  *           generate start of vblank interrupt (gen4+)
783  *           |
784  *           |          frame start:
785  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
786  *           |          may be shifted forward 1-3 extra lines via PIPECONF
787  *           |          |
788  *           |          |  start of vsync:
789  *           |          |  generate vsync interrupt
790  *           |          |  |
791  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
792  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
793  * ----va---> <-----------------vb--------------------> <--------va-------------
794  *       |          |       <----vs----->                     |
795  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
796  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
797  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
798  *       |          |                                         |
799  *       last visible pixel                                   first visible pixel
800  *                  |                                         increment frame counter (gen3/4)
801  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
802  *
803  * x  = horizontal active
804  * _  = horizontal blanking
805  * hs = horizontal sync
806  * va = vertical active
807  * vb = vertical blanking
808  * vs = vertical sync
809  * vbs = vblank_start (number)
810  *
811  * Summary:
812  * - most events happen at the start of horizontal sync
813  * - frame start happens at the start of horizontal blank, 1-4 lines
814  *   (depending on PIPECONF settings) after the start of vblank
815  * - gen3/4 pixel and frame counter are synchronized with the start
816  *   of horizontal active on the first line of vertical active
817  */
818
819 /* Called from drm generic code, passed a 'crtc', which
820  * we use as a pipe index
821  */
822 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
823 {
824         struct drm_i915_private *dev_priv = to_i915(dev);
825         i915_reg_t high_frame, low_frame;
826         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
827         const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
828         unsigned long irqflags;
829
830         htotal = mode->crtc_htotal;
831         hsync_start = mode->crtc_hsync_start;
832         vbl_start = mode->crtc_vblank_start;
833         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
834                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
835
836         /* Convert to pixel count */
837         vbl_start *= htotal;
838
839         /* Start of vblank event occurs at start of hsync */
840         vbl_start -= htotal - hsync_start;
841
842         high_frame = PIPEFRAME(pipe);
843         low_frame = PIPEFRAMEPIXEL(pipe);
844
845         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
846
847         /*
848          * High & low register fields aren't synchronized, so make sure
849          * we get a low value that's stable across two reads of the high
850          * register.
851          */
852         do {
853                 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
854                 low   = I915_READ_FW(low_frame);
855                 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
856         } while (high1 != high2);
857
858         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
859
860         high1 >>= PIPE_FRAME_HIGH_SHIFT;
861         pixel = low & PIPE_PIXEL_MASK;
862         low >>= PIPE_FRAME_LOW_SHIFT;
863
864         /*
865          * The frame counter increments at beginning of active.
866          * Cook up a vblank counter by also checking the pixel
867          * counter against vblank start.
868          */
869         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
870 }
871
872 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
873 {
874         struct drm_i915_private *dev_priv = to_i915(dev);
875
876         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
877 }
878
879 /*
880  * On certain encoders on certain platforms, pipe
881  * scanline register will not work to get the scanline,
882  * since the timings are driven from the PORT or issues
883  * with scanline register updates.
884  * This function will use Framestamp and current
885  * timestamp registers to calculate the scanline.
886  */
887 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
888 {
889         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
890         struct drm_vblank_crtc *vblank =
891                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
892         const struct drm_display_mode *mode = &vblank->hwmode;
893         u32 vblank_start = mode->crtc_vblank_start;
894         u32 vtotal = mode->crtc_vtotal;
895         u32 htotal = mode->crtc_htotal;
896         u32 clock = mode->crtc_clock;
897         u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
898
899         /*
900          * To avoid the race condition where we might cross into the
901          * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
902          * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
903          * during the same frame.
904          */
905         do {
906                 /*
907                  * This field provides read back of the display
908                  * pipe frame time stamp. The time stamp value
909                  * is sampled at every start of vertical blank.
910                  */
911                 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
912
913                 /*
914                  * The TIMESTAMP_CTR register has the current
915                  * time stamp value.
916                  */
917                 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
918
919                 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
920         } while (scan_post_time != scan_prev_time);
921
922         scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
923                                         clock), 1000 * htotal);
924         scanline = min(scanline, vtotal - 1);
925         scanline = (scanline + vblank_start) % vtotal;
926
927         return scanline;
928 }
929
930 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
931 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
932 {
933         struct drm_device *dev = crtc->base.dev;
934         struct drm_i915_private *dev_priv = to_i915(dev);
935         const struct drm_display_mode *mode;
936         struct drm_vblank_crtc *vblank;
937         enum pipe pipe = crtc->pipe;
938         int position, vtotal;
939
940         if (!crtc->active)
941                 return -1;
942
943         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
944         mode = &vblank->hwmode;
945
946         if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
947                 return __intel_get_crtc_scanline_from_timestamp(crtc);
948
949         vtotal = mode->crtc_vtotal;
950         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
951                 vtotal /= 2;
952
953         if (IS_GEN2(dev_priv))
954                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
955         else
956                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
957
958         /*
959          * On HSW, the DSL reg (0x70000) appears to return 0 if we
960          * read it just before the start of vblank.  So try it again
961          * so we don't accidentally end up spanning a vblank frame
962          * increment, causing the pipe_update_end() code to squak at us.
963          *
964          * The nature of this problem means we can't simply check the ISR
965          * bit and return the vblank start value; nor can we use the scanline
966          * debug register in the transcoder as it appears to have the same
967          * problem.  We may need to extend this to include other platforms,
968          * but so far testing only shows the problem on HSW.
969          */
970         if (HAS_DDI(dev_priv) && !position) {
971                 int i, temp;
972
973                 for (i = 0; i < 100; i++) {
974                         udelay(1);
975                         temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
976                         if (temp != position) {
977                                 position = temp;
978                                 break;
979                         }
980                 }
981         }
982
983         /*
984          * See update_scanline_offset() for the details on the
985          * scanline_offset adjustment.
986          */
987         return (position + crtc->scanline_offset) % vtotal;
988 }
989
990 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
991                                      bool in_vblank_irq, int *vpos, int *hpos,
992                                      ktime_t *stime, ktime_t *etime,
993                                      const struct drm_display_mode *mode)
994 {
995         struct drm_i915_private *dev_priv = to_i915(dev);
996         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
997                                                                 pipe);
998         int position;
999         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
1000         unsigned long irqflags;
1001
1002         if (WARN_ON(!mode->crtc_clock)) {
1003                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
1004                                  "pipe %c\n", pipe_name(pipe));
1005                 return false;
1006         }
1007
1008         htotal = mode->crtc_htotal;
1009         hsync_start = mode->crtc_hsync_start;
1010         vtotal = mode->crtc_vtotal;
1011         vbl_start = mode->crtc_vblank_start;
1012         vbl_end = mode->crtc_vblank_end;
1013
1014         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1015                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
1016                 vbl_end /= 2;
1017                 vtotal /= 2;
1018         }
1019
1020         /*
1021          * Lock uncore.lock, as we will do multiple timing critical raw
1022          * register reads, potentially with preemption disabled, so the
1023          * following code must not block on uncore.lock.
1024          */
1025         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1026
1027         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
1028
1029         /* Get optional system timestamp before query. */
1030         if (stime)
1031                 *stime = ktime_get();
1032
1033         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1034                 /* No obvious pixelcount register. Only query vertical
1035                  * scanout position from Display scan line register.
1036                  */
1037                 position = __intel_get_crtc_scanline(intel_crtc);
1038         } else {
1039                 /* Have access to pixelcount since start of frame.
1040                  * We can split this into vertical and horizontal
1041                  * scanout position.
1042                  */
1043                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1044
1045                 /* convert to pixel counts */
1046                 vbl_start *= htotal;
1047                 vbl_end *= htotal;
1048                 vtotal *= htotal;
1049
1050                 /*
1051                  * In interlaced modes, the pixel counter counts all pixels,
1052                  * so one field will have htotal more pixels. In order to avoid
1053                  * the reported position from jumping backwards when the pixel
1054                  * counter is beyond the length of the shorter field, just
1055                  * clamp the position the length of the shorter field. This
1056                  * matches how the scanline counter based position works since
1057                  * the scanline counter doesn't count the two half lines.
1058                  */
1059                 if (position >= vtotal)
1060                         position = vtotal - 1;
1061
1062                 /*
1063                  * Start of vblank interrupt is triggered at start of hsync,
1064                  * just prior to the first active line of vblank. However we
1065                  * consider lines to start at the leading edge of horizontal
1066                  * active. So, should we get here before we've crossed into
1067                  * the horizontal active of the first line in vblank, we would
1068                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1069                  * always add htotal-hsync_start to the current pixel position.
1070                  */
1071                 position = (position + htotal - hsync_start) % vtotal;
1072         }
1073
1074         /* Get optional system timestamp after query. */
1075         if (etime)
1076                 *etime = ktime_get();
1077
1078         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1079
1080         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1081
1082         /*
1083          * While in vblank, position will be negative
1084          * counting up towards 0 at vbl_end. And outside
1085          * vblank, position will be positive counting
1086          * up since vbl_end.
1087          */
1088         if (position >= vbl_start)
1089                 position -= vbl_end;
1090         else
1091                 position += vtotal - vbl_end;
1092
1093         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1094                 *vpos = position;
1095                 *hpos = 0;
1096         } else {
1097                 *vpos = position / htotal;
1098                 *hpos = position - (*vpos * htotal);
1099         }
1100
1101         return true;
1102 }
1103
1104 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1105 {
1106         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1107         unsigned long irqflags;
1108         int position;
1109
1110         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1111         position = __intel_get_crtc_scanline(crtc);
1112         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1113
1114         return position;
1115 }
1116
1117 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1118 {
1119         u32 busy_up, busy_down, max_avg, min_avg;
1120         u8 new_delay;
1121
1122         spin_lock(&mchdev_lock);
1123
1124         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1125
1126         new_delay = dev_priv->ips.cur_delay;
1127
1128         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1129         busy_up = I915_READ(RCPREVBSYTUPAVG);
1130         busy_down = I915_READ(RCPREVBSYTDNAVG);
1131         max_avg = I915_READ(RCBMAXAVG);
1132         min_avg = I915_READ(RCBMINAVG);
1133
1134         /* Handle RCS change request from hw */
1135         if (busy_up > max_avg) {
1136                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1137                         new_delay = dev_priv->ips.cur_delay - 1;
1138                 if (new_delay < dev_priv->ips.max_delay)
1139                         new_delay = dev_priv->ips.max_delay;
1140         } else if (busy_down < min_avg) {
1141                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1142                         new_delay = dev_priv->ips.cur_delay + 1;
1143                 if (new_delay > dev_priv->ips.min_delay)
1144                         new_delay = dev_priv->ips.min_delay;
1145         }
1146
1147         if (ironlake_set_drps(dev_priv, new_delay))
1148                 dev_priv->ips.cur_delay = new_delay;
1149
1150         spin_unlock(&mchdev_lock);
1151
1152         return;
1153 }
1154
1155 static void notify_ring(struct intel_engine_cs *engine)
1156 {
1157         const u32 seqno = intel_engine_get_seqno(engine);
1158         struct i915_request *rq = NULL;
1159         struct task_struct *tsk = NULL;
1160         struct intel_wait *wait;
1161
1162         if (unlikely(!engine->breadcrumbs.irq_armed))
1163                 return;
1164
1165         rcu_read_lock();
1166
1167         spin_lock(&engine->breadcrumbs.irq_lock);
1168         wait = engine->breadcrumbs.irq_wait;
1169         if (wait) {
1170                 /*
1171                  * We use a callback from the dma-fence to submit
1172                  * requests after waiting on our own requests. To
1173                  * ensure minimum delay in queuing the next request to
1174                  * hardware, signal the fence now rather than wait for
1175                  * the signaler to be woken up. We still wake up the
1176                  * waiter in order to handle the irq-seqno coherency
1177                  * issues (we may receive the interrupt before the
1178                  * seqno is written, see __i915_request_irq_complete())
1179                  * and to handle coalescing of multiple seqno updates
1180                  * and many waiters.
1181                  */
1182                 if (i915_seqno_passed(seqno, wait->seqno)) {
1183                         struct i915_request *waiter = wait->request;
1184
1185                         if (waiter &&
1186                             !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1187                                       &waiter->fence.flags) &&
1188                             intel_wait_check_request(wait, waiter))
1189                                 rq = i915_request_get(waiter);
1190
1191                         tsk = wait->tsk;
1192                 } else {
1193                         if (engine->irq_seqno_barrier &&
1194                             i915_seqno_passed(seqno, wait->seqno - 1)) {
1195                                 set_bit(ENGINE_IRQ_BREADCRUMB,
1196                                         &engine->irq_posted);
1197                                 tsk = wait->tsk;
1198                         }
1199                 }
1200
1201                 engine->breadcrumbs.irq_count++;
1202         } else {
1203                 if (engine->breadcrumbs.irq_armed)
1204                         __intel_engine_disarm_breadcrumbs(engine);
1205         }
1206         spin_unlock(&engine->breadcrumbs.irq_lock);
1207
1208         if (rq) {
1209                 spin_lock(&rq->lock);
1210                 dma_fence_signal_locked(&rq->fence);
1211                 GEM_BUG_ON(!i915_request_completed(rq));
1212                 spin_unlock(&rq->lock);
1213
1214                 i915_request_put(rq);
1215         }
1216
1217         if (tsk && tsk->state & TASK_NORMAL)
1218                 wake_up_process(tsk);
1219
1220         rcu_read_unlock();
1221
1222         trace_intel_engine_notify(engine, wait);
1223 }
1224
1225 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1226                         struct intel_rps_ei *ei)
1227 {
1228         ei->ktime = ktime_get_raw();
1229         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1230         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1231 }
1232
1233 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1234 {
1235         memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1236 }
1237
1238 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1239 {
1240         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1241         const struct intel_rps_ei *prev = &rps->ei;
1242         struct intel_rps_ei now;
1243         u32 events = 0;
1244
1245         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1246                 return 0;
1247
1248         vlv_c0_read(dev_priv, &now);
1249
1250         if (prev->ktime) {
1251                 u64 time, c0;
1252                 u32 render, media;
1253
1254                 time = ktime_us_delta(now.ktime, prev->ktime);
1255
1256                 time *= dev_priv->czclk_freq;
1257
1258                 /* Workload can be split between render + media,
1259                  * e.g. SwapBuffers being blitted in X after being rendered in
1260                  * mesa. To account for this we need to combine both engines
1261                  * into our activity counter.
1262                  */
1263                 render = now.render_c0 - prev->render_c0;
1264                 media = now.media_c0 - prev->media_c0;
1265                 c0 = max(render, media);
1266                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1267
1268                 if (c0 > time * rps->power.up_threshold)
1269                         events = GEN6_PM_RP_UP_THRESHOLD;
1270                 else if (c0 < time * rps->power.down_threshold)
1271                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1272         }
1273
1274         rps->ei = now;
1275         return events;
1276 }
1277
1278 static void gen6_pm_rps_work(struct work_struct *work)
1279 {
1280         struct drm_i915_private *dev_priv =
1281                 container_of(work, struct drm_i915_private, gt_pm.rps.work);
1282         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1283         bool client_boost = false;
1284         int new_delay, adj, min, max;
1285         u32 pm_iir = 0;
1286
1287         spin_lock_irq(&dev_priv->irq_lock);
1288         if (rps->interrupts_enabled) {
1289                 pm_iir = fetch_and_zero(&rps->pm_iir);
1290                 client_boost = atomic_read(&rps->num_waiters);
1291         }
1292         spin_unlock_irq(&dev_priv->irq_lock);
1293
1294         /* Make sure we didn't queue anything we're not going to process. */
1295         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1296         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1297                 goto out;
1298
1299         mutex_lock(&dev_priv->pcu_lock);
1300
1301         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1302
1303         adj = rps->last_adj;
1304         new_delay = rps->cur_freq;
1305         min = rps->min_freq_softlimit;
1306         max = rps->max_freq_softlimit;
1307         if (client_boost)
1308                 max = rps->max_freq;
1309         if (client_boost && new_delay < rps->boost_freq) {
1310                 new_delay = rps->boost_freq;
1311                 adj = 0;
1312         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1313                 if (adj > 0)
1314                         adj *= 2;
1315                 else /* CHV needs even encode values */
1316                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1317
1318                 if (new_delay >= rps->max_freq_softlimit)
1319                         adj = 0;
1320         } else if (client_boost) {
1321                 adj = 0;
1322         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1323                 if (rps->cur_freq > rps->efficient_freq)
1324                         new_delay = rps->efficient_freq;
1325                 else if (rps->cur_freq > rps->min_freq_softlimit)
1326                         new_delay = rps->min_freq_softlimit;
1327                 adj = 0;
1328         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1329                 if (adj < 0)
1330                         adj *= 2;
1331                 else /* CHV needs even encode values */
1332                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1333
1334                 if (new_delay <= rps->min_freq_softlimit)
1335                         adj = 0;
1336         } else { /* unknown event */
1337                 adj = 0;
1338         }
1339
1340         rps->last_adj = adj;
1341
1342         /* sysfs frequency interfaces may have snuck in while servicing the
1343          * interrupt
1344          */
1345         new_delay += adj;
1346         new_delay = clamp_t(int, new_delay, min, max);
1347
1348         if (intel_set_rps(dev_priv, new_delay)) {
1349                 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1350                 rps->last_adj = 0;
1351         }
1352
1353         mutex_unlock(&dev_priv->pcu_lock);
1354
1355 out:
1356         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1357         spin_lock_irq(&dev_priv->irq_lock);
1358         if (rps->interrupts_enabled)
1359                 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1360         spin_unlock_irq(&dev_priv->irq_lock);
1361 }
1362
1363
1364 /**
1365  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1366  * occurred.
1367  * @work: workqueue struct
1368  *
1369  * Doesn't actually do anything except notify userspace. As a consequence of
1370  * this event, userspace should try to remap the bad rows since statistically
1371  * it is likely the same row is more likely to go bad again.
1372  */
1373 static void ivybridge_parity_work(struct work_struct *work)
1374 {
1375         struct drm_i915_private *dev_priv =
1376                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1377         u32 error_status, row, bank, subbank;
1378         char *parity_event[6];
1379         uint32_t misccpctl;
1380         uint8_t slice = 0;
1381
1382         /* We must turn off DOP level clock gating to access the L3 registers.
1383          * In order to prevent a get/put style interface, acquire struct mutex
1384          * any time we access those registers.
1385          */
1386         mutex_lock(&dev_priv->drm.struct_mutex);
1387
1388         /* If we've screwed up tracking, just let the interrupt fire again */
1389         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1390                 goto out;
1391
1392         misccpctl = I915_READ(GEN7_MISCCPCTL);
1393         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1394         POSTING_READ(GEN7_MISCCPCTL);
1395
1396         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1397                 i915_reg_t reg;
1398
1399                 slice--;
1400                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1401                         break;
1402
1403                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1404
1405                 reg = GEN7_L3CDERRST1(slice);
1406
1407                 error_status = I915_READ(reg);
1408                 row = GEN7_PARITY_ERROR_ROW(error_status);
1409                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1410                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1411
1412                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1413                 POSTING_READ(reg);
1414
1415                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1416                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1417                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1418                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1419                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1420                 parity_event[5] = NULL;
1421
1422                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1423                                    KOBJ_CHANGE, parity_event);
1424
1425                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1426                           slice, row, bank, subbank);
1427
1428                 kfree(parity_event[4]);
1429                 kfree(parity_event[3]);
1430                 kfree(parity_event[2]);
1431                 kfree(parity_event[1]);
1432         }
1433
1434         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1435
1436 out:
1437         WARN_ON(dev_priv->l3_parity.which_slice);
1438         spin_lock_irq(&dev_priv->irq_lock);
1439         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1440         spin_unlock_irq(&dev_priv->irq_lock);
1441
1442         mutex_unlock(&dev_priv->drm.struct_mutex);
1443 }
1444
1445 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1446                                                u32 iir)
1447 {
1448         if (!HAS_L3_DPF(dev_priv))
1449                 return;
1450
1451         spin_lock(&dev_priv->irq_lock);
1452         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1453         spin_unlock(&dev_priv->irq_lock);
1454
1455         iir &= GT_PARITY_ERROR(dev_priv);
1456         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1457                 dev_priv->l3_parity.which_slice |= 1 << 1;
1458
1459         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1460                 dev_priv->l3_parity.which_slice |= 1 << 0;
1461
1462         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1463 }
1464
1465 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1466                                u32 gt_iir)
1467 {
1468         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1469                 notify_ring(dev_priv->engine[RCS]);
1470         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1471                 notify_ring(dev_priv->engine[VCS]);
1472 }
1473
1474 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1475                                u32 gt_iir)
1476 {
1477         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1478                 notify_ring(dev_priv->engine[RCS]);
1479         if (gt_iir & GT_BSD_USER_INTERRUPT)
1480                 notify_ring(dev_priv->engine[VCS]);
1481         if (gt_iir & GT_BLT_USER_INTERRUPT)
1482                 notify_ring(dev_priv->engine[BCS]);
1483
1484         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1485                       GT_BSD_CS_ERROR_INTERRUPT |
1486                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1487                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1488
1489         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1490                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1491 }
1492
1493 static void
1494 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
1495 {
1496         bool tasklet = false;
1497
1498         if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
1499                 tasklet = true;
1500
1501         if (iir & GT_RENDER_USER_INTERRUPT) {
1502                 notify_ring(engine);
1503                 tasklet |= USES_GUC_SUBMISSION(engine->i915);
1504         }
1505
1506         if (tasklet)
1507                 tasklet_hi_schedule(&engine->execlists.tasklet);
1508 }
1509
1510 static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1511                             u32 master_ctl, u32 gt_iir[4])
1512 {
1513         void __iomem * const regs = i915->regs;
1514
1515 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1516                       GEN8_GT_BCS_IRQ | \
1517                       GEN8_GT_VCS1_IRQ | \
1518                       GEN8_GT_VCS2_IRQ | \
1519                       GEN8_GT_VECS_IRQ | \
1520                       GEN8_GT_PM_IRQ | \
1521                       GEN8_GT_GUC_IRQ)
1522
1523         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1524                 gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1525                 if (likely(gt_iir[0]))
1526                         raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1527         }
1528
1529         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1530                 gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1531                 if (likely(gt_iir[1]))
1532                         raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1533         }
1534
1535         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1536                 gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1537                 if (likely(gt_iir[2]))
1538                         raw_reg_write(regs, GEN8_GT_IIR(2), gt_iir[2]);
1539         }
1540
1541         if (master_ctl & GEN8_GT_VECS_IRQ) {
1542                 gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1543                 if (likely(gt_iir[3]))
1544                         raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1545         }
1546 }
1547
1548 static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1549                                 u32 master_ctl, u32 gt_iir[4])
1550 {
1551         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1552                 gen8_cs_irq_handler(i915->engine[RCS],
1553                                     gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
1554                 gen8_cs_irq_handler(i915->engine[BCS],
1555                                     gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
1556         }
1557
1558         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1559                 gen8_cs_irq_handler(i915->engine[VCS],
1560                                     gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
1561                 gen8_cs_irq_handler(i915->engine[VCS2],
1562                                     gt_iir[1] >> GEN8_VCS2_IRQ_SHIFT);
1563         }
1564
1565         if (master_ctl & GEN8_GT_VECS_IRQ) {
1566                 gen8_cs_irq_handler(i915->engine[VECS],
1567                                     gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
1568         }
1569
1570         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1571                 gen6_rps_irq_handler(i915, gt_iir[2]);
1572                 gen9_guc_irq_handler(i915, gt_iir[2]);
1573         }
1574 }
1575
1576 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1577 {
1578         switch (pin) {
1579         case HPD_PORT_C:
1580                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1581         case HPD_PORT_D:
1582                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1583         case HPD_PORT_E:
1584                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1585         case HPD_PORT_F:
1586                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1587         default:
1588                 return false;
1589         }
1590 }
1591
1592 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1593 {
1594         switch (pin) {
1595         case HPD_PORT_A:
1596                 return val & PORTA_HOTPLUG_LONG_DETECT;
1597         case HPD_PORT_B:
1598                 return val & PORTB_HOTPLUG_LONG_DETECT;
1599         case HPD_PORT_C:
1600                 return val & PORTC_HOTPLUG_LONG_DETECT;
1601         default:
1602                 return false;
1603         }
1604 }
1605
1606 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1607 {
1608         switch (pin) {
1609         case HPD_PORT_A:
1610                 return val & ICP_DDIA_HPD_LONG_DETECT;
1611         case HPD_PORT_B:
1612                 return val & ICP_DDIB_HPD_LONG_DETECT;
1613         default:
1614                 return false;
1615         }
1616 }
1617
1618 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1619 {
1620         switch (pin) {
1621         case HPD_PORT_C:
1622                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1623         case HPD_PORT_D:
1624                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1625         case HPD_PORT_E:
1626                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1627         case HPD_PORT_F:
1628                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1629         default:
1630                 return false;
1631         }
1632 }
1633
1634 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1635 {
1636         switch (pin) {
1637         case HPD_PORT_E:
1638                 return val & PORTE_HOTPLUG_LONG_DETECT;
1639         default:
1640                 return false;
1641         }
1642 }
1643
1644 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1645 {
1646         switch (pin) {
1647         case HPD_PORT_A:
1648                 return val & PORTA_HOTPLUG_LONG_DETECT;
1649         case HPD_PORT_B:
1650                 return val & PORTB_HOTPLUG_LONG_DETECT;
1651         case HPD_PORT_C:
1652                 return val & PORTC_HOTPLUG_LONG_DETECT;
1653         case HPD_PORT_D:
1654                 return val & PORTD_HOTPLUG_LONG_DETECT;
1655         default:
1656                 return false;
1657         }
1658 }
1659
1660 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1661 {
1662         switch (pin) {
1663         case HPD_PORT_A:
1664                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1665         default:
1666                 return false;
1667         }
1668 }
1669
1670 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1671 {
1672         switch (pin) {
1673         case HPD_PORT_B:
1674                 return val & PORTB_HOTPLUG_LONG_DETECT;
1675         case HPD_PORT_C:
1676                 return val & PORTC_HOTPLUG_LONG_DETECT;
1677         case HPD_PORT_D:
1678                 return val & PORTD_HOTPLUG_LONG_DETECT;
1679         default:
1680                 return false;
1681         }
1682 }
1683
1684 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1685 {
1686         switch (pin) {
1687         case HPD_PORT_B:
1688                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1689         case HPD_PORT_C:
1690                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1691         case HPD_PORT_D:
1692                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1693         default:
1694                 return false;
1695         }
1696 }
1697
1698 /*
1699  * Get a bit mask of pins that have triggered, and which ones may be long.
1700  * This can be called multiple times with the same masks to accumulate
1701  * hotplug detection results from several registers.
1702  *
1703  * Note that the caller is expected to zero out the masks initially.
1704  */
1705 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1706                                u32 *pin_mask, u32 *long_mask,
1707                                u32 hotplug_trigger, u32 dig_hotplug_reg,
1708                                const u32 hpd[HPD_NUM_PINS],
1709                                bool long_pulse_detect(enum hpd_pin pin, u32 val))
1710 {
1711         enum hpd_pin pin;
1712
1713         for_each_hpd_pin(pin) {
1714                 if ((hpd[pin] & hotplug_trigger) == 0)
1715                         continue;
1716
1717                 *pin_mask |= BIT(pin);
1718
1719                 if (long_pulse_detect(pin, dig_hotplug_reg))
1720                         *long_mask |= BIT(pin);
1721         }
1722
1723         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1724                          hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1725
1726 }
1727
1728 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1729 {
1730         wake_up_all(&dev_priv->gmbus_wait_queue);
1731 }
1732
1733 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1734 {
1735         wake_up_all(&dev_priv->gmbus_wait_queue);
1736 }
1737
1738 #if defined(CONFIG_DEBUG_FS)
1739 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1740                                          enum pipe pipe,
1741                                          uint32_t crc0, uint32_t crc1,
1742                                          uint32_t crc2, uint32_t crc3,
1743                                          uint32_t crc4)
1744 {
1745         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1746         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1747         uint32_t crcs[5];
1748
1749         spin_lock(&pipe_crc->lock);
1750         /*
1751          * For some not yet identified reason, the first CRC is
1752          * bonkers. So let's just wait for the next vblank and read
1753          * out the buggy result.
1754          *
1755          * On GEN8+ sometimes the second CRC is bonkers as well, so
1756          * don't trust that one either.
1757          */
1758         if (pipe_crc->skipped <= 0 ||
1759             (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1760                 pipe_crc->skipped++;
1761                 spin_unlock(&pipe_crc->lock);
1762                 return;
1763         }
1764         spin_unlock(&pipe_crc->lock);
1765
1766         crcs[0] = crc0;
1767         crcs[1] = crc1;
1768         crcs[2] = crc2;
1769         crcs[3] = crc3;
1770         crcs[4] = crc4;
1771         drm_crtc_add_crc_entry(&crtc->base, true,
1772                                 drm_crtc_accurate_vblank_count(&crtc->base),
1773                                 crcs);
1774 }
1775 #else
1776 static inline void
1777 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1778                              enum pipe pipe,
1779                              uint32_t crc0, uint32_t crc1,
1780                              uint32_t crc2, uint32_t crc3,
1781                              uint32_t crc4) {}
1782 #endif
1783
1784
1785 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1786                                      enum pipe pipe)
1787 {
1788         display_pipe_crc_irq_handler(dev_priv, pipe,
1789                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1790                                      0, 0, 0, 0);
1791 }
1792
1793 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1794                                      enum pipe pipe)
1795 {
1796         display_pipe_crc_irq_handler(dev_priv, pipe,
1797                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1798                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1799                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1800                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1801                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1802 }
1803
1804 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1805                                       enum pipe pipe)
1806 {
1807         uint32_t res1, res2;
1808
1809         if (INTEL_GEN(dev_priv) >= 3)
1810                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1811         else
1812                 res1 = 0;
1813
1814         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1815                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1816         else
1817                 res2 = 0;
1818
1819         display_pipe_crc_irq_handler(dev_priv, pipe,
1820                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1821                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1822                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1823                                      res1, res2);
1824 }
1825
1826 /* The RPS events need forcewake, so we add them to a work queue and mask their
1827  * IMR bits until the work is done. Other interrupts can be processed without
1828  * the work queue. */
1829 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1830 {
1831         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1832
1833         if (pm_iir & dev_priv->pm_rps_events) {
1834                 spin_lock(&dev_priv->irq_lock);
1835                 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1836                 if (rps->interrupts_enabled) {
1837                         rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1838                         schedule_work(&rps->work);
1839                 }
1840                 spin_unlock(&dev_priv->irq_lock);
1841         }
1842
1843         if (INTEL_GEN(dev_priv) >= 8)
1844                 return;
1845
1846         if (HAS_VEBOX(dev_priv)) {
1847                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1848                         notify_ring(dev_priv->engine[VECS]);
1849
1850                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1851                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1852         }
1853 }
1854
1855 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1856 {
1857         if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
1858                 intel_guc_to_host_event_handler(&dev_priv->guc);
1859 }
1860
1861 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1862 {
1863         enum pipe pipe;
1864
1865         for_each_pipe(dev_priv, pipe) {
1866                 I915_WRITE(PIPESTAT(pipe),
1867                            PIPESTAT_INT_STATUS_MASK |
1868                            PIPE_FIFO_UNDERRUN_STATUS);
1869
1870                 dev_priv->pipestat_irq_mask[pipe] = 0;
1871         }
1872 }
1873
1874 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1875                                   u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1876 {
1877         int pipe;
1878
1879         spin_lock(&dev_priv->irq_lock);
1880
1881         if (!dev_priv->display_irqs_enabled) {
1882                 spin_unlock(&dev_priv->irq_lock);
1883                 return;
1884         }
1885
1886         for_each_pipe(dev_priv, pipe) {
1887                 i915_reg_t reg;
1888                 u32 status_mask, enable_mask, iir_bit = 0;
1889
1890                 /*
1891                  * PIPESTAT bits get signalled even when the interrupt is
1892                  * disabled with the mask bits, and some of the status bits do
1893                  * not generate interrupts at all (like the underrun bit). Hence
1894                  * we need to be careful that we only handle what we want to
1895                  * handle.
1896                  */
1897
1898                 /* fifo underruns are filterered in the underrun handler. */
1899                 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1900
1901                 switch (pipe) {
1902                 case PIPE_A:
1903                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1904                         break;
1905                 case PIPE_B:
1906                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1907                         break;
1908                 case PIPE_C:
1909                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1910                         break;
1911                 }
1912                 if (iir & iir_bit)
1913                         status_mask |= dev_priv->pipestat_irq_mask[pipe];
1914
1915                 if (!status_mask)
1916                         continue;
1917
1918                 reg = PIPESTAT(pipe);
1919                 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1920                 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1921
1922                 /*
1923                  * Clear the PIPE*STAT regs before the IIR
1924                  *
1925                  * Toggle the enable bits to make sure we get an
1926                  * edge in the ISR pipe event bit if we don't clear
1927                  * all the enabled status bits. Otherwise the edge
1928                  * triggered IIR on i965/g4x wouldn't notice that
1929                  * an interrupt is still pending.
1930                  */
1931                 if (pipe_stats[pipe]) {
1932                         I915_WRITE(reg, pipe_stats[pipe]);
1933                         I915_WRITE(reg, enable_mask);
1934                 }
1935         }
1936         spin_unlock(&dev_priv->irq_lock);
1937 }
1938
1939 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1940                                       u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1941 {
1942         enum pipe pipe;
1943
1944         for_each_pipe(dev_priv, pipe) {
1945                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1946                         drm_handle_vblank(&dev_priv->drm, pipe);
1947
1948                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1949                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1950
1951                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1952                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1953         }
1954 }
1955
1956 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1957                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1958 {
1959         bool blc_event = false;
1960         enum pipe pipe;
1961
1962         for_each_pipe(dev_priv, pipe) {
1963                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1964                         drm_handle_vblank(&dev_priv->drm, pipe);
1965
1966                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1967                         blc_event = true;
1968
1969                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1970                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1971
1972                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1973                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1974         }
1975
1976         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1977                 intel_opregion_asle_intr(dev_priv);
1978 }
1979
1980 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1981                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1982 {
1983         bool blc_event = false;
1984         enum pipe pipe;
1985
1986         for_each_pipe(dev_priv, pipe) {
1987                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1988                         drm_handle_vblank(&dev_priv->drm, pipe);
1989
1990                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1991                         blc_event = true;
1992
1993                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1994                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1995
1996                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1997                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1998         }
1999
2000         if (blc_event || (iir & I915_ASLE_INTERRUPT))
2001                 intel_opregion_asle_intr(dev_priv);
2002
2003         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2004                 gmbus_irq_handler(dev_priv);
2005 }
2006
2007 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2008                                             u32 pipe_stats[I915_MAX_PIPES])
2009 {
2010         enum pipe pipe;
2011
2012         for_each_pipe(dev_priv, pipe) {
2013                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2014                         drm_handle_vblank(&dev_priv->drm, pipe);
2015
2016                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2017                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2018
2019                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2020                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2021         }
2022
2023         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2024                 gmbus_irq_handler(dev_priv);
2025 }
2026
2027 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
2028 {
2029         u32 hotplug_status = 0, hotplug_status_mask;
2030         int i;
2031
2032         if (IS_G4X(dev_priv) ||
2033             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2034                 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
2035                         DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
2036         else
2037                 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
2038
2039         /*
2040          * We absolutely have to clear all the pending interrupt
2041          * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
2042          * interrupt bit won't have an edge, and the i965/g4x
2043          * edge triggered IIR will not notice that an interrupt
2044          * is still pending. We can't use PORT_HOTPLUG_EN to
2045          * guarantee the edge as the act of toggling the enable
2046          * bits can itself generate a new hotplug interrupt :(
2047          */
2048         for (i = 0; i < 10; i++) {
2049                 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
2050
2051                 if (tmp == 0)
2052                         return hotplug_status;
2053
2054                 hotplug_status |= tmp;
2055                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2056         }
2057
2058         WARN_ONCE(1,
2059                   "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
2060                   I915_READ(PORT_HOTPLUG_STAT));
2061
2062         return hotplug_status;
2063 }
2064
2065 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2066                                  u32 hotplug_status)
2067 {
2068         u32 pin_mask = 0, long_mask = 0;
2069
2070         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
2071             IS_CHERRYVIEW(dev_priv)) {
2072                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2073
2074                 if (hotplug_trigger) {
2075                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2076                                            hotplug_trigger, hotplug_trigger,
2077                                            hpd_status_g4x,
2078                                            i9xx_port_hotplug_long_detect);
2079
2080                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2081                 }
2082
2083                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2084                         dp_aux_irq_handler(dev_priv);
2085         } else {
2086                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2087
2088                 if (hotplug_trigger) {
2089                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2090                                            hotplug_trigger, hotplug_trigger,
2091                                            hpd_status_i915,
2092                                            i9xx_port_hotplug_long_detect);
2093                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2094                 }
2095         }
2096 }
2097
2098 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2099 {
2100         struct drm_device *dev = arg;
2101         struct drm_i915_private *dev_priv = to_i915(dev);
2102         irqreturn_t ret = IRQ_NONE;
2103
2104         if (!intel_irqs_enabled(dev_priv))
2105                 return IRQ_NONE;
2106
2107         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2108         disable_rpm_wakeref_asserts(dev_priv);
2109
2110         do {
2111                 u32 iir, gt_iir, pm_iir;
2112                 u32 pipe_stats[I915_MAX_PIPES] = {};
2113                 u32 hotplug_status = 0;
2114                 u32 ier = 0;
2115
2116                 gt_iir = I915_READ(GTIIR);
2117                 pm_iir = I915_READ(GEN6_PMIIR);
2118                 iir = I915_READ(VLV_IIR);
2119
2120                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2121                         break;
2122
2123                 ret = IRQ_HANDLED;
2124
2125                 /*
2126                  * Theory on interrupt generation, based on empirical evidence:
2127                  *
2128                  * x = ((VLV_IIR & VLV_IER) ||
2129                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2130                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2131                  *
2132                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2133                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2134                  * guarantee the CPU interrupt will be raised again even if we
2135                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2136                  * bits this time around.
2137                  */
2138                 I915_WRITE(VLV_MASTER_IER, 0);
2139                 ier = I915_READ(VLV_IER);
2140                 I915_WRITE(VLV_IER, 0);
2141
2142                 if (gt_iir)
2143                         I915_WRITE(GTIIR, gt_iir);
2144                 if (pm_iir)
2145                         I915_WRITE(GEN6_PMIIR, pm_iir);
2146
2147                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2148                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2149
2150                 /* Call regardless, as some status bits might not be
2151                  * signalled in iir */
2152                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2153
2154                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2155                            I915_LPE_PIPE_B_INTERRUPT))
2156                         intel_lpe_audio_irq_handler(dev_priv);
2157
2158                 /*
2159                  * VLV_IIR is single buffered, and reflects the level
2160                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2161                  */
2162                 if (iir)
2163                         I915_WRITE(VLV_IIR, iir);
2164
2165                 I915_WRITE(VLV_IER, ier);
2166                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2167
2168                 if (gt_iir)
2169                         snb_gt_irq_handler(dev_priv, gt_iir);
2170                 if (pm_iir)
2171                         gen6_rps_irq_handler(dev_priv, pm_iir);
2172
2173                 if (hotplug_status)
2174                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2175
2176                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2177         } while (0);
2178
2179         enable_rpm_wakeref_asserts(dev_priv);
2180
2181         return ret;
2182 }
2183
2184 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2185 {
2186         struct drm_device *dev = arg;
2187         struct drm_i915_private *dev_priv = to_i915(dev);
2188         irqreturn_t ret = IRQ_NONE;
2189
2190         if (!intel_irqs_enabled(dev_priv))
2191                 return IRQ_NONE;
2192
2193         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2194         disable_rpm_wakeref_asserts(dev_priv);
2195
2196         do {
2197                 u32 master_ctl, iir;
2198                 u32 pipe_stats[I915_MAX_PIPES] = {};
2199                 u32 hotplug_status = 0;
2200                 u32 gt_iir[4];
2201                 u32 ier = 0;
2202
2203                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2204                 iir = I915_READ(VLV_IIR);
2205
2206                 if (master_ctl == 0 && iir == 0)
2207                         break;
2208
2209                 ret = IRQ_HANDLED;
2210
2211                 /*
2212                  * Theory on interrupt generation, based on empirical evidence:
2213                  *
2214                  * x = ((VLV_IIR & VLV_IER) ||
2215                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2216                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2217                  *
2218                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2219                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2220                  * guarantee the CPU interrupt will be raised again even if we
2221                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2222                  * bits this time around.
2223                  */
2224                 I915_WRITE(GEN8_MASTER_IRQ, 0);
2225                 ier = I915_READ(VLV_IER);
2226                 I915_WRITE(VLV_IER, 0);
2227
2228                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2229
2230                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2231                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2232
2233                 /* Call regardless, as some status bits might not be
2234                  * signalled in iir */
2235                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2236
2237                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2238                            I915_LPE_PIPE_B_INTERRUPT |
2239                            I915_LPE_PIPE_C_INTERRUPT))
2240                         intel_lpe_audio_irq_handler(dev_priv);
2241
2242                 /*
2243                  * VLV_IIR is single buffered, and reflects the level
2244                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2245                  */
2246                 if (iir)
2247                         I915_WRITE(VLV_IIR, iir);
2248
2249                 I915_WRITE(VLV_IER, ier);
2250                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2251
2252                 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2253
2254                 if (hotplug_status)
2255                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2256
2257                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2258         } while (0);
2259
2260         enable_rpm_wakeref_asserts(dev_priv);
2261
2262         return ret;
2263 }
2264
2265 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2266                                 u32 hotplug_trigger,
2267                                 const u32 hpd[HPD_NUM_PINS])
2268 {
2269         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2270
2271         /*
2272          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2273          * unless we touch the hotplug register, even if hotplug_trigger is
2274          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2275          * errors.
2276          */
2277         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2278         if (!hotplug_trigger) {
2279                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2280                         PORTD_HOTPLUG_STATUS_MASK |
2281                         PORTC_HOTPLUG_STATUS_MASK |
2282                         PORTB_HOTPLUG_STATUS_MASK;
2283                 dig_hotplug_reg &= ~mask;
2284         }
2285
2286         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2287         if (!hotplug_trigger)
2288                 return;
2289
2290         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2291                            dig_hotplug_reg, hpd,
2292                            pch_port_hotplug_long_detect);
2293
2294         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2295 }
2296
2297 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2298 {
2299         int pipe;
2300         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2301
2302         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2303
2304         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2305                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2306                                SDE_AUDIO_POWER_SHIFT);
2307                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2308                                  port_name(port));
2309         }
2310
2311         if (pch_iir & SDE_AUX_MASK)
2312                 dp_aux_irq_handler(dev_priv);
2313
2314         if (pch_iir & SDE_GMBUS)
2315                 gmbus_irq_handler(dev_priv);
2316
2317         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2318                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2319
2320         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2321                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2322
2323         if (pch_iir & SDE_POISON)
2324                 DRM_ERROR("PCH poison interrupt\n");
2325
2326         if (pch_iir & SDE_FDI_MASK)
2327                 for_each_pipe(dev_priv, pipe)
2328                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2329                                          pipe_name(pipe),
2330                                          I915_READ(FDI_RX_IIR(pipe)));
2331
2332         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2333                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2334
2335         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2336                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2337
2338         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2339                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2340
2341         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2342                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2343 }
2344
2345 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2346 {
2347         u32 err_int = I915_READ(GEN7_ERR_INT);
2348         enum pipe pipe;
2349
2350         if (err_int & ERR_INT_POISON)
2351                 DRM_ERROR("Poison interrupt\n");
2352
2353         for_each_pipe(dev_priv, pipe) {
2354                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2355                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2356
2357                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2358                         if (IS_IVYBRIDGE(dev_priv))
2359                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2360                         else
2361                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2362                 }
2363         }
2364
2365         I915_WRITE(GEN7_ERR_INT, err_int);
2366 }
2367
2368 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2369 {
2370         u32 serr_int = I915_READ(SERR_INT);
2371         enum pipe pipe;
2372
2373         if (serr_int & SERR_INT_POISON)
2374                 DRM_ERROR("PCH poison interrupt\n");
2375
2376         for_each_pipe(dev_priv, pipe)
2377                 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2378                         intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2379
2380         I915_WRITE(SERR_INT, serr_int);
2381 }
2382
2383 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2384 {
2385         int pipe;
2386         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2387
2388         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2389
2390         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2391                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2392                                SDE_AUDIO_POWER_SHIFT_CPT);
2393                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2394                                  port_name(port));
2395         }
2396
2397         if (pch_iir & SDE_AUX_MASK_CPT)
2398                 dp_aux_irq_handler(dev_priv);
2399
2400         if (pch_iir & SDE_GMBUS_CPT)
2401                 gmbus_irq_handler(dev_priv);
2402
2403         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2404                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2405
2406         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2407                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2408
2409         if (pch_iir & SDE_FDI_MASK_CPT)
2410                 for_each_pipe(dev_priv, pipe)
2411                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2412                                          pipe_name(pipe),
2413                                          I915_READ(FDI_RX_IIR(pipe)));
2414
2415         if (pch_iir & SDE_ERROR_CPT)
2416                 cpt_serr_int_handler(dev_priv);
2417 }
2418
2419 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2420 {
2421         u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2422         u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2423         u32 pin_mask = 0, long_mask = 0;
2424
2425         if (ddi_hotplug_trigger) {
2426                 u32 dig_hotplug_reg;
2427
2428                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2429                 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2430
2431                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2432                                    ddi_hotplug_trigger,
2433                                    dig_hotplug_reg, hpd_icp,
2434                                    icp_ddi_port_hotplug_long_detect);
2435         }
2436
2437         if (tc_hotplug_trigger) {
2438                 u32 dig_hotplug_reg;
2439
2440                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2441                 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2442
2443                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2444                                    tc_hotplug_trigger,
2445                                    dig_hotplug_reg, hpd_icp,
2446                                    icp_tc_port_hotplug_long_detect);
2447         }
2448
2449         if (pin_mask)
2450                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2451
2452         if (pch_iir & SDE_GMBUS_ICP)
2453                 gmbus_irq_handler(dev_priv);
2454 }
2455
2456 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2457 {
2458         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2459                 ~SDE_PORTE_HOTPLUG_SPT;
2460         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2461         u32 pin_mask = 0, long_mask = 0;
2462
2463         if (hotplug_trigger) {
2464                 u32 dig_hotplug_reg;
2465
2466                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2467                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2468
2469                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2470                                    hotplug_trigger, dig_hotplug_reg, hpd_spt,
2471                                    spt_port_hotplug_long_detect);
2472         }
2473
2474         if (hotplug2_trigger) {
2475                 u32 dig_hotplug_reg;
2476
2477                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2478                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2479
2480                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2481                                    hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2482                                    spt_port_hotplug2_long_detect);
2483         }
2484
2485         if (pin_mask)
2486                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2487
2488         if (pch_iir & SDE_GMBUS_CPT)
2489                 gmbus_irq_handler(dev_priv);
2490 }
2491
2492 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2493                                 u32 hotplug_trigger,
2494                                 const u32 hpd[HPD_NUM_PINS])
2495 {
2496         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2497
2498         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2499         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2500
2501         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2502                            dig_hotplug_reg, hpd,
2503                            ilk_port_hotplug_long_detect);
2504
2505         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2506 }
2507
2508 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2509                                     u32 de_iir)
2510 {
2511         enum pipe pipe;
2512         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2513
2514         if (hotplug_trigger)
2515                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2516
2517         if (de_iir & DE_AUX_CHANNEL_A)
2518                 dp_aux_irq_handler(dev_priv);
2519
2520         if (de_iir & DE_GSE)
2521                 intel_opregion_asle_intr(dev_priv);
2522
2523         if (de_iir & DE_POISON)
2524                 DRM_ERROR("Poison interrupt\n");
2525
2526         for_each_pipe(dev_priv, pipe) {
2527                 if (de_iir & DE_PIPE_VBLANK(pipe))
2528                         drm_handle_vblank(&dev_priv->drm, pipe);
2529
2530                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2531                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2532
2533                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2534                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2535         }
2536
2537         /* check event from PCH */
2538         if (de_iir & DE_PCH_EVENT) {
2539                 u32 pch_iir = I915_READ(SDEIIR);
2540
2541                 if (HAS_PCH_CPT(dev_priv))
2542                         cpt_irq_handler(dev_priv, pch_iir);
2543                 else
2544                         ibx_irq_handler(dev_priv, pch_iir);
2545
2546                 /* should clear PCH hotplug event before clear CPU irq */
2547                 I915_WRITE(SDEIIR, pch_iir);
2548         }
2549
2550         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2551                 ironlake_rps_change_irq_handler(dev_priv);
2552 }
2553
2554 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2555                                     u32 de_iir)
2556 {
2557         enum pipe pipe;
2558         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2559
2560         if (hotplug_trigger)
2561                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2562
2563         if (de_iir & DE_ERR_INT_IVB)
2564                 ivb_err_int_handler(dev_priv);
2565
2566         if (de_iir & DE_EDP_PSR_INT_HSW) {
2567                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2568
2569                 intel_psr_irq_handler(dev_priv, psr_iir);
2570                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2571         }
2572
2573         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2574                 dp_aux_irq_handler(dev_priv);
2575
2576         if (de_iir & DE_GSE_IVB)
2577                 intel_opregion_asle_intr(dev_priv);
2578
2579         for_each_pipe(dev_priv, pipe) {
2580                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2581                         drm_handle_vblank(&dev_priv->drm, pipe);
2582         }
2583
2584         /* check event from PCH */
2585         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2586                 u32 pch_iir = I915_READ(SDEIIR);
2587
2588                 cpt_irq_handler(dev_priv, pch_iir);
2589
2590                 /* clear PCH hotplug event before clear CPU irq */
2591                 I915_WRITE(SDEIIR, pch_iir);
2592         }
2593 }
2594
2595 /*
2596  * To handle irqs with the minimum potential races with fresh interrupts, we:
2597  * 1 - Disable Master Interrupt Control.
2598  * 2 - Find the source(s) of the interrupt.
2599  * 3 - Clear the Interrupt Identity bits (IIR).
2600  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2601  * 5 - Re-enable Master Interrupt Control.
2602  */
2603 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2604 {
2605         struct drm_device *dev = arg;
2606         struct drm_i915_private *dev_priv = to_i915(dev);
2607         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2608         irqreturn_t ret = IRQ_NONE;
2609
2610         if (!intel_irqs_enabled(dev_priv))
2611                 return IRQ_NONE;
2612
2613         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2614         disable_rpm_wakeref_asserts(dev_priv);
2615
2616         /* disable master interrupt before clearing iir  */
2617         de_ier = I915_READ(DEIER);
2618         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2619
2620         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2621          * interrupts will will be stored on its back queue, and then we'll be
2622          * able to process them after we restore SDEIER (as soon as we restore
2623          * it, we'll get an interrupt if SDEIIR still has something to process
2624          * due to its back queue). */
2625         if (!HAS_PCH_NOP(dev_priv)) {
2626                 sde_ier = I915_READ(SDEIER);
2627                 I915_WRITE(SDEIER, 0);
2628         }
2629
2630         /* Find, clear, then process each source of interrupt */
2631
2632         gt_iir = I915_READ(GTIIR);
2633         if (gt_iir) {
2634                 I915_WRITE(GTIIR, gt_iir);
2635                 ret = IRQ_HANDLED;
2636                 if (INTEL_GEN(dev_priv) >= 6)
2637                         snb_gt_irq_handler(dev_priv, gt_iir);
2638                 else
2639                         ilk_gt_irq_handler(dev_priv, gt_iir);
2640         }
2641
2642         de_iir = I915_READ(DEIIR);
2643         if (de_iir) {
2644                 I915_WRITE(DEIIR, de_iir);
2645                 ret = IRQ_HANDLED;
2646                 if (INTEL_GEN(dev_priv) >= 7)
2647                         ivb_display_irq_handler(dev_priv, de_iir);
2648                 else
2649                         ilk_display_irq_handler(dev_priv, de_iir);
2650         }
2651
2652         if (INTEL_GEN(dev_priv) >= 6) {
2653                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2654                 if (pm_iir) {
2655                         I915_WRITE(GEN6_PMIIR, pm_iir);
2656                         ret = IRQ_HANDLED;
2657                         gen6_rps_irq_handler(dev_priv, pm_iir);
2658                 }
2659         }
2660
2661         I915_WRITE(DEIER, de_ier);
2662         if (!HAS_PCH_NOP(dev_priv))
2663                 I915_WRITE(SDEIER, sde_ier);
2664
2665         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2666         enable_rpm_wakeref_asserts(dev_priv);
2667
2668         return ret;
2669 }
2670
2671 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2672                                 u32 hotplug_trigger,
2673                                 const u32 hpd[HPD_NUM_PINS])
2674 {
2675         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2676
2677         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2678         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2679
2680         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2681                            dig_hotplug_reg, hpd,
2682                            bxt_port_hotplug_long_detect);
2683
2684         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2685 }
2686
2687 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2688 {
2689         u32 pin_mask = 0, long_mask = 0;
2690         u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2691         u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2692
2693         if (trigger_tc) {
2694                 u32 dig_hotplug_reg;
2695
2696                 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2697                 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2698
2699                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2700                                    dig_hotplug_reg, hpd_gen11,
2701                                    gen11_port_hotplug_long_detect);
2702         }
2703
2704         if (trigger_tbt) {
2705                 u32 dig_hotplug_reg;
2706
2707                 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2708                 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2709
2710                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2711                                    dig_hotplug_reg, hpd_gen11,
2712                                    gen11_port_hotplug_long_detect);
2713         }
2714
2715         if (pin_mask)
2716                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2717         else
2718                 DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2719 }
2720
2721 static irqreturn_t
2722 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2723 {
2724         irqreturn_t ret = IRQ_NONE;
2725         u32 iir;
2726         enum pipe pipe;
2727
2728         if (master_ctl & GEN8_DE_MISC_IRQ) {
2729                 iir = I915_READ(GEN8_DE_MISC_IIR);
2730                 if (iir) {
2731                         bool found = false;
2732
2733                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2734                         ret = IRQ_HANDLED;
2735
2736                         if (iir & GEN8_DE_MISC_GSE) {
2737                                 intel_opregion_asle_intr(dev_priv);
2738                                 found = true;
2739                         }
2740
2741                         if (iir & GEN8_DE_EDP_PSR) {
2742                                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2743
2744                                 intel_psr_irq_handler(dev_priv, psr_iir);
2745                                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2746                                 found = true;
2747                         }
2748
2749                         if (!found)
2750                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2751                 }
2752                 else
2753                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2754         }
2755
2756         if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2757                 iir = I915_READ(GEN11_DE_HPD_IIR);
2758                 if (iir) {
2759                         I915_WRITE(GEN11_DE_HPD_IIR, iir);
2760                         ret = IRQ_HANDLED;
2761                         gen11_hpd_irq_handler(dev_priv, iir);
2762                 } else {
2763                         DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2764                 }
2765         }
2766
2767         if (master_ctl & GEN8_DE_PORT_IRQ) {
2768                 iir = I915_READ(GEN8_DE_PORT_IIR);
2769                 if (iir) {
2770                         u32 tmp_mask;
2771                         bool found = false;
2772
2773                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2774                         ret = IRQ_HANDLED;
2775
2776                         tmp_mask = GEN8_AUX_CHANNEL_A;
2777                         if (INTEL_GEN(dev_priv) >= 9)
2778                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2779                                             GEN9_AUX_CHANNEL_C |
2780                                             GEN9_AUX_CHANNEL_D;
2781
2782                         if (INTEL_GEN(dev_priv) >= 11)
2783                                 tmp_mask |= ICL_AUX_CHANNEL_E;
2784
2785                         if (IS_CNL_WITH_PORT_F(dev_priv) ||
2786                             INTEL_GEN(dev_priv) >= 11)
2787                                 tmp_mask |= CNL_AUX_CHANNEL_F;
2788
2789                         if (iir & tmp_mask) {
2790                                 dp_aux_irq_handler(dev_priv);
2791                                 found = true;
2792                         }
2793
2794                         if (IS_GEN9_LP(dev_priv)) {
2795                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2796                                 if (tmp_mask) {
2797                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2798                                                             hpd_bxt);
2799                                         found = true;
2800                                 }
2801                         } else if (IS_BROADWELL(dev_priv)) {
2802                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2803                                 if (tmp_mask) {
2804                                         ilk_hpd_irq_handler(dev_priv,
2805                                                             tmp_mask, hpd_bdw);
2806                                         found = true;
2807                                 }
2808                         }
2809
2810                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2811                                 gmbus_irq_handler(dev_priv);
2812                                 found = true;
2813                         }
2814
2815                         if (!found)
2816                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2817                 }
2818                 else
2819                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2820         }
2821
2822         for_each_pipe(dev_priv, pipe) {
2823                 u32 fault_errors;
2824
2825                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2826                         continue;
2827
2828                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2829                 if (!iir) {
2830                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2831                         continue;
2832                 }
2833
2834                 ret = IRQ_HANDLED;
2835                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2836
2837                 if (iir & GEN8_PIPE_VBLANK)
2838                         drm_handle_vblank(&dev_priv->drm, pipe);
2839
2840                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2841                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2842
2843                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2844                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2845
2846                 fault_errors = iir;
2847                 if (INTEL_GEN(dev_priv) >= 9)
2848                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2849                 else
2850                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2851
2852                 if (fault_errors)
2853                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2854                                   pipe_name(pipe),
2855                                   fault_errors);
2856         }
2857
2858         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2859             master_ctl & GEN8_DE_PCH_IRQ) {
2860                 /*
2861                  * FIXME(BDW): Assume for now that the new interrupt handling
2862                  * scheme also closed the SDE interrupt handling race we've seen
2863                  * on older pch-split platforms. But this needs testing.
2864                  */
2865                 iir = I915_READ(SDEIIR);
2866                 if (iir) {
2867                         I915_WRITE(SDEIIR, iir);
2868                         ret = IRQ_HANDLED;
2869
2870                         if (HAS_PCH_ICP(dev_priv))
2871                                 icp_irq_handler(dev_priv, iir);
2872                         else if (HAS_PCH_SPT(dev_priv) ||
2873                                  HAS_PCH_KBP(dev_priv) ||
2874                                  HAS_PCH_CNP(dev_priv))
2875                                 spt_irq_handler(dev_priv, iir);
2876                         else
2877                                 cpt_irq_handler(dev_priv, iir);
2878                 } else {
2879                         /*
2880                          * Like on previous PCH there seems to be something
2881                          * fishy going on with forwarding PCH interrupts.
2882                          */
2883                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2884                 }
2885         }
2886
2887         return ret;
2888 }
2889
2890 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2891 {
2892         raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2893
2894         /*
2895          * Now with master disabled, get a sample of level indications
2896          * for this interrupt. Indications will be cleared on related acks.
2897          * New indications can and will light up during processing,
2898          * and will generate new interrupt after enabling master.
2899          */
2900         return raw_reg_read(regs, GEN8_MASTER_IRQ);
2901 }
2902
2903 static inline void gen8_master_intr_enable(void __iomem * const regs)
2904 {
2905         raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2906 }
2907
2908 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2909 {
2910         struct drm_i915_private *dev_priv = to_i915(arg);
2911         void __iomem * const regs = dev_priv->regs;
2912         u32 master_ctl;
2913         u32 gt_iir[4];
2914
2915         if (!intel_irqs_enabled(dev_priv))
2916                 return IRQ_NONE;
2917
2918         master_ctl = gen8_master_intr_disable(regs);
2919         if (!master_ctl) {
2920                 gen8_master_intr_enable(regs);
2921                 return IRQ_NONE;
2922         }
2923
2924         /* Find, clear, then process each source of interrupt */
2925         gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2926
2927         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2928         if (master_ctl & ~GEN8_GT_IRQS) {
2929                 disable_rpm_wakeref_asserts(dev_priv);
2930                 gen8_de_irq_handler(dev_priv, master_ctl);
2931                 enable_rpm_wakeref_asserts(dev_priv);
2932         }
2933
2934         gen8_master_intr_enable(regs);
2935
2936         gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2937
2938         return IRQ_HANDLED;
2939 }
2940
2941 struct wedge_me {
2942         struct delayed_work work;
2943         struct drm_i915_private *i915;
2944         const char *name;
2945 };
2946
2947 static void wedge_me(struct work_struct *work)
2948 {
2949         struct wedge_me *w = container_of(work, typeof(*w), work.work);
2950
2951         dev_err(w->i915->drm.dev,
2952                 "%s timed out, cancelling all in-flight rendering.\n",
2953                 w->name);
2954         i915_gem_set_wedged(w->i915);
2955 }
2956
2957 static void __init_wedge(struct wedge_me *w,
2958                          struct drm_i915_private *i915,
2959                          long timeout,
2960                          const char *name)
2961 {
2962         w->i915 = i915;
2963         w->name = name;
2964
2965         INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2966         schedule_delayed_work(&w->work, timeout);
2967 }
2968
2969 static void __fini_wedge(struct wedge_me *w)
2970 {
2971         cancel_delayed_work_sync(&w->work);
2972         destroy_delayed_work_on_stack(&w->work);
2973         w->i915 = NULL;
2974 }
2975
2976 #define i915_wedge_on_timeout(W, DEV, TIMEOUT)                          \
2977         for (__init_wedge((W), (DEV), (TIMEOUT), __func__);             \
2978              (W)->i915;                                                 \
2979              __fini_wedge((W)))
2980
2981 static u32
2982 gen11_gt_engine_identity(struct drm_i915_private * const i915,
2983                          const unsigned int bank, const unsigned int bit)
2984 {
2985         void __iomem * const regs = i915->regs;
2986         u32 timeout_ts;
2987         u32 ident;
2988
2989         lockdep_assert_held(&i915->irq_lock);
2990
2991         raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
2992
2993         /*
2994          * NB: Specs do not specify how long to spin wait,
2995          * so we do ~100us as an educated guess.
2996          */
2997         timeout_ts = (local_clock() >> 10) + 100;
2998         do {
2999                 ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
3000         } while (!(ident & GEN11_INTR_DATA_VALID) &&
3001                  !time_after32(local_clock() >> 10, timeout_ts));
3002
3003         if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
3004                 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
3005                           bank, bit, ident);
3006                 return 0;
3007         }
3008
3009         raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
3010                       GEN11_INTR_DATA_VALID);
3011
3012         return ident;
3013 }
3014
3015 static void
3016 gen11_other_irq_handler(struct drm_i915_private * const i915,
3017                         const u8 instance, const u16 iir)
3018 {
3019         if (instance == OTHER_GTPM_INSTANCE)
3020                 return gen6_rps_irq_handler(i915, iir);
3021
3022         WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
3023                   instance, iir);
3024 }
3025
3026 static void
3027 gen11_engine_irq_handler(struct drm_i915_private * const i915,
3028                          const u8 class, const u8 instance, const u16 iir)
3029 {
3030         struct intel_engine_cs *engine;
3031
3032         if (instance <= MAX_ENGINE_INSTANCE)
3033                 engine = i915->engine_class[class][instance];
3034         else
3035                 engine = NULL;
3036
3037         if (likely(engine))
3038                 return gen8_cs_irq_handler(engine, iir);
3039
3040         WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
3041                   class, instance);
3042 }
3043
3044 static void
3045 gen11_gt_identity_handler(struct drm_i915_private * const i915,
3046                           const u32 identity)
3047 {
3048         const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
3049         const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
3050         const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
3051
3052         if (unlikely(!intr))
3053                 return;
3054
3055         if (class <= COPY_ENGINE_CLASS)
3056                 return gen11_engine_irq_handler(i915, class, instance, intr);
3057
3058         if (class == OTHER_CLASS)
3059                 return gen11_other_irq_handler(i915, instance, intr);
3060
3061         WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
3062                   class, instance, intr);
3063 }
3064
3065 static void
3066 gen11_gt_bank_handler(struct drm_i915_private * const i915,
3067                       const unsigned int bank)
3068 {
3069         void __iomem * const regs = i915->regs;
3070         unsigned long intr_dw;
3071         unsigned int bit;
3072
3073         lockdep_assert_held(&i915->irq_lock);
3074
3075         intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
3076
3077         if (unlikely(!intr_dw)) {
3078                 DRM_ERROR("GT_INTR_DW%u blank!\n", bank);
3079                 return;
3080         }
3081
3082         for_each_set_bit(bit, &intr_dw, 32) {
3083                 const u32 ident = gen11_gt_engine_identity(i915,
3084                                                            bank, bit);
3085
3086                 gen11_gt_identity_handler(i915, ident);
3087         }
3088
3089         /* Clear must be after shared has been served for engine */
3090         raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
3091 }
3092
3093 static void
3094 gen11_gt_irq_handler(struct drm_i915_private * const i915,
3095                      const u32 master_ctl)
3096 {
3097         unsigned int bank;
3098
3099         spin_lock(&i915->irq_lock);
3100
3101         for (bank = 0; bank < 2; bank++) {
3102                 if (master_ctl & GEN11_GT_DW_IRQ(bank))
3103                         gen11_gt_bank_handler(i915, bank);
3104         }
3105
3106         spin_unlock(&i915->irq_lock);
3107 }
3108
3109 static u32
3110 gen11_gu_misc_irq_ack(struct drm_i915_private *dev_priv, const u32 master_ctl)
3111 {
3112         void __iomem * const regs = dev_priv->regs;
3113         u32 iir;
3114
3115         if (!(master_ctl & GEN11_GU_MISC_IRQ))
3116                 return 0;
3117
3118         iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
3119         if (likely(iir))
3120                 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
3121
3122         return iir;
3123 }
3124
3125 static void
3126 gen11_gu_misc_irq_handler(struct drm_i915_private *dev_priv, const u32 iir)
3127 {
3128         if (iir & GEN11_GU_MISC_GSE)
3129                 intel_opregion_asle_intr(dev_priv);
3130 }
3131
3132 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
3133 {
3134         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
3135
3136         /*
3137          * Now with master disabled, get a sample of level indications
3138          * for this interrupt. Indications will be cleared on related acks.
3139          * New indications can and will light up during processing,
3140          * and will generate new interrupt after enabling master.
3141          */
3142         return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
3143 }
3144
3145 static inline void gen11_master_intr_enable(void __iomem * const regs)
3146 {
3147         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
3148 }
3149
3150 static irqreturn_t gen11_irq_handler(int irq, void *arg)
3151 {
3152         struct drm_i915_private * const i915 = to_i915(arg);
3153         void __iomem * const regs = i915->regs;
3154         u32 master_ctl;
3155         u32 gu_misc_iir;
3156
3157         if (!intel_irqs_enabled(i915))
3158                 return IRQ_NONE;
3159
3160         master_ctl = gen11_master_intr_disable(regs);
3161         if (!master_ctl) {
3162                 gen11_master_intr_enable(regs);
3163                 return IRQ_NONE;
3164         }
3165
3166         /* Find, clear, then process each source of interrupt. */
3167         gen11_gt_irq_handler(i915, master_ctl);
3168
3169         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3170         if (master_ctl & GEN11_DISPLAY_IRQ) {
3171                 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
3172
3173                 disable_rpm_wakeref_asserts(i915);
3174                 /*
3175                  * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
3176                  * for the display related bits.
3177                  */
3178                 gen8_de_irq_handler(i915, disp_ctl);
3179                 enable_rpm_wakeref_asserts(i915);
3180         }
3181
3182         gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
3183
3184         gen11_master_intr_enable(regs);
3185
3186         gen11_gu_misc_irq_handler(i915, gu_misc_iir);
3187
3188         return IRQ_HANDLED;
3189 }
3190
3191 static void i915_reset_device(struct drm_i915_private *dev_priv,
3192                               u32 engine_mask,
3193                               const char *reason)
3194 {
3195         struct i915_gpu_error *error = &dev_priv->gpu_error;
3196         struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
3197         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
3198         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
3199         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
3200         struct wedge_me w;
3201
3202         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
3203
3204         DRM_DEBUG_DRIVER("resetting chip\n");
3205         kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
3206
3207         /* Use a watchdog to ensure that our reset completes */
3208         i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
3209                 intel_prepare_reset(dev_priv);
3210
3211                 error->reason = reason;
3212                 error->stalled_mask = engine_mask;
3213
3214                 /* Signal that locked waiters should reset the GPU */
3215                 smp_mb__before_atomic();
3216                 set_bit(I915_RESET_HANDOFF, &error->flags);
3217                 wake_up_all(&error->wait_queue);
3218
3219                 /* Wait for anyone holding the lock to wakeup, without
3220                  * blocking indefinitely on struct_mutex.
3221                  */
3222                 do {
3223                         if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
3224                                 i915_reset(dev_priv, engine_mask, reason);
3225                                 mutex_unlock(&dev_priv->drm.struct_mutex);
3226                         }
3227                 } while (wait_on_bit_timeout(&error->flags,
3228                                              I915_RESET_HANDOFF,
3229                                              TASK_UNINTERRUPTIBLE,
3230                                              1));
3231
3232                 error->stalled_mask = 0;
3233                 error->reason = NULL;
3234
3235                 intel_finish_reset(dev_priv);
3236         }
3237
3238         if (!test_bit(I915_WEDGED, &error->flags))
3239                 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
3240 }
3241
3242 void i915_clear_error_registers(struct drm_i915_private *dev_priv)
3243 {
3244         u32 eir;
3245
3246         if (!IS_GEN2(dev_priv))
3247                 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
3248
3249         if (INTEL_GEN(dev_priv) < 4)
3250                 I915_WRITE(IPEIR, I915_READ(IPEIR));
3251         else
3252                 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
3253
3254         I915_WRITE(EIR, I915_READ(EIR));
3255         eir = I915_READ(EIR);
3256         if (eir) {
3257                 /*
3258                  * some errors might have become stuck,
3259                  * mask them.
3260                  */
3261                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
3262                 I915_WRITE(EMR, I915_READ(EMR) | eir);
3263                 I915_WRITE(IIR, I915_MASTER_ERROR_INTERRUPT);
3264         }
3265
3266         if (INTEL_GEN(dev_priv) >= 8) {
3267                 I915_WRITE(GEN8_RING_FAULT_REG,
3268                            I915_READ(GEN8_RING_FAULT_REG) & ~RING_FAULT_VALID);
3269                 POSTING_READ(GEN8_RING_FAULT_REG);
3270         } else if (INTEL_GEN(dev_priv) >= 6) {
3271                 struct intel_engine_cs *engine;
3272                 enum intel_engine_id id;
3273
3274                 for_each_engine(engine, dev_priv, id) {
3275                         I915_WRITE(RING_FAULT_REG(engine),
3276                                    I915_READ(RING_FAULT_REG(engine)) &
3277                                    ~RING_FAULT_VALID);
3278                 }
3279                 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
3280         }
3281 }
3282
3283 /**
3284  * i915_handle_error - handle a gpu error
3285  * @dev_priv: i915 device private
3286  * @engine_mask: mask representing engines that are hung
3287  * @flags: control flags
3288  * @fmt: Error message format string
3289  *
3290  * Do some basic checking of register state at error time and
3291  * dump it to the syslog.  Also call i915_capture_error_state() to make
3292  * sure we get a record and make it available in debugfs.  Fire a uevent
3293  * so userspace knows something bad happened (should trigger collection
3294  * of a ring dump etc.).
3295  */
3296 void i915_handle_error(struct drm_i915_private *dev_priv,
3297                        u32 engine_mask,
3298                        unsigned long flags,
3299                        const char *fmt, ...)
3300 {
3301         struct intel_engine_cs *engine;
3302         unsigned int tmp;
3303         char error_msg[80];
3304         char *msg = NULL;
3305
3306         if (fmt) {
3307                 va_list args;
3308
3309                 va_start(args, fmt);
3310                 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
3311                 va_end(args);
3312
3313                 msg = error_msg;
3314         }
3315
3316         /*
3317          * In most cases it's guaranteed that we get here with an RPM
3318          * reference held, for example because there is a pending GPU
3319          * request that won't finish until the reset is done. This
3320          * isn't the case at least when we get here by doing a
3321          * simulated reset via debugfs, so get an RPM reference.
3322          */
3323         intel_runtime_pm_get(dev_priv);
3324
3325         engine_mask &= INTEL_INFO(dev_priv)->ring_mask;
3326
3327         if (flags & I915_ERROR_CAPTURE) {
3328                 i915_capture_error_state(dev_priv, engine_mask, msg);
3329                 i915_clear_error_registers(dev_priv);
3330         }
3331
3332         /*
3333          * Try engine reset when available. We fall back to full reset if
3334          * single reset fails.
3335          */
3336         if (intel_has_reset_engine(dev_priv) &&
3337             !i915_terminally_wedged(&dev_priv->gpu_error)) {
3338                 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
3339                         BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
3340                         if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3341                                              &dev_priv->gpu_error.flags))
3342                                 continue;
3343
3344                         if (i915_reset_engine(engine, msg) == 0)
3345                                 engine_mask &= ~intel_engine_flag(engine);
3346
3347                         clear_bit(I915_RESET_ENGINE + engine->id,
3348                                   &dev_priv->gpu_error.flags);
3349                         wake_up_bit(&dev_priv->gpu_error.flags,
3350                                     I915_RESET_ENGINE + engine->id);
3351                 }
3352         }
3353
3354         if (!engine_mask)
3355                 goto out;
3356
3357         /* Full reset needs the mutex, stop any other user trying to do so. */
3358         if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
3359                 wait_event(dev_priv->gpu_error.reset_queue,
3360                            !test_bit(I915_RESET_BACKOFF,
3361                                      &dev_priv->gpu_error.flags));
3362                 goto out;
3363         }
3364
3365         /* Prevent any other reset-engine attempt. */
3366         for_each_engine(engine, dev_priv, tmp) {
3367                 while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3368                                         &dev_priv->gpu_error.flags))
3369                         wait_on_bit(&dev_priv->gpu_error.flags,
3370                                     I915_RESET_ENGINE + engine->id,
3371                                     TASK_UNINTERRUPTIBLE);
3372         }
3373
3374         i915_reset_device(dev_priv, engine_mask, msg);
3375
3376         for_each_engine(engine, dev_priv, tmp) {
3377                 clear_bit(I915_RESET_ENGINE + engine->id,
3378                           &dev_priv->gpu_error.flags);
3379         }
3380
3381         clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
3382         wake_up_all(&dev_priv->gpu_error.reset_queue);
3383
3384 out:
3385         intel_runtime_pm_put(dev_priv);
3386 }
3387
3388 /* Called from drm generic code, passed 'crtc' which
3389  * we use as a pipe index
3390  */
3391 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
3392 {
3393         struct drm_i915_private *dev_priv = to_i915(dev);
3394         unsigned long irqflags;
3395
3396         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3397         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3398         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3399
3400         return 0;
3401 }
3402
3403 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
3404 {
3405         struct drm_i915_private *dev_priv = to_i915(dev);
3406         unsigned long irqflags;
3407
3408         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3409         i915_enable_pipestat(dev_priv, pipe,
3410                              PIPE_START_VBLANK_INTERRUPT_STATUS);
3411         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3412
3413         return 0;
3414 }
3415
3416 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3417 {
3418         struct drm_i915_private *dev_priv = to_i915(dev);
3419         unsigned long irqflags;
3420         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3421                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3422
3423         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3424         ilk_enable_display_irq(dev_priv, bit);
3425         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3426
3427         /* Even though there is no DMC, frame counter can get stuck when
3428          * PSR is active as no frames are generated.
3429          */
3430         if (HAS_PSR(dev_priv))
3431                 drm_vblank_restore(dev, pipe);
3432
3433         return 0;
3434 }
3435
3436 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
3437 {
3438         struct drm_i915_private *dev_priv = to_i915(dev);
3439         unsigned long irqflags;
3440
3441         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3442         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3443         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3444
3445         /* Even if there is no DMC, frame counter can get stuck when
3446          * PSR is active as no frames are generated, so check only for PSR.
3447          */
3448         if (HAS_PSR(dev_priv))
3449                 drm_vblank_restore(dev, pipe);
3450
3451         return 0;
3452 }
3453
3454 /* Called from drm generic code, passed 'crtc' which
3455  * we use as a pipe index
3456  */
3457 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
3458 {
3459         struct drm_i915_private *dev_priv = to_i915(dev);
3460         unsigned long irqflags;
3461
3462         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3463         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3464         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3465 }
3466
3467 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
3468 {
3469         struct drm_i915_private *dev_priv = to_i915(dev);
3470         unsigned long irqflags;
3471
3472         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3473         i915_disable_pipestat(dev_priv, pipe,
3474                               PIPE_START_VBLANK_INTERRUPT_STATUS);
3475         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3476 }
3477
3478 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3479 {
3480         struct drm_i915_private *dev_priv = to_i915(dev);
3481         unsigned long irqflags;
3482         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3483                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3484
3485         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3486         ilk_disable_display_irq(dev_priv, bit);
3487         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3488 }
3489
3490 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3491 {
3492         struct drm_i915_private *dev_priv = to_i915(dev);
3493         unsigned long irqflags;
3494
3495         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3496         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3497         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3498 }
3499
3500 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3501 {
3502         if (HAS_PCH_NOP(dev_priv))
3503                 return;
3504
3505         GEN3_IRQ_RESET(SDE);
3506
3507         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3508                 I915_WRITE(SERR_INT, 0xffffffff);
3509 }
3510
3511 /*
3512  * SDEIER is also touched by the interrupt handler to work around missed PCH
3513  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3514  * instead we unconditionally enable all PCH interrupt sources here, but then
3515  * only unmask them as needed with SDEIMR.
3516  *
3517  * This function needs to be called before interrupts are enabled.
3518  */
3519 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3520 {
3521         struct drm_i915_private *dev_priv = to_i915(dev);
3522
3523         if (HAS_PCH_NOP(dev_priv))
3524                 return;
3525
3526         WARN_ON(I915_READ(SDEIER) != 0);
3527         I915_WRITE(SDEIER, 0xffffffff);
3528         POSTING_READ(SDEIER);
3529 }
3530
3531 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3532 {
3533         GEN3_IRQ_RESET(GT);
3534         if (INTEL_GEN(dev_priv) >= 6)
3535                 GEN3_IRQ_RESET(GEN6_PM);
3536 }
3537
3538 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3539 {
3540         if (IS_CHERRYVIEW(dev_priv))
3541                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3542         else
3543                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3544
3545         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3546         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3547
3548         i9xx_pipestat_irq_reset(dev_priv);
3549
3550         GEN3_IRQ_RESET(VLV_);
3551         dev_priv->irq_mask = ~0u;
3552 }
3553
3554 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3555 {
3556         u32 pipestat_mask;
3557         u32 enable_mask;
3558         enum pipe pipe;
3559
3560         pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3561
3562         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3563         for_each_pipe(dev_priv, pipe)
3564                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3565
3566         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3567                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3568                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3569                 I915_LPE_PIPE_A_INTERRUPT |
3570                 I915_LPE_PIPE_B_INTERRUPT;
3571
3572         if (IS_CHERRYVIEW(dev_priv))
3573                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3574                         I915_LPE_PIPE_C_INTERRUPT;
3575
3576         WARN_ON(dev_priv->irq_mask != ~0u);
3577
3578         dev_priv->irq_mask = ~enable_mask;
3579
3580         GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3581 }
3582
3583 /* drm_dma.h hooks
3584 */
3585 static void ironlake_irq_reset(struct drm_device *dev)
3586 {
3587         struct drm_i915_private *dev_priv = to_i915(dev);
3588
3589         if (IS_GEN5(dev_priv))
3590                 I915_WRITE(HWSTAM, 0xffffffff);
3591
3592         GEN3_IRQ_RESET(DE);
3593         if (IS_GEN7(dev_priv))
3594                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3595
3596         if (IS_HASWELL(dev_priv)) {
3597                 I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3598                 I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3599         }
3600
3601         gen5_gt_irq_reset(dev_priv);
3602
3603         ibx_irq_reset(dev_priv);
3604 }
3605
3606 static void valleyview_irq_reset(struct drm_device *dev)
3607 {
3608         struct drm_i915_private *dev_priv = to_i915(dev);
3609
3610         I915_WRITE(VLV_MASTER_IER, 0);
3611         POSTING_READ(VLV_MASTER_IER);
3612
3613         gen5_gt_irq_reset(dev_priv);
3614
3615         spin_lock_irq(&dev_priv->irq_lock);
3616         if (dev_priv->display_irqs_enabled)
3617                 vlv_display_irq_reset(dev_priv);
3618         spin_unlock_irq(&dev_priv->irq_lock);
3619 }
3620
3621 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3622 {
3623         GEN8_IRQ_RESET_NDX(GT, 0);
3624         GEN8_IRQ_RESET_NDX(GT, 1);
3625         GEN8_IRQ_RESET_NDX(GT, 2);
3626         GEN8_IRQ_RESET_NDX(GT, 3);
3627 }
3628
3629 static void gen8_irq_reset(struct drm_device *dev)
3630 {
3631         struct drm_i915_private *dev_priv = to_i915(dev);
3632         int pipe;
3633
3634         gen8_master_intr_disable(dev_priv->regs);
3635
3636         gen8_gt_irq_reset(dev_priv);
3637
3638         I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3639         I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3640
3641         for_each_pipe(dev_priv, pipe)
3642                 if (intel_display_power_is_enabled(dev_priv,
3643                                                    POWER_DOMAIN_PIPE(pipe)))
3644                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3645
3646         GEN3_IRQ_RESET(GEN8_DE_PORT_);
3647         GEN3_IRQ_RESET(GEN8_DE_MISC_);
3648         GEN3_IRQ_RESET(GEN8_PCU_);
3649
3650         if (HAS_PCH_SPLIT(dev_priv))
3651                 ibx_irq_reset(dev_priv);
3652 }
3653
3654 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
3655 {
3656         /* Disable RCS, BCS, VCS and VECS class engines. */
3657         I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
3658         I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    0);
3659
3660         /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3661         I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~0);
3662         I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~0);
3663         I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~0);
3664         I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~0);
3665         I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0);
3666
3667         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
3668         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
3669 }
3670
3671 static void gen11_irq_reset(struct drm_device *dev)
3672 {
3673         struct drm_i915_private *dev_priv = dev->dev_private;
3674         int pipe;
3675
3676         gen11_master_intr_disable(dev_priv->regs);
3677
3678         gen11_gt_irq_reset(dev_priv);
3679
3680         I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
3681
3682         I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3683         I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3684
3685         for_each_pipe(dev_priv, pipe)
3686                 if (intel_display_power_is_enabled(dev_priv,
3687                                                    POWER_DOMAIN_PIPE(pipe)))
3688                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3689
3690         GEN3_IRQ_RESET(GEN8_DE_PORT_);
3691         GEN3_IRQ_RESET(GEN8_DE_MISC_);
3692         GEN3_IRQ_RESET(GEN11_DE_HPD_);
3693         GEN3_IRQ_RESET(GEN11_GU_MISC_);
3694         GEN3_IRQ_RESET(GEN8_PCU_);
3695
3696         if (HAS_PCH_ICP(dev_priv))
3697                 GEN3_IRQ_RESET(SDE);
3698 }
3699
3700 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3701                                      u8 pipe_mask)
3702 {
3703         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3704         enum pipe pipe;
3705
3706         spin_lock_irq(&dev_priv->irq_lock);
3707
3708         if (!intel_irqs_enabled(dev_priv)) {
3709                 spin_unlock_irq(&dev_priv->irq_lock);
3710                 return;
3711         }
3712
3713         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3714                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3715                                   dev_priv->de_irq_mask[pipe],
3716                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3717
3718         spin_unlock_irq(&dev_priv->irq_lock);
3719 }
3720
3721 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3722                                      u8 pipe_mask)
3723 {
3724         enum pipe pipe;
3725
3726         spin_lock_irq(&dev_priv->irq_lock);
3727
3728         if (!intel_irqs_enabled(dev_priv)) {
3729                 spin_unlock_irq(&dev_priv->irq_lock);
3730                 return;
3731         }
3732
3733         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3734                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3735
3736         spin_unlock_irq(&dev_priv->irq_lock);
3737
3738         /* make sure we're done processing display irqs */
3739         synchronize_irq(dev_priv->drm.irq);
3740 }
3741
3742 static void cherryview_irq_reset(struct drm_device *dev)
3743 {
3744         struct drm_i915_private *dev_priv = to_i915(dev);
3745
3746         I915_WRITE(GEN8_MASTER_IRQ, 0);
3747         POSTING_READ(GEN8_MASTER_IRQ);
3748
3749         gen8_gt_irq_reset(dev_priv);
3750
3751         GEN3_IRQ_RESET(GEN8_PCU_);
3752
3753         spin_lock_irq(&dev_priv->irq_lock);
3754         if (dev_priv->display_irqs_enabled)
3755                 vlv_display_irq_reset(dev_priv);
3756         spin_unlock_irq(&dev_priv->irq_lock);
3757 }
3758
3759 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3760                                   const u32 hpd[HPD_NUM_PINS])
3761 {
3762         struct intel_encoder *encoder;
3763         u32 enabled_irqs = 0;
3764
3765         for_each_intel_encoder(&dev_priv->drm, encoder)
3766                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3767                         enabled_irqs |= hpd[encoder->hpd_pin];
3768
3769         return enabled_irqs;
3770 }
3771
3772 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3773 {
3774         u32 hotplug;
3775
3776         /*
3777          * Enable digital hotplug on the PCH, and configure the DP short pulse
3778          * duration to 2ms (which is the minimum in the Display Port spec).
3779          * The pulse duration bits are reserved on LPT+.
3780          */
3781         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3782         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3783                      PORTC_PULSE_DURATION_MASK |
3784                      PORTD_PULSE_DURATION_MASK);
3785         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3786         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3787         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3788         /*
3789          * When CPU and PCH are on the same package, port A
3790          * HPD must be enabled in both north and south.
3791          */
3792         if (HAS_PCH_LPT_LP(dev_priv))
3793                 hotplug |= PORTA_HOTPLUG_ENABLE;
3794         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3795 }
3796
3797 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3798 {
3799         u32 hotplug_irqs, enabled_irqs;
3800
3801         if (HAS_PCH_IBX(dev_priv)) {
3802                 hotplug_irqs = SDE_HOTPLUG_MASK;
3803                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3804         } else {
3805                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3806                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3807         }
3808
3809         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3810
3811         ibx_hpd_detection_setup(dev_priv);
3812 }
3813
3814 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv)
3815 {
3816         u32 hotplug;
3817
3818         hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3819         hotplug |= ICP_DDIA_HPD_ENABLE |
3820                    ICP_DDIB_HPD_ENABLE;
3821         I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3822
3823         hotplug = I915_READ(SHOTPLUG_CTL_TC);
3824         hotplug |= ICP_TC_HPD_ENABLE(PORT_TC1) |
3825                    ICP_TC_HPD_ENABLE(PORT_TC2) |
3826                    ICP_TC_HPD_ENABLE(PORT_TC3) |
3827                    ICP_TC_HPD_ENABLE(PORT_TC4);
3828         I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3829 }
3830
3831 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3832 {
3833         u32 hotplug_irqs, enabled_irqs;
3834
3835         hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3836         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3837
3838         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3839
3840         icp_hpd_detection_setup(dev_priv);
3841 }
3842
3843 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3844 {
3845         u32 hotplug;
3846
3847         hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3848         hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3849                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3850                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3851                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3852         I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3853
3854         hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3855         hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3856                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3857                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3858                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3859         I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3860 }
3861
3862 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3863 {
3864         u32 hotplug_irqs, enabled_irqs;
3865         u32 val;
3866
3867         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_gen11);
3868         hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3869
3870         val = I915_READ(GEN11_DE_HPD_IMR);
3871         val &= ~hotplug_irqs;
3872         I915_WRITE(GEN11_DE_HPD_IMR, val);
3873         POSTING_READ(GEN11_DE_HPD_IMR);
3874
3875         gen11_hpd_detection_setup(dev_priv);
3876
3877         if (HAS_PCH_ICP(dev_priv))
3878                 icp_hpd_irq_setup(dev_priv);
3879 }
3880
3881 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3882 {
3883         u32 val, hotplug;
3884
3885         /* Display WA #1179 WaHardHangonHotPlug: cnp */
3886         if (HAS_PCH_CNP(dev_priv)) {
3887                 val = I915_READ(SOUTH_CHICKEN1);
3888                 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3889                 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3890                 I915_WRITE(SOUTH_CHICKEN1, val);
3891         }
3892
3893         /* Enable digital hotplug on the PCH */
3894         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3895         hotplug |= PORTA_HOTPLUG_ENABLE |
3896                    PORTB_HOTPLUG_ENABLE |
3897                    PORTC_HOTPLUG_ENABLE |
3898                    PORTD_HOTPLUG_ENABLE;
3899         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3900
3901         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3902         hotplug |= PORTE_HOTPLUG_ENABLE;
3903         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3904 }
3905
3906 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3907 {
3908         u32 hotplug_irqs, enabled_irqs;
3909
3910         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3911         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3912
3913         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3914
3915         spt_hpd_detection_setup(dev_priv);
3916 }
3917
3918 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3919 {
3920         u32 hotplug;
3921
3922         /*
3923          * Enable digital hotplug on the CPU, and configure the DP short pulse
3924          * duration to 2ms (which is the minimum in the Display Port spec)
3925          * The pulse duration bits are reserved on HSW+.
3926          */
3927         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3928         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3929         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3930                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3931         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3932 }
3933
3934 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3935 {
3936         u32 hotplug_irqs, enabled_irqs;
3937
3938         if (INTEL_GEN(dev_priv) >= 8) {
3939                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3940                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3941
3942                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3943         } else if (INTEL_GEN(dev_priv) >= 7) {
3944                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3945                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3946
3947                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3948         } else {
3949                 hotplug_irqs = DE_DP_A_HOTPLUG;
3950                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3951
3952                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3953         }
3954
3955         ilk_hpd_detection_setup(dev_priv);
3956
3957         ibx_hpd_irq_setup(dev_priv);
3958 }
3959
3960 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3961                                       u32 enabled_irqs)
3962 {
3963         u32 hotplug;
3964
3965         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3966         hotplug |= PORTA_HOTPLUG_ENABLE |
3967                    PORTB_HOTPLUG_ENABLE |
3968                    PORTC_HOTPLUG_ENABLE;
3969
3970         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3971                       hotplug, enabled_irqs);
3972         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3973
3974         /*
3975          * For BXT invert bit has to be set based on AOB design
3976          * for HPD detection logic, update it based on VBT fields.
3977          */
3978         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3979             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3980                 hotplug |= BXT_DDIA_HPD_INVERT;
3981         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3982             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3983                 hotplug |= BXT_DDIB_HPD_INVERT;
3984         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3985             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3986                 hotplug |= BXT_DDIC_HPD_INVERT;
3987
3988         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3989 }
3990
3991 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3992 {
3993         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3994 }
3995
3996 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3997 {
3998         u32 hotplug_irqs, enabled_irqs;
3999
4000         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
4001         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
4002
4003         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
4004
4005         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
4006 }
4007
4008 static void ibx_irq_postinstall(struct drm_device *dev)
4009 {
4010         struct drm_i915_private *dev_priv = to_i915(dev);
4011         u32 mask;
4012
4013         if (HAS_PCH_NOP(dev_priv))
4014                 return;
4015
4016         if (HAS_PCH_IBX(dev_priv))
4017                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
4018         else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
4019                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
4020         else
4021                 mask = SDE_GMBUS_CPT;
4022
4023         gen3_assert_iir_is_zero(dev_priv, SDEIIR);
4024         I915_WRITE(SDEIMR, ~mask);
4025
4026         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
4027             HAS_PCH_LPT(dev_priv))
4028                 ibx_hpd_detection_setup(dev_priv);
4029         else
4030                 spt_hpd_detection_setup(dev_priv);
4031 }
4032
4033 static void gen5_gt_irq_postinstall(struct drm_device *dev)
4034 {
4035         struct drm_i915_private *dev_priv = to_i915(dev);
4036         u32 pm_irqs, gt_irqs;
4037
4038         pm_irqs = gt_irqs = 0;
4039
4040         dev_priv->gt_irq_mask = ~0;
4041         if (HAS_L3_DPF(dev_priv)) {
4042                 /* L3 parity interrupt is always unmasked. */
4043                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
4044                 gt_irqs |= GT_PARITY_ERROR(dev_priv);
4045         }
4046
4047         gt_irqs |= GT_RENDER_USER_INTERRUPT;
4048         if (IS_GEN5(dev_priv)) {
4049                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
4050         } else {
4051                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
4052         }
4053
4054         GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
4055
4056         if (INTEL_GEN(dev_priv) >= 6) {
4057                 /*
4058                  * RPS interrupts will get enabled/disabled on demand when RPS
4059                  * itself is enabled/disabled.
4060                  */
4061                 if (HAS_VEBOX(dev_priv)) {
4062                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
4063                         dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
4064                 }
4065
4066                 dev_priv->pm_imr = 0xffffffff;
4067                 GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
4068         }
4069 }
4070
4071 static int ironlake_irq_postinstall(struct drm_device *dev)
4072 {
4073         struct drm_i915_private *dev_priv = to_i915(dev);
4074         u32 display_mask, extra_mask;
4075
4076         if (INTEL_GEN(dev_priv) >= 7) {
4077                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
4078                                 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
4079                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
4080                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
4081                               DE_DP_A_HOTPLUG_IVB);
4082         } else {
4083                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
4084                                 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
4085                                 DE_PIPEA_CRC_DONE | DE_POISON);
4086                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
4087                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
4088                               DE_DP_A_HOTPLUG);
4089         }
4090
4091         if (IS_HASWELL(dev_priv)) {
4092                 gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
4093                 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4094                 display_mask |= DE_EDP_PSR_INT_HSW;
4095         }
4096
4097         dev_priv->irq_mask = ~display_mask;
4098
4099         ibx_irq_pre_postinstall(dev);
4100
4101         GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
4102
4103         gen5_gt_irq_postinstall(dev);
4104
4105         ilk_hpd_detection_setup(dev_priv);
4106
4107         ibx_irq_postinstall(dev);
4108
4109         if (IS_IRONLAKE_M(dev_priv)) {
4110                 /* Enable PCU event interrupts
4111                  *
4112                  * spinlocking not required here for correctness since interrupt
4113                  * setup is guaranteed to run in single-threaded context. But we
4114                  * need it to make the assert_spin_locked happy. */
4115                 spin_lock_irq(&dev_priv->irq_lock);
4116                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
4117                 spin_unlock_irq(&dev_priv->irq_lock);
4118         }
4119
4120         return 0;
4121 }
4122
4123 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
4124 {
4125         lockdep_assert_held(&dev_priv->irq_lock);
4126
4127         if (dev_priv->display_irqs_enabled)
4128                 return;
4129
4130         dev_priv->display_irqs_enabled = true;
4131
4132         if (intel_irqs_enabled(dev_priv)) {
4133                 vlv_display_irq_reset(dev_priv);
4134                 vlv_display_irq_postinstall(dev_priv);
4135         }
4136 }
4137
4138 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
4139 {
4140         lockdep_assert_held(&dev_priv->irq_lock);
4141
4142         if (!dev_priv->display_irqs_enabled)
4143                 return;
4144
4145         dev_priv->display_irqs_enabled = false;
4146
4147         if (intel_irqs_enabled(dev_priv))
4148                 vlv_display_irq_reset(dev_priv);
4149 }
4150
4151
4152 static int valleyview_irq_postinstall(struct drm_device *dev)
4153 {
4154         struct drm_i915_private *dev_priv = to_i915(dev);
4155
4156         gen5_gt_irq_postinstall(dev);
4157
4158         spin_lock_irq(&dev_priv->irq_lock);
4159         if (dev_priv->display_irqs_enabled)
4160                 vlv_display_irq_postinstall(dev_priv);
4161         spin_unlock_irq(&dev_priv->irq_lock);
4162
4163         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
4164         POSTING_READ(VLV_MASTER_IER);
4165
4166         return 0;
4167 }
4168
4169 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4170 {
4171         /* These are interrupts we'll toggle with the ring mask register */
4172         uint32_t gt_interrupts[] = {
4173                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4174                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4175                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
4176                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
4177                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4178                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4179                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
4180                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
4181                 0,
4182                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
4183                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
4184                 };
4185
4186         if (HAS_L3_DPF(dev_priv))
4187                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
4188
4189         dev_priv->pm_ier = 0x0;
4190         dev_priv->pm_imr = ~dev_priv->pm_ier;
4191         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
4192         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
4193         /*
4194          * RPS interrupts will get enabled/disabled on demand when RPS itself
4195          * is enabled/disabled. Same wil be the case for GuC interrupts.
4196          */
4197         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
4198         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
4199 }
4200
4201 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
4202 {
4203         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
4204         uint32_t de_pipe_enables;
4205         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
4206         u32 de_port_enables;
4207         u32 de_misc_masked = GEN8_DE_EDP_PSR;
4208         enum pipe pipe;
4209
4210         if (INTEL_GEN(dev_priv) <= 10)
4211                 de_misc_masked |= GEN8_DE_MISC_GSE;
4212
4213         if (INTEL_GEN(dev_priv) >= 9) {
4214                 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
4215                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
4216                                   GEN9_AUX_CHANNEL_D;
4217                 if (IS_GEN9_LP(dev_priv))
4218                         de_port_masked |= BXT_DE_PORT_GMBUS;
4219         } else {
4220                 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
4221         }
4222
4223         if (INTEL_GEN(dev_priv) >= 11)
4224                 de_port_masked |= ICL_AUX_CHANNEL_E;
4225
4226         if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
4227                 de_port_masked |= CNL_AUX_CHANNEL_F;
4228
4229         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
4230                                            GEN8_PIPE_FIFO_UNDERRUN;
4231
4232         de_port_enables = de_port_masked;
4233         if (IS_GEN9_LP(dev_priv))
4234                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
4235         else if (IS_BROADWELL(dev_priv))
4236                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
4237
4238         gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
4239         intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4240
4241         for_each_pipe(dev_priv, pipe) {
4242                 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
4243
4244                 if (intel_display_power_is_enabled(dev_priv,
4245                                 POWER_DOMAIN_PIPE(pipe)))
4246                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
4247                                           dev_priv->de_irq_mask[pipe],
4248                                           de_pipe_enables);
4249         }
4250
4251         GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
4252         GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
4253
4254         if (INTEL_GEN(dev_priv) >= 11) {
4255                 u32 de_hpd_masked = 0;
4256                 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
4257                                      GEN11_DE_TBT_HOTPLUG_MASK;
4258
4259                 GEN3_IRQ_INIT(GEN11_DE_HPD_, ~de_hpd_masked, de_hpd_enables);
4260                 gen11_hpd_detection_setup(dev_priv);
4261         } else if (IS_GEN9_LP(dev_priv)) {
4262                 bxt_hpd_detection_setup(dev_priv);
4263         } else if (IS_BROADWELL(dev_priv)) {
4264                 ilk_hpd_detection_setup(dev_priv);
4265         }
4266 }
4267
4268 static int gen8_irq_postinstall(struct drm_device *dev)
4269 {
4270         struct drm_i915_private *dev_priv = to_i915(dev);
4271
4272         if (HAS_PCH_SPLIT(dev_priv))
4273                 ibx_irq_pre_postinstall(dev);
4274
4275         gen8_gt_irq_postinstall(dev_priv);
4276         gen8_de_irq_postinstall(dev_priv);
4277
4278         if (HAS_PCH_SPLIT(dev_priv))
4279                 ibx_irq_postinstall(dev);
4280
4281         gen8_master_intr_enable(dev_priv->regs);
4282
4283         return 0;
4284 }
4285
4286 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4287 {
4288         const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
4289
4290         BUILD_BUG_ON(irqs & 0xffff0000);
4291
4292         /* Enable RCS, BCS, VCS and VECS class interrupts. */
4293         I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
4294         I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    irqs << 16 | irqs);
4295
4296         /* Unmask irqs on RCS, BCS, VCS and VECS engines. */
4297         I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~(irqs << 16));
4298         I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~(irqs << 16));
4299         I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~(irqs | irqs << 16));
4300         I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~(irqs | irqs << 16));
4301         I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16));
4302
4303         /*
4304          * RPS interrupts will get enabled/disabled on demand when RPS itself
4305          * is enabled/disabled.
4306          */
4307         dev_priv->pm_ier = 0x0;
4308         dev_priv->pm_imr = ~dev_priv->pm_ier;
4309         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
4310         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
4311 }
4312
4313 static void icp_irq_postinstall(struct drm_device *dev)
4314 {
4315         struct drm_i915_private *dev_priv = to_i915(dev);
4316         u32 mask = SDE_GMBUS_ICP;
4317
4318         WARN_ON(I915_READ(SDEIER) != 0);
4319         I915_WRITE(SDEIER, 0xffffffff);
4320         POSTING_READ(SDEIER);
4321
4322         gen3_assert_iir_is_zero(dev_priv, SDEIIR);
4323         I915_WRITE(SDEIMR, ~mask);
4324
4325         icp_hpd_detection_setup(dev_priv);
4326 }
4327
4328 static int gen11_irq_postinstall(struct drm_device *dev)
4329 {
4330         struct drm_i915_private *dev_priv = dev->dev_private;
4331         u32 gu_misc_masked = GEN11_GU_MISC_GSE;
4332
4333         if (HAS_PCH_ICP(dev_priv))
4334                 icp_irq_postinstall(dev);
4335
4336         gen11_gt_irq_postinstall(dev_priv);
4337         gen8_de_irq_postinstall(dev_priv);
4338
4339         GEN3_IRQ_INIT(GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
4340
4341         I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
4342
4343         gen11_master_intr_enable(dev_priv->regs);
4344
4345         return 0;
4346 }
4347
4348 static int cherryview_irq_postinstall(struct drm_device *dev)
4349 {
4350         struct drm_i915_private *dev_priv = to_i915(dev);
4351
4352         gen8_gt_irq_postinstall(dev_priv);
4353
4354         spin_lock_irq(&dev_priv->irq_lock);
4355         if (dev_priv->display_irqs_enabled)
4356                 vlv_display_irq_postinstall(dev_priv);
4357         spin_unlock_irq(&dev_priv->irq_lock);
4358
4359         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4360         POSTING_READ(GEN8_MASTER_IRQ);
4361
4362         return 0;
4363 }
4364
4365 static void i8xx_irq_reset(struct drm_device *dev)
4366 {
4367         struct drm_i915_private *dev_priv = to_i915(dev);
4368
4369         i9xx_pipestat_irq_reset(dev_priv);
4370
4371         I915_WRITE16(HWSTAM, 0xffff);
4372
4373         GEN2_IRQ_RESET();
4374 }
4375
4376 static int i8xx_irq_postinstall(struct drm_device *dev)
4377 {
4378         struct drm_i915_private *dev_priv = to_i915(dev);
4379         u16 enable_mask;
4380
4381         I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
4382                             I915_ERROR_MEMORY_REFRESH));
4383
4384         /* Unmask the interrupts that we always want on. */
4385         dev_priv->irq_mask =
4386                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4387                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4388                   I915_MASTER_ERROR_INTERRUPT);
4389
4390         enable_mask =
4391                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4392                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4393                 I915_MASTER_ERROR_INTERRUPT |
4394                 I915_USER_INTERRUPT;
4395
4396         GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4397
4398         /* Interrupt setup is already guaranteed to be single-threaded, this is
4399          * just to make the assert_spin_locked check happy. */
4400         spin_lock_irq(&dev_priv->irq_lock);
4401         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4402         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4403         spin_unlock_irq(&dev_priv->irq_lock);
4404
4405         return 0;
4406 }
4407
4408 static void i8xx_error_irq_ack(struct drm_i915_private *dev_priv,
4409                                u16 *eir, u16 *eir_stuck)
4410 {
4411         u16 emr;
4412
4413         *eir = I915_READ16(EIR);
4414
4415         if (*eir)
4416                 I915_WRITE16(EIR, *eir);
4417
4418         *eir_stuck = I915_READ16(EIR);
4419         if (*eir_stuck == 0)
4420                 return;
4421
4422         /*
4423          * Toggle all EMR bits to make sure we get an edge
4424          * in the ISR master error bit if we don't clear
4425          * all the EIR bits. Otherwise the edge triggered
4426          * IIR on i965/g4x wouldn't notice that an interrupt
4427          * is still pending. Also some EIR bits can't be
4428          * cleared except by handling the underlying error
4429          * (or by a GPU reset) so we mask any bit that
4430          * remains set.
4431          */
4432         emr = I915_READ16(EMR);
4433         I915_WRITE16(EMR, 0xffff);
4434         I915_WRITE16(EMR, emr | *eir_stuck);
4435 }
4436
4437 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
4438                                    u16 eir, u16 eir_stuck)
4439 {
4440         DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
4441
4442         if (eir_stuck)
4443                 DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
4444 }
4445
4446 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
4447                                u32 *eir, u32 *eir_stuck)
4448 {
4449         u32 emr;
4450
4451         *eir = I915_READ(EIR);
4452
4453         I915_WRITE(EIR, *eir);
4454
4455         *eir_stuck = I915_READ(EIR);
4456         if (*eir_stuck == 0)
4457                 return;
4458
4459         /*
4460          * Toggle all EMR bits to make sure we get an edge
4461          * in the ISR master error bit if we don't clear
4462          * all the EIR bits. Otherwise the edge triggered
4463          * IIR on i965/g4x wouldn't notice that an interrupt
4464          * is still pending. Also some EIR bits can't be
4465          * cleared except by handling the underlying error
4466          * (or by a GPU reset) so we mask any bit that
4467          * remains set.
4468          */
4469         emr = I915_READ(EMR);
4470         I915_WRITE(EMR, 0xffffffff);
4471         I915_WRITE(EMR, emr | *eir_stuck);
4472 }
4473
4474 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4475                                    u32 eir, u32 eir_stuck)
4476 {
4477         DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4478
4479         if (eir_stuck)
4480                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4481 }
4482
4483 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4484 {
4485         struct drm_device *dev = arg;
4486         struct drm_i915_private *dev_priv = to_i915(dev);
4487         irqreturn_t ret = IRQ_NONE;
4488
4489         if (!intel_irqs_enabled(dev_priv))
4490                 return IRQ_NONE;
4491
4492         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4493         disable_rpm_wakeref_asserts(dev_priv);
4494
4495         do {
4496                 u32 pipe_stats[I915_MAX_PIPES] = {};
4497                 u16 eir = 0, eir_stuck = 0;
4498                 u16 iir;
4499
4500                 iir = I915_READ16(IIR);
4501                 if (iir == 0)
4502                         break;
4503
4504                 ret = IRQ_HANDLED;
4505
4506                 /* Call regardless, as some status bits might not be
4507                  * signalled in iir */
4508                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4509
4510                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4511                         i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4512
4513                 I915_WRITE16(IIR, iir);
4514
4515                 if (iir & I915_USER_INTERRUPT)
4516                         notify_ring(dev_priv->engine[RCS]);
4517
4518                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4519                         i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4520
4521                 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4522         } while (0);
4523
4524         enable_rpm_wakeref_asserts(dev_priv);
4525
4526         return ret;
4527 }
4528
4529 static void i915_irq_reset(struct drm_device *dev)
4530 {
4531         struct drm_i915_private *dev_priv = to_i915(dev);
4532
4533         if (I915_HAS_HOTPLUG(dev_priv)) {
4534                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4535                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4536         }
4537
4538         i9xx_pipestat_irq_reset(dev_priv);
4539
4540         I915_WRITE(HWSTAM, 0xffffffff);
4541
4542         GEN3_IRQ_RESET();
4543 }
4544
4545 static int i915_irq_postinstall(struct drm_device *dev)
4546 {
4547         struct drm_i915_private *dev_priv = to_i915(dev);
4548         u32 enable_mask;
4549
4550         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4551                           I915_ERROR_MEMORY_REFRESH));
4552
4553         /* Unmask the interrupts that we always want on. */
4554         dev_priv->irq_mask =
4555                 ~(I915_ASLE_INTERRUPT |
4556                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4557                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4558                   I915_MASTER_ERROR_INTERRUPT);
4559
4560         enable_mask =
4561                 I915_ASLE_INTERRUPT |
4562                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4563                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4564                 I915_MASTER_ERROR_INTERRUPT |
4565                 I915_USER_INTERRUPT;
4566
4567         if (I915_HAS_HOTPLUG(dev_priv)) {
4568                 /* Enable in IER... */
4569                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4570                 /* and unmask in IMR */
4571                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4572         }
4573
4574         GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4575
4576         /* Interrupt setup is already guaranteed to be single-threaded, this is
4577          * just to make the assert_spin_locked check happy. */
4578         spin_lock_irq(&dev_priv->irq_lock);
4579         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4580         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4581         spin_unlock_irq(&dev_priv->irq_lock);
4582
4583         i915_enable_asle_pipestat(dev_priv);
4584
4585         return 0;
4586 }
4587
4588 static irqreturn_t i915_irq_handler(int irq, void *arg)
4589 {
4590         struct drm_device *dev = arg;
4591         struct drm_i915_private *dev_priv = to_i915(dev);
4592         irqreturn_t ret = IRQ_NONE;
4593
4594         if (!intel_irqs_enabled(dev_priv))
4595                 return IRQ_NONE;
4596
4597         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4598         disable_rpm_wakeref_asserts(dev_priv);
4599
4600         do {
4601                 u32 pipe_stats[I915_MAX_PIPES] = {};
4602                 u32 eir = 0, eir_stuck = 0;
4603                 u32 hotplug_status = 0;
4604                 u32 iir;
4605
4606                 iir = I915_READ(IIR);
4607                 if (iir == 0)
4608                         break;
4609
4610                 ret = IRQ_HANDLED;
4611
4612                 if (I915_HAS_HOTPLUG(dev_priv) &&
4613                     iir & I915_DISPLAY_PORT_INTERRUPT)
4614                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4615
4616                 /* Call regardless, as some status bits might not be
4617                  * signalled in iir */
4618                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4619
4620                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4621                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4622
4623                 I915_WRITE(IIR, iir);
4624
4625                 if (iir & I915_USER_INTERRUPT)
4626                         notify_ring(dev_priv->engine[RCS]);
4627
4628                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4629                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4630
4631                 if (hotplug_status)
4632                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4633
4634                 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4635         } while (0);
4636
4637         enable_rpm_wakeref_asserts(dev_priv);
4638
4639         return ret;
4640 }
4641
4642 static void i965_irq_reset(struct drm_device *dev)
4643 {
4644         struct drm_i915_private *dev_priv = to_i915(dev);
4645
4646         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4647         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4648
4649         i9xx_pipestat_irq_reset(dev_priv);
4650
4651         I915_WRITE(HWSTAM, 0xffffffff);
4652
4653         GEN3_IRQ_RESET();
4654 }
4655
4656 static int i965_irq_postinstall(struct drm_device *dev)
4657 {
4658         struct drm_i915_private *dev_priv = to_i915(dev);
4659         u32 enable_mask;
4660         u32 error_mask;
4661
4662         /*
4663          * Enable some error detection, note the instruction error mask
4664          * bit is reserved, so we leave it masked.
4665          */
4666         if (IS_G4X(dev_priv)) {
4667                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4668                                GM45_ERROR_MEM_PRIV |
4669                                GM45_ERROR_CP_PRIV |
4670                                I915_ERROR_MEMORY_REFRESH);
4671         } else {
4672                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4673                                I915_ERROR_MEMORY_REFRESH);
4674         }
4675         I915_WRITE(EMR, error_mask);
4676
4677         /* Unmask the interrupts that we always want on. */
4678         dev_priv->irq_mask =
4679                 ~(I915_ASLE_INTERRUPT |
4680                   I915_DISPLAY_PORT_INTERRUPT |
4681                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4682                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4683                   I915_MASTER_ERROR_INTERRUPT);
4684
4685         enable_mask =
4686                 I915_ASLE_INTERRUPT |
4687                 I915_DISPLAY_PORT_INTERRUPT |
4688                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4689                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4690                 I915_MASTER_ERROR_INTERRUPT |
4691                 I915_USER_INTERRUPT;
4692
4693         if (IS_G4X(dev_priv))
4694                 enable_mask |= I915_BSD_USER_INTERRUPT;
4695
4696         GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4697
4698         /* Interrupt setup is already guaranteed to be single-threaded, this is
4699          * just to make the assert_spin_locked check happy. */
4700         spin_lock_irq(&dev_priv->irq_lock);
4701         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4702         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4703         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4704         spin_unlock_irq(&dev_priv->irq_lock);
4705
4706         i915_enable_asle_pipestat(dev_priv);
4707
4708         return 0;
4709 }
4710
4711 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4712 {
4713         u32 hotplug_en;
4714
4715         lockdep_assert_held(&dev_priv->irq_lock);
4716
4717         /* Note HDMI and DP share hotplug bits */
4718         /* enable bits are the same for all generations */
4719         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4720         /* Programming the CRT detection parameters tends
4721            to generate a spurious hotplug event about three
4722            seconds later.  So just do it once.
4723         */
4724         if (IS_G4X(dev_priv))
4725                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4726         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4727
4728         /* Ignore TV since it's buggy */
4729         i915_hotplug_interrupt_update_locked(dev_priv,
4730                                              HOTPLUG_INT_EN_MASK |
4731                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4732                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4733                                              hotplug_en);
4734 }
4735
4736 static irqreturn_t i965_irq_handler(int irq, void *arg)
4737 {
4738         struct drm_device *dev = arg;
4739         struct drm_i915_private *dev_priv = to_i915(dev);
4740         irqreturn_t ret = IRQ_NONE;
4741
4742         if (!intel_irqs_enabled(dev_priv))
4743                 return IRQ_NONE;
4744
4745         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4746         disable_rpm_wakeref_asserts(dev_priv);
4747
4748         do {
4749                 u32 pipe_stats[I915_MAX_PIPES] = {};
4750                 u32 eir = 0, eir_stuck = 0;
4751                 u32 hotplug_status = 0;
4752                 u32 iir;
4753
4754                 iir = I915_READ(IIR);
4755                 if (iir == 0)
4756                         break;
4757
4758                 ret = IRQ_HANDLED;
4759
4760                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4761                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4762
4763                 /* Call regardless, as some status bits might not be
4764                  * signalled in iir */
4765                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4766
4767                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4768                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4769
4770                 I915_WRITE(IIR, iir);
4771
4772                 if (iir & I915_USER_INTERRUPT)
4773                         notify_ring(dev_priv->engine[RCS]);
4774
4775                 if (iir & I915_BSD_USER_INTERRUPT)
4776                         notify_ring(dev_priv->engine[VCS]);
4777
4778                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4779                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4780
4781                 if (hotplug_status)
4782                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4783
4784                 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4785         } while (0);
4786
4787         enable_rpm_wakeref_asserts(dev_priv);
4788
4789         return ret;
4790 }
4791
4792 /**
4793  * intel_irq_init - initializes irq support
4794  * @dev_priv: i915 device instance
4795  *
4796  * This function initializes all the irq support including work items, timers
4797  * and all the vtables. It does not setup the interrupt itself though.
4798  */
4799 void intel_irq_init(struct drm_i915_private *dev_priv)
4800 {
4801         struct drm_device *dev = &dev_priv->drm;
4802         struct intel_rps *rps = &dev_priv->gt_pm.rps;
4803         int i;
4804
4805         intel_hpd_init_work(dev_priv);
4806
4807         INIT_WORK(&rps->work, gen6_pm_rps_work);
4808
4809         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4810         for (i = 0; i < MAX_L3_SLICES; ++i)
4811                 dev_priv->l3_parity.remap_info[i] = NULL;
4812
4813         if (HAS_GUC_SCHED(dev_priv))
4814                 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4815
4816         /* Let's track the enabled rps events */
4817         if (IS_VALLEYVIEW(dev_priv))
4818                 /* WaGsvRC0ResidencyMethod:vlv */
4819                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4820         else
4821                 dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD |
4822                                            GEN6_PM_RP_DOWN_THRESHOLD |
4823                                            GEN6_PM_RP_DOWN_TIMEOUT);
4824
4825         rps->pm_intrmsk_mbz = 0;
4826
4827         /*
4828          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4829          * if GEN6_PM_UP_EI_EXPIRED is masked.
4830          *
4831          * TODO: verify if this can be reproduced on VLV,CHV.
4832          */
4833         if (INTEL_GEN(dev_priv) <= 7)
4834                 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4835
4836         if (INTEL_GEN(dev_priv) >= 8)
4837                 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4838
4839         if (IS_GEN2(dev_priv)) {
4840                 /* Gen2 doesn't have a hardware frame counter */
4841                 dev->max_vblank_count = 0;
4842         } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4843                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4844                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4845         } else {
4846                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4847                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4848         }
4849
4850         /*
4851          * Opt out of the vblank disable timer on everything except gen2.
4852          * Gen2 doesn't have a hardware frame counter and so depends on
4853          * vblank interrupts to produce sane vblank seuquence numbers.
4854          */
4855         if (!IS_GEN2(dev_priv))
4856                 dev->vblank_disable_immediate = true;
4857
4858         /* Most platforms treat the display irq block as an always-on
4859          * power domain. vlv/chv can disable it at runtime and need
4860          * special care to avoid writing any of the display block registers
4861          * outside of the power domain. We defer setting up the display irqs
4862          * in this case to the runtime pm.
4863          */
4864         dev_priv->display_irqs_enabled = true;
4865         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4866                 dev_priv->display_irqs_enabled = false;
4867
4868         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4869         /* If we have MST support, we want to avoid doing short HPD IRQ storm
4870          * detection, as short HPD storms will occur as a natural part of
4871          * sideband messaging with MST.
4872          * On older platforms however, IRQ storms can occur with both long and
4873          * short pulses, as seen on some G4x systems.
4874          */
4875         dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4876
4877         dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4878         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4879
4880         if (IS_CHERRYVIEW(dev_priv)) {
4881                 dev->driver->irq_handler = cherryview_irq_handler;
4882                 dev->driver->irq_preinstall = cherryview_irq_reset;
4883                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4884                 dev->driver->irq_uninstall = cherryview_irq_reset;
4885                 dev->driver->enable_vblank = i965_enable_vblank;
4886                 dev->driver->disable_vblank = i965_disable_vblank;
4887                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4888         } else if (IS_VALLEYVIEW(dev_priv)) {
4889                 dev->driver->irq_handler = valleyview_irq_handler;
4890                 dev->driver->irq_preinstall = valleyview_irq_reset;
4891                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4892                 dev->driver->irq_uninstall = valleyview_irq_reset;
4893                 dev->driver->enable_vblank = i965_enable_vblank;
4894                 dev->driver->disable_vblank = i965_disable_vblank;
4895                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4896         } else if (INTEL_GEN(dev_priv) >= 11) {
4897                 dev->driver->irq_handler = gen11_irq_handler;
4898                 dev->driver->irq_preinstall = gen11_irq_reset;
4899                 dev->driver->irq_postinstall = gen11_irq_postinstall;
4900                 dev->driver->irq_uninstall = gen11_irq_reset;
4901                 dev->driver->enable_vblank = gen8_enable_vblank;
4902                 dev->driver->disable_vblank = gen8_disable_vblank;
4903                 dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4904         } else if (INTEL_GEN(dev_priv) >= 8) {
4905                 dev->driver->irq_handler = gen8_irq_handler;
4906                 dev->driver->irq_preinstall = gen8_irq_reset;
4907                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4908                 dev->driver->irq_uninstall = gen8_irq_reset;
4909                 dev->driver->enable_vblank = gen8_enable_vblank;
4910                 dev->driver->disable_vblank = gen8_disable_vblank;
4911                 if (IS_GEN9_LP(dev_priv))
4912                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4913                 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4914                          HAS_PCH_CNP(dev_priv))
4915                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4916                 else
4917                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4918         } else if (HAS_PCH_SPLIT(dev_priv)) {
4919                 dev->driver->irq_handler = ironlake_irq_handler;
4920                 dev->driver->irq_preinstall = ironlake_irq_reset;
4921                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4922                 dev->driver->irq_uninstall = ironlake_irq_reset;
4923                 dev->driver->enable_vblank = ironlake_enable_vblank;
4924                 dev->driver->disable_vblank = ironlake_disable_vblank;
4925                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4926         } else {
4927                 if (IS_GEN2(dev_priv)) {
4928                         dev->driver->irq_preinstall = i8xx_irq_reset;
4929                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4930                         dev->driver->irq_handler = i8xx_irq_handler;
4931                         dev->driver->irq_uninstall = i8xx_irq_reset;
4932                         dev->driver->enable_vblank = i8xx_enable_vblank;
4933                         dev->driver->disable_vblank = i8xx_disable_vblank;
4934                 } else if (IS_GEN3(dev_priv)) {
4935                         dev->driver->irq_preinstall = i915_irq_reset;
4936                         dev->driver->irq_postinstall = i915_irq_postinstall;
4937                         dev->driver->irq_uninstall = i915_irq_reset;
4938                         dev->driver->irq_handler = i915_irq_handler;
4939                         dev->driver->enable_vblank = i8xx_enable_vblank;
4940                         dev->driver->disable_vblank = i8xx_disable_vblank;
4941                 } else {
4942                         dev->driver->irq_preinstall = i965_irq_reset;
4943                         dev->driver->irq_postinstall = i965_irq_postinstall;
4944                         dev->driver->irq_uninstall = i965_irq_reset;
4945                         dev->driver->irq_handler = i965_irq_handler;
4946                         dev->driver->enable_vblank = i965_enable_vblank;
4947                         dev->driver->disable_vblank = i965_disable_vblank;
4948                 }
4949                 if (I915_HAS_HOTPLUG(dev_priv))
4950                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4951         }
4952 }
4953
4954 /**
4955  * intel_irq_fini - deinitializes IRQ support
4956  * @i915: i915 device instance
4957  *
4958  * This function deinitializes all the IRQ support.
4959  */
4960 void intel_irq_fini(struct drm_i915_private *i915)
4961 {
4962         int i;
4963
4964         for (i = 0; i < MAX_L3_SLICES; ++i)
4965                 kfree(i915->l3_parity.remap_info[i]);
4966 }
4967
4968 /**
4969  * intel_irq_install - enables the hardware interrupt
4970  * @dev_priv: i915 device instance
4971  *
4972  * This function enables the hardware interrupt handling, but leaves the hotplug
4973  * handling still disabled. It is called after intel_irq_init().
4974  *
4975  * In the driver load and resume code we need working interrupts in a few places
4976  * but don't want to deal with the hassle of concurrent probe and hotplug
4977  * workers. Hence the split into this two-stage approach.
4978  */
4979 int intel_irq_install(struct drm_i915_private *dev_priv)
4980 {
4981         /*
4982          * We enable some interrupt sources in our postinstall hooks, so mark
4983          * interrupts as enabled _before_ actually enabling them to avoid
4984          * special cases in our ordering checks.
4985          */
4986         dev_priv->runtime_pm.irqs_enabled = true;
4987
4988         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4989 }
4990
4991 /**
4992  * intel_irq_uninstall - finilizes all irq handling
4993  * @dev_priv: i915 device instance
4994  *
4995  * This stops interrupt and hotplug handling and unregisters and frees all
4996  * resources acquired in the init functions.
4997  */
4998 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4999 {
5000         drm_irq_uninstall(&dev_priv->drm);
5001         intel_hpd_cancel_work(dev_priv);
5002         dev_priv->runtime_pm.irqs_enabled = false;
5003 }
5004
5005 /**
5006  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
5007  * @dev_priv: i915 device instance
5008  *
5009  * This function is used to disable interrupts at runtime, both in the runtime
5010  * pm and the system suspend/resume code.
5011  */
5012 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
5013 {
5014         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
5015         dev_priv->runtime_pm.irqs_enabled = false;
5016         synchronize_irq(dev_priv->drm.irq);
5017 }
5018
5019 /**
5020  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
5021  * @dev_priv: i915 device instance
5022  *
5023  * This function is used to enable interrupts at runtime, both in the runtime
5024  * pm and the system suspend/resume code.
5025  */
5026 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
5027 {
5028         dev_priv->runtime_pm.irqs_enabled = true;
5029         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
5030         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
5031 }
This page took 0.326379 seconds and 4 git commands to generate.